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Introduction

About the SMO

The Singapore Mathematical Olympiad (SMO) is an annual mathematical competition
organized by the Singapore Mathematical Society. The Olympiad is split into three cat-
egories, namely Junior, Senior and Open. Within each category, there are two rounds of
papers (the second being an invitational round).

About the Compendium

This compendium is written with the goal to provide clear and concise solutions to each
and every problem that has appeared in the SMO. The compendium has been split into
two parts: Problems and Solutions. Within each part, SMO papers are further categorized
by year, category and round.

Other Resources

Links to relevant resources, such as Way Tan’s reviews of Round 1 papers, and Art of
Problem Solving threads for Round 2 questions, are provided at the beginning of solutions.
A less well-known but equally enriching resource for olympiad preparation is the SIMO
Retiree Blog .

Contributing

The source code for this compendium can be found on GitHub at asdia0/Compendium.
Contributions are more than welcome.

Acknowledgements

Not all solutions presented in this compendium are original; credits will be displayed at
the start of relevant solutions. The template for this compendium is adapted from Evan
Chen’s LATEX style file evan.sty.

https://www.youtube.com/c/WayTan
https://artofproblemsolving.com/
https://artofproblemsolving.com/
https://simoxmenblog.blogspot.com/
https://simoxmenblog.blogspot.com/
https://github.com/asdia0/Compendium
https://github.com/vEnhance/dotfiles/blob/main/texmf/tex/latex/evan/evan.sty
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Part I.

Problems
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1. SMO 2020

1.1. Open Section

1.1.1. Round 1 Problems

Solutions can be found in Section 6.1.1.

1. If S is the sum of all the real roots of the equation x2 +
1

x2
= 20202 +

1

20202
find

⌊S⌋.

2. Find the largest positive integer x that satisfies the equation

(⌊x⌋ − 2020)2 + (⌈x⌉ − 2030)2 = (⌊x⌋ − ⌈x⌉+ 10)2.

(Note: If you think that the above equation has no solution in the positive integers,
enter your answer as “0”.)

3. Let Sn =
1

1× 3
+

1

3× 5
+

1

5× 7
+ · · · + 1

(2n− 1)× (2n+ 1)
. Find the value of n

such that Sn takes the value of 0.48.

4. Given that the three planes in the Cartesian space with equations 2x+4y+6z = 5,
3x+5y+2z = 6 and 8x+14y+ az = b have a common line of intersection, find the
value of a+ b.

5. Let i be the complex number
√
−1, and n be the smallest positive integer such that

(
√
3 + i)n = a, where a is a real number. Find the value of ⌊n− a⌋.

6. In the three-dimensional Cartesian space, let i, j and k denote unit vectors along
three mutually perpendicular x, y and z-axes respectively. Three straight lines l1, l2
and l3 have equations defined by

l1: r = (4 + λ)i+ (5 + λ)j+ (6 + λ)k,

l2: r = (4 + 3µ)i+ (5− µ)j+ (6− 2µ)k,

l3: r = (1 + 6ν)i+ (2 + 2ν)j+ (3 + ν)k,

where µ, λ and ν are real numbers. If the area of the triangle enclosed by the three
lines l1, l2 and l3 is denoted by S, find the value of 10S2.

7. Given that f : R → R such that

f(a2 − b2) = (a− b)(f(a) + f(b))

for all real numbers a and b, and that f(1) =
1

101
, find the value of

100∑
k=1

f(k).

8. Find the sum of all the positive integers n such that n4 − 4n3 + 22n2 − 36n+ 18 is
a perfect square.

(Note: If you think that there are infinitely many such positive integers n that satisfy
that above conditions, enter your answer as “9999”.)
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9. Assume that

(x+ 2 +m)2019 = a0 + a1(x+ 1) + a2(x+ 1)2 + · · ·+ a2019(x+ 1)2019.

Find the largest possible integer m such that

(a0 + a2 + a4 + · · ·+ a2018)
2 − (a1 + a3 + a5 + · · ·+ a2019)

2 ≤ 20202019.

10. Given that S = lim
n→∞

n∑
k=1

1√
n(n+ k)

, find the value of
⌊
(S + 2)2

⌋
.

11. Let A = {1, 2, · · · , 10}. Count the number of ordered pairs (S1, S2), where S1 and
S2 are non-intersecting and non-empty subsets of A such that the largest number
in S1 is smaller than the smallest number in S2. For example, if S1 = {1, 4} and
S2 = {5, 6, 7}, then (S1, S2) is such an ordered pair.

12. Each cell of a 2020× 2020 table is filled with a number which is either 1 or −1. For
u = 1, . . . , 2020, let Ri be the product of all the numbers in the ith row and let Ci

be the product of all the numbers in the ith column. Suppose Ri + Ci = 0 for all
i = 1, . . . , 2020. What is the least number of −1’s in the table?

13. Assume that the sequence {ak}∞k=1 follows an arithmetic progression with a2 + a4 +
a9 = 24. Find the maximum value of S8 × S10, where Sk denotes the sum a1 + a2 +
· · ·+ ak.

14. Consider all functions g : R → R satisfying the conditions that

a) |g(a)− g(b)| ≤ |a− b| for any a, b ∈ R;

b) g(g(g(0))) = 0.

Find the largest possible value of g(0).

15. A sequence {ai}∞i=1 is called a good sequence if
S2n

Sn
is a constant for all n ≥ 1,

where Sk denotes the sum a1 + a2 + · · ·+ ak. Suppose it is known that the sequence
{ai}∞i=1 is a good sequence that follows an arithmetic progression. Determine a2020
if a1 = 1 ̸= a2.

16. Determine the smallest positive integer p such that the system{
6x+ 4y + 3z = 0

4xy + 2yz + pxz = 0

has more the one set of real solutions in x, y, z.

17. Let ABC be a triangle with a = BC, b = AC and c = AB. It is given that c = 100
and

cosA

cosB
=

b

a
=

4

3
.

Let P be a point on the inscribed circle of △ABC. Find the maximum value of

PA2 + PB2 + PC2.

18. Find the largest positive integer n less than 2020 such that
(
n−1
k

)
− (−1)k is divisible

by n for k = 0, 1, . . . , n− 1.
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19. Assume that {ak}∞k=1 is a sequence with the property that for any distinct positive
integers m, n, p, q with m+ n = p+ q, the following equality always holds:

am + an
(am + 1)(an + 1)

=
ap + aq

(ap + 1)(aq + 1)
.

Given a1 = 0 and a2 =
1

2
, determine

1

1− a5
.

(Hint: Consider ck =
1

ak + 1
− 1

2
for all positive integer k.)

20. In the triangle ABC, the incircle touches the sides BC, CA, AB at D, E, F re-
spectively. The line segments ED and AB are extended to intersect at P such that
AB = BP = PD. Suppose CA = 9. Find the value of [ABC]2, where [ABC] is the
area of the triangle ABC.

21. In an acute-angled triangle ABC, AB = 75, AC = 53, the external bisector of ∠A
on CA produced meets the circumcircle of triangle ABC at E, and F is the foot of
the perpendicular from E onto AB. Find the value of AF × FB.

22. Let {ak}∞k=1 be an increasing sequence with ak < ak+1 for all k = 1, 2, 3, · · · formed
by arranging all the terms in the set

{
2r + 2s + 2t : 0 ≤ r < s < t

}
in increasing

order. Find the largest value of the integer n such that an ≤ 2020.

23. Let n be a positive integer and S be the set of all numbers that can be written in

the form
k∑

i=2

ai−1ai with a1, . . . , ak being positive integers that sum to n. Suppose

the average value of all the numbers in S is 88199. Determine n.

24. Let x, y, z and w be real numbers such that x+ y + z + w = 5. Find the minimum
value of (x+ 5)2 + (y + 10)2 + (z + 20)2 + (w + 40)2.

25. Let p and q be positive integers satisfying the equation p2 + q2 = 3994(p − q).
Determine the largest possible value of q.
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2. SMO 2021

2.1. Open Section

2.1.1. Round 1 Problems

Solutions can be found in Section 7.1.1.

1. It is given that
π

2
< β < α <

3π

4
, cos(α− β) =

12

13
and sin(α+ β) = −3

5
. Find

⌊|2021 sin(2α)|⌋.

2. Find the number of solutions of the equation |x− 3|+ |x− 5| = 2.

(Note: If you think that there are infinitely many solutions, enter your answer as
“99999”.)

3. Evaluate 1× 2× 3 + 2× 3× 4 + 3× 4× 5 + · · ·+ 10× 11× 12.

4. It is given that the solution of the inequality
√
81− x4 ≤ kx + 1 is a ≤ x ≤ b with

b− a = 2, where k > 0. Determine ⌊k⌋.

5. The figure below shows a cross that is cut out from a 10× 9 rectangular board.

Find the total number of rectangles in the above figure.

(Note: A square is a rectangle.)

6. Consider all polynomials P (x, y) in two variables such that P (0, 0) = 2020 and for
all x and y, P (x, y) = P (x+ y, y − x). Find the largest possible value of P (1, 1).

7. In the three-dimensional Cartesian space with i, j and k denoting the unit vectors
along three perpendicular directions in a clockwise manner, the line l with equation
given by r × (i + 2j + 3k) = 5i − 13j + 7k intersects the plane Π with equation
x+ y + z = 16 at the point (a, b, c). Find the value of a+ b+ c.

8. Find the minimum value of (x+ 7)2 + (y + 2)2 subject to the constraint (x− 5)2 +
(y − 7)2 = 4.
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9. Find the largest possible value α4 + β4 + γ4 among all possible sets of numbers
(α, β, γ) that satisfy the equations

α+ β + γ = 2

α2 + β2 + γ2 = 14

α3 + β3 + γ3 = 20.

10. If p is the product of all the non-zero real roots of the equation

9
√

x7 + 30x5 =
7
√

x9 − 30x5,

find ⌊|p|⌋.

11. Let S be the sum of a convergent geometric series with first term 1. If the third
term of the series is the arithmetic mean of the first two terms, find ⌊3S + 4⌋.

12. Given that sinα+ sinβ =
1

10
, and cosα+ cosβ =

1

9
, find

⌊
tan2(α+ β)

⌋
.

13. Determine the number of positive integers that are divisible by 2021 and has exactly
2021 divisors (including 1 and itself).

14. Let S =
25∑
k=0

(
100

4k

)
− 298. Find

⌊∣∣∣∣ S248
∣∣∣∣⌋.

15. Assume that ABC is an acute triangle with sin(A+B) =
3

5
and sin(A−B) =

1

5
.

If AB = 2022(
√
6− 2), determine ⌊h⌋, where h is the height of the triangle from C

on AB.

16. Let a1, a2, · · · be a sequence with a1 = 1 and an+1 =
n+ 2

n
Sn for all n = 1, 2, · · · ,

where Sn = a1+a2+· · ·+an. Determine the minimum integer n such that an ≥ 2021.

17. Each card of a stack of 101 cards has one side coloured red and the other coloured
blue. Initially all cards have the red side facing up and stacked together in a deck.
On each turn, Ah Meng takes 8 cards on the top, flip them over, and place them to
the bottom deck. Determine the minimum number of turns required so that all the
cards have the red sides facing up again.

18. Let ABC be a triangle with AB = 10 and
cosA

cosB
=

AC

BC
=

4

3
. Let P be a point on the

inscribed circle of triangle ABC. Find the largest possible value of PA2+PB2+PC2.

19. A basket contains 19 apples labelled by the numbers 2, 3, . . . , 20, and 19 bananas
labelled by the numbers 2, 3, . . . , 20. Ah Beng picks m apples and n bananas from
the basket. However, he needs to ensure that for any apple labelled a and any banana
labelled b that he picks, a and b are relatively prime. Determine the largest possible
value of mn.

20. Let p(x) = ax2 − bx+ c be a polynomial where a, b, c are positive integers and p(x)
has two distinct roots in (0, 1). Determine the least possible value of abc.

21. In the triangle ABC, ∠A > 90◦, the incircle touches the side BC and AC at A1

and B1 respectively. The line A1B1 meets the extension of BA at X such that
CXB = 90◦. Suppose BC2 = AB2 +BC ·AC. Find the size of ∠A in degrees.
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22. Find the number of positive integers n such that 7n− 16 divides n · 132019.

23. In the acute triangle ABC, P is a point on AB, Q is a point on AC such that
BP + CQ = PQ. The bisector of ∠A meets the circumcircle of the triangle ABC
at the point R distinct from A. Suppose ∠PRQ = 52.5◦. Find the size of ∠BAC in
degrees.

24. Let S =

∫ ∞

−∞
e−

1
2
x2

dx. Determine the value of
⌊
S2
⌋
.

25. Let p, q, r be positive numbers with p− r = 4q and a1, a2, · · · and b1, b2, · · · be two
sequences defined by a1 = p, b1 = q and for n ≥ 2,

an = pan−1, bn = qan−1 + rbn−1.

Find the value of lim
n→∞

√
a2n + (3bn)2

bn
.
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3. SMO 2022

3.1. Open Section

3.1.1. Round 1 Problems

Solutions can be found in Section 8.1.1.

1. If S =

2021∑
k=−2021

1

10k + 1
, find ⌊2S⌋.

2. All the positive integers 1, 2, 3, 4, · · · , are grouped in the following way: G1 = {1, 2},
G2 = {3, 4, 5, 6}, G3 = {7, 8, 9, 10, 11, 12, 13, 14}, that is, the set Gn contains the
next 2n positive integers listed in ascending order after the set Gn−1, n > 1. If S is
the sum of all the positive integers from G1 to G8, find

⌊
S
100

⌋
.

3. A sequence of one hundred positive integers x1, x2, x3, · · · , x100 are such that

(x1)
2 + (2x2)

2 + (3x3)
2 + (4x4)

2 + · · ·+ (100x100)
2 = 338350.

Find the largest possible value of x1 + x2 + x3 + · · ·+ x100.

4. Let a and b be two real numbers satisfying a < b, and such that for each real number
m satisfying a < m < b, the circle x2 + (y −m)2 = 25 meets the parabola 4y = x2

at four distinct points in the Cartesian plane. Let S be the maximum possible value
of b− a. Find ⌊4S⌋.

5. Let P be a point within a rectangle ABCD such that PA = 10, PB = 14 and
PD = 5, as shown below. Find ⌊PC⌋.

A

B C

D

P

10 5

14
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6. In the diagram below, the rectangle ABCD has area 180 and both triangles ABE
and ADF have areas 60. Find the area of triangle AEF .

A

B C

D

E

F

7. A tetrahedron in R3 has one vertex at the origin O and other vertices at the points
A(6, 0, 0), B(4, 2, 4) and C(3, 2, 6). If x is the height of the tetrahedron from O to
the plane ABC, find

⌊
5x2
⌋
.

8. Let x and y be real numbers such that (x − 2)2 + (y − 3)2 = 4. If S is the largest
possible value of x2 + y2, find

⌊
(S − 17)2

⌋
.

9. Let S be the maximum value of w3−3w subject to the condition that w4+9 ≤ 10w2.
Find ⌊S⌋.

10. In the quadrilateral ABCD below, it is given that AB = BC = CD and ∠ABC =
80◦ and ∠BCD = 160◦. Suppose ∠ADC = x◦. Find the value of x.

A

B
C

D

11. Let a, b, c be integers with ab + c = 49 and a + bc = 50. Find the largest possible
value of abc.

12. Find the largest possible value of |a|+ |b|, where a and b are coprime integers (i.e.,
a and b are integers which have no common factors larger than 1) such that a

b is a
solution of the equation below:√

4x+ 5− 4
√
x+ 1 +

√
x+ 2− 2

√
x+ 1 = 1.

13. Let S be the set of real solutions (x, y, z) of the following system of equations:

4x2

1 + 4x2
= y,

4y2

1 + 4y2
= z,

4z2

1 + 4z2
= x.

For each (x, y, z) ∈ S, define m(x, y, z) = 2000(|x| + |y| + |z|). Determine the
maximum value of m(x, y, z) over all (x, y, z) ∈ S.
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14. Assume that t is a positive solution to the equation

t =

√
1 +

√
1 +

√
1 +

√
1 + t.

Determine the value of t4 − t3 − t+ 10.

15. In the triangle ABC shown in the diagram below, the external angle bisectors of ∠B
and ∠C meet at the point D. The tangent from D to the incircle ω of the triangle
ABC touches ω at E, where E and B are on the same side of the line AD. Suppose
∠BEC = 112◦. Find the size of ∠A in degrees.

A

B

C

D

E

ω

16. Find the largest integer n such that n2 + 5n − 9486 = 10s(n), where s(n) is the
product of all digits of n in the decimal representation of n.

(For example, s(481) = 4× 8× 1 = 32.)

17. Find the number of integer solutions to the equation 19x+ 93y = 4xy.

18. Find the number of integer solutions to the equation x1 + x2 − x3 = 20 with x1 ≥
x2 ≥ x3 ≥ 0.

19. In the diagram below, E is a point outside a square ABCD such that CE is parallel
to BD, BE = BD, and BE intersects CD at H. Given BE =

√
6 +

√
2, find the

length of DH.

A

B C

D

EH
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20. The diagram below shows the region R =
{
(x, y) ∈ R2|y ≥ 1

2x
2
}

on the xy-plane
bounded by the parabola y = 1

2x
2. Let C1 be the largest circle lying inside R with

its lowest point at the origin. Let C2 be the largest circle lying inside R and resting
on top of C1. Find the sum of radii of C1 and C2.

21. Find the smallest positive integer x such that 3x2 + x = 4y2 + y for some positive
integer y.

22. A group of students participates in some sports activities among 6 different types
of sports. It is known that for each sport activity there are exactly 100 students in
the group participating in it; and the union of all the sports activities participated
by any two students is NOT the entire set of 6 sports activities. Determine the
minimum number of students in the group.

23. Let p and q be positive prime integers such that p3−5p2−18p = q9−7q. Determine
the smallest value of p.

24. Given that a, b, c are positive real numbers such that a+b+c = 9, find the maximum
value of a2b3c4.

25. Let R+ be the set of all positive real numbers. Let f : R+ → R+ be a function
satisfying

xyf(x)
(
f(y)− f(yf(x))

)
= 1

for all x, y ∈ R+. Find f( 1
2022).
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3.1.2. Round 2 Problems

Solutions can be found in Section 8.1.2.

1. For △ABC and its circumcircle ω, draw the tangents at B, C to ω meeting at D.
let the line AD meet the circle with centre D and radius DB at E inside △ABC.
Let F be the point on the extension of EB and G be the point on the segment EC
such that ∠AFB = ∠AGE = ∠A. Prove that the tangent at A to the circumcircle
of △AFG is parallel to BC.

2. Prove that if the length and breadth of a rectangle are both odd integers, then there
does not exist a point P inside the rectangle such that each of the distances from P
to the 4 corners of the rectangle is an integer.

3. Find all functions f : Z+ → Z+ satisfying

m!! + n!! | f(m)!! + f(n)!!

for each m,n ∈ Z+, where n!! = (n!)! for all n ∈ Z+.

4. Let n, k, 1 ≤ k ≤ n be fixed integers. Alice has n cards in a row, where the card in
position i has the label i+k (or i+k−n if i+k > n). Alice starts by colouring each
card either red or blue. Afterwards, she is allowed to make several moves, where
each move consists of choosing two cards of different colours and swapping them.
Find the minimum number of moves she has to make (given that she chooses the
colouring optimally) to put the cards in order (i.e. card i is at position i).

5. Let n ≥ 2 be a positive integer. For any integer a, let Pa(x) denote the polynomial
xn + ax. Let p be a prime number and define the set Sa as the set of residues mod
p that Pa(x) attains. That is,

Sa = {b | 0 ≤ b ≤ p− 1, and there is c such that Pa(x) ≡ p (mod p)} .

Show that the expression 1
p−1

∑p−1
a=1 |Sa| is an integer.
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4.1. Senior Section

4.1.1. Round 1 Problems

Solutions can be found in Section 9.1.1.

Multiple Choice Questions

1. Find the value of m such that 2x2 + 3x+m has a minimum value of 9.

9

8
(A) −9

8
(B)

81

8
(C) −81

8
(D)

63

8
(E)

2. Which of the following is true?

sin(105◦)− cos(105)◦ =

√
3

2
(A)

sin(105◦)− cos(105)◦ =

√
3√
2

(B)

sin(105◦) + cos(105)◦ =
1

2
(C)

sin(105◦) + cos(105)◦ =
1√
3

(D)

None of the above(E)

3. If log√2 x = 10− 3 log√2 10, find x.

0.32(A) 0.032(B) 0.0032(C) 0.64(D) 0.064(E)

4. If (x− 5)2 + (y − 5)2 = 52, find the smallest value of (x+ 5)2 + (y + 5)2.

225− 100
√
2(A)

225 + 100
√
2(B)

225
√
2(C)

100
√
2(D)

None of the above(E)

5. Suppose cos(180◦ + x) =
4

5
, where 90◦ < x < 180◦. Find tan(2x).

24

7
(A)

7

24
(B) −24

7
(C) − 7

24
(D) −24

25
(E)

Short Questions

6. Suppose the roots of x2+11x+3 = 0 are p and q, and the roots of x2+Bx−C = 0
are p+ 1 and q + 1. Find C.
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7. If the smallest possible value of (A − x)(23 − x)(A + x)(23 + x) is −(48)2, find the
value of A if A > 0.

8. Find the smallest positive odd integer greater than 1 that is a factor of

(2023)2023 + (2026)2026 + (2029)2029.

9. Find the remainder of 72023 + 92023 when divided by 64.

10. Let x, y, z > 1 and let A be a positive number such that logxA = 30, logy A = 50
and logxy (Az) = 150. Find (logA z)2.

11. Find the largest integer that is less than

310 − 210

10!

(
1

1!9!2
+

1

2!8!22
+

1

3!7!23
+ · · ·+ 1

9!1!29

)−1

.

Here, n! = n · (n− 1) · · · 3 · 2 · 1. For example, 5! = 5 · 4 · 3 · 2 · 1 = 120.

12. Consider the following simultaneous equations:

xy2 + xyz = 91

xyz − y2z = 72

where x, y, and z are positive integers. Find the maximum value of xz.

13. Let x be a real number such that

sin4 x+ cos4 x

sin2 x+ cos4 x
=

8

11
.

Assuming sin2 x >
1

2
, find the value of

√
28
(
sin4 x− cos4 x

)
.

14. A sequence a1, a2, . . ., is defined by

a1 = 5, a2 = 7, an+1 =
an + 1

an−1
for n ≥ 2.

Find the value of 100× a2023.

15. Let C be a constant such that the equation 5 cosx+6 sinx−C = 0 have two distinct
roots a and b, where 0 < b < a < π. Find the value of 61× sin(a+ b).

16. In the diagram below, CE is tangent to the circle at point D, AD is the diameter of
the circle, and ABC, AFE are straight lines. It is given that AB

AC = 16
41 and AF

AE = 49
74 .

Let tan(∠CAE) = m
n , where m, n are positive integers and m

n is a fraction in its
lowest form. Find the sum m+ n.

A

B

F

D EC
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17. In the diagram below, AB is a diameter of the circle with centre O, MN is a
chord of the circle that intersects AB at P , ∠BON and ∠MOA are acute angles,
∠MPA = 45◦, MP =

√
56, and NP = 12. Find the radius of the circle.

A

B

M

N

O

P

18. Let f(x) = cos2
(
πx
2

)
. Find the value of

f

(
1

2023

)
+ f

(
2

2023

)
+ · · ·+ f

(
2021

2023

)
+ f

(
2022

2023

)
.

19. Find the remainder when 32023 is divided by 215.

20. Find the sum of the prime divisors of 64000027.

21. Let △ABC be an equilateral triangle. D, E, F are points on the sides such that

BD : DC = CE : EA = AF : FB = 2 : 1.

Suppose the area of the triangle bounded by AD, BE and CF is 2023. Find the
area of △ABC.

A

B CD

E

F

22. Find the number of possible ways of arranging 10 ones and 11 zeros in a row such
that there are in total 13 strings of ones and zeros. For example,

1110001001110001

consists of 4 strings of ones and 3 strings of zeros.
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23. Suppose there exist numbers a, b, c and a function f such that for any real numbers
x and y,

f(x+ y) + f(x− y) = 2f(x) + 2f(y) + ax+ by + c.

It is given that
f(2) = 3, f(3) = −5, and f(5) = 7.

Find the value of f(123).

24. Let f be a function such that for any non-zero number x,

6xf(x) + 5x2f(1/x) + 10 = 0.

Find the value of f(10).

25. Find the number of triangles such that all the sides are integers and the area equals
the perimeter (in number).
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4.1.2. Round 2 Problems

Solutions can be found in Section 9.1.2.

1. Let ABCD be a square, E be a point on the side DC, F and G be the feet of
the altitudes from B to AE and from A to BE respectively. Suppose DF and CG
intersect at H. Prove that ∠AHB = 90◦.

2. Find all positive integers k such that there exists positive integers a, b such that

a2 + 4 =
(
k2 − 4

)
b2.

3. Let n be a positive integer. There are n islands with n− 1 bridges connecting them
such that one can travel from any island to another. One afternoon, a fire breaks out
in one of the islands. Every morning, it spreads to all neighbouring islands. (Two
islands are neighbours if they are connected by a bridge.) To control the spread,
one bridge is destroyed every night until the fire has nowhere to spread to the next
day. Let X be the minimum possible number of bridges one has to destroy before
the fire stops spreading. Find the maximum possible value of X over all possible
configurations of bridges and islands where the fire starts at.

4. Find all positive integers m, n satisfying n! + 2n−1 = 2m.

5. Colour a 20000×20000 square grid using 2000 different colours with 1 colour in each
square. Two squares are neighbours if they share a vertex. A path is a sequence of
squares so that 2 successive squares are neighbours. Mark k of the squares. For each
unmarked square x, there is exactly 1 marked square y of the same colour so that
x and y are connected by a path of squares of the same colour. For any 2 marked
squares of the same colour, any path connecting them must pass through squares of
all the colours. Find the maximum value of k.
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4.2. Open Section

4.2.1. Round 1 Problems

Solutions can be found in Section 9.2.1.

1. The graph C with equation y =
ax2 + bx+ c

x+ 2
has an oblique asymptote with equa-

tion y = 4x − 6 and one of the stationary points at x = −4. Find the value of
a+ b+ c.

2. If x =
1

1
+

1

1 + 2
+

1

1 + 2 + 3
+

1

1 + 2 + 3 + 4
+ · · ·+ 1

1 + 2 + 3 + · · ·+ 100
, find the

value of ⌊1010x⌋.

3. The set of all possible values of x for which the sum of the infinite series

1 +
1

6

(
x2 − 5x

)
+

1

62
(
x2 − 5x

)2
+

1

63
(
x2 − 5x

)3
+ · · ·

exists can be expressed as (a, b) ∪ (c, d), where a < b < c < d. Find d− a.

4. Find the value of ⌊y⌋, where y =

∞∑
k=0

(2k + 1)(0.5)2k.

(Hint: Consider the series expansion of (1− x)−2)

5. The solution of the inequality |x− 1| + |x+ 1| < ax + b is −1 < x < 2. Find the
value of ⌊a+ b⌋.

6. The equation x4 − 4x2 + qx− r = 0 has three equal roots. Find the value of

⌊
3q2

r2

⌋
.

7. The parabolas y = x2 − 16x+ 50 and x = y2 intersect at 4 distinct points which lie
on a circle centred at (a, b). Find |a− b|.

8. In the 3-dimensional Euclidean space with origin O and three mutually perpendicular
x-, y- and z-axes, two planes x + y + 3z = 4 and 2x − z = 6 intersect at the line

r×

−1
a
b

 =

−2
c
d

. Find the value of |a+ b+ c+ d|.

9. Let x, y, z be real numbers with 3x + 4y + 5z = 100. Find the minimum value of
x2 + y2 + z2.

10. Find the area of the region represented by the equation ⌊x⌋+ ⌊y⌋ = 1 in the region
0 ≤ x < 2.

(Note: If you think that there is no area defined by the graph, enter “0”; if you think
that the area is infinite, enter “9999”.)

11. Let ABC be a triangle satisfying the following conditions that ∠A + ∠C = 2∠B,

and
1

cosA
+

1

cosC
=

−
√
2

cosB
. Determine the value of

2022 cos
(
A−C
2

)
√
2

.

12. Find x which satisfies the following equation

x− 2019

1
+

x− 2018

2
+

x− 2017

3
+ · · ·+ x+ 2

2022
+

x+ 3

2023
= 2023.
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13. Assume that x is a positive number such that x− 1
x = 3 and

x10 + x8 + x2 + 1

x10 + x6 + x4 + 1
=

m

n
,

where m and n are positive integers without common factors larger than 1. Deter-
mine the value of m+ n.

14. Consider the set of all possible pairs (x, y) of real numbers that satisfy (x − 4)2 +

(y − 3)2 = 9. If S is the largest possible value of
y

x
, find the value of ⌊7S⌋.

15. Let x, y be positive integers with 16x2+ y2+7xy ≤ 2023. Find the maximum value
of 4x+ y.

16. Let x be the largest real number such that√
x− 1

x
+

√
1− 1

x
= x.

Determine the value of (2x− 1)4.

17. Two positive integers m and n differ by 10 and the digits in the decimal representa-
tion of mn are all equal to 9. Determine m+ n.

18. Let {an} be a sequence of positive numbers, and let Sn = a1 + a2 + a3 + · · · + an.

For any positive integer n, let bn =
1

2

(
an+1

an
+

an
an+1

)
. Given that

an + 2

2
=

√
2Sn

holds for all positive integers n, determine the limit limn→∞(b1 + b2 + · · ·+ bn − n).

19. Let ABC be a triangle with AB = c, AC = b and BC = a, and satisfies the

conditions tanC =
sinA+ sinB

cosA+ cosB
, sin(B −A) = cosC and that the area of triangle

ABC = 3 +
√
3. Determine the value of a2 + c2.

20. [VOID] Let g : R → R, g(0) = 4 and that

g(xy + 1) = g(x)g(y)− g(y)− x+ 2023.

Find the value of g(2023).

21. In the triangle ABC, D is the midpoint of AC, E is the midpoint of BD, and the
lines BA and CE are tangent to the circumcircle of the triangle ADE at A and E
respectively. Suppose the circumradius of the triangle AED is (647 )

1/4. Find the
area of the triangle ABC.

22. ABCD is a parallelogram such that ∠ABC < 90◦ and sin∠ABC = 4
5 . The point K

is on the extension of BC such that DC = DK; the point L is on the extension of
DC such that BC = BL. The bisector of ∠CDK intersects the bisector of ∠LBC
at Q. Suppose the circumradius of the triangle ABD is 25. Find the length of KL.

23. A group of 200 monkeys is given the task of picking up all 3000 peanuts on the
ground. Determine the maximum number k such that there must be k monkeys
picking up the same number of peanuts. (It is possible that some lazy monkeys may
not pick up any peanuts at all).

24. A chain of n identical circles C1, C2, . . . , Cn of equal radii and centres on the x-axis

lie inside the ellipse E : x2

2023 + y2

333 = 1 such that C1 is tangent to E internally at

(−
√
2023, 0), Cn is tangent to E internally at (

√
2023, 0), and Ci is tangent to Ci+1

externally for i = 1, . . . , n− 1. Determine the smallest possible value of n.
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25. Let p > 2023 be a prime. Determine the number of positive integers n such that
(n− p)2 + 2023(2023− 2n− 2p) is a perfect square.
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4.2.2. Round 2 Problems

Solutions can be found in Section 9.2.2.

1. In a scalene triangle ABC with centroid G and circumcircle ω centred at O, the
extension of AG meets ω at M ; lines AB and CM intersect at P ; and lines AC and
BM intersect at Q. Suppose the circumcentre S of the triangle APQ lies on ω and
A, O, S are collinear. Prove that ∠AGO = 90◦.

2. A grid of cells is tiled with dominoes such that every cell is covered by exactly one
domino. A subset S of dominoes is chosen. Is it true that at least one of the following
two statements is false?

a) There are 2022 more horizontal dominoes than vertical dominoes in S.

b) The cells covered by the dominoes in S can be tiled completely and exactly by
L-shaped tetrominoes.

3. Let n ≥ 2 be a positive integer. For a positive integer a, let Qa(x) = xn + ax. Let p
be a prime and let Sa = {b | 0 ≤ b ≤ p− 1,∃c ∈ Z, Qa(c) ≡ b (mod p)}. Show that
1

p−1

∑p−1
a=1 |Sa| is an integer.

4. Find all functions f : Z → Z, such that

f(x+ y)((f(x)− f(y))2 + f(xy)) = f(x3) + f(y3)

for all integers x, y.

5. Determine all real numbers x between 0 and 180 such that it is possible to partition
an equilateral triangle into finitely many triangles, each of which has an angle of x◦.



23

5. SMO 2024

5.1. Junior Section

5.1.1. Round 1 Problems

Solutions can be found in Section 10.1.1.

Multiple Choice Questions

1. If x2 + 4x+ 16 = 0, what is the value of x3?

4(A) 8(B) 16(C) 64(D) 128(E)

2. Let a be a real number that satisfies −1 < a < 0. Which of the following is true?

πa < 1
π < ( 1π )

a(A)

πa < ( 1π )
a < 1

π(B)

1
π < ( 1π )

a < πa(C)

1
π < πa < ( 1π )

a(D)

( 1π )
a < πa < 1

π(E)

3. How many non-congruent triangles are there whose sides have integer lengths and
the longest side has length 10 units?

25(A) 30(B) 35(C) 40(D) 45(E)

4. In the diagram below, the points B and E lie on AF and DF respectively, and AE
and BD intersect at C. If AB = AC, BD = BF and EA = EF , find ∠BAC.

A

B

C

DEF

30◦(A) 33◦(B) 36◦(C) 38◦(D) 40◦(E)

5. Let x, y and z be real numbers such that x ̸= 0, y − z ̸= 0 and z + x ̸= 0. If
2

x
=

4

y − z
=

5

z + x
, find the value of

7x− y

y + 2z
.

11

17
(A) −11

17
(B)

7

13
(C) − 7

13
(D) 1(E)
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Short Questions

6. Let N be a 2-digit whole number. When 2692 is divided by N , the remainder is
13, and when 2978 is divided by N , the remainder is 14. Find the sum of all the
possible values of N .

7. If x is a positive integer such that 2x + 289 = 51210, find the value of x.

8. The diagram shows a right-angled triangle ABC. The sides AC and AB are in
the ratio 3 : 5. The point D lies on BC such that AD is perpendicular to BC.
Furthermore, DB is 8 cm longer than CD. What is the length of BC in cm?

A B

C

D

9. Let n be a positive integer. Suppose that a1, a2, a3, . . . is a sequence of numbers
defined by

a1 =
√

(n+ 3)(n− 1) + 4, ak =
√

(n+ 2k + 1)ak−1 + 4 for k ≥ 2.

If a100 = 2024, find the value of n.

10. Let N be the smallest positive integer such that the sum of its digits is 2024. What
is the sum of the digits of the number N + 2.

11. If a and b are non-zero real numbers such that
1

b
− 1

a
= 4, find the value of

3a+ 7ab− 3b

a− 3ab− b
.

12. If the 5-digit whole number 11ab6 is a perfect square, find the value of a+ b.

13. Let N = 1× 2 + 2× 3 + 3× 4 + · · ·+ 30× 31. Find the value of N .

14. Let x and y be non-zero real numbers where x ̸= y. If x2+
√
3y = 4 and y2+

√
3x = 4,

find the value of
(y
x

)2
+

(
x

y

)2

.

15. Find the sum of all 2-digit even numbers N with the following property: N is a
multiple of the product of its two digits.
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16. In the diagram below, AEB is an isosceles right-angled triangle and ABG is a 30◦-
60◦-90◦ right-angled triangle with ∠GAB = 30◦. The sides AG and BE intersect at
H. If the area of triangle AHE is 50 cm2, find the area of triangle BGH in cm2.

A B

E

G

H

17. Find the smallest positive integer n such that
√
n−

√
n− 1 <

1

99
.

18. Let a, b and c be real numbers such that a + b + c = 8 and ab + bc + ca = 0. Find
the maximum value of 3(a+ b).

19. In the table below, every row and column is an infinite arithmetic progression.

1 3 5 7 9 · · ·
3 6 9 12 15 · · ·
5 9 13 17 21 · · ·
7 12 17 22 27 · · ·
9 15 21 27 33 · · ·
...

...
...

...
... · · ·

How many times does the number 2025 appear in the table?

20. In the diagram below, ABC is a right-angled triangle. Points D and E lie on AB
while points F and G lie on BC such that △EFG and △DGC are right-angled
isosceles triangles. It is given that DC = 3EG and the area of △DGC = 1 cm2.
What is the area of △ADC in cm2?

A

B C

D

E

F G

21. How many different 4-tuples (a, b, c, d) are there, where a, b, c and d are positive
integers, such that

a > b > c > d, a+ b+ c+ d = 2024 and a2 − b2 + c2 − d2 = 2024?



26 5. SMO 2024

22. Points A and B lie on the graph of y = x2 +5x− 8 such that A, B and the origin O
are collinear and |OB| = 2 |OA|. It is given that A lies in the first quadrant. Find
|AB|2.

23. The diagram below shows a regular hexagon that is divided into six congruent tri-
angular regions A, B, C, D, E and F . Two triangular regions are adjacent if they
share a common side. For example, A and B are adjacent but A and C are not
adjacent. In how many ways can we colour these regions A, B, C, D, E and F
using six different colours such that the adjacent regions do not receive the same
colour? (Note that not all six colours need to be used in colouring the six regions
and non-adjacent regions can receive the same colour).

C
B

A

F
E

D

24. The diagram below shows three toy cars moving in a rectangular circuit ABCD
where AB = 10m and BC = 20m. Toy cars M and N start from the vertices A
and C respectively and move in an anti-clockwise direction with constant speeds 10
m/min and 4 m/min respectively. Toy car P starts from C and moves in a clockwise
direction with a constant speed of 8 m/min.

A D

CB

M

N

P

The three toy cars start their motion at the same time. Assume that when any two
toy cars meet, there is no collision and the cars will continue with their motion. Find
the total time elapsed in minutes when all the three toy cars meet simultaneously
for the fifth time.
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25. In the diagram below, ABCD is a rectangle. A circle of radius 240 mm is inscribed
in △ABD and BD is a common tangent to both the circle and a semicircle whose
diameter CE lies on CD. It is given that CE = 720 mm. Find the perimeter of
rectangle ABCD in mm.

A

B C

D

E

720

240
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5.1.2. Round 2 Problems

Solutions can be found in Section 10.1.2.

1. Let ABC be an isosceles right-angled triangle of area 1. Find the length of the
shortest segment that divides the triangle into two parts of equal area.

2. Let ABCD be a parallelogram and points E, F be on its exterior. If triangles BCF
and DEC are similar, i.e. △BCF ∼ △DEC, prove that triangle AEF is similar to
these two triangles.

3. Seven triangles of area 7 lie in a square of area 27. Prove that among the 7 triangles
there are 2 that intersect in a region of area not less than 1.

4. Suppose for some positive integer n, the numbers 2n and 5n have equal first digit.
What are the possible values of this first digit?

5. Find all integer solutions of the equation

y2 + 2y = x4 + 20x3 + 104x2 + 40x+ 2003.
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5.2. Senior Section

5.2.1. Round 1 Problems

Solutions can be found in Section 10.2.1.

Multiple Choice Questions

1. Find the largest positive integer A such that 2x +
2025

2x
−A > 0 for all real numbers

x

59(A) 69(B) 79(C) 89(D) 99(E)

2. If x =
1

log 2024
2023

7
+

1

log 2023
2022

7
+

1

log 2022
2021

7
, find 7x.

2021

2024
(A)

2024

2021
(B)

2022

2024
(C)

2024

2022
(D) 2024(E)

3. Simplify
2024√
4 +

√
12

+
2024√
4−

√
12

.

1012(A) 1012
√
3(B) 2024(C) 2024

√
3(D)

1012 + 1012
√
3(E)

4. Suppose x1/3+12 = y1/3 for some real numbers x and y. Find the minimum possible
value of y − x.

432(A) 532(B) 632(C) 732(D)

None of the above(E)

5. Find the largest possible value of

√
2 cos(2x)

sin(x) + cos(x)
.

1

2
(A) 1(B)

3

2
(C) 2(D)

5

2
(E)

Short Questions

6. If
√

x+
√
x+

√
x−

√
x = 4, find the value of 15x.

7. Find the smallest positive integer K such that

x2 − 200x+ y2 = 0 and x+ y ≤ K.

8. Given that
cos(x)

sin(3x)
− sin(x)

cos(3x)
− 2 · sin(4x)

cos(6x)
= 2024, find the value of

cos(10x)

sin(12x)
.

9. Find the smallest positive integer k such that the coefficient of xk in the expansion

of
(
5x3 + 1√

x

)2024
is not zero.

10. Let

P =
(
20242 + 1

) (
20242

2
+ 1
)(

20242
3
+ 1
)
· · ·
(
20242

10
+ 1
)
× 2025 +

1

2023
.

Find the smallest positive integer N such that N > log2024 P .
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11. Let △ABC be a triangle with area 1000. Let M and N be points on AB and AC
respectively such that

AM : MB = 3 : 2 and AN : NC = 7 : 3.

Let X and Y be the midpoints of BN and CM respectively. Find the area of
△AXY .

A

B C

M N

X Y

12. Find the largest positive integer n ≤ 10000 such that 1+ 2024n2 is a perfect square.

13. In a tetrahedron SABC, the faces SBC and ABC are perpendicular to each other.
The angles ∠ASB, ∠BSC, ∠ASC are all 60◦, and SB = SC = 4. Find the square
of the volume of the tetrahedron.

A

B

C

S

14. Let a, b, c be the three real roots of the cubic equation

2x3 − 4x2 − 21x− 8 = 0.

Given that

S =
1

ab+ c− 1
+

1

bc+ a− 1
+

1

ca+ b− 1

is a rational number that can be expressed as a fraction in the lowest form m
n , find

the value of m2 + n2.

15. Consider the equation √
3− 1

sinx
+

√
3 + 1

cosx
= 4

√
2.

For the range 0 < x < π/2, the sum of the solutions of the equation can be expressed
in the form mπ

n , where m
n is a fraction in the lowest form. Find m+ n.
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16. An engineer constructs a circle with centre O and diameter CD on level ground,
and builds a vertical tower of height 20 at the centre. B is another point on the
circumference and P is on CD produced such that PB is a secant line of the circle.
Given that PB = 33, PC = 77 and CD = 74, find the minimum possible distance
of any point on PB to the top of the tower.

B

P
C D

O

17. P is a common point of tangency of two circles. BA is a chord of the larger circle
which is tangent to the smaller circle at a point C. PB and PA intersect the smaller
circle at points E and D respectively. If BA = 15, PE = 2, and PD = 3, find the
length CA.

AB
C

D
E

P

18. On each face of a cube, an integer greater than 2 is written. Each vertex of the
cube is the intersection of three unique faces, and each edge is the intersection of
two unique faces. Assign to each vertex the product of the numbers written on the
faces intersecting the vertex, and assign to each edge the product of the numbers
written on the faces intersecting the edge. The sum of the numbers assigned to the
eight vertices is equal to 2024. Find the maximum possible value of an edge.

19. Find the sum of the squares of each of the roots of the equation

x2 − 4 ⌊x⌋ − 12 = 0,

where ⌊x⌋ denotes the greatest integer less than or equal to x.

20. Calculate the remainder when 19012024 is divided by 1216.

21. Let P (x) = a0 + a1x+ a2x
2 + · · ·+ anx

n be a polynomial with non-negative integer
coefficients satisfying 0 ≤ ai ≤ 17 for all i. If P (18) = 367616, find the value of P (3).

22. Evaluate the sum

2

1 + tan
(

π
260

) + 2

1 + tan
(
2π
260

) + 2

1 + tan
(
3π
260

) + · · ·+ 2

1 + tan
(
129π
260

) .
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23. An equilateral triangle ABC is inscribed in a circle and P is a point on the minor
arc BC. Point D is the intersection of AP and BC.

A

B C

D

P

Suppose that BP = 5, CP = 20. Find the length of AD.

24. Find the number of positive integers x < 9000 such that x3 + 95 is divisible by 96.

25. A scalene triangle △ABC has sides AB = 7, AC = 12 and BC = 13. Write
tan A−B

2 tan C
2 as a fraction m

n in its lowest form and find m+ n.

A

BC

7

13

12
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5.2.2. Round 2 Problems

Solutions can be found in Section 10.2.2.

1. In an acute triangle ABC, AC > AB, D is the point on BC such that AD = AB.
Let ω1 be the circle through C tangent to AD at D, and ω2 the circle through C
tangent to AB at B. Let F (̸= C) be the second intersection of ω1 and ω2. Prove
that F lies on AC.

2. Find all integer solutions of the equation

y2 + 2y = x4 + 20x3 + 104x2 + 40x+ 2003.

3. Find the smallest positive integer n for which there exist integers x1 < x2 < · · · < xn
such that every integer from 1000 to 2000 can be written as a sum of some of the
integers from x1, x2, . . . , xn without repetition.

4. Suppose p is a prime number and x, y, z are integers satisfying 0 < x < y < z < p.
If x3, y3, z3 have equal remainders when divided by p, prove that x2 + y2 + z2 is
divisible by x+ y + z.

5. Let a1, a2, . . . be a sequence of positive numbers satisfying, for any positive integers
k, l, m, n such that k + n = m+ l,

ak + an
1 + akan

=
am + al
1 + amal

.

Show that there exist positive numbers b, c so that b ≤ an ≤ c for any positive
integer n.
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5.3. Open Section

5.3.1. Round 1 Problems

Solutions can be found in Section 10.3.1.

1. Let Sk = 1+2+3+ · · ·+ k for any positive integer k. Find S1+S2+S3+ · · ·+S20.

2. Let S =
∑64

r=1 r
(
64
r

)
, where

(
n
r

)
= n!

r!(n−r)! and 0! = 1. Find log2 S.

3. Let x be the largest number in the interval [0, 2π] such that (sinx)2024−(cosx)2024 =
1. Find ⌊x⌋.
(Note: If you think that such a number x does not exist, enter your answer “99999”.)

4. Find the number of real numbers x that satisfies the equation |x− 2| + |x− 3| =
|2x− 5|.
(Note: If you think that there are no such numbers, enter “0”; if you think that there
are infinitely many such numbers, enter “99999”.)

5. Among all the real numbers that satisfies the inequality ex ≥ 1 + 2e−x, find the
minimum value of ⌈ex + e−x⌉.

6. Find the smallest positive integer C greater than 2024 such that the sets A ={
2x2 + 2x+ C : x ∈ Z

}
and B =

{
x2 + 2024x+ 2 : x ∈ Z

}
are disjoint.

7. Let ABCD be a convex quadrilateral inscribed in a circle ω. The bisector of ∠BAC
meets ω at E ( ̸= A), the bisector of ∠ABD meets ω at F ( ̸= B), AE intersects BF
at P and CF intersects DE at Q. Suppose EF = 20, PQ = 11. Find the area of
the quadrilateral PEQF .

8. Let f(x) =
√
x2 + 1 +

√
(4− x)2 + 4. Find the minimum value of f(x).

9. It is known that a ≥ 0 satisfies

√
4 +

√
4 +

√
4 +

√
4 + a = a. Find the value of

(2a− 1)2.

10. A rectangle with sides parallel to the horizontal and vertical axes is inscribed in the
region bounded by the graph of y = 60−x2 and the x-axis. If the area of the largest
such rectangle has area k

√
5, find the value of k.

11. Let x be a real number satisfying the equation xx
5
= 100. Find the value of

⌊
x5
⌋
.

12. Let a, b, c, d, e be distinct integers with a + b + c + d + e = 9. If m is an integer
such that

(m− a)(m− b)(m− c)(m− d)(m− e) = 2009,

determine the value of m.

13. Let {x} be the fractional part of the number x, i.e., {x} = x−⌊x⌋. If S =
∫ 9
0 {x}2 dx,

find ⌊S⌋.

14. The solution of the inequality |(x+ 1)(x− 6)| > |(x+ 4)(x− 2)| can be expressed
as x < a or b < x < c. If S = |a|+ |b|+ |c|, find ⌊14S⌋.

15. Given that x, y > 0 and x
√

2− y2 + y
√
2− x2 = 2, find the value of x2 + y2.

16. A convex polygon has n sides such that no three diagonals are concurrent. It is
known that all its diagonals divide the polygon into 2500 regions. Determine n.
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17. Find the number of integers n between −2029 and 2029 inclusive such that (n +
2)2 + n2 is divisible by 2029.

18. Let f be a function such that for any real number x, we have f(x)+2f(2−x) = x+x2.
Find the value of f(1) + f(2) + f(3) + · · ·+ f(34).

19. Find the largest possible positive prime integer p such that p divides

S(p) = 1p−2 + 2p−2 + 3p−2 + 4p−2 + 5p−2 + 6p−2 + 7p−2 + 8p−2.

20. Let f be a function such that f(x) + f( 1
1−x) = 1 + 1

x for all x /∈ {0, 1}. Find the
value of ⌊180 · f(10)⌋.

21. Let C be a circle with equation (x− a)2 + (y − b)2 = r2, where at least one of the a
and b are irrational numbers. Find the maximum possible numbers of points (p, q)
on C where both p and q are rational numbers.

22. On the plane there are 2024 points coloured either red or blue such that each red
point is the centre of a circle passing through 3 blue points. Determine the least
number of blue points.

23. It is given that the positive real numbers x1, . . . , x2026 satisfy
x21

x21 + 1
+· · ·+ x22026

x22026 + 1
=

2025. Find the maximum value of
x1

x21 + 1
+ · · ·+ x2026

x22026 + 1
.

24. Let n denote the number of ways of arranging all the letters of the word MATHE-
MATICS in one row such that

• both M’s precede both T’s; and

• neither the two M’s nor the two T’s are next to each other.

Determine the value of n
6! .

25. The incircle of the triangle ABC centred at I touches the sides BC, CA, AB at D,
E, F respectively. Let D′ be the intersection of the extension of ID with the circle
through B, I, C; E′ be the intersection of the extension of IE with the circle through
A, I, C; and F ′ the intersection of the extension of IF with the circle through A, I,
B. Suppose AB = 52, BC = 56, CA = 60. Find DD′ + EE′ + FF ′.
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5.3.2. Round 2 Problems

Solutions can be found in Section 10.3.2.

1. In triangle ABC, ∠B = 90◦, AB > BC, and P is the point such that BP = BC
and ∠APB = 90◦, where P and C lie on the same side of AB. Let Q be the point
on AB such that AP = AQ, and let M be the midpoint of QC. Prove that the line
through M parallel to AP passes through the midpoint of AB.

2. Let n be a fixed positive integer. Find the minimum value of

x31 + · · ·+ x3n
x1 + · · ·+ xn

where x1, x2, . . . , xn are distinct positive integers.

3. Prove that for every positive integer n there exists an n-digit number divisible by 5n

all of whose digits are odd.

4. Alice and Bob play a game. Bob starts by picking a set S consisting of M vectors
of length n with entries either 0 or 1. Alice picks a sequence of numbers y1 ≤ y2 ≤
· · · ≤ yn from the interval [0, 1], and a choice of real numbers x1, x2, . . . , xn ∈ R.
Bob wins if he can pick a vector (z1, z2, . . . , zn) ∈ S such that

n∑
i=1

xiyi ≤
n∑

i=1

xizi,

otherwise Alice wins. Determine the minimum value of M so that Bob can guarantee
a win.

5. Let p be a prime number. Determine the largest possible n such that the following
holds: it is possible to fill an n × n table with integers aik in the ith row and kth
column, for 1 ≤ i, k ≤ n, such that for any quadruple i, j, k, l with 1 ≤ i < j ≤ n
and 1 ≤ k < l ≤ n, the number aikajl − ailajk is not divisible by p.
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Part II.

Solutions
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6.1. Open Section

6.1.1. Round 1 Solutions

Resources: Review by Way Tan

Question 1 [Ans: 0]

If S is the sum of all the real roots of the equation x2+
1

x2
= 20202+

1

20202
find ⌊S⌋.

Solution. Observe that x2 + 1
x2 is even. Hence, the sum of roots is 0.

Question 2 [Ans: 2030]

Find the largest positive integer x that satisfies the equation

(⌊x⌋ − 2020)2 + (⌈x⌉ − 2030)2 = (⌊x⌋ − ⌈x⌉+ 10)2.

(Note: If you think that the above equation has no solution in the positive integers,
enter your answer as “0”.)

Solution. Since x is an integer, we obviously have x = ⌊x⌋ = ⌈x⌉. We are hence left with
the equation (x− 2020)2+(x− 2030)2 = 102, of which 2020 and 2030 are clearly solutions
to. Thus, x = 2030.

Question 3 [Ans: 12]

Let Sn =
1

1× 3
+

1

3× 5
+

1

5× 7
+ · · ·+ 1

(2n− 1)× (2n+ 1)
. Find the value of n such

that Sn takes the value of 0.48.

Solution. Using partial fraction decomposition, we see that

Sn =
n∑

i=1

1

(2n− 1)(2n+ 1)
=

1

2

n∑
i=1

(
1

2n− 1
− 1

2n+ 1

)
.

This sum clearly telescopes, giving Sn = 1
2(1−

1
2n+1) Setting Sn = 0.48 yields n = 12.

https://www.youtube.com/playlist?list=PLSJzThjnYTBQk0nlbVCMbfZprR3MC6Sj-
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Question 4 [Ans: 27]

Given that the three planes in the Cartesian space with equations 2x+ 4y + 6z = 5,
3x+ 5y + 2z = 6 and 8x+ 14y + az = b have a common line of intersection, find the
value of a+ b.

Solution. Solving 2x+4y+6z = 5 and 3x+5y+2z = 6 simultaneously, we see that the
line of intersection has equation x = 11t− 1

2 , y = 3
2 − 7t and z = t. Substituting this into

8x+ 14y + az = b, we get (17− b) + t(a− 10) = 0. Since this must hold for all real t, we
immediately have a = 10 and b = 17, whence a+ b = 27.

Question 5 [Ans: 70]

Let i be the complex number
√
−1, and n be the smallest positive integer such that

(
√
3 + i)n = a, where a is a real number. Find the value of ⌊n− a⌋.

Solution. Observe that (
√
3+ i)n = 2neinπ/6. Since we want this to be real, its argument

must be an integer multiple of π. Thus, n
6 ∈ Z. This immediately gives us n = 6, whence

a = 26eiπ = −64. Hence, n− a = 70.

Question 6 [Ans: 945]

In the three-dimensional Cartesian space, let i, j and k denote unit vectors along
three mutually perpendicular x, y and z-axes respectively. Three straight lines l1, l2
and l3 have equations defined by

l1: r = (4 + λ)i+ (5 + λ)j+ (6 + λ)k,

l2: r = (4 + 3µ)i+ (5− µ)j+ (6− 2µ)k,

l3: r = (1 + 6ν)i+ (2 + 2ν)j+ (3 + ν)k,

where µ, λ and ν are real numbers. If the area of the triangle enclosed by the three
lines l1, l2 and l3 is denoted by S, find the value of 10S2.

Solution. Rewriting the equations of the three lines in vector form, we get

l1 : r =

4
5
6

+ λ

1
1
1

 , l2 : r =

4
5
6

+ µ

 3
−1
−2

 , l3 : r =

1
2
3

+ ν

6
2
1

 .

It is simple to find the pairwise intersections of the planes: l1 and l2 intersect at A(4, 5, 6),
l2 and l3 intersect at B(7, 4, 4), while l3 and l1 intersect at C(1, 2, 3). S, the area of△ABC,
can hence be calculated as

S = [ABC] =
1

2

∣∣∣−−→AB ×
−→
AC
∣∣∣ = 3

√
42

2
.

Thus, 10S2 = 945.
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Question 7 [Ans: 50]

Given that f : R → R such that

f(a2 − b2) = (a− b)(f(a) + f(b))

for all real numbers a and b, and that f(1) =
1

101
, find the value of

100∑
k=1

f(k).

Solution. By inspection, we have f(x) = kx. Since f(1) = 1
101 , we get k = 1

101 . Thus,

the desired sum evaluates to 1
101 · 100(101)

2 = 50.

Question 8 [Ans: 4]

Find the sum of all the positive integers n such that n4 − 4n3 + 22n2 − 36n+ 18 is a
perfect square.
(Note: If you think that there are infinitely many such positive integers n that satisfy
that above conditions, enter your answer as “9999”.)

Solution. Observe that n4 − 4n3 + 22n2 − 36n + 18 = (n2 − 2n + 9)2 − 63. Let this be
m2, where m is some integer. By the difference of two squares identity, we get

63 = (n2 − 2n+ 9 +m)(n2 − 2n+ 9−m).

Let A = n2 − 2n+ 9 +m and B = n2 − 2n+ 9−m. We clearly have that AB = 63 and
1
2(A+B)−9 = (n−1)2, a perfect square. Going through all factors of 63, we see that the
only pairs of factors satisfying this condition are (A,B) = (9, 7) and (21, 3), which give 02

and 22 respectively. Hence, n = 1 or 3, thus the sum desired is 4.

Question 9 [Ans: 43]

Assume that

(x+ 2 +m)2019 = a0 + a1(x+ 1) + a2(x+ 1)2 + · · ·+ a2019(x+ 1)2019.

Find the largest possible integer m such that

(a0 + a2 + a4 + · · ·+ a2018)
2 − (a1 + a3 + a5 + · · ·+ a2019)

2 ≤ 20202019.

Solution. Substituting x = 0 yields a0 + a1 + · · · + a2018 + a2019 = (m + 2)2019, while
substituting x = −2 yields a0 − a1 + · · ·+ a2018 − a2019 = m2019. Hence,

a0 + a2 + · · ·+ a2018 =
(m+ 2)2019 +m2019

2
,

whence

a1 + a3 + · · ·+ a2019 = (m+ 2)2019 − (m+ 2)2019 +m2019

2
.

We thus want(
(m+ 2)2019 +m2019

2

)2

−
(
(m+ 2)2019 − (m+ 2)2019 +m2019

2

)2

≤ 20202019.

The LHS simplifies to (m(m+ 2))2019. Thus, m(m+ 2) ≤ 2020, whence m ≤ 43.
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Question 10 [Ans: 8]

Given that S = lim
n→∞

n∑
k=1

1√
n(n+ k)

, find the value of
⌊
(S + 2)2

⌋
.

Solution. Dividing through by n yields

S = lim
n→∞

n∑
k=1

1

n

1√
1 + k/n

,

which is very clearly a Riemann sum. In the limit, we get

S =

∫ 1

0

1√
1 + x

dx = 2
√
2− 2.

Thus, (S + 2)2 = 8.

Question 11 [Ans: 4097]

Let A = {1, 2, · · · , 10}. Count the number of ordered pairs (S1, S2), where S1 and
S2 are non-intersecting and non-empty subsets of A such that the largest number
in S1 is smaller than the smallest number in S2. For example, if S1 = {1, 4} and
S2 = {5, 6, 7}, then (S1, S2) is such an ordered pair.

Solution. Let the largest element of S1 be k. There are 2k−1 ways to choose S1, and
there are 210−k − 1 ways to choose S2 (note that we subtract 1 since S2 ̸= ∅). There are
hence 2k−1

(
210−k − 1

)
possibilities. Summing over k = 1, . . . , 9, we get a total of

9∑
k=1

2k−1
(
210−k − 1

)
=

9∑
k=1

(
29 − 2k−1

)
= 9 · 29 − 1− 29

1− 2
= 4097

ordered pairs.

Question 12 [Ans: 1010]

Each cell of a 2020× 2020 table is filled with a number which is either 1 or −1. For
u = 1, . . . , 2020, let Ri be the product of all the numbers in the ith row and let Ci

be the product of all the numbers in the ith column. Suppose Ri + Ci = 0 for all
i = 1, . . . , 2020. What is the least number of −1’s in the table?

Solution. Let aij represent the number in the cell in the ith row and jth column. Observe
that Ri =

∏2020
n=1 ain and Ci =

∏2020
n=1 ani. Then

2020∏
n=1

ain = −
2020∏
n=1

ani.

The number of −1s in the two products hence differ by an odd number. In the optimal
case, one product has no −1s, while the other has one −1. We now construct a grid
with such a property. Let aij = −1 if (i, j) ∈ {(1, 2), (3, 4), . . . , (2019, 2020)}, and aij = 1
otherwise. It is quite clear that

2020∏
n=1

ain =

{
1, i odd

−1, i even
,

2020∏
n=1

ani =

{
−1, i odd

1, i even
,

whence Ri + Ci = 0 for i = 1, . . . , 2020 as desired. Thus, the least number of −1s is
|{(1, 2), (3, 4), . . . , (2019, 2020)}| = 1010.
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Question 13 [Ans: 5120]

Assume that the sequence {ak}∞k=1 follows an arithmetic progression with a2+a4+a9 =
24. Find the maximum value of S8×S10, where Sk denotes the sum a1+a2+ · · ·+ak.

Solution. Let ak = a1 + (k − 1)d. From the given equation, we immediately have 3a1 +

12d = 24, whence 2a1 + 8a1 = 16. Since Sk = ka1 +
(k−1)k

2 · d, we have

S8 · S10 = (8a1 + 28d)(10a1 + 45d) = 20(16− d)(16 + d) = 20
(
162 − d2

)
.

Thus, the maximum value of S8 · S10 is 20 · 162 = 5120, when d = 0.

Question 14 [Ans: 0]

Consider all functions g : R → R satisfying the conditions that

1. |g(a)− g(b)| ≤ |a− b| for any a, b ∈ R;

2. g(g(g(0))) = 0.

Find the largest possible value of g(0).

Solution. Let a = x+ h and b = x. From the first condition, we get

|g(x+ h)− g(x)|
h

≤ 1 =⇒
∣∣g′(x)∣∣ ≤ 1.

Now consider the fixed point iteration xn+1 = g(xn), which must converge to the root of
g(x) = x since |g′(x)| ≤ 1. The second condition states that if xn = 0, then xn+3 = xn = 0.
This immediately implies that x = 0 is a root of g(x) = x, whence g(0) = 0.

Question 15 [Ans: 4039]

A sequence {ai}∞i=1 is called a good sequence if
S2n

Sn
is a constant for all n ≥ 1,

where Sk denotes the sum a1 + a2 + · · ·+ ak. Suppose it is known that the sequence
{ai}∞i=1 is a good sequence that follows an arithmetic progression. Determine a2020 if
a1 = 1 ̸= a2.

Solution. Let ai = 1 + (i− 1)k. Then Sn = n+ k(n−1)n
2 . Since S2n

Sn
is constant, we have

S2
S1

= S4
S2
. This gives S2

2 = S1S4, whence (2 + k)2 = 4+ 6k. This gives us k = 2 (note that
k ̸= 0 since a1 ̸= a2). Thus, a2020 = 1 + 2(2020− 1) = 4039.
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Question 16 [Ans: 12]

Determine the smallest positive integer p such that the system{
6x+ 4y + 3z = 0

4xy + 2yz + pxz = 0

has more the one set of real solutions in x, y, z.

Solution. From the first equation, we have 6x = −4y − 3z. Multiplying the second
equation by 6 and substituting 6x, we get

16y2 + 4pyz + 3pz2 = 0. (1)

Taking the discriminant with respect to 4y, we have z2(p2 − 12p), which must be greater
than or equal to 0 to admit multiple solutions. Hence, p2 − 12p ≥ 0, whence p ≥ 12.
Thus, min p = 12. Indeed, when p = 12, we get 4y + 6z = 0 from (1), whence (x, y, z) =
(t,−3t, 2t) for all real t.

Question 17 [Ans: 8800]

Let ABC be a triangle with a = BC, b = AC and c = AB. It is given that c = 100
and

cosA

cosB
=

b

a
=

4

3
.

Let P be a point on the inscribed circle of △ABC. Find the maximum value of

PA2 + PB2 + PC2.

Solution. Since cosA
cosB = b

a = 4
3 , △ABC is congruent to a 3-4-5 right triangle, where

∠C = 90◦. Since c = 100 = 20 · 5, we have a = 20 · 3 = 60 and b = 20 · 4 = 80. Let C(0, 0).
Then A(80, 0) and B(0, 60). Note that the incircle of △ABC has radius 20 · 1 = 20 and
centre (20, 20). Let (x, y) be a point on the incircle, i.e.

(x− 20)2 + (y − 20)2 = 202. =⇒ x2 + y2 = 40x+ 40y − 202. (1)

We thus aim to maximize

PA2 + PB2 + PC2 =
[
(x− 80)2 + y2

]
+
[
x2 + (y − 60)2

]
+
[
x2 + y2

]
.

Expanding and using (1), we get

PA2 + PB2 + PC2 = −40x+ 8800.

Since x ≥ 0, the maximum value of PA2 + PB2 + PC2 is 8800.

Question 18 [Ans: 2017]

Find the largest positive integer n less than 2020 such that
(
n−1
k

)
− (−1)k is divisible

by n for k = 0, 1, . . . , n− 1.

Solution. We begin by showing that all primes satisfy the given condition.

Claim 1. If n is prime, then
(
n−1
k

)
− (−1)k ≡ 0 (mod n).
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Proof. Observe that (
n− 1

k

)
=

(n− 1)(n− 2) · · · (n− k)

k!
.

Since n is prime, k! has a multiplicative inverse in Fn. We can thus take congruences in
the numerator without any problem:

(n− 1)(n− 2) · · · (n− k)

k!
≡ (−1)(−2) · · · (−k)

k!
=

(−1)kk!

k!
= (−1)k (mod n).

Thus, (
n− 1

k

)
− (−1)k ≡ (−1)k − (−1)k = 0 (mod n).

Observe that the largest prime less than 2020 is 2017. To finish, we show that n = 2018
and n = 2019 do not work.

Case 1 . Suppose n = 2018. When k = 2, we have(
2017

2

)
− 1 = 2017 · 1008− 1 ≡ −1 · 1008− 1 ≡ 1009 ̸= 0 (mod 2018).

Case 2 . Suppose n = 2019. When k = 3, we have(
2018

3

)
− 1 = 2018 · 2017 · 336− 1 ≡ −1 · −2 · 336− 1 ≡ 672 ̸= 0 (mod 2019).

Thus, the largest n is 2017.

Question 19 [Ans: 41]

Assume that {ak}∞k=1 is a sequence with the property that for any distinct positive
integers m, n, p, q with m+ n = p+ q, the following equality always holds:

am + an
(am + 1)(an + 1)

=
ap + aq

(ap + 1)(aq + 1)
.

Given a1 = 0 and a2 =
1

2
, determine

1

1− a5
.

(Hint: Consider ck =
1

ak + 1
− 1

2
for all positive integer k.)

Solution. Let m = 1, n = 3, and p = q = 2. Using the given equation and conditions, we
get

a1 + a3
(a1 + 1)(a3 + 1)

=
a2 + a2

(a2 + 1)(a2 + 1)
=⇒ a3 =

4

5
.

Let m = 1, n = 5, p = q = 3. Once again, using the given equation and conditions, we get

a1 + a5
(a1 + 1)(a5 + 1)

+
a3 + a3

(a3 + 1)(a3 + 1)
=⇒ a5 =

40

41
.

Thus, 1
1−a5

= 41.
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Question 20 [Ans: 140]

In the triangle ABC, the incircle touches the sides BC, CA, AB at D, E, F re-
spectively. The line segments ED and AB are extended to intersect at P such that
AB = BP = PD. Suppose CA = 9. Find the value of [ABC]2, where [ABC] is the
area of the triangle ABC.

A

B

C

D

E

P

Solution. Let a = BC, b = CA = 9, c = AB and s = 1
2(a + b + c). We clearly have

AF = AE = s− a, BF = BD = s− 9 and CD = CE = s− c.

Using Menalaus’ theorem with respect to △ABC, we have

AP

PB

BD

DC

CE

EA
= 1 =⇒ 2 · s− 9

s− c
· s− c

s− a
= 1.

Rearranging, we get 3a+ c = 27.

Using Menalaus’ theorem with respect to △APE, we have

AC

CE

ED

DP

PB

BA
= 1 =⇒ 9

s− c
· ED

c
· 1 = 1.

Rearranging, we get ED = c(a+9−c)
18 . Since CE = 1

2(a+ 9− c), we have

ED

CE
=

c

9
.

Since △BPD and △ECD are isosceles, and ∠BDP = ∠ECD, it follows that ∠BDP =
∠C. Using the cosine rule on ∠BDP in △BPD, we have

1− cosC =
BD2

2 ·BP 2
=

(s− b)2

2c2
.

Using the cosine rule on ∠C in △CED, we have

1− cosC =
ED2

2 · CE2
=

c2

2 · 81
.

Hence,
(s− b)2

2c2
=

c2

2 · 81
=⇒ (a+ c− 9)2

4c2
=

c2

81
.
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Using the substitution 3a+ c = 27 yields

4(9− a)2

4 · 9(9− a)2
=

9(9− a)2

81
,

whence a = 8 and c = 3. Finally, by Heron’s formula, we get

[ABC]2 = s(s− a)(s− b)(s− c) = 10(10− 8)(10− 9)(10− 8) = 140.

Question 21 [Ans: 704]

In an acute-angled triangle ABC, AB = 75, AC = 53, the external bisector of ∠A
on CA produced meets the circumcircle of triangle ABC at E, and F is the foot of
the perpendicular from E onto AB. Find the value of AF × FB.

A

B

C

D

E

F

53

75

Solution. Let D be a point on CA produced such that ∠ADE = 90◦. Clearly △AFE ≡
△ADE by AAS, hence FE = DE and AF = AD. Additionally, it is a well-known
fact that E is equidistant from B and C. Hence, by RHS, △CDE ≡ △BFE. Thus,
CD = BF . Since CD = 53 + AD and BF = 75 − AF , we get AF = 11. Thus,
AF × FB = 11× (75− 11) = 704.

Question 22 [Ans: 165]

Let {ak}∞k=1 be an increasing sequence with ak < ak+1 for all k = 1, 2, 3, · · · formed by
arranging all the terms in the set

{
2r + 2s + 2t : 0 ≤ r < s < t

}
in increasing order.

Find the largest value of the integer n such that an ≤ 2020.

Solution. Observe that an integer is in the set if and only if its binary expansion has ex-
actly 3 ones. Since 202010 = 111111001002, the largest an less than 2020 is 111000000002.
Notice that this is also the largest an where an has 11 digits in binary. Thus, there are a
total of

(
11
3

)
= 165 integers in the sequence before this an, thus maxn = 165.
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Question 23 [Ans: 838]

Let n be a positive integer and S be the set of all numbers that can be written in the

form
k∑

i=2

ai−1ai with a1, . . . , ak being positive integers that sum to n. Suppose the

average value of all the numbers in S is 88199. Determine n.

Solution. Testing small values of n, we see that

S =

{
s ∈ Z | n− 1 ≤

(n
2

)2}
when n is even, and

S =

{
s ∈ Z | n− 1 ≤

(
n− 1

2

)(
n+ 1

2

)}
when n is odd.
Case 1 . If n is even, we get 1

2

[
(n− 1) +

(
n
2

)2]
= 88199, whence n = 838.

Case 2 . If n is odd, we get 1
2

[
(n− 1) +

(
n−1
2

) (
n+1
2

)]
= 88199, which has no integer

solutions.
Thus, n = 838.

Question 24 [Ans: 1600]

Let x, y, z and w be real numbers such that x + y + z + w = 5. Find the minimum
value of (x+ 5)2 + (y + 10)2 + (z + 20)2 + (w + 40)2.

Solution. By the Cauchy-Schwarz inequality, one has

[(x+ 5) + (y + 10) + (z + 20) + (w + 40)]2

≤ 4
[
(x+ 5)2 + (y + 10)2 + (z + 20)2 + (w + 40)2

]
Hence, the minimum value of (x+ 5)2 + (y + 10)2 + (z + 20)2 + (w + 40)2 is 802

4 = 1600.

Question 25 [Ans: 290]

Let p and q be positive integers satisfying the equation p2 + q2 = 3994(p− q). Deter-
mine the largest possible value of q.

Solution. Completing the square gives

(p− 1997)2 + (q + 1997)2 = 2 · 19972. (1)

Let P = p− 1997 and Q = q + 1997. Multiplying (1) by 2 gives

2P 2 + 2Q2 = 39942.

We now recognize the LHS to be a sum of two squares:

(P +Q)2 + (P −Q)2 = 39942.

We hence get a Pythagorean triple. Using the standard parameterization of such triples,
we have P +Q = m2 − n2, P −Q = 2mn and 3994 = m2 + n2 for some positive integers
m and n. Since m > n, we see that (m,n) = (63,±5) are the only two pairs that give
m2 + n2 = 3994. Hence, Q = 1

2(m
2 − n2 − 2mn) = 2287 (note we reject Q = 1657 since

Q ≥ 1997), whence q = 2287− 1997 = 290.
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7.1. Open Section

7.1.1. Round 1 Solutions

Resources: Review by Way Tan

Question 1 [Ans: 1741]

It is given that
π

2
< β < α <

3π

4
, cos(α− β) =

12

13
and sin(α+ β) = −3

5
. Find

⌊|2021 sin(2α)|⌋.

Solution. Note that α− β is in the first quadrant, while α+ β is in the third quadrant.
Hence, sin(α− β) = 5

13 , while cos(α+ β) = −4
5 . Thus,

sin(2α) = sin(α+ β) cos(α− β) + cos(α+ β) sin(α− β) = −56

65
.

The required answer is hence 1741.

Question 2 [Ans: 99999]

Find the number of solutions of the equation |x− 3|+ |x− 5| = 2.
(Note: If you think that there are infinitely many solutions, enter your answer as
“99999”.)

Solution. Observe that for all x ∈ [3, 5], we have |x− 3| + |x− 5| = 2. There are hence
infinitely many solutions.

Question 3 [Ans: 4290]

Evaluate 1× 2× 3 + 2× 3× 4 + 3× 4× 5 + · · ·+ 10× 11× 12.

Solution. We are tasked with evaluating
10∑
k=1

k(k+1)(k+2). Expanding, we have
10∑
k=1

k3+

3k2 + 2k. Using the standard formulae

n∑
k=1

k =
k(k + 1)

2
,

n∑
k=1

k2 =
k(k + 1)(2k + 1)

6
,

n∑
k=1

k3 =

(
k(k + 1)

2

)2

,

we arrive at 4290.

https://www.youtube.com/watch?v=GhAYpBa6MkM
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Question 4 [Ans: 7]

It is given that the solution of the inequality
√
81− x4 ≤ kx + 1 is a ≤ x ≤ b with

b− a = 2, where k > 0. Determine ⌊k⌋.

Solution. Observe that
√
81− x4 is even, is defined only on [−3, 3], and is decreasing for

x > 0. It follows that b = 3, whence a = 1. However, at x = a, we have equality. Hence,√
81− 12 = k + 1, immediately implying ⌊k⌋ =

⌊√
80− 1

⌋
= 7.

Question 5 [Ans: 1395]

The figure below shows a cross that is cut out from a 10× 9 rectangular board.

Find the total number of rectangles in the above figure.
(Note: A square is a rectangle.)

Solution. Consider an m × n rectangular grid. Choosing a rectangle is equivalent to
choosing 2 horizontal lines and two vertical lines (the four lines uniquely outline a rectan-
gle). Since there are a total of m+ 1 horizontal lines and n+ 1 vertical lines, the number
of rectangles in such a grid can be calculated as

(
m+1
2

)(
n+1
2

)
.

Returning to our problem, the total number of rectangles in the figure is hence
(
11
2

)(
7
2

)
+(

5
2

)(
10
2

)
−
(
5
2

)(
7
2

)
= 1395. Note that we subtracted

(
5
2

)(
7
2

)
to account for the double-counting

in the middle of the grid.

Question 6 [Ans: 2020]

Consider all polynomials P (x, y) in two variables such that P (0, 0) = 2020 and for all
x and y, P (x, y) = P (x+ y, y − x). Find the largest possible value of P (1, 1).

Solution 1. Setting x = 0 and relabelling y as x, we get

P (0, x) = P (x, x). (1)

Setting y = x, we get
P (x, x) = P (2x, 0).

Setting y = 0, we get
P (x, 0) = P (x,−x).

Setting y = −x, we get
P (x,−x) = P (0,−2x).
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We hence have

P (0, x) = P (x, x) = P (2x, 0) = P (2x,−2x) = P (0,−4x),

implying
P (0, x) = P (0,−1

4x). (2)

From (1), we have P (1, 1) = P (0, 1). Using (2) repeatedly, we have

P (0, 1) = P (0,−1
4) = P (0, 1

16) = · · · = P (0, 0) = 2020.

Thus, P (1, 1) = 2020.

Solution 2 (Abusing uniqueness). Suppose k > 2020 is the largest possible value of
P (1, 1). Then k can be as big as we wish it to be. However, by the nature of the problem,
k should be unique. Hence, k > 2020 is impossible, implying that 2020 is indeed the
largest possible value of P (1, 1) (occurring when P (x, y) = 2020 for all x, y).

Question 7 [Ans: 16]

In the three-dimensional Cartesian space with i, j and k denoting the unit vectors
along three perpendicular directions in a clockwise manner, the line l with equation
given by r × (i + 2j + 3k) = 5i − 13j + 7k intersects the plane Π with equation
x+ y + z = 16 at the point (a, b, c). Find the value of a+ b+ c.

Solution. (a, b, c) lies on Π and hence satisfies the equation x + y + z = 16. Hence,
a+ b+ c = 16.

Question 8 [Ans: 169]

Find the minimum value of (x + 7)2 + (y + 2)2 subject to the constraint (x − 5)2 +
(y − 7)2 = 4.

Solution. Let (x+7)2 + (y+2)2 = r2, which describes a circle with centre (−7,−2) and
radius r. Meanwhile, (x−5)2+(y−7)2 = 4 describes a circle with centre (5, 7) and radius
2. The smallest r occurs when the two circles are externally tangent. This implies that
the sum of the radii is equal to the distance between their centres: r + 2 =

√
122 + 92.

Hence, the minimum value is r2 = 169.

Question 9 [Ans: 98]

Find the largest possible value α4+β4+γ4 among all possible sets of numbers (α, β, γ)
that satisfy the equations

α+ β + γ = 2

α2 + β2 + γ2 = 14

α3 + β3 + γ3 = 20.

Solution. Newton’s identities state that

n ≥ k ≥ 1 : kek =

k∑
i=1

(−1)i−1ek−ipi

k > n ≥ 1 : 0 =

k∑
i=k−n

(−1)i−1ek−ipi
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where ek is the kth elementary symmetric polynomial of n variables, and pk is the kth
power sum of n variables.

In our case, we have n = 3, along with

e0 = 1, p0 = 3, p1 = e1 = 2, p2 = 14, p3 = 20,

and we wish to find p4. Evaluating the above sums at k = 2, 3, 4, we get

k = 2 : 2e2 = e1p1 − e0p2 =⇒ e2 = −5

k = 3 : 3e3 = e2p1 − e1p2 + e0p3 =⇒ e3 = −6

k = 4 : 0 = e3p1 − e2p2 + e1p3 − e0p4 =⇒ p4 = 98

Hence, α4 + β4 + γ4 = 98.

Question 10 [Ans: 6]

If p is the product of all the non-zero real roots of the equation

9
√

x7 + 30x5 =
7
√

x9 − 30x5,

find ⌊|p|⌋.

Solution. Dividing through by x and substituting y = x2 yields

9
√

y−1 + 30y−2 = 7
√

y − 30y−1.

Observe that the LHS is decreasing while the RHS is increasing. There is hence at most
one real root. Indeed, by inspection, y = 6 satisfies the equation. We hence have x = ±

√
6,

whence ⌊|p|⌋ = 6.

Question 11 [Ans: 6]

Let S be the sum of a convergent geometric series with first term 1. If the third term
of the series is the arithmetic mean of the first two terms, find ⌊3S + 4⌋.

Solution. Let r be the common ratio of the geometric series. Then we have r2 = (1+r)/2,
whence r = −1/2 (note that we reject r = 1 since the series is convergent). Hence,

⌊3S + 4⌋ =
⌊
3 · 1

1− (−1/2)
+ 4

⌋
= 6.

Question 12 [Ans: 89]

Given that sinα+ sinβ =
1

10
, and cosα+ cosβ =

1

9
, find

⌊
tan2(α+ β)

⌋
.

Solution. By the sum-to-product identities, we have

sinα+ sinβ = 2 sin

(
α+ β

2

)
cos

(
α− β

2

)
,

cosα+ cosβ = 2 cos

(
α+ β

2

)
cos

(
α− β

2

)
.

Hence, tan
(
α+β
2

)
= 1/10

1/9 = 9
10 . By the tangent double-angle identity, we finally get

⌊
tan2(α+ β)

⌋
=

⌊(
2 · 9/10

1− (9/10)2

)2
⌋
= 89.
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Question 13 [Ans: 2]

Determine the number of positive integers that are divisible by 2021 and has exactly
2021 divisors (including 1 and itself).

Solution. Let n = pd11 ·pd22 · · · , where pi are primes and di are non-negative integers. The
number of divisors of n can be calculated as (d1 + 1)(d2 + 1) · · · . Since 2021 only has two
prime factors (43 and 47), there are only two possibilities, namely (d1, d2) = (42, 46) or
(46, 42). Hence, n has only two prime factors, which must be 43 and 47 (since 2021 | n).
Thus, there are two possibilities for n, namely n = 4342 · 4746 or 4346 · 4742.

Question 14 [Ans: 2]

Let S =

25∑
k=0

(
100

4k

)
− 298. Find

⌊∣∣∣∣ S248
∣∣∣∣⌋.

Solution. Let

S0 =
25∑
k=0

(
100

4k

)
, S1 =

24∑
k=0

(
100

4k + 1

)
, S2 =

24∑
k=0

(
100

4k + 2

)
, S3 =

24∑
k=0

(
100

4k + 3

)
.

Consider (1 + x)100 =
100∑
k=0

(
100

k

)
xk. Evaluating the binomial at x = 1, i,−1,−i, we have

the following system of equations:
(1 + 1)100 = S0 + S1 + S2 + S3

(1 + i)100 = S0 + iS1 − S2 − iS3

(1− 1)100 = S0 − S1 + S2 − S3

(1− i)100 = S0 − iS1 − S2 + iS3

Solving, one gets

4S0 = 2100 + (1 + i)100 + (1− i)100 = 2100 + 2 · 2100/2 cos
(
100 · π

4

)
= 2100 − 251.

Hence, ⌊∣∣∣∣ S248
∣∣∣∣⌋ =

⌊∣∣∣∣(2100 − 251)/4− 298

248

∣∣∣∣⌋ = 2.

Question 15 [Ans: 1348]

Assume that ABC is an acute triangle with sin(A+B) =
3

5
and sin(A−B) =

1

5
. If

AB = 2022(
√
6− 2), determine ⌊h⌋, where h is the height of the triangle from C on

AB.

Solution. It is trivial to see that AB = h(cotA+ cotB). Since both A and B are acute,

we have cos(A+B) = 4
5 and cos(A−B) = 2

√
6

5 . We thus have

2 cosA cosB = cos(A+B) + cos(A−B) =
4 + 2

√
6

5

2 sinA cosB = sin(A+B) + sin(A−B) =
4

5

2 sinA sinB = cos(A−B)− cos(A+B) =
2
√
6− 4

5
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It follows that cotA = 2+
√
6

2 and cotB = 2√
6−2

. Hence,

2022(
√
6− 2) = h

(
2 +

√
6

2
+

2√
6− 2

)
=⇒ h = 1348.

Question 16 [Ans: 10]

Let a1, a2, · · · be a sequence with a1 = 1 and an+1 =
n+ 2

n
Sn for all n = 1, 2, · · · ,

where Sn = a1+a2+ · · ·+an. Determine the minimum integer n such that an ≥ 2021.

Solution. We claim that an = 2n−2(n + 1). We prove this via induction. Consider a2
as the base case: from the given equation, a2 = 1+2

1 (a1) = 3, which clearly satisfies our
claim. Suppose that ak = 2k−2(k + 1) for some positive integer k. We first show that
Sk = k2k−1. Observe that

k∑
i=1

xi =
x(1− xk)

1− x

d/dx
=⇒

k∑
i=1

ixi−1 =
kxk+1 − (k + 1)xk + 1

(1− x)2
.

Evaluating at x = 2, we have

k∑
i=1

i2i−1 = k2k+1 − (k + 1)2k + 1.

Thus,

Sk =
k∑

i=1

(
1

2
· i2i−1 + 2i−2

)
=

1

2

(
k2k+1 − (k + 1)2k + 1

)
+

1

2

(
2k − 1

)
= k2k−1.

This immediately implies

ak+1 =
k + 2

k
· k2k−1 = (k + 2)2k−1,

closing the induction. It is hence easy to see that minn = 10.

Question 17 [Ans: 101]

Each card of a stack of 101 cards has one side coloured red and the other coloured
blue. Initially all cards have the red side facing up and stacked together in a deck.
On each turn, Ah Meng takes 8 cards on the top, flip them over, and place them to
the bottom deck. Determine the minimum number of turns required so that all the
cards have the red sides facing up again.

Solution. Notice that the stack of cards can be represented by an array of numbers.
Initially, all entries are 0. When a card is flipped over, the entry associated with that
card is incremented by 1. The “incrementer” starts at the first entry and makes its way
sequentially across the array, jumping back to the start once it reaches the end.
The figure below shows the array after one turn:

1, 1, 1, 1, 1, 1, 1, 1︸ ︷︷ ︸
the first 8 entries

, 0, 0, 0, 0, 0, 0, 0, . . . , 0︸ ︷︷ ︸
the remaining 93 entries
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Let k be the sum of the entries. At any given turn, we clearly have 8 | k (since
eight cards are flipped over in a single turn). Furthermore, by the construction of the
“incrementer”, there are at most two distinct numbers in the array, and their difference
must be 1. However, when all the cards have the red sides facing up again, each entry
must be even. Hence, all 101 entries have the same number, whence 101 | k. The smallest
k is thus 8 · 101 = 808, which occurs after 808/8 = 101 turns.

Question 18 [Ans: 88]

Let ABC be a triangle with AB = 10 and
cosA

cosB
=

AC

BC
=

4

3
. Let P be a point on the

inscribed circle of triangle ABC. Find the largest possible value of PA2+PB2+PC2.

Solution. By inspection, it is obvious that△ABC is a 6−8−10 right triangle, with a = 6,
b = 8 and c = 10 (where a, b and c denote the sides opposite A, B and C respectively).
From [ABC] = rs, we see that the inradius of △ABC is 2. Let A(8, 0), B(0, 6) and
C(0, 0). Then the incircle has equation

(x− 2)2 + (y − 2)2 = 22. (1)

Our goal now is to maximize PA2 + PB2 + PC2, which can be expressed as[
(x− 8)2 + y2

]
+
[
x2 + (y − 6)2

]
+
[
x2 + y2

]
,

where (x, y) are subject to (1). We can rewrite the above expression as

3
[
(x− 2)2 + (y − 2)2

]
+ 76− 4x.

Using (1), this simplifies to 88 − 4x. The largest possible value of PA2 + PB2 + PC2 is
hence 88, where P (0, 2).

Question 19 [Ans: 65]

A basket contains 19 apples labelled by the numbers 2, 3, . . . , 20, and 19 bananas
labelled by the numbers 2, 3, . . . , 20. Ah Beng picks m apples and n bananas from
the basket. However, he needs to ensure that for any apple labelled a and any banana
labelled b that he picks, a and b are relatively prime. Determine the largest possible
value of mn.

Solution. Let [n] be the set of prime factors of n. For instance, [18] = {2, 3}. The
following table arranges all integers n ∈ [2, 20] according to [n]:

[n] n [n] n [n] n

(2) 2, 4, 8, 16 (11) 11 (2,3) 6, 12, 18

(3) 3, 9 (13) 13 (2,5) 10, 20

(5) 5 (17) 17 (2,7) 14

(7) 7 (19) 19 (3,5) 15

We now create two sets by combining the above sets. It seems clear that the largest set
can be formed by grouping (2), (3), (5), (2, 3), (2, 5) and (3, 5) together. This gives a set
of size 13. By grouping the remaining sets (except for (2, 7), since it would be in conflict
with (2)), we get another set of size 5. Hence, maxmn = 13 · 5 = 65.
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Question 20 [Ans: 25]

Let p(x) = ax2 − bx+ c be a polynomial where a, b, c are positive integers and p(x)
has two distinct roots in (0, 1). Determine the least possible value of abc.

Solution. Since p(x) has two distinct roots, its discriminant must be positive:

b2 − 4ac > 0. (1)

Furthermore, the two roots are in (0, 1). By the quadratic formula, we have b±
√
b2−4ac
2a ∈

(0, 1), implying
√
b2 − 4ac ∈ [0, 2a− b). Squaring, we get b2 − 4ac < (2a− b)2, whence

a > b− c. (2)

Since we wish to find the smallest value of abc, we fix c = 1. From (2), we see that a = b.
(1) thus implies that a = b = 5, whence abc = 25.

Question 21 [Ans: 108]

In the triangle ABC, ∠A > 90◦, the incircle touches the side BC and AC at A1 and B1

respectively. The line A1B1 meets the extension of BA at X such that CXB = 90◦.
Suppose BC2 = AB2 +BC ·AC. Find the size of ∠A in degrees.

AB

C

A1

B1

X

O

Solution. Let θ = 1
2∠A, and let O be the incentre of △ABC. Since OA bisects ∠A, we

have ∠BAO = ∠CAO = θ. Since BC and AC are tangent to the circle, we get several
equalities: CA1 = CB1, and ∠BA1O = ∠CA1O = 90◦. This immediately implies that
AOA1 is a straight line, thus △BA1A ≡ △CA1A, whence BA1 = CA1 = CB1. Since A1

is the midpoint of BC and ∠BXC = 90◦, it follows that XA1 = CA1. We thus have two
isosceles triangles, namely △BA1X and △A1CB1.
We now find two different expressions for ∠A1B1C. Firstly, we know that ∠B1AX =

180◦−2θ, while ∠A1XB = ∠A1BX = 90◦−θ (using △BA1X isosceles), thus ∠A1B1C =
∠AB1X = 3θ − 90◦.
Secondly, we have ∠ACB = ∠ABC = 90◦ − θ (using △BA1A ≡ △CA1A). Since

△A1CB1 is isosceles, we have that ∠A1B1C = 45◦ + 1
2θ.

Thus, 3θ − 90◦ = 45◦ + 1
2θ, whence ∠A = 2θ = 108◦.
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Question 22 [Ans: 2021]

Find the number of positive integers n such that 7n− 16 divides n · 132019.

Solution. Observe that 7 ∤ 7n− 16. Hence, 7n− 16 | 7n · 132019 = (7n− 16) · 132019 +16 ·
132019. This gives 7n− 16 | 24 · 132019.

Case 1 . Suppose 7n − 16 ≤ 0. Then n = 1, 2. Testing, we see that n = 1 fails
(−9 ∤ 132019) while n = 2 works (−2 | 2 · 132019).

Case 2 . Suppose 7n− 16 > 0. Then 7n− 16 is a factor of 24 · 132019. However, observe
that 7n−16 ≡ 5 (mod 7). It hence suffices to find the number of factors of 24 ·132019 that
have a residue of 5 modulo 7.

Let 7n− 16 = 2a · 13b, where a ≤ 4 and b ≤ 2019 are non-negative integers. Note that
2a · 13b ≡ 5 (mod 7) if and only if a = 1, 4 and b is odd. This gives 2 · 2020/2 = 2020
solutions in this case.
Thus, there are a total of 2020 + 1 = 2021 positive integers n that satisfy the given

condition.

Question 23 [Ans: 75]

In the acute triangle ABC, P is a point on AB, Q is a point on AC such that
BP + CQ = PQ. The bisector of ∠A meets the circumcircle of the triangle ABC
at the point R distinct from A. Suppose ∠PRQ = 52.5◦. Find the size of ∠BAC in
degrees.

A

B

C

P

Q

X

R

Solution. By the incenter-excenter lemma, we have CR = RB. Let X be the point on
PQ such that CQ = QX and XP = PB. Note that ∠XQC+∠XPB = 180◦+∠A. Since
△CXQ and △XBP are both isosceles, it follows that ∠QXC + ∠PXB = 90◦ − 1

2∠A.
Hence, ∠CXB = 90◦ + 1

2∠A. Also, since ABRC is cyclic, ∠CRB = 180◦ − ∠A, whence
reflex ∠CRB = 180◦+∠A = 2∠CXB. Hence, R is the circumcentre of △CXB, implying
that RX = CR = RB. Thus, QCXR and PXBR are kites, hence ∠QRX = ∠QRC, and
∠PRX = ∠PRB. Thus, ∠CRB = 2∠PRQ = 105◦, whence ∠A = 180◦ − 105◦ = 75◦.
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Question 24 [Ans: 6]

Let S =

∫ ∞

−∞
e−

1
2
x2

dx. Determine the value of
⌊
S2
⌋
.

Solution. The generalized Gaussian integral
∫∞
−∞ e−kx2

dx evaluates to
√

π/k. Hence,⌊
S2
⌋
= ⌊2π⌋ = 6.

Question 25 [Ans: 5]

Let p, q, r be positive numbers with p − r = 4q and a1, a2, · · · and b1, b2, · · · be two
sequences defined by a1 = p, b1 = q and for n ≥ 2,

an = pan−1, bn = qan−1 + rbn−1.

Find the value of lim
n→∞

√
a2n + (3bn)2

bn
.

Solution 1. Observe that an is simply a geometric series, with an = pn. Hence, bn =
qpn−1+rbn−1. We now claim that bn = 1

4 (p
n − rn). We prove this via induction. Observe

that the base case b1 = q = 1
4(4q) =

1
4

(
p1 − r1

)
holds. Suppose that bk = 1

4

(
pk − rk

)
for

some positive integer k. Then

bk+1 = qpk + r

[
1

4

(
pk − rk

)]
=

1

4
(p− r) pk +

1

4
rpk − 1

4
rk+1

=
1

4

(
pk+1 − rpk + rpk − rk+1

)
=

1

4

(
pk+1 − rk+1

)
,

closing the induction. The limit hence evaluates to

lim
n→∞

√
a2n + (3bn)2

bn
= lim

n→∞

√(
an
bn

)2

+ 9 = lim
n→∞

√(
pn

(pn − rn) /4

)2

+ 9 =
√
42 + 9 = 5.

Solution 2. Observe that

bn
an

=
qan−1 + rbn−1

pan−1
=

q

p
+

r

p

bn−1

an−1
.

Assuming that bn/an converges, define L = limn→∞ bn/an. Then

L =
q

p
+

r

p
L =⇒ (p− r)L = q =⇒ L =

q

p− r
=

q

4q
=

1

4
.

Hence, the desired limit is

lim
n→∞

√
a2n + (3bn)2

bn
= lim

n→∞

√(
an
bn

)2

+ 9 = lim
n→∞

√
1

L2
+ 9 =

√
16 + 9 = 5.
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8.1. Open Section

8.1.1. Round 1 Solutions

Resources: Review by Way Tan

Question 1 [Ans: 4043]

If S =
2021∑

k=−2021

1

10k + 1
, find ⌊2S⌋.

Solution. Observe that 1
10−k+1

= 10k

10k+1
. The −kth term can thus be paired with the kth

term to form 10k+1
10k+1

= 1, with the 0th term being the only unpaired term. The sum hence
evaluates to

S = 2021 +
1

100 + 1
=⇒ ⌊2S⌋ = 4043.

Question 2 [Ans: 1303]

All the positive integers 1, 2, 3, 4, · · · , are grouped in the following way: G1 = {1, 2},
G2 = {3, 4, 5, 6}, G3 = {7, 8, 9, 10, 11, 12, 13, 14}, that is, the set Gn contains the next
2n positive integers listed in ascending order after the set Gn−1, n > 1. If S is the
sum of all the positive integers from G1 to G8, find

⌊
S
100

⌋
.

Solution. It is not too hard to show that the last term in Gn is 2n+1 − 2. The last term
of G8 is hence 29 − 2 = 510, whence S evaluates to 510(511)/2. Thus, ⌊S/100⌋ = 1303.

Question 3 [Ans: 100]

A sequence of one hundred positive integers x1, x2, x3, · · · , x100 are such that

(x1)
2 + (2x2)

2 + (3x3)
2 + (4x4)

2 + · · ·+ (100x100)
2 = 338350.

Find the largest possible value of x1 + x2 + x3 + · · ·+ x100.

Solution. Observe that 12+22+32+ · · ·+1002 = 338350. Since xi are positive integers,
they must all be 1 (to prevent the sum from exceeding 338350). The desired value is hence
100.

https://www.youtube.com/watch?v=42LFCwMgTwQ
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Question 4 [Ans: 9]

Let a and b be two real numbers satisfying a < b, and such that for each real number
m satisfying a < m < b, the circle x2 + (y −m)2 = 25 meets the parabola 4y = x2 at
four distinct points in the Cartesian plane. Let S be the maximum possible value of
b− a. Find ⌊4S⌋.

Solution. Note that a is clearly 5. Now consider the extreme case where m > 5 and the
circle is tangent to the parabola. The discriminant of the quadratic 4y + (y −m)2 = 25
must be 0, whence m = 29/4. Hence, S = b− a = 29/4− 5 = 9/4. Thus, ⌊4S⌋ = 9.

Question 5 [Ans: 11]

Let P be a point within a rectangle ABCD such that PA = 10, PB = 14 and
PD = 5, as shown below. Find ⌊PC⌋.

A

B C

D

P

10 5

14

Solution. By the British flag theorem, one has 102+PC2 = 52+142, whence ⌊PC⌋ = 11.

Question 6 [Ans: 50]

In the diagram below, the rectangle ABCD has area 180 and both triangles ABE
and ADF have areas 60. Find the area of triangle AEF .

A

B C

D

E

F

Solution. Let BE = x and DF = y. Observe that x/(x + EC) = [ABE]/[ABC] =
60/90 = 2/3. Hence, EC = x/2. Similarly, y/(y + FC) = [ADF ]/[ADC] = 60/90 = 2/3,
whence FC = y/2. Thus, [CEF ] = [CDE]/3 = [ABE]/6 = 10. Finally, [AEF ] =
180− 60− 60− 10 = 50.
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Question 7 [Ans: 144]

A tetrahedron in R3 has one vertex at the origin O and other vertices at the points
A(6, 0, 0), B(4, 2, 4) and C(3, 2, 6). If x is the height of the tetrahedron from O to the
plane ABC, find

⌊
5x2
⌋
.

Solution. The plane ABC is given by the vector equation r · (2, 0, 1) = 12. Since x is the
perpendicular distance from O to ABC, we have x = 12/

√
22 + 02 + 12 = 12/

√
5. Thus,⌊

5x2
⌋
= 144.

Question 8 [Ans: 208]

Let x and y be real numbers such that (x − 2)2 + (y − 3)2 = 4. If S is the largest
possible value of x2 + y2, find

⌊
(S − 17)2

⌋
.

Solution. Observe that (x − 2)2 + (y − 3)2 = 4 describes a circle with centre (2, 3) and
radius 2, while S is the square of the distance from some point P on the circle to the
origin. The largest distance clearly occurs when the origin, the centre (2, 3), and P are
collinear. This distance can be calculated as

√
22 + 32 + 2 =

√
13 + 2. Hence,

⌊
(S − 17)2

⌋
=

⌊(
(
√
13 + 2)2 − 17

)2⌋
= 208.

Question 9 [Ans: 18]

Let S be the maximum value of w3−3w subject to the condition that w4+9 ≤ 10w2.
Find ⌊S⌋.

Solution. Consider w4 + 9 ≤ 10w2. Solving, we have (w2 − 9)(w2 − 1) ≤ 0, whence
w ∈ [−3,−1] ∪ [1, 3]. Now notice that w3 − 3w is odd and is increasing when w < −1 or
w > 1. The maximum value thus occurs either at w = −1 or 3. Comparing values, we see
that ⌊S⌋ =

⌊
33 − 3 · 3

⌋
= 18.
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Question 10 [Ans: 40]

In the quadrilateral ABCD below, it is given that AB = BC = CD and ∠ABC = 80◦

and ∠BCD = 160◦. Suppose ∠ADC = x◦. Find the value of x.

A

B
C

D

A

B
C

D

E

Solution. Let E be such that △BCE is equilateral, as shown above. Note that △ABE
is isosceles. Since ∠ABE = 80◦ + 60◦ = 140◦, we have ∠BAE = ∠BEA = 20◦. Hence,
∠AED = 60◦ − 20◦ = 40◦. However, notice that △DCE is also isosceles, and reflex
∠CDE = 360◦ − 60◦ − 160◦ = 140◦. Thus, ∠CED = ∠CDE = 20◦, whence △ABE ≡
△DCE, implying AE = DE. Because ∠AED = 40◦ + 20◦ = 60◦, it follows that △AED
is equilateral, thus giving x◦ = 60◦ − 20◦ = 40◦.

Question 11 [Ans: 544]

Let a, b, c be integers with ab + c = 49 and a + bc = 50. Find the largest possible
value of abc.

Solution. Subtracting the two equations, we obtain a + bc − ab − c = 1. This can be
factorized as (b− 1)(c− a) = 1. Since a, b and c are integers, we are left with two cases:

Case 1 : b− 1 = c− a = −1. We have b = 0, whence abc = 0.
Case 2 : b − 1 = c − a = 1. We have b = 2 and c = 1 + a. Substituting this back into

one of the original equations, we get a = 16 and c = 17, whence abc = 544.
The largest possible value of abc is thus 544.

Question 12 [Ans: 17]

Find the largest possible value of |a| + |b|, where a and b are coprime integers (i.e.,
a and b are integers which have no common factors larger than 1) such that a

b is a
solution of the equation below:√

4x+ 5− 4
√
x+ 1 +

√
x+ 2− 2

√
x+ 1 = 1.

Solution. Note that

4x+ 5− 4
√
x+ 1 =

(
2
√
x+ 1

)2 − 2 ·
√
x+ 1 · 1 + 12 =

(
2
√
x+ 1− 1

)2
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and
x+ 2− 2

√
x+ 1 =

(√
x+ 1

)2 − 2 ·
√
x+ 1 · 1 + 12 =

(√
x+ 1− 1

)2
.

We hence have
±
(
2
√
x+ 1− 1

)
±
(√

x+ 1− 1
)
= 1.

Case 1 :
(
2
√
x+ 1− 1

)
+
(√

x+ 1− 1
)
= 1. We have 3

√
x+ 1 = 3, whence x = 0.

Hence, a = 0 and b = 1, whence |a|+ |b| = 1.
Case 2 :

(
2
√
x+ 1− 1

)
−
(√

x+ 1− 1
)
= 1. We have

√
x+ 1 = 3, whence x = 8.

Hence, a = 8 and b = 1, whence |a|+ |b| = 9.
Case 3 : −

(
2
√
x+ 1− 1

)
+
(√

x+ 1− 1
)
= 1. We have

√
x+ 1 = −1, a contradiction.

Case 4 : −
(
2
√
x+ 1− 1

)
−
(√

x+ 1− 1
)
= 1. We have 3

√
x+ 1 = 1, whence x = −8/9.

Hence, a = −8 and b = 9, whence |a|+ |b| = 17.
The maximum value of |a|+ |b| is 17.

Question 13 [Ans: 3000]

Let S be the set of real solutions (x, y, z) of the following system of equations:

4x2

1 + 4x2
= y,

4y2

1 + 4y2
= z,

4z2

1 + 4z2
= x.

For each (x, y, z) ∈ S, definem(x, y, z) = 2000(|x|+|y|+|z|). Determine the maximum
value of m(x, y, z) over all (x, y, z) ∈ S.

Solution. Taking reciprocals, we have

1 +
1

4x2
=

1

y
,

1 +
1

4y2
=

1

z
,

1 +
1

4z2
=

1

x
.

Summing, we obtain[
1

(2x)2
− 1

x
+ 1

]
+

[
1

(2y)2
− 1

y
+ 1

]
+

[
1

(2z)2
− 1

z
+ 1

]
= 0.

This clearly factors as (
1

2x
− 1

)2

+

(
1

2y
− 1

)2

+

(
1

2z
− 1

)2

= 0,

whence x = y = z = 1/2, giving maxm(x, y, z) = 3000.
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Question 14 [Ans: 11]

Assume that t is a positive solution to the equation

t =

√
1 +

√
1 +

√
1 +

√
1 + t.

Determine the value of t4 − t3 − t+ 10.

Solution. Observe that t =
√
1 + t. It follows that t2 − t− 1 = 0, whence t is the golden

ratio φ, which has the property that φn = φn−1 + φn−2 for all integers n. The desired
value is hence

t4 − t3 − t+ 10 = t2 − t+ 10 = 1 + 10 = 11.

Question 15 [Ans: 44]

In the triangle ABC shown in the diagram below, the external angle bisectors of ∠B
and ∠C meet at the point D. The tangent from D to the incircle ω of the triangle
ABC touches ω at E, where E and B are on the same side of the line AD. Suppose
∠BEC = 112◦. Find the size of ∠A in degrees.

A

B

C

D

E

ω

A

B

C

D

E

Iω

Solution. Let I be the incentre of △ABC. Observe that BI and IC bisect ∠B and ∠C
respectively. Hence, ∠IBD = ∠ICD = 90◦. Furthermore, since ED is tangent to ω, we
have ∠IED = 90◦. Thus, B, C, D, E and I are concyclic, with ID as the diameter.
Hence, ∠BIC = ∠BEC = 112◦. Since IB and IC are angle bisectors, we have

∠B + ∠C = 2 (∠IBC + ∠ICB) = 2 (180◦ − 112◦) = 136◦.

It immediately follows that ∠A = 180◦ − 136◦ = 44◦.
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Question 16 [Ans: 99]

Find the largest integer n such that n2+5n−9486 = 10s(n), where s(n) is the product
of all digits of n in the decimal representation of n.
(For example, s(481) = 4× 8× 1 = 32.)

Solution. Observe that s(n) ≤ n for all n. We thus have the inequality n2+5n− 9486 ≤
10n, whence it is clear that the largest possible n is 99, which does indeed satisfy the given
equality. Hence, maxn = 99.

Question 17 [Ans: 8]

Find the number of integer solutions to the equation 19x+ 93y = 4xy.

Solution. Note that (ax+ b)(cy+d) = adx+acxy+ bcy+ bd, where a, b, c and d are real
numbers. Comparing this to the given equation, we have ad = 19, ac = −4 and bc = 93.
Taking a = 1, c = −4, b = −93/4 and d = 19, we have(

x− 93

4

)
(−4y + 19) = −19 · 93

4
.

Upon simplification, one gets

(4x− 93)(4y − 19) = −1 · 3 · 19 · 31.

Observe that both 4x− 93 and 19− 4y are congruent to 1 modulo 4. On the other hand,
all four factors (−1, 3, 19 and 31) are also congruent to 3 modulo 4. We must hence have
an even number of factors contributing to both terms. This narrows the possibilities down
to a few cases.

Case 1 : Both terms have two factors. The number of possibilities in this case is 4C2 = 6.

Case 2 : One term has four factors, the other has none. The number of possibilities in
this case is clearly 2.

Altogether, there are 6 + 2 = 8 possibilities, thus there are 8 integer solutions to the
given equation.

Question 18 [Ans: 121]

Find the number of integer solutions to the equation x1 + x2 − x3 = 20 with x1 ≥
x2 ≥ x3 ≥ 0.

Solution. Rewriting the equation, we have x1 + x2 = 20 + x3. Suppose x3 is fixed (and
admits possible values of x2 and x1). Observe that x1 ≤ 20, with equality only when
x2 = x3. The only possible values of x1 are hence {20, 19, 18, · · · , x2}. However, since
x1 ≥ x2, we have the condition x2 ≤

⌊
1
2(20 + x3)

⌋
. The number of solutions for a given

x3 is hence 11−
⌊
1
2x3
⌋
. The total number of integer solutions is thus

11 + 10 + 10 + 9 + 9 + · · ·+ 1 + 1 = 11 + 2 · 10 · 11
2

= 121.
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Question 19 [Ans: 2]

In the diagram below, E is a point outside a square ABCD such that CE is parallel
to BD, BE = BD, and BE intersects CD at H. Given BE =

√
6 +

√
2, find the

length of DH.

A

B C

D

EH

Solution 1. Observe that △HDB is similar to △HCE. Hence,

EH

BH
=

CH

DH
=⇒ BE −BH

BH
=

DC −DH

DH
=⇒ BE

BH
=

DC

DH
.

Note that the side length of the square is 1√
2
BD =

√
3 + 1. Thus,

√
6 +

√
2

BH
=

√
3 + 1

DH
=⇒ BH2 = 2DH2.

Using Pythagoras’ theorem on △BCH, one obtains

BC2 + CH2 = BH2 =⇒
(√

3 + 1
)2

+
(√

3 + 1−DH
)2

= 2DH2.

Solving, we have DH = 2.

Solution 2 (Abusing integers). Note that the side length of the square is 1√
2
BD =

√
3 + 1 ≈ 2.73. Since DH is an integer and CH < DH < BD, it must be 2.
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Question 20 [Ans: 4]

The diagram below shows the region R =
{
(x, y) ∈ R2|y ≥ 1

2x
2
}

on the xy-plane
bounded by the parabola y = 1

2x
2. Let C1 be the largest circle lying inside R with

its lowest point at the origin. Let C2 be the largest circle lying inside R and resting
on top of C1. Find the sum of radii of C1 and C2.

Solution. Let the radius of C1 and C2 be r1 and r2 respectively. The equations of C1

and C2 are hence

C1 : x
2 + (y − r1)

2 = r21,

C2 : x
2 + (y − (2r1 + r2))

2 = r22.

Consider the intersection between C1 and the parabola: y =
1

2
x2

x2 + (y − r1)
2 = r21

This gives y2 + 2y(1− r1) = 0. Since the two curves only intersect at the origin, we have
r1 = 1.

Now consider the intersection between C2 and the parabola: y =
1

2
x2

x2 + (y − (2r1 + r2))
2 = r22

This gives y2 − 2y(1 + r2) + 4(1 + r2) = 0. By symmetry, the two curves intersect at a
unique y-value, hence the discriminant is 0. We hence obtain 4(1 + r2)

2 − 16(1 + r2) = 0,
whence r2 = 3. The required sum is thus 1 + 3 = 4.

Question 21 [Ans: 30]

Find the smallest positive integer x such that 3x2 + x = 4y2 + y for some positive
integer y.

Solution. Completing the square, one gets

4(6x+ 1)2 − 4 = 3(8y + 1)2 − 3

after simplification. This can be rewritten as

(12x+ 2)2 − 3(8y + 1)2 = 1,
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which one may recognize as a case of Pell’s equation. We hence consider the equation
X2 − 3Y 2 = 1. The fundamental solution is clearly X = 2 and Y = 1. We now have the
following standard recurrence relations for X and Y :

Xk+1 = 2Xk + 3Yk, Yk+1 = 2Yk +Xk.

Keeping in mind that X is of the form 12x+2 and Y is of the form 8y+1, the first valid
solution occurs when k = 5, where X = 362 and Y = 209, which corresponds to x = 30
and y = 26.

Question 22 [Ans: 200]

A group of students participates in some sports activities among 6 different types of
sports. It is known that for each sport activity there are exactly 100 students in the
group participating in it; and the union of all the sports activities participated by any
two students is NOT the entire set of 6 sports activities. Determine the minimum
number of students in the group.

Solution. Let m be the maximum number of sports a student can take at once. By
symmetry, we only need to consider m ≥ 3 (any m < 3 will lead to a less-than-optimal
allocation of students). Furthermore, it is obvious that m ≥ 5 is impossible, since it would
immediately violate the given restriction. We hence analyse only the m = 3 and m = 4
case.
Case 1 : m = 4. To adhere to the given restriction, there is only one possible allocation

of students: 100 to Sport A, 100 to Sport B and 100 taking the other four sports. This
gives a total of 300 students.
Case 2 : m = 3. Note that the absolute minimum number of students is given by

100 · 6/3 = 200. We now construct an allocation that uses exactly 200 students.
Let the sports be labelled A through F. Consider the following allocation of students:

A B C D E F

Student 1 X X X

Student 2 X X X

Student 3 X X X

Student 4 X X X

Repeating the above allocation 50 times, we will have 100 students per sport. Hence,
the minimum number of students is 4 · 50 = 200 as desired.

Question 23 [Ans: 29]

Let p and q be positive prime integers such that p3 − 5p2 − 18p = q9 − 7q. Determine
the smallest value of p.

Solution. Observe that the RHS will grow incredibly fast as compared to the LHS. We
hence test small values of q. Comparing leading terms, we also note that p ≈ q3. Further-
more, we require p3 − 5p2 − 18p > 0, whence p ≥ 11.

Case 1 : q = 2. We have p
(
p2 − 5p− 18

)
= 2 · 3 · 83. It can be easily shown that there

are no solutions in this case.
Case 2 : q = 3. We have p

(
p2 − 5p− 18

)
= 2 · 3 · 29 · 113. Testing p = 29, we see that

it is indeed a solution.
Hence, the smallest value of p is 29.
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Question 24 [Ans: 27648]

Given that a, b, c are positive real numbers such that a+b+c = 9, find the maximum
value of a2b3c4.

Solution. Note that

9 = a+ b+ c =
a

2
+

a

2
+

b

3
+

b

3
+

b

3
+

c

4
+

c

4
+

c

4
+

c

4
.

By the Cauchy-Schwarz inequality, we obtain

1

9
· 9 ≥ 9

√
a2b3c4

223344
.

Hence, the maximum value of a2b3c4 is 223344 = 27648.

Question 25 [Ans: 2023]

Let R+ be the set of all positive real numbers. Let f : R+ → R+ be a function
satisfying

xyf(x)
(
f(y)− f(yf(x))

)
= 1

for all x, y ∈ R+. Find f( 1
2022).

Solution. Letting y = 1, we get the following expression for f2(x):

f2(x) = f(1)− 1

xf(x)
. (1)

Replacing y with f(y) in the original equation gives

f2(y) =
1

xf(y)f(x)
+ f(f(y)f(x)). (2)

Substituting (1) into (2) yields

f(1)− 1

yf(y)
=

1

xf(y)f(x)
+ f(f(y)f(x)). (3)

Swapping x and y gives a similar equation:

f(1)− 1

xf(x)
=

1

yf(x)f(y)
+ f(f(x)f(y)). (4)

Subtracting (4) from (3) and simplifying, we obtain

yf(y)− y = xf(x)− x,

from which it is clear that for all x ∈ R+, we have xf(x) − x = c for some constant c.
This immediately gives f(x) = 1 + c

x . Substituting this into (1), we have

1 +
c

1 + c
x

=
(
1 +

c

1

)
− 1

x
(
1 + c

x

) ,
whence c2 = 1. Since the range of f is R+, we take c = 1, thus f(x) = 1 + 1

x and
f( 1

2022) = 2023.
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8.1.2. Round 2 Solutions

Resources: AoPS threads

Question 1

For △ABC and its circumcircle ω, draw the tangents at B, C to ω meeting at D.
let the line AD meet the circle with centre D and radius DB at E inside △ABC.
Let F be the point on the extension of EB and G be the point on the segment EC
such that ∠AFB = ∠AGE = ∠A. Prove that the tangent at A to the circumcircle
of △AFG is parallel to BC.

Solution (gghx).

O

A

B

C

D
F

I

J

E G

Claim 1. E is the orthocentre of △AFG.

Proof. Let O be the circumcentre of △ABC. Let I = AG∩FE and J = AF ∩GE. Since
∠BOC = 2∠A and ∠OBD = ∠OCD = 90◦, we have ∠BDC = 180◦−2∠A, whence reflex
∠BDC = 180◦ + 2∠A. Hence, ∠BEC = 90◦ + ∠A. This immediately gives

∠EIC + ∠AGE = 90◦ + ∠A =⇒ ∠EIC = 90◦

https://artofproblemsolving.com/community/c3073907_2022_singapore_mo_open
https://artofproblemsolving.com/community/c6h2876083p25555460
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and

∠EJF + ∠AFB = 90◦ + ∠A =⇒ ∠EJF = 90◦.

Thus, E is the orthocentre of △AFG.

A

C

D

H

I

E
G

B

Let H = AG ∩BC.

Claim 2. AEHC is cyclic.

Proof. Note that △BDE is isosceles, with ∠EBD = ∠BED. Hence, ∠BDE = 180◦ −
2∠BED. Thus,

∠GCH =
1

2
∠BDE = 90◦ − ∠BED = 90◦ − ∠AEI = ∠GAE.

Thus, by the converse of angles in same segment, AEHC is cyclic.
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A

C

F

H

T

J

K

E G

Claim 3. The tangent at A to (AFG) is parallel to HC (i.e. BC).

Proof. Let K = AE ∩GF . Let T be a point on the line parallel to HC through A, such
that G and T are on the same side of AE. It suffices to show that AT is tangent to (AFG)
at A.

Observe that

∠TAG = 180◦ − ∠GHC = 180◦ − ∠GEA = 180◦ − ∠KEJ = ∠GFA.

Thus, by the converse of the alternate segment theorem, AT is tangent to (AFG) at A.

Question 2

Prove that if the length and breadth of a rectangle are both odd integers, then there
does not exist a point P inside the rectangle such that each of the distances from P
to the 4 corners of the rectangle is an integer.

Solution (sarjinius). Let m and n be positive odd integers. Let A(0, 0), B(m, 0),
C(m,n) and D(0, n). Let the perpendicular distance from P to AB, BC, CD and DA be
a, b, c and d respectively, whence P (d, a). Also, we have b+d = m and a+ c = n. Seeking
a contradiction, suppose PA, PB, PC and PD are all integers.
By Pythagoras’ theorem, we have PA2 = a2+d2 and PB2 = a2+(m−d)2. Thus, both

a2 + d2 and a2 + d2 − 2md+m2 are perfect squares. This immediately gives

d =
m2 + PA2 − PB2

2m
,

https://artofproblemsolving.com/community/c6h2876084p25568028
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whence d is rational with a denominator not divisible by 4 (when expressed in lowest
terms). Similarly, we also get

a =
n2 + PB2 − PC2

2n
, b =

m2 + PC2 − PD2

2m
, c =

n2 + PD2 − PA2

2n
,

thus a, b and c are also rational with denominator not divisible by 4.

Let k be the denominator of a and c, and l be the denominator of b and d. Note that
k | 2n and l | 2m. We now scale ABCD with respect to A by a factor of lcm(k, l) (note
that this is not divisible by 4). Let X∗ represent the point X after scaling and z∗ represent
the distance z after scaling.

Case 1 . Suppose lcm(k, l) is odd. Thus, bothm∗ and n∗ are odd. Since a∗, b∗, c∗, d∗ ∈ Z,
with b∗+ d∗ = m∗ and a∗+ c∗ = n∗, it follows that one of a and c is odd, and one of b and
d is odd. Hence, one of PA2

∗ = a2∗ + d2∗, PB2
∗ = a2∗ + b2∗, PC2

∗ = c2∗ + b2∗ and PD2
∗ = c2∗ + d2∗

must be 2 mod 4, which cannot be perfect square, a contradiction.

Case 2 . Suppose lcm(k, l) is even. Then at least one of k and l is even (and also 2 mod
4).

Subcase 2A. Suppose both k and l are even. This implies that a∗, b∗, c∗ and d∗ are all
odd. This is a clear contradiction since the sum of two odd squares will always be 2 mod
4, which cannot be a perfect square.

Subcase 2B . Without loss of generality, suppose k is odd and l is even. Hence, a∗ and c∗
are even, while b∗ and d∗ are odd. However, because a∗ + c∗ = n∗ ≡ 2 (mod 4), without
loss of generality, we must have a∗ ≡ 0 (mod 4) and c∗ ≡ 2 (mod 4). Thus, a2∗ ≡ 0
(mod 8) while c2∗ ≡ 4 (mod 8). We also have b2∗ ≡ d2∗ ≡ 1 (mod 8). Thus, PC2

∗ = c2∗ + b2∗
and PD2

∗ = c2∗+d2∗ must be 5 mod 8, which cannot be a perfect square, a contradiction.

Question 3 [Ans: f(m) ≡ m]

Find all functions f : Z+ → Z+ satisfying

m!! + n!! | f(m)!! + f(n)!!

for each m,n ∈ Z+, where n!! = (n!)! for all n ∈ Z+.

Solution. DVDthe1st When m = n, we see that m!! | f(m)!!. This immediately gives us
f(m) ≥ m. Repeatedly chaining the given relation gives

m!! + n!! | f(m)!! + f(n)!! | f2(m)!! + f2(n!!) | · · · | fk(m)!! + fk+1(n)!!, (1)

where k is a non-negative integer. We now consider the sequence
{
m, f(m), f2(m), . . .

}
.

Case 1 . Suppose the sequence is unbounded. Let k > 0 be the smallest integer such
that m!!+f(m)!! | fk+1(m)!! (k must exist due to the unboundedness of the sequence). To
not violate the minimality of k, we must have m!! + f(m)!! ∤ fk(m)!!. Thus, m!! + f(m)!! ∤
fk(m)!! + fk+1(m)!!, contradicting (1).

Case 2 . Suppose the sequence is bounded. Let k ≥ 0 be the smallest integer such that
fk(m) = max

{
m, f(m), f2(m), . . .

}
. If k > 0, we have

fk(m)!! + fk+1(m)!! ≤ 2fk(m)!! < 2
(
fk−1(m)!! + fk(m)!!

)
.

However, from (1), we see that

fk−1(m)!! + fk(m)!! | fk(m)!! + fk+1(m).

https://artofproblemsolving.com/community/c6h2876085p25698517
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This immediately gives fk−1(m)!! + fk(m)!! = fk(m)!! + fk+1(m), whence

fk−1(m) = fk+1(m) ≥ fk(m),

which violates the minimality of k. Thus, k = 0, whence f(m) ≡ m for any initial choice
of m ∈ Z+, which clearly satisfies the given relation.

Question 4 [Ans: n− gcd(n, k)]

Let n, k, 1 ≤ k ≤ n be fixed integers. Alice has n cards in a row, where the card in
position i has the label i+ k (or i+ k−n if i+ k > n). Alice starts by colouring each
card either red or blue. Afterwards, she is allowed to make several moves, where each
move consists of choosing two cards of different colours and swapping them. Find
the minimum number of moves she has to make (given that she chooses the colouring
optimally) to put the cards in order (i.e. card i is at position i).

Solution (gghx). We claim that Alice requires a minimum of n− gcd(n, k) moves.
Consider a graph over vertices labelled 1 through n. If the card at position i has label

j, draw a directed edge from i to j. Since each vertex has indegree 1 and outdegree 1, the
graph is composed of disjoint cycles. We now consider the effect of swapping two cards
(say, at positions i and j) on our graph.

Claim 1. If the cards at i and j were initially in the same cycle, then the cycle will split
into two cycles upon swapping the two cards.

Proof. Without loss of generality, let the cycle that i and j are in be

(i′, i, i′′, . . .︸︷︷︸
I

, j′, j, j′′, . . .︸︷︷︸
J

).

Consider the effect of swapping i and j on the cycle. Since the label on the card at position
i′ is still i, we see that i′ still maps to i. Similarly, j′ → j. However, the card at position
j (originally at position i) now has the label i′′, hence we now have j → i′′. Similarly,
i → j′′. It is hence easy to see that the cycle now splits as

(i′, i, j′′, . . .︸︷︷︸
J

)(j′, j, i′′, . . .︸︷︷︸
I

).

Claim 2. If the cards at i and j were initially in different cycles, then the two cycles will
merge upon swapping the two cards.

Proof. Using a similar argument as Claim 1, the cycles

(i′, i, i′′, . . . .︸︷︷︸
I

)

and
(j′, j, j′′, . . .︸︷︷︸

J

)

will merge into a single cycle

(i′, i, j′′, . . .︸︷︷︸
J

, j′, j, i′′, . . .︸︷︷︸
I

)

upon swapping positions i and j.

https://artofproblemsolving.com/community/c6h2876086p25568807
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From Claims 1 and 2, it follows that every move, the number of cycles increases by at
most one. We now show that the initial number of cycles is gcd(n, k).

Claim 3. The number of cycles is initially gcd(n, k).

Proof. Let D = {d ∈ Zn | 1 ≤ d ≤ gcd(n, k)}. Let C(m) be the cycle starting from some
integer m. Then C(m) is clearly of the form

(m,m+ k,m+ 2k,m+ 3k, . . . ,m+ (l − 1)k),

where l = n
gcd(n,k) is the smallest positive integer such that lk ≡ 0 (mod n).

Consider C(m) for any choice of m. Since k ≡ 0 (mod gcd(n, k)), it follows that each
member of C(m) is congruent to m (mod gcd(n, k)). In addition, from the minimality of
l, all elements of C(m) are distinct. Thus, there is exactly one d ∈ D that is also in C(m)
(namely, d ≡ m (mod gcd(n, k))). Conversely, each d ∈ D has a unique cycle m that it is
a member of. Hence, the number of cycles is gcd(n, k) as desired.

Since there are n cycles when all cards are in their correct position, Alice must make at
least n− gcd(n, k) moves. We now construct a strategy that guarantees Alice can indeed
win in n− gcd(n, k) moves.

Claim 4. Alice can win in n− gcd(n, k) moves.

Proof. Let all cards with labels 1, 2, . . . , gcd(n, k) be red, and all other cards be blue. By
Claim 3, each cycle initially contains exactly one red card. For each cycle, keep swapping
the red card with the card that is pointing towards it. Doing so removes one blue card
every move. Since the cycle has length n

gcd(n,k) , each cycle requires n
gcd(n,k) − 1 moves to

completely sort it. Since there are gcd(n, k) cycles to sort, Alice can sort all cycles within
n− gcd(n, k) moves, as desired.

As an example, consider the case where n = 6 and k = 4. We start with the following
deck, which has been coloured using the strategy in Claim 4:

5 6 1 2 3 4

The current cycles are (1, 5, 3)(2, 6, 4). We first focus on the (1, 5, 3) cycle. Since card 3
is pointing to card 1, we swap them:

5 6 3 2 1 4

The cycles are now (1, 5)(2, 6, 4)(3). Since card 5 is pointing to card 1, we swap them:

1 6 3 2 5 4

At this point, the (1, 5, 3) cycle has been completely sorted, taking 6
gcd(6,4)−1 = 2 moves

as expected. We now focus on the (2, 6, 4) cycle. Since card 4 is pointing at card 2, we
swap them:

1 6 3 4 5 2
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Finally, we swap cards 2 and 6, completing the game in 6 − gcd(6, 4) = 4 moves as
expected.

1 2 3 4 5 6

Question 5

Let n ≥ 2 be a positive integer. For any integer a, let Pa(x) denote the polynomial
xn + ax. Let p be a prime number and define the set Sa as the set of residues mod p
that Pa(x) attains. That is,

Sa = {b | 0 ≤ b ≤ p− 1, and there is c such that Pa(x) ≡ p (mod p)} .

Show that the expression 1
p−1

∑p−1
a=1 |Sa| is an integer.

Remark. This question is identical to 2023/Open/R2/Q3.

Solution (Evan Chen). Note that 0 ∈ Sa for all integers a ∈ [1, p− 1]. We thus consider
only non-zero elements of Sa. Observe that

|S1 \ {0}|+ |S2 \ {0}|+ |S3 \ {0}|+ · · ·+ |Sp−1 \ {0}|

counts the number of elements in

T =
{
(y, a) ∈ F×

p × F×
p | ∃x ∈ Fp, y = xn + ax

}
.

Because y = xn+ax implies that λny = (λx)n+(λn−1a)(λx) for any λ ∈ F×
p , we have the

equivalence relation
(y, a) ∼ (λny, λn−1a).

Now observe that the pairs (λny, λn−1a) are pairwise distinct:

(λn
1y, λ

n−1
1 a) = (λn

2y, λ
n−1
2 a) =⇒ λn

1 ≡ λn
2 and λn−1

1 ≡ λn−1
2 =⇒ λ1 = λ2.

Since there are p−1 choices of λ, each equivalence class generated by the above equivalence
relation has exactly p− 1 elements, whence |T | is divisible by p− 1.

Remark. The condition n ≥ 2 ensures that we can split λn into λn−1 · λ to form the
equivalence relation.

https://artofproblemsolving.com/community/c6h2876088p28594891
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9.1. Senior Section

9.1.1. Round 1 Solutions

Resources: Review by Way Tan

Question 1 [Ans: C]

Find the value of m such that 2x2 + 3x+m has a minimum value of 9.

9

8
(A) −9

8
(B)

81

8
(C) −81

8
(D)

63

8
(E)

Solution. Completing the square, we obtain 2x2+3x+m = 2(x+ 3
4)

2+(m− 9
8), whence

the minimum value is m− 9
8 . Hence, m = 9 + 9

8 = 81
8 .

Question 2 [Ans: B]

Which of the following is true?

sin(105◦)− cos(105)◦ =

√
3

2
(A)

sin(105◦)− cos(105)◦ =

√
3√
2

(B)

sin(105◦) + cos(105)◦ =
1

2
(C)

sin(105◦) + cos(105)◦ =
1√
3

(D)

None of the above(E)

Solution. Observe that 105◦ = 60◦ + 45◦. Applying the sine and cosine angle addition
formulae gives

sin(105◦) =

√
3

2

(
1

2
+

√
3

2

)
, cos(105◦) =

√
3

2

(
1

2
−

√
3

2

)
.

Hence, sin(105◦)− cos(105)◦ =
√
2
√
3

2 =
√
3√
2
.

https://www.youtube.com/watch?v=Un1ZGsv8p2E
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Question 3 [Ans: B]

If log√2 x = 10− 3 log√2 10, find x.

0.32(A) 0.032(B) 0.0032(C) 0.64(D) 0.064(E)

Solution. Observe that the RHS can be rewritten as

10− 3 log√2 10 = log√2

(√
2
10

103

)
= log√2 0.032.

Thus, x = 0.032.

Question 4 [Ans: A]

If (x− 5)2 + (y − 5)2 = 52, find the smallest value of (x+ 5)2 + (y + 5)2.

225− 100
√
2(A)

225 + 100
√
2(B)

225
√
2(C)

100
√
2(D)

None of the above(E)

Solution. Observe that this is equivalent to finding the square of the shortest distance
between the circles with centres (−5,−5) and (5, 5), and radius 5. The shortest distance
is attained along the line segment joining the centres of the two circles together. The
shortest distance is thus(√

(5 + 5)2 + (5 + 5)2 − 5
)2

= 225− 100
√
2.

Question 5 [Ans: C]

Suppose cos(180◦ + x) =
4

5
, where 90◦ < x < 180◦. Find tan(2x).

24

7
(A)

7

24
(B) −24

7
(C) − 7

24
(D) −24

25
(E)

Solution. Note that cos(180◦ + x) = − cos(x). Hence, cos(x) = −4
5 , whence sinx =√

1− (−4
5)

2 = 3
5 (note that sinx > 0 since x is in the second quadrant). Thus,

tan(2x) =
sin(2x)

cos(2x)
=

2 sinx cosx

cos2 x− sin2 x
= −24

7
.

Question 6 [Ans: 7]

Suppose the roots of x2 + 11x+ 3 = 0 are p and q, and the roots of x2 +Bx−C = 0
are p+ 1 and q + 1. Find C.

Solution 1. Let f(x) = x2 + 11x + 3. Consider the map M : x 7→ x − 1. Clearly, the
roots of Mf(x) = 0 are p+ 1 and q + 1. Hence, x2 +Bx− C = Mf(x). Since −C is the
y-intercept of Mf(x) = 0, we get −C = Mf(0) = f(−1) = −7. Thus, C = 7.



9.1. Senior Section 79

Solution 2. Note that x2 + 11x + 3 = (x − p)(x − q). By Vieta’s formulas, we have
p+ q = −11. Hence,

x2 +Bx− C = (x− p− 1)(x− q − 1) = (x− p)(x− q)− (x− p)− (x− q) + 1

=
(
x2 + 11x+ 3

)
− (2x+ 11) + 1 = x2 + 9x− 7,

whence C = 7.

Question 7 [Ans: 25]

If the smallest possible value of (A − x)(23 − x)(A + x)(23 + x) is −(48)2, find the
value of A if A > 0.

Solution. From the difference of squares identity, we clearly have

(A− x)(23− x)(A+ x)(23 + x) = (x2 − 232)(x2 −A2) = x4 − (232 +A2)x2 + 232A2.

Completing the square, we obtain(
x2 − 232 +A2

2

)2

− 1

4

(
232 +A2

)2
.

Thus,

−(48)2 = −1

4

(
232 −A2

)2
,

whence A = 25. Note that we reject A =
√
433 as we require A to be an integer.

Question 8 [Ans: 3]

Find the smallest positive odd integer greater than 1 that is a factor of

(2023)2023 + (2026)2026 + (2029)2029.

Solution. Observe that 2023 ≡ 2026 ≡ 2029 ≡ 1 (mod 3). Hence,

(2023)2023 + (2026)2026 + (2029)2029 ≡ 0 (mod 3),

whence 3 is a factor of the above object.

Question 9 [Ans: 48]

Find the remainder of 72023 + 92023 when divided by 64.

Solution. Observe that φ(64) = 32. Since 2023 ≡ 7 (mod 32), by Euler’s theorem, one
has

72023 + 92023 ≡ 77 + 97 ≡ 7 · 493 + 9 · 813 (mod 64).

Since 49 ≡ −15 = −(24 − 1) (mod 64) and 81 ≡ 17 = (24 + 1) (mod 64), we obtain

7 · 493 + 9 · 813 ≡ 7(−15) + 9(17) ≡ 48 (mod 64).
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Question 10 [Ans: 49]

Let x, y, z > 1 and let A be a positive number such that logxA = 30, logy A = 50 and
logxy (Az) = 150. Find (logA z)2.

Solution. Observe that A = x30 = y50 and Az = (xy)150. Hence,

z =
(xy)150

A
=

(
A1/30A1/50

)150
A

= A7.

Thus, (logA z)2 = 72 = 49.

Question 11 [Ans: 1024]

Find the largest integer that is less than

310 − 210

10!

(
1

1!9!2
+

1

2!8!22
+

1

3!7!23
+ · · ·+ 1

9!1!29

)−1

.

Here, n! = n · (n− 1) · · · 3 · 2 · 1. For example, 5! = 5 · 4 · 3 · 2 · 1 = 120.

Solution. Observe that

9∑
i=1

10!

i!(10− i)!
· 1

2i
=

9∑
i=1

(
10

i

)(
1

2

)i

=
10∑
i=0

(
10

i

)(
1

2

)i

− 2 =

(
1 +

1

2

)10

− 2,

Hence,

310 − 210

10!

(
1

1!9!2
+

1

2!8!22
+

1

3!7!23
+ · · ·+ 1

9!1!29

)−1

=
(
310 − 210

)( 9∑
i=1

10!

i!(10− i)!
· 1

2i

)−1

=
(
310 − 210

) [(3

2

)10

− 2

]−1

= 210
(
1 +

210

310 − 210

)
.

Clearly, 0 < 210

310−210
< 1. Thus, the largest integer less than the above object is 210 = 1024.

Question 12 [Ans: 84]

Consider the following simultaneous equations:

xy2 + xyz = 91

xyz − y2z = 72

where x, y, and z are positive integers. Find the maximum value of xz.

Solution. Note that we have xyz = 91− xy2 = 72+ y2z, whence 19 = y2(x+ z). By the
AM-GM inequality, we have,

19

2y2
=

x+ z

2
≥

√
xz =⇒ xz ≤

(
19

2y2

)2

.
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To maximize xz, we must minimize y. Testing y = 1, we get{
x+ xz = 91

xz − z = 72

Observe that x+ z = 19, and x is a factor of 91. Testing the only factors of 91 less than
19, which are 1, 7 and 13, we see that x = 7 and z = 12 is the only solution to the above
system. Thus, maxxz = 7 · 12 = 84.

Question 13 [Ans: 2]

Let x be a real number such that

sin4 x+ cos4 x

sin2 x+ cos4 x
=

8

11
.

Assuming sin2 x >
1

2
, find the value of

√
28
(
sin4 x− cos4 x

)
.

Solution. Cross-multiplying and writing cos4 x = (1− sin2 x)2, we obtain a quadratic in
sin2 x:

14 sin4 x− 14 sin2 x+ 3 = 0.

Since sin2 x > 1
2 , we have sin2 x = 7+

√
7

14 . This immediately gives

sin4 x =
4 +

√
7

14
, cos4 x =

4−
√
7

14
.

Thus,
√
28
(
sin4 x− cos4 x

)
=

√
28 · 2

√
7

14
= 2.

Question 14 [Ans: 160]

A sequence a1, a2, . . ., is defined by

a1 = 5, a2 = 7, an+1 =
an + 1

an−1
for n ≥ 2.

Find the value of 100× a2023.

Solution. Repeatedly applying the recurrence relation, we see that

a1 = 5, a2 = 7, a3 =
8

5
, a4 =

13

35
, a5 =

6

7
, a6 = 5, a7 = 7.

We thus see that the sequence has a period of 5. Since 2023 ≡ 3 (mod 5), we have that
a2023 = a3 =

8
5 , whence 100× a2023 = 160.
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Question 15 [Ans: 60]

Let C be a constant such that the equation 5 cosx+6 sinx−C = 0 have two distinct
roots a and b, where 0 < b < a < π. Find the value of 61× sin(a+ b).

Solution. By the R-formula, one has 5 cosx+6 sinx =
√
61 cos

(
x− arctan 6

5

)
. Note that

π
4 < arctan

(
6
5

)
< π

2 . Thus, if C =
√
61 cos

(
arctan 6

5

)+
, the equation 5 cosx+6 sinx−C = 0

will clearly have two solutions: namely b = 0+ and a =
(
2 arctan 6

5

)−
. Hence,

61 sin(a+ b) = 61 sin

(
2 arctan

6

5

)
= 61 · 2 sin

(
arctan

6

5

)
cos

(
arctan

6

5

)
= 60

Question 16 [Ans: 58]

In the diagram below, CE is tangent to the circle at point D, AD is the diameter of
the circle, and ABC, AFE are straight lines. It is given that AB

AC = 16
41 and AF

AE = 49
74 .

Let tan(∠CAE) = m
n , where m, n are positive integers and m

n is a fraction in its
lowest form. Find the sum m+ n.

A

B

F

D EC

A

B

F

D EC

G

H

Solution. Let (ABDF ) be the unit circle. Then AD = 2. Let G and H be the foot of
perpendiculars of B and F onto AD. By similar triangles, we have

AG =
16

41
·AD =

32

41
, AH =

49

74
·AD =

49

37
.

Thus, B has y-coordinate 1 − 32
41 = 9

41 , while F has y-coordinate 1 − 49
37 = −12

37 . Since
B and F are on the unit circle, we have sinα = 9

41 and sinβ = −12
37 , where α and β are
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the arguments of B and F respectively. Using the Pythagorean trigonometric identity, we
obtain

cosα = −

√
1−

(
9

41

)2

=
40

41
, sinβ =

√
1−

(
−12

37

)2

=
35

37
,

whence B(−40
41 ,

9
41) and F (3537 ,−

12
37). Since A(0, 1), we have

tan∠ABG =
BG

AG
=

40/41

32/41
=

5

4
, tan∠FAH =

FH

AH
=

35/37

49/37
=

5

7
.

Hence,

tan∠CAE = tan(∠ABG+ ∠FAH) =
tan∠ABG+ tan∠FAH

1− tan∠ABG tan∠FAH
=

55

3
,

whence m+ n = 55 + 3 = 58.

Question 17 [Ans: 10]

In the diagram below, AB is a diameter of the circle with centre O, MN is a chord of
the circle that intersects AB at P , ∠BON and ∠MOA are acute angles, ∠MPA =
45◦, MP =

√
56, and NP = 12. Find the radius of the circle.

A

B

M

N

O

P

Solution. Let Q ∈ MN such that OQ ⊥ MN . Then MQ = QN , whence PQ =
6 − 1

2

√
56 = 6 −

√
14. Since ∠OPQ = ∠MPA = 45◦ and ∠PQO = 90◦, it follows that

△OQP is a right-angled isosceles triangle, whence OP =
√
2
(
6−

√
14
)
. Using power of

a point on P , we get

√
56 · 12 = (r +OP ) (r −OP ) = r2 −OP 2 =⇒ r2 = OP 2 + 24

√
14 = 100.

Thus, r = 10.
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Question 18 [Ans: 1011]

Let f(x) = cos2
(
πx
2

)
. Find the value of

f

(
1

2023

)
+ f

(
2

2023

)
+ · · ·+ f

(
2021

2023

)
+ f

(
2022

2023

)
.

Solution. Observe that

f(x) + f(1− x) = cos2
(πx

2

)
+ cos2

(π
2
− πx

2

)
= cos2

(πx
2

)
+ sin2

(πx
2

)
= 1.

Thus,

f

(
1

2023

)
+ f

(
2

2023

)
+ · · ·+ f

(
2021

2023

)
+ f

(
2022

2023

)
=

[
f

(
1

2023

)
+ f

(
2022

2023

)]
+

[
f

(
2

2023

)
+ f

(
2021

2023

)]
+ · · ·+

[
f

(
1011

2023

)
+ f

(
1012

2023

)]
= 1011.

Question 19 [Ans: 37]

Find the remainder when 32023 is divided by 215.

Solution. Note that 215 = 5 · 43. Hence, φ(215) = (5− 1)(43− 1) = 168. Since 2023 ≡ 7
(mod 168), by Euler’s theorem, we have

32023 ≡ 37 ≡ 9 · 243 ≡ 9 · 28 ≡ 252 ≡ 37 (mod 215).

Question 20 [Ans: 514]

Find the sum of the prime divisors of 64000027.

Solution. Note that 64000027 = 206 + 33 = 4003 + 33. By the sum of cubes identity, we
have

64000027 = (400 + 3)(4002 + 400 · 3 + 32) = 403 · 158809.

Observe that 403 = 13 ·31, while 158809 = 73 ·463. Hence, the prime divisors of 64000027
are 7, 13, 31 and 463, whence their sum is 514.
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Question 21 [Ans: 14161]

Let △ABC be an equilateral triangle. D, E, F are points on the sides such that

BD : DC = CE : EA = AF : FB = 2 : 1.

Suppose the area of the triangle bounded by AD, BE and CF is 2023. Find the area
of △ABC.

A

B CD

E

F

A

B CD

E

F

G

H

I

2

1

2 1

2

1

Solution. Let the side lengths of △ABC be 3 units. Let G = CF ∩AD, H = AD ∩BE
and I = BE∩CF . By symmetry, △GHI is similar to△ABC and is hence also equilateral.

Using Menalaus’ theorem on △BEC and △ADC, we get

CA

AE

EH

HB

BD

DC
= 1 =⇒ EH

HB
=

1

6
.

Using Menalaus’ theorem on △EIC and △AGC, we have

CA

AE

EH

HI

IG

GC
= 1 =⇒ EH

GC
=

1

3
.

Hence, HI
BE = 3

7 . By the cosine rule, we obtain

BE2 = CE2 +BC2 − 2(CE)(BC) cos∠C =⇒ BE =
√
7.

Thus, HI = 3√
7
, whence AB

HI =
√
7. Thus,

[ABC] =
(√

7
)2

[GHI] = 7 · 2023 = 14161.
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Question 22 [Ans: 47628]

Find the number of possible ways of arranging 10 ones and 11 zeros in a row such
that there are in total 13 strings of ones and zeros. For example,

1110001001110001

consists of 4 strings of ones and 3 strings of zeros.

Solution. Case 1 . Suppose the word starts with a 0. Then the thirteen strings must
alternate as such:

0101010101010,

with seven strings of 0’s and six strings of 1’s. Since there are four 0’s and four 1’s left
to place, by stars-and-bars, we have

(
4+7−1

4

)(
4+6−1

4

)
= 26460 unique combinations in this

case.
Case 2 . Suppose the word starts with 1. Then the thirteen strings must alternate as

such:
1010101010101,

with seven strings of 1’s and six strings of 0’s. Since there are three 1’s and five 0’s left
to place, by stars-and-bars, we have

(
3+7−1

3

)(
5+6−1

5

)
= 21168 unique combinations in this

case.
Hence, there are a total oof 26460+21168 = 47628 possible ways to arrange the 1’s and

0’s.

Question 23 [Ans: 66795]

Suppose there exist numbers a, b, c and a function f such that for any real numbers
x and y,

f(x+ y) + f(x− y) = 2f(x) + 2f(y) + ax+ by + c.

It is given that
f(2) = 3, f(3) = −5, and f(5) = 7.

Find the value of f(123).

Solution. Let P (x, y) be the assertion that f(x+y)+f(x−y) = 2f(x)+2f(y)+ax+by+c.
We first determine the values of a, b and c. From P (x, 0), we obtain

f(x) + f(x) = 2f(x) + 2f(0) + ax+ c =⇒ f(0) = −ax+ c

2
.

Since f(0) is a constant, it follows that a = 0, whence f(0) = − c
2 . From P (3, 2), we have

f(5) + f(1) = 2f(3) + 2f(2) + 2b+ c =⇒ f(1) = −11 + 2b+ c. (1)

From P (2, 1), we have

f(3) + f(1) = 2f(2) + 2f(1) + b+ c =⇒ f(1) = −11− b− c. (2)

Equating (1) and (2) gives
3b+ 2c = 0. (3)

From P (3, 1), we have

f(4) + f(2) = 2f(3) + 2f(1) + b+ c =⇒ f(4) = −35− b− c.
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From P (4, 1), we have

f(5) + f(3) = 2f(4) + 2f(1) + b+ c =⇒ 3b+ 3c = −94. (4)

Solving (3) and (4) simultaneously gives b = 188
3 and c = −94.

Consider P (x, 1). Then

f(x+1)+f(x−1) = 2f(x)+2f(1)+b+c =⇒ [f(x+ 1)− f(x)]− [f(x)− f(x− 1)] =
28

3
.

Let an = f(n), where n ∈ N. We thus see that an− an−1 is in arithmetic progression with
common difference 28

3 . Hence,

an − an−1 = (a3 − a2) + (n− 3)
28

3
=⇒ an = an−1 +

28

3
n− 36.

Thus,

f(123) = a123 = a2 +

123∑
k=3

(
28

3
k − 36

)
= 66795.

Question 24 [Ans: 454]

Let f be a function such that for any non-zero number x,

6xf(x) + 5x2f(1/x) + 10 = 0.

Find the value of f(10).

Solution. Plugging in x = 10 and x = 1
10 into the functional equation, we get the following

system of equations: 
60f(10) + 500f

(
1

10

)
+ 10 = 0

6

10
f

(
1

10

)
+

5

100
f(10) + 10 = 0

Solving, we obtain f(10) = 454.

Question 25 [Ans: 5]

Find the number of triangles such that all the sides are integers and the area equals
the perimeter (in number).

Solution. Let the side lengths of the triangle be a, b and c. Let s = a+b+c
2 be the

semiperimeter of the triangle. From Heron’s formula, we have

a+ b+ c =
√

s(s− a)(s− b)(s− c),

which gives

16(a+ b+ c) = (−a+ b+ c)(a− b+ c)(a+ b− c).

Let x = −a+ b+ c, y = a− b+ c and z = a+ b− c. Then

a =
y + z

2
, b =

z + x

2
, c =

x+ y

2
,
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whence
16(x+ y + z) = xyz.

Clearly, x, y and z are all even. Substituting x = 2X, y = 2Y and z = 2Z, we get

4(X + Y + Z) = XY Z.

Without loss of generality, suppose X ≤ Y ≤ Z. Then XY Z ≤ 12Z, whence XY ≤ 12.
Additionally, X2 ≤ XY ≤ 12, whence X ≤ 3. We are thus left with the following few
cases:
Case 1 . Suppose X = 1. Then

4(1 + Y + Z) = Y Z =⇒ (Y − 4)(Z − 4) = 20.

This gives (X,Y, Z) ∈ {(1, 5, 24), (1, 6, 14), (1, 8, 9)}.
Case 2 . Suppose X = 2. Then

4(2 + Y + Z) = 2Y Z =⇒ (Y − 2)(Z − 2) = 8.

This gives (X,Y, Z) ∈ {(2, 3, 10), (2, 4, 6)}.
Case 3 . Suppose X = 3. Then

4(3 + Y + Z) = 3Y Z =⇒ (3Y − 4)(3Z − 4) = 52.

Note that 3Y −4 ≥ 3X−4 = 8. Since 52 = 1 ·52 = 2 ·26 = 4 ·13, there are no possibilities
for Y . There are hence no solutions in this case.

There are thus a total of 5 integer triangles whose perimeter is equal to its area in
number.
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9.1.2. Round 2 Solutions

Resources: Review by Way Tan, AoPS threads

Question 1

Let ABCD be a square, E be a point on the side DC, F and G be the feet of
the altitudes from B to AE and from A to BE respectively. Suppose DF and CG
intersect at H. Prove that ∠AHB = 90◦.

Solution. We prove that ∠AHB = 90◦ via coordinate bashing. Let A(0, 1), B(1, 1),
C(1, 0), D(0, 0) and E(t, 0), where t ∈ (0, 1). The line AE and BE have equations

AE : y = −1

t
x+ 1, BE : y =

1

1− t
x− 1

1− t
+ 1.

The lines BF and AG thus have equations

BF : y = tx− t+ 1, AG : y = (t− 1)x+ 1.

Solving AE ∩BF and BE ∩AG, we get

F

(
t2

t2 + 1
,
t2 − t+ 1

t2 + 1

)
, G

(
1

t2 − 2t+ 2
,
t2 − t+ 1

t2 − 2t

)
.

The lines DF and CG thus have equations

DF : y =
t2 − t+ 1

t2
x, CG : y =

t2 − t+ 1

−t2 + 2t− 1
x− t2 − t+ 1

−t2 + 2t− 1
.

Solving DF ∩ CG, we obtain

H

(
t2

2t2 − 2t+ 1
,

t2 − t+ 1

2t2 − 2t+ 1

)
.

The gradients of AH and AB are hence

mAH =
−t+ 1

t
, mAB =

−t2 + t

−t2 + 2t− 1
.

Since

mAH ·mAB =
−t+ 1

t
· −t2 + t

−t2 + 2t− 1
=

t3 − 2t2 + t

−t2 + 2t2 − t
= −1,

it follows that AH ⊥ AB, whence ∠AHB = 90◦.

Question 2 [Ans: 3]

Find all positive integers k such that there exists positive integers a, b such that

a2 + 4 =
(
k2 − 4

)
b2.

Solution (Way Tan). Note that a2 = k2b2 − (4b2 + 4), whence a < kb. We can hence
write a = kb − c, where c is a positive integer. Substituting this into the given equation
yields

−2kbc+ c2 + 4 = −4b2 =⇒ k =
c2 + 4b2 + 4

2bc
.

https://www.youtube.com/watch?v=GajnKJe_E34
https://artofproblemsolving.com/community/c3402399_2023_singapore_senior_math_olympiad
https://www.youtube.com/watch?v=QU-lm6N7_fk
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Clearly, c must be even, whence we can write c = 2x. This gives

k =
x2 + b2 + 1

bx
⇐⇒ x2 − kbx+

(
b2 + 1

)
.

Let x be the smallest integer that satisfies the above quadratic, where x ≥ b. Let x′ be
the other solution to the quadratic. By Vieta’s formulas, we have

x+ x′ = kb, x · x′ = b2 + 1.

Observe that x′ = kb − x ∈ Z and x′ = b2+1
x > 0. Thus, to preserve the minimality of x,

we require x′ ≥ x. Hence,
b2 ≤ x2 ≤ x · x′ = b2 + 1.

Thus, x = b. Hence, x′ = b + 1
b . However, since x′ ∈ Z, we can only have b = 1.

Substituting this back into our expression for k, we see that k = 3, which clearly works
when a = b = 1.

Question 3

Let n be a positive integer. There are n islands with n− 1 bridges connecting them
such that one can travel from any island to another. One afternoon, a fire breaks out
in one of the islands. Every morning, it spreads to all neighbouring islands. (Two
islands are neighbours if they are connected by a bridge.) To control the spread,
one bridge is destroyed every night until the fire has nowhere to spread to the next
day. Let X be the minimum possible number of bridges one has to destroy before
the fire stops spreading. Find the maximum possible value of X over all possible
configurations of bridges and islands where the fire starts at.

Solution.

Question 4 [Ans: {(1, 1), (2, 2), (4, 5)}]
Find all positive integers m, n satisfying n! + 2n−1 = 2m.

Solution (Way Tan). Rearranging, we obtain

n! = 2n−1
(
2m−n+1 − 1

)
.

Let ν2(n!) be the exponent of the largest power of 2 that divides n!. Since 2m−n+1 − 1 is
odd, we clearly have ν2(n!) = n− 1. However, by Legendre’s formula, we also have

ν2(n!) =
n− s2(n)

2− 1
= n− s2(n),

where s2(n) is the sum of the digits of n when written in base-2. Hence, s2(n) = 1, whence
n must be of the form 10 · · · 02, i.e. n is a perfect power of 2. We hence write n = 2k,
where k is a non-negative integer.

Now observe that

n! + 2n−1 = 2n−1

(
1 +

n!

2n−1

)
.

We hence require n!
2n−1 to be one less than a power of 2. Define

Sa =
{
1 ≤ i ≤ 2k | ν2(i) = a

}
.

https://www.youtube.com/watch?v=GajnKJe_E34
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That is, Sa groups positive integers less than 2k based on the exponent of the largest power
of 2 that divides them. We now observe that Sa has an alternative definition, namely

Sa =
{
1 ≤ i ≤ 2k | b odd ∧ i = 2ab

}
.

For instance, 12 ∈ S2 because 22 is the largest power of 2 that divides 12, but also because
12 is an odd multiple of 22 (12 = 3 · 22). With this, we see that

n!

2n−1
=

1

2n−1

∏
1≤a≤k

∏
i∈Sa

i =
∏

1≤a≤k−1

∏
b odd

1≤b≤|Sa|

b.

Note that we remove the a = k case in the last line since 2k effectively gets reduced to
1. Now, observe that the product of any four consecutive numbers is congruent to 1. We
thus see that

n!

2n−1
≡ (1) · (1 · 3) ≡ 3 (mod 8),

where the products corresponding to Sa for a ≤ k − 3 disappear since |Sa| = 2k−a−1 is a
multiple of 4 in those cases. We thus have

1 +
n!

2n−1
≡ 4 (mod 8).

However, as previously mentioned, we require this object to be a power of 2. Thus,

1 +
n!

2n−1
= 4 =⇒ n! = 3 · 2n−1.

Since n! does not contain any odd factors larger than 5, we clearly have n < 5.
Case 1 . Suppose n = 1. Then 1! + 21−1 = 2m =⇒ m = 1.
Case 2 . Suppose n = 2. Then 2! + 22−1 = 2m =⇒ m = 2.
Case 3 . Suppose n = 4. Then 4! + 24−1 = 2m =⇒ m = 5.
Thus, the only solutions are

(m,n) ∈ {(1, 1), (2, 2), (4, 5)} .

Question 5

Colour a 20000× 20000 square grid using 2000 different colours with 1 colour in each
square. Two squares are neighbours if they share a vertex. A path is a sequence of
squares so that 2 successive squares are neighbours. Mark k of the squares. For each
unmarked square x, there is exactly 1 marked square y of the same colour so that
x and y are connected by a path of squares of the same colour. For any 2 marked
squares of the same colour, any path connecting them must pass through squares of
all the colours. Find the maximum value of k.

Solution.
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9.2. Open Section

9.2.1. Round 1 Solutions

Resources: Review by Way Tan

Question 1 [Ans: 10]

The graph C with equation y =
ax2 + bx+ c

x+ 2
has an oblique asymptote with equation

y = 4x− 6 and one of the stationary points at x = −4. Find the value of a+ b+ c.

Solution. Since C has an oblique asymptote with equation y = 4x− 6, its equation can
be written as

C : y = 4x− 6 +
d

x+ 2

for some d ∈ R. Multiplying throughout by x+2 and comparing coefficients, we get a = 4,
b = 2 and c = −12+d. Differentiating and using the fact that dy/dx = 0 at x = −4 yields
d = 16. Thus, a+ b+ c = 10.

Question 2 [Ans: 2000]

If x =
1

1
+

1

1 + 2
+

1

1 + 2 + 3
+

1

1 + 2 + 3 + 4
+ · · · + 1

1 + 2 + 3 + · · ·+ 100
, find the

value of ⌊1010x⌋.

Solution. Observe that the denominators are the triangular numbers. It is well known
that the nth triangular number is given by n(n+1)/2. Thus, each term of x is of the form
2/[n(n+1)], which can be written as 2/n−2/(n+1) via partial fraction decomposition. x is
hence a telescoping sum, which evaluates to 2−2/101, whence 1010x = 2020−20 = 2000.

Question 3 [Ans: 7]

The set of all possible values of x for which the sum of the infinite series

1 +
1

6

(
x2 − 5x

)
+

1

62
(
x2 − 5x

)2
+

1

63
(
x2 − 5x

)3
+ · · ·

exists can be expressed as (a, b) ∪ (c, d), where a < b < c < d. Find d− a.

Solution. Observe that the common ratio of the given infinite series is r = (x2 − 5x)/6.
For the sum to exist, |r| < 1, whence −6 < x2 − 5x < 6. Since we are interested in the
extreme values of x, we consider only the equality case. We thus obtain x2 − 5x = −6 or
x2 − 5x = 6, which clearly has solutions x = −1, 2, 3, 6, giving d− a = 6− (−1) = 7.

Question 4 [Ans: 2]

Find the value of ⌊y⌋, where y =

∞∑
k=0

(2k + 1)(0.5)2k.

(Hint: Consider the series expansion of (1− x)−2)

https://www.youtube.com/watch?v=mWaub25ruXE
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Solution. Note that

1

1− x
=

∞∑
k=0

xk.

Differentiating yields

1

(1− x)2
=

∞∑
k=0

kxk−1 = x−1
∞∑
k=0

kxk.

Now observe y can be rewritten in terms of the above series:

y = 2
∞∑
k=0

k(1/4)k +
∞∑
k=0

(1/4)k,

from which it clearly follows that

⌊y⌋ =
⌊

2 · 1/4
(1− 1/4)2

+
1

1− 1/4

⌋
= 2.

Question 5 [Ans: 3]

The solution of the inequality |x− 1|+ |x+ 1| < ax+ b is −1 < x < 2. Find the value
of ⌊a+ b⌋.

Solution. At the extreme ends of the solution interval, equality is achieved. This yields
2 = −a+ b and 4 = 2a+ b upon substituting x = −1 and x = 2 into the two expressions.
Solving, we get a = 2/3 and b = 8/3, whence ⌊a+ b⌋ = 3.

Question 6 [Ans: 32]

The equation x4 − 4x2 + qx− r = 0 has three equal roots. Find the value of

⌊
3q2

r2

⌋
.

Solution. Let α be the root of multiplicity 3 and β be the remaining root. By Vieta’s
formulas, we have the following system of equations:

−r = α3β

−q = α3 + 3α2β

−4 = 3α2 + 3αβ

0 = 3α+ β

From the third and fourth equations, we have αβ = −2. From the second and third
equations, we have −4α+ q = 2α3. However, q = −α3 − 3α(αβ) = −α3 + 6α. Combining
equations gives 3α3 − 2α = 0, whence α =

√
2/3, since α is clearly non-zero. Thus,⌊

3q2

r2

⌋
=

⌊
3(−α3 + 6α)2

(−2α2)2

⌋
=

⌊
3(α6 − 12α4 + 36α2)

4α4

⌋
=

⌊
3((2/3)3 − 12(2/3)2 + 36(2/3))

4(2/3)2

⌋
= 32
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Question 7 [Ans: 8]

The parabolas y = x2 − 16x + 50 and x = y2 intersect at 4 distinct points which lie
on a circle centred at (a, b). Find |a− b|.

Solution. From the first equation, we have x2 − 17x + x − y = −50. By the second
equation, this is equivalent to x2− 17x+ y2− y = −50. Completing the square, we obtain(

x− 17

2

)2

+

(
y − 1

2

)2

= −50 +

(
17

2

)2

+

(
1

2

)2

.

It is thus clear that a = 17/2 and b = 1/2, giving |a− b| = 8.

Question 8 [Ans: 33]

In the 3-dimensional Euclidean space with origin O and three mutually perpendicular
x-, y- and z-axes, two planes x + y + 3z = 4 and 2x − z = 6 intersect at the line

r×

−1
a
b

 =

−2
c
d

. Find the value of |a+ b+ c+ d|.

Solution. Solving the Cartesian equations of the two planes simultaneously, we get

r =
1

7

22− λ
7λ

2− 2λ

 ,

where λ ∈ R. Taking the cross product yields

1

7

 −2a+ λ(2a+ 7b)
−2− 22b+ λ(2 + b)

22a+ λ(7− a)

 =

−2
c
d


Since the above equation must hold for all real λ, we immediately get a = 7 and b = −2.
It quickly follows by equating the ĵ and k̂ components of both vectors that c = 6 and
d = 22, giving |a+ b+ c+ d| = 33.

Question 9 [Ans: 200]

Let x, y, z be real numbers with 3x + 4y + 5z = 100. Find the minimum value of
x2 + y2 + z2.

Solution. Observe that 3x+4y+5z = 100 describes a plane π in 3-dimensional Euclidean
space with vector equation

π : r ·

3
4
5

 = 100.

Observe also that min(x2 + y2 + z2) is the square of the perpendicular distance between
the origin and π. Applying the standard formula for perpendicular distance between a
plane and a point, one gets

min(x2 + y2 + z2) =

(
100√

32 + 42 + 52

)2

= 200.
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Question 10 [Ans: 2]

Find the area of the region represented by the equation ⌊x⌋ + ⌊y⌋ = 1 in the region
0 ≤ x < 2.
(Note: If you think that there is no area defined by the graph, enter “0”; if you think
that the area is infinite, enter “9999”.)

Solution. When x ∈ [0, 1), we have ⌊x⌋ = 0. Thus, ⌊y⌋ = 1, giving y ∈ [1, 2). This is
a square of area 1. Similarly, when x ∈ [1, 2), we have ⌊x⌋ = 1. Thus, ⌊y⌋ = 0, giving
y ∈ [0, 1). This is another square of area 1. Hence, the total area of the region is 2.

Question 11 [Ans: 1011]

Let ABC be a triangle satisfying the following conditions that ∠A+∠C = 2∠B, and
1

cosA
+

1

cosC
=

−
√
2

cosB
. Determine the value of

2022 cos
(
A−C
2

)
√
2

.

Solution 1. Note that ∠A+∠B+∠C = 180◦, whence ∠B = 60◦. Clearing denominators
in the given equation, we have

cosA+ cosB = −2
√
2 cosA cosC.

Without loss of generality, let ∠A = 60◦ + θ and ∠C = 60◦ − θ. We now aim to find
cos
(
A−C
2

)
= cos θ. We have

cos(60◦ + θ) + cos(60◦ − θ) = −2
√
2 cos(60◦ + θ) cos(60◦ − θ).

Expanding using cosine identities yields

4
√
2 cos2 θ + 2 cos θ − 3

√
2 = 0,

which has the unique solution cos θ = 1/
√
2 (keeping in mind |cos θ| ≤ 1). The desired

expression thus evaluates to

2022 cos
(
A−C
2

)
√
2

=
2022/

√
2√

2
= 1011.

Solution 2 (Abusing integers). In order for
2022 cos(A−C

2 )√
2

to be an integer, we need

cos
(
A−C
2

)
to be of the form k

√
2, where k is a positive rational such that 2022k is an

integer. It is exceedingly likely that
2022 cos(A−C

2 )√
2

=
√
2
2 , as it is a special value of the

cosine function. The required answer is thus 2022·
√
2/2√

2
= 1011.

Question 12 [Ans: 2020]

Find x which satisfies the following equation

x− 2019

1
+

x− 2018

2
+

x− 2017

3
+ · · ·+ x+ 2

2022
+

x+ 3

2023
= 2023.

Solution. By inspection, 2020 is clearly a solution, as there are 2023 terms and each term
evaluates to 1, giving a sum of 2023 as desired.
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Question 13 [Ans: 229]

Assume that x is a positive number such that x− 1
x = 3 and

x10 + x8 + x2 + 1

x10 + x6 + x4 + 1
=

m

n
,

where m and n are positive integers without common factors larger than 1. Determine
the value of m+ n.

Solution. Observe that

x10 + x8 + x2 + 1

x10 + x6 + x4 + 1
=

x8 + 1

x4 + 1
·x

2 + 1

x6 + 1
=

x4
(
x4 + x−4

)
x2 (x2 + x−2)

·
x
(
x+ x−1

)
x3 (x3 + x−3)

=
x4 + x−4

x2 + x−2
· x+ x−1

x3 + x−3

Repeatedly squaring x− x−1 = 3 yields

x2 + x−2 = 32 + 2 = 11,

x4 + x−4 = 112 − 2 = 119.

Now observe that

x3 + x−3 =
(
x+ x−1

) (
x2 + x−2 − 1

)
= 10

(
x+ x−1

)
.

The given expression thus evaluates to

x4 + x−4

x2 + x−2
· x+ x−1

x3 + x−3
=

119

11
· 1

10
=

119

110
,

whence m+ n = 119 + 110 = 229.

Question 14 [Ans: 24]

Consider the set of all possible pairs (x, y) of real numbers that satisfy (x−4)2+(y−
3)2 = 9. If S is the largest possible value of

y

x
, find the value of ⌊7S⌋.

Solution. Observe that (x − 4)2 + (y − 3)2 = 9 describes a circle with centre (4, 3) and
radius 3. Also observe that y/x is the gradient of the line passing through the origin
and some point on the circle with coordinates (x, y). The largest possible value of y/x
hence occurs when the line in question is tangent to the circle. Consider the simultaneous
equations (x−4)2+(y−3)2 = 9 and S = y/x. This combines to give (x−4)2+(Sx−3)2 = 9.
Expanding, we have (1+S2)x2− (8+6S)x+16 = 0. Since the line is tangent to the circle,
there is only one solution. The discriminant of the above quadratic is hence 0, giving
(8 + 6S)2 − 4(1 + S2)(16) = 0. Solving, we get S = 24/7, whence ⌊7S⌋ = 24.

Question 15 [Ans: 46]

Let x, y be positive integers with 16x2 + y2 + 7xy ≤ 2023. Find the maximum value
of 4x+ y.

Solution. Let k be the maximum value of 4x + y without the restriction of x and y
being integers. Then the line 4x + y = k is tangent to the elliptical region given by
16x2 + y2 + 7xy ≤ 2023. Equating the two gives

16x2 + (k − 4x)2 + 7x(k − 4x) = 2023 =⇒ 4x2 − kx+ (k2 − 2023) = 0.

Setting the discriminant to 0, we get k2 − 16(k2 − 2023) = 0, whence k2 = 2023 · 16/15.
Reinstating the integral restriction on x and y, we get k = 46, which can indeed be
achieved (e.g. x = 5, y = 26).
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Question 16 [Ans: 25]

Let x be the largest real number such that√
x− 1

x
+

√
1− 1

x
= x.

Determine the value of (2x− 1)4.

Solution. Clearing denominators, we have√
x2 − 1 +

√
x− 1 = x3/2 =⇒

√
x2 − 1 = x3/2 −

√
x− 1.

Squaring both sides yields

x2 − 1 = x3 + x− 1− 2x3/2
√
x− 1 =⇒ 2x1/2

√
x− 1 = x2 − x+ 1.

Squaring once again yields

4x(x− 1) = x4 − 2x3 + 3x2 − 2x+ 1 =⇒ x4 − 2x3 − x2 + 2x+ 1 = 0.

Now note that

(2x− 1)4 = 16x4 − 32x3 + 24x2 − 8x+ 1

= 16(x4 − 2x3 − x2 + 2x+ 1) + 10(4x2 − 4x+ 1) + 25

= 10(2x− 1)2 − 25

whence (2x− 1)2 = 5 and thus (2x− 1)4 = 25.

Question 17 [Ans: 64]

Two positive integers m and n differ by 10 and the digits in the decimal representation
of mn are all equal to 9. Determine m+ n.

Solution. By inspection, 999 = 27 · 37. Thus, m+ n = 27 + 37 = 64.

Question 18 [Ans: 1]

Let {an} be a sequence of positive numbers, and let Sn = a1+ a2+ a3+ · · ·+ an. For

any positive integer n, let bn =
1

2

(
an+1

an
+

an
an+1

)
. Given that

an + 2

2
=

√
2Sn holds

for all positive integers n, determine the limit limn→∞(b1 + b2 + · · ·+ bn − n).

Solution. We claim that an = 4n− 2. When n = 1, S1 = a1, whence it is clear that

a1 + 2

2
=

√
2a1 =⇒ a1 = 2,

satisfying our claim. Now assume that ak = 4k − 2 for some k ∈ N. We have

Sk =
k∑

n=1

(4n− 2) = 2k2.

From the given condition,

ak+1 + 2

2
=
√

2 (2k2 + ak+1) =⇒ a2k+1 − 4ak+1 + 4− 16k2 = 0,
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which has the unique positive solution ak+1 = 4k + 2 = 4(k + 1) − 2. This closes the
induction.
bn thus simplifies to

bn =
1

2

(
an+1

an
+

an
an+1

)
=

1

2
·
a2n+1 + a2n
anan+1

=
4n2 + 1

4n2 − 1
= 1 +

1

2n− 1
− 1

2n+ 1
.

The limit in question hence telescopes to 1.

Question 19 [Ans: 20]

Let ABC be a triangle with AB = c, AC = b and BC = a, and satisfies the

conditions tanC =
sinA+ sinB

cosA+ cosB
, sin(B −A) = cosC and that the area of triangle

ABC = 3 +
√
3. Determine the value of a2 + c2.

Solution. By the sum-to-product formulae, we have

tanC =
2 sin

(
A+B
2

)
cos
(
A−B
2

)
2 cos

(
A+B
2

)
cos
(
A−B
2

) = tan
(
A+B
2

)
.

Hence, C = (A + B)/2, implying that ∠C = 60◦. Let ∠A = 60◦ − θ and ∠B = 60◦ + θ.
Then sin 2θ = cosC = 1/2, whence θ = 15◦, thus ∠A = 45◦ and ∠C = 75◦. We now
express the area of the triangle in terms of the side lengths:

3 +
√
3 =

1

2
ab sinC =

1

2
bc sinA =

1

2
ac sinB.

It quickly follows that

a

c
=

√
2

3
, ac =

2(3 +
√
3)

sinB
.

This immediately gives us a2 and c2 in terms of sinB:

a2 =

√
2

3
· 2(3 +

√
3)

sinB
, c2 =

√
3

2
· 2(3 +

√
3)

sinB
.

Since sinB = sin(30◦ + 45◦) =
√
2(1 +

√
3)/4, we finally get

a2 + c2 =
2(3 +

√
3)√

2(1 +
√
3)/4

(√
2

3
+

√
3

2

)
= 20.

Question 20

[VOID] Let g : R → R, g(0) = 4 and that

g(xy + 1) = g(x)g(y)− g(y)− x+ 2023.

Find the value of g(2023).

Solution. We show that there are two different expressions for g(x) that result in different
answers to g(2023).
Firstly, let x = 0. Then

g(1) = g(0)g(y)− g(y)− 0 + 2023 =⇒ g(y) =
g(1)− 2023

3
,
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which is constant. Letting y = 1, we get g(1) = −2023/2, whence g(2023) = −2023/2.

Secondly, let y = 0. Then

g(1) = g(x)g(0)− g(0)− x+ 2023 =⇒ g(x) =
g(1) + x− 2019

4
.

Letting x = 1, we get g(1) = −2018/3, whence g(2023) = −1003/6, a contradiction.

Hence, g does not exist, and the question is void.

Question 21 [Ans: 7]

In the triangle ABC, D is the midpoint of AC, E is the midpoint of BD, and the
lines BA and CE are tangent to the circumcircle of the triangle ADE at A and E
respectively. Suppose the circumradius of the triangle AED is (647 )

1/4. Find the area
of the triangle ABC.

A

B C

D

E

x

x
y

y

Solution. Let AD = DC = x and BE = ED = y. By the power of a point theorem, we
have BA2 = BE ·BD and CE2 = CD · CA, whence

BA =
√
2y, CE =

√
2x.

By the alternate segment theorem, we have ∠CED = ∠EAD and ∠BAE = ∠BDA.
Hence, △BAE is similar to △BDA, and △CED is similar to △CAE. Thus,

BE

BA
=

AE

DE
=⇒ AE =

x√
2
,

CD

CE
=

ED

AE
=⇒ AE =

√
2y.

It follows that x = 2y. Using the cosine rule on △ADE, we obtain cos∠ADE = 3/4,
whence sin∠ADE =

√
7/4. By the extended sine rule,

√
2y√
7/4

= 2

(
64

7

)1/4

=⇒ y = 71/4.

We finally get

[ABC] = 2[ABD] = 4[AED] = 4

(
1

2
· 2y · y · sin∠ADE

)
= 7.
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Question 22 [Ans: 48]

ABCD is a parallelogram such that ∠ABC < 90◦ and sin∠ABC = 4
5 . The point K

is on the extension of BC such that DC = DK; the point L is on the extension of
DC such that BC = BL. The bisector of ∠CDK intersects the bisector of ∠LBC at
Q. Suppose the circumradius of the triangle ABD is 25. Find the length of KL.

A

B C

D

K

L

M

N

x

y

Solution. Let x and y be the lengths AD and BC respectively. Let M be the intersection
between the bisector of ∠CDK and BK; let N be the intersection between the bisector
of ∠LBC and DL.

Observe that

[△ABD] =
xy ·BD

4 · 25
=

1

2
xy sin∠ABC =⇒ BD = 40.

Note that cos∠ABC = 3/5 and cos∠BCD = −3/5 (since ∠BCD = 180◦ − ∠ABC).
Using the cosine rule on △BCD, we obtain

x2 + y2 +
6

5
xy = 402.

Since ∠BNC = ∠DMC = 90◦, and ∠BCN = ∠DCM = ∠ABC, by AAA, we have that
△BNC is similar to △DMC, △BNC ≡ △BNL, △BMC ≡ △BMK, and that

BN =
4

5
x, NC =

3

5
x, DM =

4

5
y, MC =

3

5
y.

It also follows that BDMN is cyclic. Applying Ptolemy’s theorem, we have

KL · 40 + xy =

(
x+

6

5
y

)(
y +

6

5
x

)
.

Expanding, we finally have

KL =
1

40
· 6
5

(
x2 + y2 +

6

5
xy

)
= 48.
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Question 23 [Ans: 7]

A group of 200 monkeys is given the task of picking up all 3000 peanuts on the ground.
Determine the maximum number k such that there must be k monkeys picking up
the same number of peanuts. (It is possible that some lazy monkeys may not pick up
any peanuts at all).

Solution. Consider the worst-case scenario, where there are n monkeys picking 0 peanuts,
n monkeys picking 1 peanut, etc. The total number of peanuts picked can be calculated
as

n

(
0 + 1 + 2 + · · ·+

(⌊
200

n

⌋
− 1

))
︸ ︷︷ ︸

n ⌊200/n⌋ monkeys

+

⌊
200

n

⌋
+

(⌊
200

k

⌋
+ 1

)
+ · · ·︸ ︷︷ ︸

remaining monkeys

.

The smallest value of n where the above expression is less than 3000 is 7. Hence, k = 7.

Question 24 [Ans: 7]

A chain of n identical circles C1, C2, . . . , Cn of equal radii and centres on the x-axis

lie inside the ellipse E : x2

2023 + y2

333 = 1 such that C1 is tangent to E internally at

(−
√
2023, 0), Cn is tangent to E internally at (

√
2023, 0), and Ci is tangent to Ci+1

externally for i = 1, . . . , n− 1. Determine the smallest possible value of n.

Solution. The curvature κ of an ellipse x2/a2 + y2/b2 = 1 is given by

κ(θ) =
ab(

a2 sin2 θ + b2 cos2 θ
)3/2 .

Taking a2 = 2023, b2 = 333 and θ = 0, we have that the curvature of E at (
√
2023, 0)

is
√
2023/333. The maximum radius of Cn is thus 333/

√
2023 (since κ = 1/R). It

immediately follows that

minn =

⌈
2
√
2023

2 · 333/
√
2023

⌉
= 7.

Question 25 [Ans: 6]

Let p > 2023 be a prime. Determine the number of positive integers n such that
(n− p)2 + 2023(2023− 2n− 2p) is a perfect square.

Solution. Observe that the given expression is nearly a perfect square. Indeed, it can be
rewritten as k2 = (n− p− 2023)2 − 4 · 2023p. We hence obtain

22 · 7 · 172 · p = (n− p− 2023)2 − k2 = (n− p− 2023− k)(n− p− 2023 + k).

Observe that the two terms on the right have the same parity, thus both must have a
factor of 2. Furthermore, because n − p − 2023 + k > n − p − 2023 − k, it must be that
n− p− 2023 + k has the factor of p (since p > 2023). Since there are 3 remaining factors,
there are hence 3P 2 = 6 possible n.
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9.2.2. Round 2 Solutions

Resources: Review by Glen Lim, AoPS threads

Question 1

In a scalene triangle ABC with centroid G and circumcircle ω centred at O, the
extension of AG meets ω at M ; lines AB and CM intersect at P ; and lines AC and
BM intersect at Q. Suppose the circumcentre S of the triangle APQ lies on ω and
A, O, S are collinear. Prove that ∠AGO = 90◦.

A

B

CP

Q

M

G
O

S

ω

Solution. Consider the homothety H centred at A that sends O to S (i.e. H has a scale
factor of AS

AO = 2). Since homotheties preserve circumcircles and circumcentres, it follows
that H sends △ABC to △APQ. This means that B and C are the midpoints of AP and
AQ respectively, whence M is the centroid of △APQ. Because AS is a diameter of ω,
we have ∠AMS = 90◦. However, because homotheties preserve centroids and angles, we
immediately get ∠AGO = ∠AMS = 90◦ as desired.

Question 2 [Ans: Yes]

A grid of cells is tiled with dominoes such that every cell is covered by exactly one
domino. A subset S of dominoes is chosen. Is it true that at least one of the following
two statements is false?

1. There are 2022 more horizontal dominoes than vertical dominoes in S.

2. The cells covered by the dominoes in S can be tiled completely and exactly by
L-shaped tetrominoes.

Solution (bxiao31415). Let (i, j) be coloured in the following manner:

• 0 if both i and j are even;

• 1 if i is odd and j is even;

• 2 if i is even and j is odd; and

https://simoxmenblog.blogspot.com/2023/09/smo-open-2023-speedrun.html
https://artofproblemsolving.com/community/c3378422_2023_sinapore_mo_open
https://artofproblemsolving.com/community/c6h3102143p28243581


9.2. Open Section 103

• 3 if both i and j are odd.

As an example, the following 4× 4 grid shows the colouring scheme:

0 1 0 1

3 2 3 2

0 1 0 1

3 2 3 2

Seeking a contradiction, suppose both (1) and (2) are true. Observe that each horizontal
domino covers squares whose sum is 1 mod 4, while each vertical domino covers squares
whose sum is −1 mod 4. Hence, the total sum covered by S is 2022 ≡ 2 mod 4. However,
each L-shape tetromino (which contains one horizontal and one vertical domino) covers
squares who sum is 0 mod 4, a contradiction. Thus, at least one of the statements is false.

Question 3

Let n ≥ 2 be a positive integer. For a positive integer a, let Qa(x) = xn + ax. Let
p be a prime and let Sa = {b | 0 ≤ b ≤ p− 1,∃c ∈ Z, Qa(c) ≡ b (mod p)}. Show that
1

p−1

∑p−1
a=1 |Sa| is an integer.

Remark. This question is identical to 2022/Open/R2/Q5.

Question 4

Find all functions f : Z → Z, such that

f(x+ y)((f(x)− f(y))2 + f(xy)) = f(x3) + f(y3)

for all integers x, y.

Solution (Ld minh4354). Let P (x, y) be the assertion that f(x + y)((f(x) − f(y))2 +
f(xy)) = f(x3) + f(y3). From P (x, x), one has

f(2x)f(x2) = 2f(x3).

P (0, 0) hence gives us f(0)2 = 2f(0), whence f(0) = 0 or f(0) = 2. This gives us two
main cases:

Case 1 . Suppose f(0) = 0. Then P (x, 0) gives us

P (x, 0) : f(x)3 = f(x3).

From P (1, 1), we hence have

P (1, 1) : f(2)f(1) = 0.

Thus, f(1) = 0 or f(2) = 0.

Subcase 1A. Suppose f(1) = 0. P (−1, 1) clearly gives f(−1) = 0. We now prove
inductively that f(x) ≡ 0. The base case x = 0 has already been assumed. Now suppose
that f(k) = 0 for some k ∈ Z. Applying this inductive hypothesis to P (k, 1) and P (−k, 1),
we immediately get f(k + 1) = f(k − 1) = 0. This closes the induction. One solution is
hence f(x) ≡ 0.

https://artofproblemsolving.com/community/c6h3102144p28049134
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Subcase 1B . Suppose f(2) = 2. Then we have the following:

P (x, 0) : f(x)3 = f(x3)

P (1, 0) : f(1) ∈ {−1, 0, 1}
P (−1, 0) : f(−1) ∈ {−1, 0, 1}

If f(1) = 0, then by Subcase 1A, we would have f(x) ≡ 0, contradicting f(2) = 2. If
f(−1) = 0, then by P (−1,−1), we would have f(−2)f(1) = 0. However, if f(−2) = 0,
then by P (−2, 2), one gets 0 = 8, a contradiction. Thus, f(1), f(−1) ̸= 0.
From P (1,−1), we have f(1) + f(−1) = 0. Suppose f(1) = −1. By P (2, 1), we have

f(3) = 8
11 /∈ Z, a contradiction. Thus, f(1) = 1 and f(−1) = −1. We now show that

f(x) ≡ x via induction. The base case has already been settled (namely x = {−1, 0, 1}).
Now suppose that f(x) = x on [−k, k] for some k ∈ Z. From P (k, 1) and P (−k, 1),
applying the inductive hypothesis yields

P (k, 1) : f(k + 1)(k2 − k + 1) = k3 + 1 =⇒ f(k + 1) = k + 1

P (−k, 1) : f(−k − 1)(k2 − k + 1) = −k3 − 1 =⇒ f(−k − 1) = −k − 1

This closes the induction. We hence have a second solution, namely f(x) ≡ x.
Case 2 . Suppose f(0) = 2. From P (x, 0) one gets

P (x, 0) : f(x)(f(x)2 − 4f(x) + 6) = f(x3) + 2. (1)

Taking P (1, 0) hence gives us a cubic in f(1):

P (1, 0) : f(1)3 − 4f(1)2 + 5f(1)− 2 = 0.

We thus have f(1) = 1 or f(1) = 2.
Subcase 2A. Suppose f(1) = 1. Taking P (−1, 1), one has

P (−1, 1) : 2f(−1)2 − 3f(−1) + 1 = 0,

whence f(−1) = 1. Note that f(−1) is an integer and hence cannot be 1
2 . We now show

via induction that f(x) = 1 when x is odd, and f(x) = 2 when x is even. The base cases
(namely x ∈ {−1, 0, 1}) have already been settled. Let k be some integer. Suppose that
f(k) = 1 when k is odd and f(k) = 2 when k is even. From P (k, 1), we have

P (k, 1) : f(k + 1) =
f(k3) + 1

f(k2)− f(k) + 1
,

from which it follows that f(k + 1) = 2 when k + 1 is even, and f(k + 1) = 1 when k + 1
is odd. Also, from P (k,−1), we have

P (k,−1) : f(k − 1) =
f(k3) + 1

f(k)2 − 2f(k) + f(−k) + 1
,

from which it follows that f(k − 1) = 2 when k − 1 is even, and f(k − 1) = 1 when k − 1
is odd. This closes the induction. We hence obtain a third solution, namely

f(x) ≡

{
1, x odd

2, x even
.

Subcase 2B . Suppose f(1) = 2. From P (1,−1), we obtain a quadratic in f(−1):

P (1,−1) : 2f(−1)2 − 7f(−1) + 6 = 0,
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which has solutions 2 and 3
2 . Thus, f(−1) = 2 (since f(−1) ∈ Z). We now show that

f(x) ≡ 2 via induction. The base cases (x ∈ {−1, 0, 1}) have already been settled. Now
suppose f(k) = 2 for some k ∈ Z. From P (k, 1) and (1), we get

P (k, 1) : f(k + 1) =
f(k)(f(k)2 − 4f(k) + 6)

f(k)2 − 3f(k) + 4
= 2.

Likewise, P (k,−1) gives

P (k,−1) : f(k − 1) =
f(k)(f(k)2 − 4f(k) + 6)

f(k)2 − 3f(k) + 4
= 2.

This closes the induction. We hence get our fourth and final solution: f(x) ≡ 2.
To conclude, the following four functions are the only solutions to the given functional

equation:

f(x) ≡ 0, f(x) ≡ 2, f(x) ≡ x, f(x) ≡

{
1, x odd

2, x even

Question 5 [Ans: x ∈ (0, 120]]

Determine all real numbers x between 0 and 180 such that it is possible to partition
an equilateral triangle into finitely many triangles, each of which has an angle of x◦.

Solution (oneplusone). We claim that x ∈ (0, 120]. We split our proof into 3 cases:
Case 1 . Suppose x > 120. Let there be a total of n “small triangles” in the partition

of the original equilateral triangle. Let A be the set of vertices of the original equilateral
triangle. Let B be the set of vertices that lie on an edge. Let C be the remaining vertices.
Now observe that angle sum of all n “small triangles” must be 180n◦. Since each vertex
in A, B and C contributes 60◦, 180◦ and 360◦ respectively, we have the equality

60 · 3 + 180 |B|+ 360 |C| = 180n =⇒ |B|+ 2 |C| = n− 1. (1)

Now observe that the vertices in A cannot have an angle x◦. On the hand, each vertex
in B and C can have at least 1 and 2 such angles respectively. Thus, the total number of
x◦ angles is at least n (by our assumption) and at most |B|+ 2 |C|. With (1), we get the
contradiction n ≤ n− 1. Thus, x > 120 is impossible.
Case 2 . Suppose x = 120◦. This is clearly achievable; Let O be the centre of the

equilateral triangle △ABC. Then △AOB, △BOC and △COA all contain a 120◦ angle.
Case 3 . Suppose x < 120◦. For R > 0, let an R-trapezoid be a trapezoid similar to the

trapezium ABCD, where ∠A = ∠D = 60◦ and ∠B = ∠C = 120◦, with AB = CD = 1
and BC = R. We call a shape constructible if it can be partitioned into triangles, each
of which has an angle x◦. Firstly, observe that for R sufficiently large, the R-trapezoid is
constructible. This is shown in the figure below:

AB

C D

x◦

arbitrarily long

It thus follows that the 1-trapezoid is constructible: simply slice it horizontally into suf-
ficiently thin R-trapezoids (for sufficiently large R). Since an equilateral triangle can be
partitioned into 3 1-trapezoids, it must also be constructible.

Thus, x ∈ (0, 120].

https://artofproblemsolving.com/community/c6h3102149p28159955
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10.1. Junior Section

10.1.1. Round 1 Solutions

Resources: Review by Way Tan

Question 1 [Ans: D]

If x2 + 4x+ 16 = 0, what is the value of x3?

4(A) 8(B) 16(C) 64(D) 128(E)

Solution. By the quadratic formula, we have

x = −2 + 2
√
3i = 4

(
−1

2
±

√
3

2
i

)
= 4e±

2π
3
i.

Thus, x3 = 43e±2πi = 64.

Question 2 [Ans: D]

Let a be a real number that satisfies −1 < a < 0. Which of the following is true?

πa < 1
π < ( 1π )

a(A)

πa < ( 1π )
a < 1

π(B)

1
π < ( 1π )

a < πa(C)

1
π < πa < ( 1π )

a(D)

( 1π )
a < πa < 1

π(E)

Solution. We are tasked with ordering π−1, πa and π−a. This is equivalent to ordering
−1, a and −a. Since −1 < a < 0, we clearly have −1 < a < −a. Thus, π−1 < πa < π−a.

Question 3 [Ans: B]

How many non-congruent triangles are there whose sides have integer lengths and the
longest side has length 10 units?

25(A) 30(B) 35(C) 40(D) 45(E)

Solution. Let a and b be the lengths of the legs of the triangle. By the triangle inequality,
we must have a + b > 10. Without loss of generality, let 1 ≤ a ≤ b ≤ 10. Let a be
fixed. Then b ∈ {max{11− a, a}, . . . , 10}. This gives min{a, 11− a} possible values of b.
Summing from a = 1 to a = 10, we have 30 possible pairs of side lengths and hence 30
possible triangles, which are guaranteed to be non-congruent by construction.

https://www.youtube.com/watch?v=nSo2yddsjrk
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Question 4 [Ans: C]

In the diagram below, the points B and E lie on AF and DF respectively, and AE
and BD intersect at C. If AB = AC, BD = BF and EA = EF , find ∠BAC.

A

B

C

DEF

30◦(A) 33◦(B) 36◦(C) 38◦(D) 40◦(E)

Solution. Let ∠BAC = α. Since △FEA is isosceles, we have ∠BFD = α. Since △FBD
is isosceles, we also have ∠BDF . Thus, ∠FBD = 180◦− 2α. Meanwhile, because △BAC
is isosceles, ∠ABC = 90◦ − 1

2α. Hence,

∠FBD + ∠ABD = 180◦ =⇒ (180◦ − 2α) +

(
90◦ − 1

2
α

)
= 180◦ =⇒ α = 36◦.

Question 5 [Ans: C]

Let x, y and z be real numbers such that x ̸= 0, y − z ̸= 0 and z + x ̸= 0. If
2

x
=

4

y − z
=

5

z + x
, find the value of

7x− y

y + 2z
.

11

17
(A) −11

17
(B)

7

13
(C) − 7

13
(D) 1(E)

Solution. Taking reciprocals, we have

x

2
=

y − z

4
=

z + x

5
=⇒ y =

7

2
x, z =

3

2
x.

Hence,
7x− y

y + 2x
=

7x− 7
2x

7
2x+ 2(32x)

=
7

13
.

Question 6 [Ans: 76]

Let N be a 2-digit whole number. When 2692 is divided by N , the remainder is 13,
and when 2978 is divided by N , the remainder is 14. Find the sum of all the possible
values of N .

Solution. We are given that 2692 ≡ 13 (mod N) and 2978 ≡ 14 (mod N). Thus,

2679 ≡ 2964 ≡ 0 (mod N) =⇒ 285 = 2964− 2679 ≡ 0 (mod N).

Since 285 = 3 · 5 · 19, the only two-digit factors of 285 are 15, 19, 57, 95. However, N
clearly cannot end in 5. Thus, N can only be 19 or 57. Testing these two values, we see
that they indeed satisfy the given conditions. Thus, the sum of all the possible values of
N is 19 + 57 = 76.
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Question 7 [Ans: 89]

If x is a positive integer such that 2x + 289 = 51210, find the value of x.

Solution. Note that 512 = 29. We hence have 2x = 290 − 289 = 289, whence x = 89.

Question 8 [Ans: 17]

The diagram shows a right-angled triangle ABC. The sides AC and AB are in
the ratio 3 : 5. The point D lies on BC such that AD is perpendicular to BC.
Furthermore, DB is 8 cm longer than CD. What is the length of BC in cm?

A B

C

D

Solution. Let AC = 3x and CD = y. Then AB = 5x and DB = y+8. By the geometric
mean theorem, we have

BD ·DC = AD2 =⇒ y(y + 8) = AD2. (1)

Applying Pythagoras’ theorem to △ABC and △ADC, we see that

AB2 +AC2 = BC2 =⇒ 34x2 = (2y + 8)2

and

AD2 +DC2 = AC2 =⇒ AD2 = 9x2 − y =
9

34
(2y + 8)2 − y2. (2)

Equating (1) and (2), we see that

y(y + 8) =
9

34
(2y + 8)2 − y2,

which gives y = 9
2 , whence BC = 2y + 8 = 17.

Question 9 [Ans: 1825]

Let n be a positive integer. Suppose that a1, a2, a3, . . . is a sequence of numbers
defined by

a1 =
√

(n+ 3)(n− 1) + 4, ak =
√
(n+ 2k + 1)ak−1 + 4 for k ≥ 2.

If a100 = 2024, find the value of n.

Solution. We claim that ak = n+2k−1 for k ≥ 2. Consider the base case k = 1: Observe
(n + 3)(n − 1) + 4 = [(n+ 1) + 2] [(n+ 1)− 2] + 4 = (n + 1)2. Hence, a1 = n + 1. Now
suppose that am = n+ 2m− 1 for some positive integer m. Observe that

am+1 =
√

(n+ 2(m+ 1) + 1)am + 4 =
√
(n+ 2m+ 1 + 2)(n+ 2m+ 1− 2) + 4

=
√
(n+ 2m+ 1)2 − 22 + 4 =

√
(n+ 2m+ 1)2 = n+ 2m+ 1 = n+ 2(m+ 1)− 1.

This closes the induction. We hence see that a100 = n+200−1 = 2024, whence n = 1825.
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Question 10 [Ans: 10]

Let N be the smallest positive integer such that the sum of its digits is 2024. What
is the sum of the digits of the number N + 2.

Solution. Since N is minimal, it must be of the form a9 · · · 9, where a is an integer
between 1 and 9. This gives a + 9 + · · · + 9 = 2024. Reducing modulo 9 yields a = 8.
Thus, N = 89 · · · 9, whence N + 2 = 90 · · · 1. The digit sum of N + 2 is hence 9 + 1 = 10.

Question 11 [Ans: 19]

If a and b are non-zero real numbers such that
1

b
−1

a
= 4, find the value of

3a+ 7ab− 3b

a− 3ab− b
.

Solution. Multiplying through by ab yields

a− b = 4ab =⇒ ab =
a− b

4
.

Thus,

3a+ 7ab− 3b

a− 3ab− b
=

(3a− 9ab− 3b) + 16ab

a− 3ab− b
= 3 +

4(a− b)

a− 3(a−b
4 )− b

= 3 +
4

1− 3
4

= 19.

Question 12 [Ans: 5]

If the 5-digit whole number 11ab6 is a perfect square, find the value of a+ b.

Solution. Let 11ab6 = m2. Then 10000 < m2 < 12000, whence 100 < m < 109. Also
note that the ones digit of m is either 4 or 6. We hence have m = 104 or m = 106. Testing
both cases, we see that 1042 = 10816 while 1062 = 11236, whence a+ b = 2 + 3 = 5.

Question 13 [Ans: 9920]

Let N = 1× 2 + 2× 3 + 3× 4 + · · ·+ 30× 31. Find the value of N .

Solution. Clearly,

N =
30∑
i=1

i(i+ 1) =
30∑
i=1

(
i2 + i

)
.

Using the standard formulae for power sums, we end up with

N =
30(30 + 1)(2 · 30 + 1)

6
+

30(30 + 1)

2
= 9920.
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Question 14 [Ans: 23]

Let x and y be non-zero real numbers where x ̸= y. If x2+
√
3y = 4 and y2+

√
3x = 4,

find the value of
(y
x

)2
+

(
x

y

)2

.

Solution. Let x 7→
√
3x and y 7→

√
3y, which obviously do not affect the value of ( yx)

2 +
(xy )

2. The given equations simplify to 3x2 + 3y = 4 and 3y2 + 3x = 4.

Summing the two equations together and completing the square, we have(
x+

1

2

)2

+

(
y +

1

2

)2

=
19

6
.

Observe that this describes a circle symmetric about the line y = x. Subtracting the two
equations and completing the square, we have(

x− 1

2

)2

=

(
y − 1

2

)2

.

Combining this with the symmetry of (x, y) about y = x, it follows that (x, y) lies on the
line y = −x+ 1. Hence,

−x+ 1 =
4− 3x2

3
=⇒ x, y =

3±
√
21

6
,

where x and y take different branches of the square root. Thus,

(y
x

)2
+

(
x

y

)2

=
x4 + y4

(xy)2
=

(
3 +

√
21
)4

+
(
3−

√
21
)4[(

3 +
√
21
) (

3−
√
21
)]2 = 23.

Question 15 [Ans: 72]

Find the sum of all 2-digit even numbers N with the following property: N is a
multiple of the product of its two digits.

Solution. Let N = 10a + b, where a and b are integers such that 1 ≤ a ≤ 9 and
b ∈ {0, 2, 4, 6, 8}. The given condition translates to 10a + b = kab, where k is a positive
integer. Let b = 2b′, where b′ ∈ {0, 1, . . . , 4}. Then (kb′ − 5)a = b′.

Case 1 . Suppose b′ = 0. Then a = 0, a contradiction.

Case 2 . Suppose b′ = 1. Then (k − 5)a = 1, whence a can only be 1 (when k = 6).
Hence, N = 12 is a solution.

Case 3 . Suppose b′ = 2. Then (2k − 5)a = 2. Then a can only be 2 (when k = 3).
Hence, N = 24 is a solution.

Case 4 . Suppose b′ = 3. Then (3k − 5)a = 3. Then a can only be 3 (when k = 2).
Hence, N = 36 is a solution.

Case 5 . Suppose b′ = 4. Then (4k − 5)a = 4. Since 4k − 5 ̸= 1, 2, 4, there are no
solutions in this case.

Thus, the only possible values of N are 12, 24 and 36. The desired answer is hence
12 + 24 + 36 = 72.
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Question 16 [Ans: 25]

In the diagram below, AEB is an isosceles right-angled triangle and ABG is a 30◦-
60◦-90◦ right-angled triangle with ∠GAB = 30◦. The sides AG and BE intersect at
H. If the area of triangle AHE is 50 cm2, find the area of triangle BGH in cm2.

A B

E

G

H

Solution. Observe that ABGE is cyclic, where AB is the diameter of (ABGE). Let
α = ∠EAB. Then ∠EBA = α. Thus, ∠EAH = α − 30◦ and ∠GBH = 60◦ − α. Since
∠EAH = ∠GBH, we obtain α = 45◦. We thus have AE =

√
2r, where r = 1

2AB is the
radius of (ABGE). Also, GB = AB sin 30◦ = r. Since △AEH and △BGH are similar,
we see that

HB

GB
=

HA

EA
=⇒ HB

EH
=

1√
2
.

The ratio of similarity is thus 1√
2
, whence [BGH] =

(
1√
2

)2
[AEH] = 25 cm2.

Question 17 [Ans: 2451]

Find the smallest positive integer n such that
√
n−

√
n− 1 <

1

99
.

Solution. Squaring the inequality, we see that

2
√
n(n− 1) > 2n− 1− 99−2.

Squaring once more, we obtain

1 + (2− 4n)99−2 + 99−4 < 0.

Rearranging, we obtain

n >
992 + 99−2 + 2

4
≈ 2450.75,

whence minn = 2451.

Question 18 [Ans: 32]

Let a, b and c be real numbers such that a+ b+ c = 8 and ab+ bc+ ca = 0. Find the
maximum value of 3(a+ b).

Solution. From the second equation, we have c = − ab
a+b . Substituting this into the first

equation and clearing denominators yields

(a+ b)2 − 8(a+ b)− ab = 0.
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By the AM-GM inequality, we have ab ≤ 1
4(a+ b)2. Hence,

(a+ b)2 − 8(a+ b)− 1

4
(a+ b) ≤ 0 =⇒ 3(a+ b)2 − 32(a+ b) ≤ 0.

Thus, max(a+ b) = 32
3 , whence max 3(a+ b) = 32.

Question 19 [Ans: 16]

In the table below, every row and column is an infinite arithmetic progression.

1 3 5 7 9 · · ·
3 6 9 12 15 · · ·
5 9 13 17 21 · · ·
7 12 17 22 27 · · ·
9 15 21 27 33 · · ·
...

...
...

...
... · · ·

How many times does the number 2025 appear in the table?

Solution. Let aij be the number in the ith row and jth column of the table, where i, j > 0.
Observe that ai+1,j − aij = j + 1. Since a1j = 2j − 1, it follows that

aij = 2j − 1 + (i− 1)(j + 1) = (i+ 1)(j + 1)− 3.

Consider aij = 2025. Then (i + 1)(j + 1) = 2028 = 22 · 3 · 132. The number of possible
pairs of (i, j) is thus the number of positive pairs of factors of 2028 (excluding 1). This
gives a total of 3 ·2 ·3−2 = 16 possibilities. Note that we subtract 2 as we need to exclude
(1, 2028) and (2028, 1).

Question 20 [Ans: 3]

In the diagram below, ABC is a right-angled triangle. PointsD and E lie on AB while
points F and G lie on BC such that △EFG and △DGC are right-angled isosceles
triangles. It is given that DC = 3EG and the area of △DGC = 1 cm2. What is the
area of △ADC in cm2?

A

B C

D

E

F G

Solution. Since △EFG and △DGC are similar, we get EF
DG = EG

DC = 1
3 . Since △DEG

and △FEG have the same height (FG), we get

[DEG] = 3 [FEG] = 3 ·
(
1

3

)2

=
1

3
.
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Observe that △DEG and △ADC are also similar. Since DC
EG = 3, we obtain

[ADC] = 32 [DEG] = 3.

Question 21 [Ans: 504]

How many different 4-tuples (a, b, c, d) are there, where a, b, c and d are positive
integers, such that

a > b > c > d, a+ b+ c+ d = 2024 and a2 − b2 + c2 − d2 = 2024?

Solution. Observe that

a2 − b2 + c2 − d2 = a+ b+ c+ d =⇒ (a− b− 1)(a+ b) + (c− d− 1)(c+ d) = 0.

Since a+ b and c+d are positive, it must be that one of a− b−1 and c−d−1 is negative,
or both are zero.
Case 1 . Suppose a − b − 1 < 0. Then a − b < 1. However, since a > b, we know that

a− b > 0, a contradiction. A similar argument holds for the case where c− d− 1 < 0.
Case 2 . Suppose a − b − 1 = 0 and c − d − 1 = 0. Then a = b + 1 and c = d + 1.

Substituting this into the two equations, we see that

b+ d = 1011.

Observe that b ≥ d+ 2, whence

b+ (d+ 2) = 1013 =⇒ b ≥ 507

Additionally, max b occurs when d = 1 and c = 2, thus

(max b+ 1) + max b+ 2 + 1 = 2024 =⇒ max b = 1010.

There are hence 1010− 507 + 1 = 504 possible values for b, giving a total of 504 different
4-tuples.

Question 22 [Ans: 360]

Points A and B lie on the graph of y = x2 + 5x− 8 such that A, B and the origin O
are collinear and |OB| = 2 |OA|. It is given that A lies in the first quadrant. Find
|AB|2.

Solution. We have that A and B are the intersections between y = x2+5x−8 and y = kx,
where k > 0. Solving the two equations simultaneously, we end up with A(xA, kxA) and
B(xB, kxB), where

xA =
k − 5 +

√
k2 − 10k + 57

2
, xB =

k − 5−
√
k2 − 10k + 57

2
.

Since |OB| = 2 |OA|, we get

x2B + k2x2B = 4x2A + 4k2x2A =⇒
(
k2 − 1

) (
4x2A − x2B

)
= 0.

Clearly k ̸= 1. Hence, we have 4x2A − x2B = (2xA − xB)(2xA + xB) = 0. Since |xA| < |xB|,
we have 2xA + xB = 0. This gives

2
(
k − 5 +

√
k2 − 10k + 57

)
+
(
k − 5−

√
k2 − 10k + 57

)
= 0,
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which implies that

3(k − 5) +
√
k2 − 10k + 57 = 0 =⇒

√
k2 − 10k + 57 = 3(5− k).

Squaring, we get

k2 − 10k + 57 = 225− 90k + 9k2 =⇒ k2 − 10k + 21 = 0,

whence k = 3 or k = 7. Testing these two values, we see that only k = 3 satisfies the
condition |OB| = 2 |OA|, where |OA| =

√
40 and |OB| =

√
160, thus |AB|2 = (3

√
40)2 =

360.

Question 23 [Ans: 15630]

The diagram below shows a regular hexagon that is divided into six congruent trian-
gular regions A, B, C, D, E and F . Two triangular regions are adjacent if they share
a common side. For example, A and B are adjacent but A and C are not adjacent. In
how many ways can we colour these regions A, B, C, D, E and F using six different
colours such that the adjacent regions do not receive the same colour? (Note that not
all six colours need to be used in colouring the six regions and non-adjacent regions
can receive the same colour).

C
B

A

F
E

D

Solution. Let Ak be the event that at least k pairs of adjacent regions have the same
colour. By the inclusion-exclusion principle, the number of colourings such that no two
pairs have the same colour is given by

|A0| − |A1|+ |A2| − |A3|+ |A4| − |A5|+ |A6| .

Now observe that for 0 ≤ k ≤ 5, we have

|Ak| =
(
6

k

)
66−k :

(
6
k

)
ways to choose the k pairs, and 66−k ways to colour the 6−k groups of regions (where

we group a pair of regions together). Meanwhile, for k = 6, we obviously have

|A6| = 6.

Thus, the desired answer is

5∑
k=0

(
6

k

)
(−1)k6n−k + 6 = (6− 1)6 + (6− 1) = 15630.

Remark. In general, the number of ways to colour a cycle graph with n nodes (Cn) with
λ colours is given by (λ− 1)n + (−1)n(λ− 1). This is called the chromatic polynomial of
Cn. In our case, we have n = λ = 6.
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Question 24 [Ans: 45]

The diagram below shows three toy cars moving in a rectangular circuit ABCD
where AB = 10m and BC = 20m. Toy cars M and N start from the vertices A
and C respectively and move in an anti-clockwise direction with constant speeds 10
m/min and 4 m/min respectively. Toy car P starts from C and moves in a clockwise
direction with a constant speed of 8 m/min.

A D

CB

M

N

P

The three toy cars start their motion at the same time. Assume that when any two
toy cars meet, there is no collision and the cars will continue with their motion. Find
the total time elapsed in minutes when all the three toy cars meet simultaneously for
the fifth time.

Solution. Let displacement be measured along the circuit ABCD with reference to C,
taking anti-clockwise as positive. For example, the point D has displacement 10 m, while
the point B has displacement −20 m. Let t min be the time elapsed. We can parameterize
the displacement of M , N and P using t:

sM = 10t+ 30, sN = 4t, sP = −8t.

When the three toy cars meet simultaneously, their displacement must be equivalent mod-
ulo 60, which is the perimeter of the circuit. We hence wish to solve the following system
of congruences:

10t+ 30 ≡ 4t ≡ −8t (mod 60).

Firstly, we have 4t ≡ −8t (mod 60). This gives 12t ≡ 0 (mod 60), whence t ≡ 0 (mod 5).
Let t = 5k for some positive integer k. Substituting this into the congruence 10t+30 ≡ 4t
(mod 60) yields 30kt + 30 ≡ 0 (mod 60) =⇒ kt ≡ 1 (mod 2). Thus, k is odd, whence
t ∈ {5, 15, 25, · · ·}. The fifth-smallest value of t is thus 45.
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Question 25 [Ans: 3360]

In the diagram below, ABCD is a rectangle. A circle of radius 240 mm is inscribed
in △ABD and BD is a common tangent to both the circle and a semicircle whose
diameter CE lies on CD. It is given that CE = 720 mm. Find the perimeter of
rectangle ABCD in mm.

A

B C

D

E

720

240

Solution. Let AB = x and AD = y. Recall that A = rs, where A is the area of a triangle,
r is the inradius of the triangle, and s is the semiperimeter of the triangle. Applying this
formula on △ABD, we have

xy

2
= 240

(
x+ y +

√
x2 + y2

2

)
= 120

(
x+ y +

√
x2 + y2

)
. (1)

Let F be the reflection of B across CD. Applying this formula on △BDF , we have

2
(xy

2

)
= 360

(√
x2 + y2 +

√
x2 + y2 + 2y

2

)
=⇒ xy

2
= 180

(√
x2 + y2 + y

)
. (2)

Equating (1) and (2), we see that

120
(
x+ y +

√
x2 + y2

)
= 180

(√
x2 + y2 + y

)
=⇒ y =

3x

4
.

Substituting this back into (2), we have

1

2

[
x

(
3x

4

)]
= 180

√x2 +

(
3x

4

)2

+
3x

4

 =⇒ x = 960.

Thus, y = 720, whence the perimeter of ABCD = 2(x+ y) = 3360 mm.
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10.1.2. Round 2 Solutions

Resources: Review by Way Tan, AoPS threads

Question 1 [Ans:
√
2
√√

2− 1]

Let ABC be an isosceles right-angled triangle of area 1. Find the length of the shortest
segment that divides the triangle into two parts of equal area.

Solution. Let A(0,
√
2), B(0, 0) and C(

√
2, 0). Let DE be the line segment that divides

△ABC into two regions of area 1
2 . Without loss of generality, suppose D ∈ BC. Let

D(t, 0), where t ∈ [0,
√
2].

Case 1 . Suppose E ∈ AB. Then E(0, h), with h ∈ [0,
√
2]. Observe that one of the

regions that DE splits ABC into is the right-angled triangle △EBD. We thus have

[EBD] =
1

2
=⇒ th

2
=

1

2
=⇒ h =

1

t
.

Let s = |DE|. By the distance formula, we have s =
√
t2 + t−2. We now consider the

stationary points of s:

ds

dt
= 0 =⇒ 2t− 2t−3

2
√
t2 + t−2

= 0 =⇒ t = 1.

It is not too hard to show that s attains a minimum when t = 1. We thus have

min |DE| =
√
12 + 1−2 =

√
2. (1)

Case 2 . Suppose E ∈ AC. Note that the equation of the line AC is y =
√
2− x. Thus,

E(h,
√
2 − h), where h ∈ [0,

√
2]. Observe that one of the regions that DE splits ABC

into is the triangle △EDC. We thus have

[EDC] =
1

2
=⇒ 1

2

(√
2− t

)(√
2− h

)
=

1

2
=⇒ h =

√
2− 1√

2− t
.

Let s = |DE|. By the distance formula, we have

s =

√(√
2− t− 1√

2− t

)2

+

(
1√
2− t

)2

=

√
(u− u−1)2 + u−2 =

√
u2 + 2u−2 − 2,

where u =
√
2− t. We now consider the stationary points of s:

ds

du
= 0 =⇒ 2u− 4u−3

2
√
u2 + 2u−2 − 2

= 0 =⇒ u = 21/4,

whence t =
√
2 − 21/4 ∈ (0,

√
2). It is not too hard to show that s attains a minimum

when u = 21/4. We thus have

min |DE| =
√(

21/4
)2

+ 2
(
21/4

)−2 − 2 =
√
2

√√
2− 1. (2)

Comparing (1) and (2), we see that
√
2
√√

2− 1 <
√
2. Thus, the shortest length of

DE is
√
2
√√

2− 1.

https://www.youtube.com/watch?v=O8bi9Ejv5Io
https://artofproblemsolving.com/community/c4057243_2024_singapore_junior_maths_olympiad
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Question 2

Let ABCD be a parallelogram and points E, F be on its exterior. If triangles BCF
and DEC are similar, i.e. △BCF ∼ △DEC, prove that triangle AEF is similar to
these two triangles.

A B

D

E

F

C

Solution. Let ∠CBF = α and ∠CFB = β. Since △BCF and △DEC are similar, we
have ∠EDC = α and ∠ECD = β. Let ∠ADC = ∠ABC = γ. Note that ∠ADE =
∠ABF = α+ γ. Furthermore, observe that

∠ECF = 360◦−∠ECD−∠DCB−∠BCF = 360◦−(β)−(180◦−γ)−(180◦−α−β) = α+γ.

We thus have
∠ADE = ∠ABF = ∠ECF = α+ γ.

Let k be the ratio of similarity between △BCF and △DEC. Then EC = k · CF , ED =
k ·BC and DC = k ·BF . By the cosine rule, we can write the side lengths of △AEF in
terms of CF , BC and BF .

EF 2 = CF 2 + k2CF 2 − 2k · CF 2 cos(α+ γ)

AE2 = BC2 + k2BC2 − 2k ·BC2 cos(α+ γ)

AF 2 = BF 2 + k2BF 2 − 2k ·BF 2 cos(α+ γ)

This immediately gives

EF

CF
=

AE

BC
=

AF

BF
=
√
1 + k2 − 2k cos(α+ γ),

which is a constant. Thus, △AEF is similar to △BCF .

Question 3

Seven triangles of area 7 lie in a square of area 27. Prove that among the 7 triangles
there are 2 that intersect in a region of area not less than 1.

Solution 1. Observe that the total area covered by the triangles (7 · 7 = 49 units2) is
greater than the area of the square. Hence, by the pigeonhole principle, there is a minimum
overlap area of 49−27 = 22 units2 (accounting for multiple overlaps). However, since there
are only

(
7
2

)
= 21 possible pairs of triangles, it again follows from the pigeonhole principle

that there is one pair that overlap in an area of at least 1 unit2.
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Question 4 [Ans: 3]

Suppose for some positive integer n, the numbers 2n and 5n have equal first digit.
What are the possible values of this first digit?

Solution 1. Let the first digit of 2n be d. Then 2n = k · 10a, where k ∈ [d, d+ 1) and a
is some non-negative integer. Since 5n = 10n

2n = 10
k 10

n−a−1, we see that the first digit of
5n is

⌊
10
k

⌋
. Going through all possible d = 1, . . . , 9, we see that d =

⌊
10
k

⌋
only when d = 3

and k ∈ [3, 10/3). Thus, the only possible value for this first digit is 3.

Solution 2 (Zhero). Let d be the first digit of 2n and 5n. Then

d · 10m1 ≤ 2n < (d+ 1) · 10m1 , d · 10m2 ≤ 5n < (d+ 1) · 10m2 ,

where m1 and m2 are positive integers. Multiplying the two inequalities yields

d2 · 10m1+m2 ≤ 10n < (d+ 1)2 · 10m1+m2 =⇒ d2 ≤ 10n−m1−m2 < (d+ 1)2.

For d = 1, . . . , 9, the only d that has a perfect power of 10 between d2 and (d + 1)2 is 3.
Thus, the first digit can only be 3.

Question 5 [Ans: (−17,−130), (−17, 128), (7,−130), (7, 128)]

Find all integer solutions of the equation

y2 + 2y = x4 + 20x3 + 104x2 + 40x+ 2003.

Remark. This question is identical to 2024/Senior/R2/Q2.

Solution. Completing the square, we have

(y + 1)2 − (x2 + 10x+ 2)2 = 2000,

which factors as
(y + x2 + 10x+ 3)(y − x2 − 10x− 1) = 2000.

Let A = y + x2 + 10x+ 3 and B = y − x2 − 10x− 1. We clearly have

A+B

2
= y + 1 =⇒ y =

A+B

2
− 1

and
A−B

2
= x2 + 10x+ 2 = (x+ 5)2 − 23 =⇒ (x+ 5)2 =

A−B

2
+ 23. (1)

Going through all possible factor pairs of 2000, we see that only

(a, b) ∈ {(−8,−250), (250, 8)}

gives a perfect square as in (1). Thus,

(x, y) ∈ {(−17,−130), (−17, 128), (7,−130), (7, 128)} .

https://artofproblemsolving.com/community/c6h312638p1686081
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10.2. Senior Section

10.2.1. Round 1 Solutions

Resources: Review by Way Tan

Question 1 [Ans: D]

Find the largest positive integer A such that 2x +
2025

2x
−A > 0 for all real numbers

x

59(A) 69(B) 79(C) 89(D) 99(E)

Solution. Multiplying through by 2x (which does not affect the inequality since 2x > 0),
we get a quadratic in 2x:

(2x)2 −A · 2x + 2025 > 0.

The discriminant of this quadratic must be less than 0, hence

A2 − 4 · 2025 < 0.

Solving, we get A < 50, whence maxA = 49.

Question 2 [Ans: B]

If x =
1

log 2024
2023

7
+

1

log 2023
2022

7
+

1

log 2022
2021

7
, find 7x.

2021

2024
(A)

2024

2021
(B)

2022

2024
(C)

2024

2022
(D) 2024(E)

Solution. Recall the change of base formula for logarithms: logb a = ln a
ln b . We hence get

x =
ln 2024

2023

ln 7
+

ln 2023
2022

ln 7
+

ln 2022
2021

ln 7
=

ln 2024
2021

ln 7
= log7

2024

2021
,

where we used the property log a+log b = log ab in the intermediate step. Thus, 7x = 2024
2021 .

Question 3 [Ans: D]

Simplify
2024√
4 +

√
12

+
2024√
4−

√
12

.

1012(A) 1012
√
3(B) 2024(C) 2024

√
3(D)

1012 + 1012
√
3(E)

Solution. Observe that 4±
√
12 =

√
3
2 ± 2

√
3 + 1 =

(√
3± 1

)2
. Hence, we see that

2024√
4 +

√
12

+
2024√
4−

√
12

= 2024

(
1√
3 + 1

+
1√
3− 1

)
= 2024

√
3.

https://www.youtube.com/watch?v=bL4s-qHweKg
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Question 4 [Ans: A]

Suppose x1/3+12 = y1/3 for some real numbers x and y. Find the minimum possible
value of y − x.

432(A) 532(B) 632(C) 732(D)

None of the above(E)

Solution 1. By the difference of cubes identity, one has

y − x =
(
y1/3 − x1/3

)(
y2/3 + y1/3x1/3 + x2/3

)
= 12

(
y2/3 + y1/3x1/3 + x2/3

)
.

Substituting y1/3 = x1/3 + 12, we see that

y2/3 + y1/3x1/3 + x2/3 = 3x2/3 + 36x1/3 + 144 = 3
(
x1/3 + 6

)2
+ 36.

Hence, y − x ≥ 12 · 36 = 432, with equality when x1/3 = −6.

Solution 2 (Abusing symmetry). Let x∗ = −x. We wish to find the minimum value of

x∗ + y subject to x
1/3
∗ + y1/3 = 12. By symmetry, this occurs when x

1/3
∗ = y1/3 = 6, thus

minx∗ + y = 63 + 63 = 432.

Question 5 [Ans: D]

Find the largest possible value of

√
2 cos(2x)

sin(x) + cos(x)
.

1

2
(A) 1(B)

3

2
(C) 2(D)

5

2
(E)

Solution. Note that cos(2x) = cos2 x− sin2 x = (cosx+ sinx)(cosx− sinx). Hence,

√
2 cos(2x)

sin(x) + cos(x)
=

√
2(cosx− sinx) =

√
2 ·

√
2 cos

(
x− π

4

)
,

where we used the R-formula in the last step. Thus, the largest possible value is clearly 2.

Question 6 [Ans: 64]

If
√

x+
√
x+

√
x−

√
x = 4, find the value of 15x.

Solution. Squaring and simplifying, we get
√
x2 − x = 8 − x. Squaring again, we get

x2 − x = 64− 16x+ x2, whence 15x = 64.
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Question 7 [Ans: 242]

Find the smallest positive integer K such that

x2 − 200x+ y2 = 0 and x+ y ≤ K.

Solution. Completing the square on the first equation, we clearly get the equation of a
circle with centre (100, 0) and radius 100:

(x− 100)2 + y2 = 1002.

From the second equation, we have y ≤ K − x. Since we are interested in the extreme
values of K, we consider y = K−x. This is the equation of a line with gradient −1 and y-
intercept K. Additionally, this line is tangent to the aforementioned circle, implying that
the “argument” of the point of tangency to the centre of the circle is 45◦. Since K > 0,
the point of tangency must be (100 + 100 cos(45◦), 100 cos(45◦)) = (100 + 50

√
2, 50

√
2).

Using the point slope formula, we have

y − 50
√
2 = −x+ 100 + 50

√
2,

whence the y-intercept is 100 + 100
√
2 ≈ 241.4. Since K is an integer, minK = 242.

Question 8 [Ans: 506]

Given that
cos(x)

sin(3x)
− sin(x)

cos(3x)
− 2 · sin(4x)

cos(6x)
= 2024, find the value of

cos(10x)

sin(12x)
.

Solution. Observe that

cosx

sin 3x
− sinx

cos 3x
=

cosx cos 3x− sinx sin 3x

sin 3x cos 3x
=

2 cos 4x

sin 6x
.

Plugging this into the given equation yields

cos 4x

sin 6x
− sin 4x

cos 6x
= 1012.

Playing the same game, we see that

cos 4x

sin 6x
− sin 4x

cos 6x
=

2 cos 10x

sin 12x
.

Thus,
cos 10x

sin 12x
=

1

2
· 1012 = 506.

Question 9 [Ans: 3]

Find the smallest positive integer k such that the coefficient of xk in the expansion

of
(
5x3 + 1√

x

)2024
is not zero.

Solution. By the binomial theorem, we have(
5x3 +

1√
x

)2024

=
2024∑
n=1

(
2024

n

)(
5x3
)n (

x−
1
2

)2024−n
=

2024∑
n=1

(
2024

n

)
5nx

7
2
n−1012.

Let k = 7
2n− 1012. Since k > 0, we have n ≥ 290. Since

(
2024
290

)
5290 is clearly non-zero, we

have min k = 7
2 · 290− 1012 = 3.
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Question 10 [Ans: 2048]

Let

P =
(
20242 + 1

) (
20242

2
+ 1
)(

20242
3
+ 1
)
· · ·
(
20242

10
+ 1
)
× 2025 +

1

2023
.

Find the smallest positive integer N such that N > log2024 P .

Solution. Observe that

P =
1

2023
+

10∏
k=1

(
20242

k
+ 1
)
.

Expanding out the product, it is easy to see that

10∏
k=1

(
20242

k
+ 1
)
=

211−1∑
k=0

2024k,

which evaluates to 20242
11−1

2024−1 . Hence,

P =
20242

11 − 1

2023
+

1

2023
=

20242
11

2023
=⇒ log2024 P = 211 − log2024 2023.

Clearly log2024 2023 < 1. Hence, minN = 211 = 2048.

Question 11 [Ans: 145]

Let △ABC be a triangle with area 1000. Let M and N be points on AB and AC
respectively such that

AM : MB = 3 : 2 and AN : NC = 7 : 3.

Let X and Y be the midpoints of BN and CM respectively. Find the area of △AXY .

A

B C

M N

X Y

Solution. Observe that
−−→
AM = 3

5

−−→
AB and

−−→
AN = 7

10

−→
AC. By the midpoint theorem, it

follows that
−−→
AX =

1

2

(
3

5

−−→
AB +

−→
AC

)
and

−→
AY =

1

2

(
7

10

−→
AC +

−−→
AB

)
.

Thus,

[AXY ] =
1

2

∣∣∣−−→AX ×
−→
AY
∣∣∣ = 1

8

∣∣∣∣(3

5

−−→
AB +

−→
AC

)
×
(

7

10

−→
AC +

−−→
AB

)∣∣∣∣ = 29

200
· 1
2

∣∣∣−−→AB ×
−→
AC
∣∣∣ .
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Since [ABC] = 1
2

∣∣∣−−→AB ×
−→
AC
∣∣∣, we see that [AXY ] = 29

200 · 1000 = 145.

Question 12 [Ans: 8099]

Find the largest positive integer n ≤ 10000 such that 1 + 2024n2 is a perfect square.

Solution. Let m be an integer such that 1 + 2024n2 = m2. Then m2 − 2024n2 = 1.
We thus have a Pell equation where D = 2024. The fundamental solution is clearly
m = 45 and n = 1. The solutions mi and ni to the Pell equation are hence given by
mi +

√
2024ni = (45 +

√
2024)i. When i = 2, we have

(45 +
√
2024)2 = 4049 + 90

√
2024 =⇒ n2 = 90.

When i = 3, we have

(45 +
√
2024)3 = 364365 + 8099

√
2024 =⇒ n3 = 8099.

Taking i ≥ 4 will very clearly give us an n greater than 10000. Thus, maxn = 8099.

Question 13 [Ans: 128]

In a tetrahedron SABC, the faces SBC and ABC are perpendicular to each other.
The angles ∠ASB, ∠BSC, ∠ASC are all 60◦, and SB = SC = 4. Find the square
of the volume of the tetrahedron.

A

B

C

S

Solution. Without loss of generality, let SBC lie on the x − z plane, and let ABC lie
on the x − y plane. Since ∠BSC = 60◦ and SB = SC = 4, it follows that △SBC is
equilateral. Let B(−2, 0, 0) and C(2, 0, 0). Then S(0, 0, 2

√
3). By symmetry, A must lie

on the y axis. Hence, A(0, a, 0) for some a to be determined. Since ∠ASB = 60◦, we have

−→
AS ·

−→
BS = AS ·BS · cos 60◦ =⇒ AS = 6.

Let O be the origin, which is also the midpoint of BC. Since OA ⊥ BC, by Pythagoras’
theorem, we have

OS2 +OA2 = AS2 =⇒ a2 = AS2 −OS2 = 24.

Hence, [ABC] = 1
2BC ·OA = 4

√
6. Thus, the volume of the tetrahedron is

[SABC] =
1

3
· [ABC] ·OS = 8

√
2 =⇒ [SABC]2 = 128.
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Question 14 [Ans: 965]

Let a, b, c be the three real roots of the cubic equation

2x3 − 4x2 − 21x− 8 = 0.

Given that

S =
1

ab+ c− 1
+

1

bc+ a− 1
+

1

ca+ b− 1

is a rational number that can be expressed as a fraction in the lowest form m
n , find

the value of m2 + n2.

Solution. By Vieta’s formula, we have abc = 4 and a+ b+ c = 2. Hence,

S =
a

a2 − a+ 4
+

b

b2 − b+ 4
+

c

c2 − c+ 4
.

Now observe that

2x3 − 4x2 − 21x− 8 = (x2 − x+ 4)(2x− 2)− 31x.

Since a, b, c are roots of the cubic on the LHS, we get

(a2 − a+ 4)(2a− 2)− 31a = 0 =⇒ a

a2 − a+ 4
=

2a− 2

31
,

with identical expressions for b and c. Substituting these expressions back into S, we have

S =
2a− 2

31
+

2b− 2

31
+

2c− 2

31
=

2(a+ b+ c)− 6

31
=

−2

31
.

Thus, m2 + n2 = (−2)2 + 312 = 965.

Question 15 [Ans: 25]

Consider the equation √
3− 1

sinx
+

√
3 + 1

cosx
= 4

√
2.

For the range 0 < x < π/2, the sum of the solutions of the equation can be expressed
in the form mπ

n , where m
n is a fraction in the lowest form. Find m+ n.

Solution. Observe that√
3− 1

2
= cos

π

6
− cos

π

3
= 2 sin

π

4
sin

π

12
=

√
2 sin

π

12
.

Similarly, √
3 + 1

2
= cos

π

6
+ cos

π

3
= 2 sin

π

4
cos

π

12
=

√
2 cos

π

12
.

Our equation hence simplifies to

sin(π/12)

sinx
+

cos(π/12)

cosx
= 2 =⇒ sin

π

12
cosx+ cosx sin

π

12
= 2 sinx cosx,

which very clearly gives us

sin
(
x+

π

12

)
= sin(2x).

Case 1 . Suppose 2x = x+ π
12 + 2nπ, where n is an integer. Then x = 24n+1

12 π, whence
the only solution in the given range is x = π

12 .
Case 2 . Suppose 2x = (2n+ 1)π −

(
x+ π

12

)
, where n is an integer. Then x = 24n+11

36 π,
whence the only solution in the given range is x = 11π

36 .
Thus, the sum of solutions is π

12 + 11π
36 = 7π

18 , whence m+ n = 25.



126 10. SMO 2024

Question 16 [Ans: 40]

An engineer constructs a circle with centre O and diameter CD on level ground,
and builds a vertical tower of height 20 at the centre. B is another point on the
circumference and P is on CD produced such that PB is a secant line of the circle.
Given that PB = 33, PC = 77 and CD = 74, find the minimum possible distance of
any point on PB to the top of the tower.

B

P
C D

O

A

B

P
C D

E

O

Solution. Let A be the intersection between PB and the circle. Note that PD = PC −
CD = 3. By power of a point, we have PD · PC = PA · PB, which immediately gives
PA = 7. Let E be the midpoint of AB. Clearly the minimum distance is achieved at
E, since OE ⊥ PB. Since AB = PB − PA = 26, we have PE = PA + 1

2AB = 20. By
Pythagoras’s theorem, OE2 = OP 2 − PE2 = 1200. Again, by Pythagoras’ theorem, it
follows that the distance between E and the top of the tower is

√
OE2 + 202 = 40.
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Question 17 [Ans: 9]

P is a common point of tangency of two circles. BA is a chord of the larger circle
which is tangent to the smaller circle at a point C. PB and PA intersect the smaller
circle at points E and D respectively. If BA = 15, PE = 2, and PD = 3, find the
length CA.

AB
C

D
E

P

AB
C

D
E

P

T

Solution. Consider the homothety H at P that maps the small circle to the big circle.
Since H(E) = B and H(D) = A, it follows that △PED and △PBA are similar. Let
H(C) = T . Then T is equidistant to A and B, whence PT bisects ∠P . Thus, by the
angle bisector theorem, it follows that

CA

CB
=

PA

PB
=

PD

PE
=

2

3
.

Since CA+ CB = 15, we immediately have CA = 9.

Remark. This is an application of the Shooting Lemma.

https://web.evanchen.cc/handouts/GeoSlang/GeoSlang.pdf
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Question 18 [Ans: 160]

On each face of a cube, an integer greater than 2 is written. Each vertex of the
cube is the intersection of three unique faces, and each edge is the intersection of two
unique faces. Assign to each vertex the product of the numbers written on the faces
intersecting the vertex, and assign to each edge the product of the numbers written
on the faces intersecting the edge. The sum of the numbers assigned to the eight
vertices is equal to 2024. Find the maximum possible value of an edge.

Solution. Without loss of generality, let f , b, l, r, u, d represent the numbers on the front,
back, left, right, up, down faces of the cube respectively. We see that (f+b)(l+r)(u+d) =
2024 = 23 · 11 · 23. Since each face has an integer greater than 2, it follows that

f + b = 8, l + r = 11, u+ d = 23.

Since we want to maximize only one edge, we take the edge joining l and u, which is
assigned

(11−min r)(23−min d) = (11− 3)(23− 3) = 8 · 20 = 160.

Question 19 [Ans: 72]

Find the sum of the squares of each of the roots of the equation

x2 − 4 ⌊x⌋ − 12 = 0,

where ⌊x⌋ denotes the greatest integer less than or equal to x.

Solution. Let x = ⌊x⌋+ {x}, where {x} denotes the fractional part of x. This turns the
given equation into

⌊x⌋2 − ⌊x⌋ (4− 2 {x}) +
(
{x}2 − 12

)
= 0.

By the quadratic formula, we obtain

⌊x⌋ = 2− {x} ± 2
√

4− {x}.

Since {x} ∈ [0, 1) and ⌊x⌋ ∈ Z, we see that ⌊x⌋ = −2, 5, 6.

Case 1 .⌊x⌋ = −2 The given equation reduces to x2 = 4. Thus, x = −2 is a solution.

Case 2 .⌊x⌋ = 5 The given equation reduces to x2 = 32. Thus, x =
√
32 is a solution.

Case 3 .⌊x⌋ = 6 The given equation reduces to x2 = 36. Thus, x = 6 is a solution.

Thus, the sum of the squares of the roots is (−2)2 +
√
32

2
+ 62 = 72.

Question 20 [Ans: 609]

Calculate the remainder when 19012024 is divided by 1216.

Solution. Notice that 1216 = 26 · 19. We can hence use the Chinese remainder theorem
to tackle this problem. We obviously have 19012024 ≡ 1 (mod 19). We now calculate
19012024 (mod 64). Note that 1901 ≡ 45 (mod 64). Additionally, since φ(64) = 32 and
2024 ≡ 8 (mod 32), by Euler’s theorem we immediately get

19012024 ≡ 458 ≡ 198 ≡ 5614 ≡ 234 ≡ 5292 ≡ 172 ≡ 289 ≡ 33 (mod 64).
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Let n be the desired remainder. We hence have the following system of congruences:

n ≡ 1 (mod 19), n ≡ 33 (mod 64).

From the second congruence, we know n = 33 + 64m for some integer m. Substituting
this into the first congruence gives

33 + 64m ≡ 1 (mod 19) =⇒ 7m = 6 (mod 19).

Note that the multiplicative inverse of 7 modulo 19 is 11 (since 11·7 ≡ 1 (mod 19)). Hence,
m ≡ 6 · 11 ≡ 9 (mod 19). We thus get m = 9 + 19k for some integer k. Substituting this
back into the definition of n, we get

n = 33 + 64(9 + 19k) = 609 + 64 · 19k.

Hence, the desired remainder is 609.

Question 21 [Ans: 521]

Let P (x) = a0 + a1x+ a2x
2 + · · ·+ anx

n be a polynomial with non-negative integer
coefficients satisfying 0 ≤ ai ≤ 17 for all i. If P (18) = 367616, find the value of P (3).

Solution. Observe that the coefficients correspond to the digits of 367616 in base 18.
Indeed, we see that

367616 = 2 · 180 + 11 · 181 + 9 · 183 + 3 · 184.

Hence,
P (x) = 2 + 11x+ 9x3 + 3x4,

whence P (3) = 521.

Question 22 [Ans: 129]

Evaluate the sum

2

1 + tan
(

π
260

) + 2

1 + tan
(
2π
260

) + 2

1 + tan
(
3π
260

) + · · ·+ 2

1 + tan
(
129π
260

) .
Solution. Observe that we can pair each term with a corresponding term at the opposite
end (except for the middle term):

129∑
k=1

2

1 + tan
(
kπ
260

) = 2

64∑
k=1

[
1

1 + tan
(
kπ
260

) + 1

1 + tan
(
π
2 − kπ

260

)]+ 2

1 + tan
(
65π
260

) .
Since tan

(
π
2 − x

)
= cotx, we see that

64∑
k=1

[
1

1 + tan
(
kπ
260

) + 1

1 + cot
(
kπ
260

)] =

64∑
k=1

1 + cot
(
kπ
260

)
+ tan

(
kπ
260

)
+ 1

1 + cot
(
kπ
260

)
+ tan

(
kπ
260

)
+ 1

= 64.

Thus,
129∑
k=1

2

1 + tan
(
kπ
260

) = 2 · 64 + 2

1 + tan
(
65π
260

) = 129.
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Question 23 [Ans: 21]

An equilateral triangle ABC is inscribed in a circle and P is a point on the minor arc
BC. Point D is the intersection of AP and BC.

A

B C

D

P

Suppose that BP = 5, CP = 20. Find the length of AD.

Solution. Let s be the side length of the equilateral triangle. By Ptolemy’s theorem, we
know that

BP ·AC +BA · CP = BC ·AP =⇒ AD +DP = 25.

Notice that △BDP is similar to △ADC. Hence,

DP

BP
=

CD

CA
=⇒ CD =

s ·DP

5
,

BD

BP
=

AD

AC
=⇒ BD =

5AD

s
.

Likewise, △ADB is similar to △CDP , whence

CD

CP
=

AD

AB
=⇒ CD =

20AD

s
.

We thus see that

s = BD +DC =
25AD

s
=⇒ s2 = 25AD,

and

CD =
s ·DP

5
=

20AD

s
=⇒ DP =

100AD

s2
=

100AD

25AD
= 4.

Thus, AD = 25−DP = 21.

Question 24 [Ans: 94]

Find the number of positive integers x < 9000 such that x3 + 95 is divisible by 96.

Solution. We are given that

x3 + 95 ≡ 0 (mod 96) =⇒ x3 − 1 ≡ 0 (mod 96).

Since 96 = 25 ·3, we have x3−1 ≡ 0 modulo 3 and 32. Note that x3−1 ≡ 0 (mod 3) has a
unique solution x ≡ 1 (mod 3). Furthermore, by repeatedly applying Hensel’s lemma, it
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is not too hard to see that x ≡ 1 (mod 32) is the unique solution to x3 − 1 ≡ 0 (mod 32).
It thus follows by the Chinese remainder theorem that x ≡ 1 (mod 96) is the only solution
to x3 − 1 ≡ 0 (mod 96). That is, we have x = 1+ 96k for integers k ≥ 0. Since x < 9000,
we have k < 8999

96 ≈ 93.7. Thus, k ∈ {0, 1, . . . , 93}, whence there are 94 possibilities for x.

Question 25 [Ans: 26]

A scalene triangle △ABC has sides AB = 7, AC = 12 and BC = 13. Write
tan A−B

2 tan C
2 as a fraction m

n in its lowest form and find m+ n.

A

BC

7

13

12

Solution. Observe that C
2 = 90◦ − A+B

2 . Hence,

tan
C

2
= tan

(
90◦ − A+B

2

)
= cot

A+B

2
.

The desired product is hence

tan
A−B

2
tan

C

2
=

sin A−B
2 cos A+B

2

cos A−B
2 sin A+B

2

=
2 sin A−B

2 cos A+B
2

2 cos A−B
2 sin A+B

2

.

By the product-to-sum identities, this immediately simplifies to

2 sin A−B
2 cos A+B

2

2 cos A−B
2 sin A+B

2

=
sinA− sinB

sinA+ sinB
.

By the sine rule, we have sinA = a
b sinB. Thus,

sinA− sinB

sinA+ sinB
=

a
b − 1
a
b + 1

=
a− b

a+ b
=

13− 12

13 + 12
=

1

25
.

Hence, m+ n = 26.
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10.2.2. Round 2 Solutions

Resources: Review by Way Tan, AoPS threads

Question 1

In an acute triangle ABC, AC > AB, D is the point on BC such that AD = AB.
Let ω1 be the circle through C tangent to AD at D, and ω2 the circle through C
tangent to AB at B. Let F (̸= C) be the second intersection of ω1 and ω2. Prove
that F lies on AC.

A

B

C

D

F

E

ω1

ω2

Solution 1. Let α = ∠BAD. Since △BAD is isosceles, we also have ∠BDA = α. Let
E be the intersection between ω2 and AD extended. Then ∠EDC = α. By the alternate
segment theorem, we get ∠DFC = α. Let β = ∠DCF by the alternate segment theorem,
we also have ∠ADC = β.

Claim. BDFA is cyclic.

Proof. Observe that ∠CDF = 180◦ −α− β. Hence, ∠CAD = 180◦ −∠ADC −∠DCA =
α− β. Since ∠BAD = 180◦ − 2α, we have

∠BAF = (α− β) + 180◦ − 2α = 180◦ − (α+ β) = 180◦ − ∠BDF.

Since BDFA is cyclic, we have must have ∠DFA = 180◦ − ∠DBA = 180◦ − α. Thus,
∠AFD + ∠DFC = 180◦, whence AFC is a straight line.

Solution 2 (Way Tan). Note that F and C obviously lie on the radical axis of ω1 and
ω2. Observe that the power of A with respect to ω1 and ω2 is AD2 and AB2 respectively.
However, because AD = AB, the two powers are equal, whence A also lies on the radical
axis. Thus, F lies on AC.

https://www.youtube.com/watch?v=Mrjm7aWXoNQ
https://artofproblemsolving.com/community/c3938466_2024_singapore_senior_math_olympiad
https://www.youtube.com/watch?v=Mrjm7aWXoNQ
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Question 2 [Ans: (−17,−130), (−17, 128), (7,−130), (7, 128)]

Find all integer solutions of the equation

y2 + 2y = x4 + 20x3 + 104x2 + 40x+ 2003.

Remark. This question is identical to 2024/Junior/R2/Q5.

Question 3 [Ans: 11]

Find the smallest positive integer n for which there exist integers x1 < x2 < · · · < xn
such that every integer from 1000 to 2000 can be written as a sum of some of the
integers from x1, x2, . . . , xn without repetition.

Solution (joeym2011). Observe that there are exactly 2n ways x1, . . . , xn can be summed.
Since we want at least 1001 different sums (one for each number between 1000 and 2000),
we require n ≥ ⌈log2 1001⌉ = 10.

Now observe that we need an xi ≡ 1 (mod 2), if not we cannot attain any odd integers.
Next, we also need an xi ≡ 2 (mod 4), if not we cannot attain any integer congruent to
3 (mod 4). It follows similarly that we require an xi ≡ 2k−1 (mod 2k) for k = 1, . . . , 11.
Since k ≥ 11, it follows that n ≥ 11.

It is trivial to see that n = 11 is possible: simply take xi = 2i−1 and look at the binary
expansion of each integer between 1000 and 2000 to determine what xi’s to sum. Hence,
minn = 11.

Question 4

Suppose p is a prime number and x, y, z are integers satisfying 0 < x < y < z < p.
If x3, y3, z3 have equal remainders when divided by p, prove that x2 + y2 + z2 is
divisible by x+ y + z.

Solution (HoshimiyaMukuro). We have y3−x3 ≡ z3−x3 ≡ 0 (mod p). By the difference
of squares identity, this gives

(y − x)(x2 + xy + y2) ≡ (z − x)(x2 + xz + z2) ≡ 0 (mod p).

However, because y − x and z − x are less than p, we have

x2 + xy + y2 ≡ x2 + xy + z2 ≡ 0 (mod p).

Thus,
(z − y)(x+ y + z) = (x2 + xz + x2)− (x2 + xy + y2) ≡ 0 (mod p).

Once again, because z − y is less than p, we get x + y + z ≡ 0 (mod p). However, since
0 < x+ y + z < 3p, it follows that x+ y + z is either p or 2p. Now, observe that

3(xy+yz+zx) = 2(x+y+z)2−(x2+xy+y2)−(y2+yz+z2)−(z2+zx+x2) ≡ 0 (mod p),

whence xy + yz + zx ≡ 0 (mod p) since p > 3. Thus, xy + yz + zx = kp, where k ∈ Z+.
Note that

x2 + y2 + z2 = (x+ y + z)2 − 2(xy + yz + zx).

Dividing both sides by x+ y + z, we have

x2 + y2 + z2

x+ y + z
= (x+ y + z)− 2(xy + yz + zx)

x+ y + z
.

Clearly, 2(xy+yz+zx)
x+y+z must be an integer: if x+ y + z = p, we get 2k; if x+ y + z = 2p, we

get k. Thus, x2+y2+z2

x+y+z is an integer, whence x2 + y2 + z2 is divisible by x+ y + z.

https://artofproblemsolving.com/community/c6h3344168p30996552
https://artofproblemsolving.com/community/c6h3344163p30991253
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Question 5

Let a1, a2, . . . be a sequence of positive numbers satisfying, for any positive integers
k, l, m, n such that k + n = m+ l,

ak + an
1 + akan

=
am + al
1 + amal

.

Show that there exist positive numbers b, c so that b ≤ an ≤ c for any positive integer
n.

Solution (Way Tan). Taking reciprocals, we have

1 + akan
ak + an

=
1 + amal
am + al

⇐⇒ 1 + ak + an + akan
ak + an

=
1 + am + al + amal

am + al
.

The numerators factor nicely as

(1 + ak)(1 + an)

ak + an
=

(1 + am)(1 + al)

am + al
.

Taking reciprocals once again, we arrive at the set-up of 2020/Open/R1/Q19:

ak + an
(1 + ak)(1 + an)

=
am + al

(1 + am)(1 + al)
.

Letting bi =
1

ai+1 − 1
2 as given in the hint to that question, we have after simplification,

bkbn = bmbn.

However, by the condition that k + n = m + l, we clearly have that {bi} is in geometric
progression. Moreover, because ai ∈ (0,∞), we have bi ∈ (−1

2 ,
1
2). Since bi is bounded, it

follows that |r| ≤ 1, where r is the common ratio of {bi}. It follows that |bi| ≤ |b1| < 1
2 for

all positive integers i. Hence, − |b1| ≤ bi ≤ |b1|, implying that

1
1
2 + |b1|

− 1 ≤ ai ≤
1

1
2 − |b1|

− 1,

whence b = 1
1
2
+|b1|

− 1 and c = 1
1
2
−|b1|

− 1 are clearly positive, and we are done.

https://www.youtube.com/watch?v=Mrjm7aWXoNQ
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10.3. Open Section

10.3.1. Round 1 Solutions

Resources: Review by Way Tan

Question 1 [Ans: 1540]

Let Sk = 1+ 2+ 3+ · · ·+ k for any positive integer k. Find S1 + S2 + S3 + · · ·+ S20.

Solution. Note that Sk = 1
2

(
k2 + k

)
. Hence, the required sum is

20∑
k=1

1

2

(
k2 + k

)
=

1

2

[
20 · 21 · 41

6
+

20 · 21
2

]
= 1540.

Question 2 [Ans: 69]

Let S =
∑64

r=1 r
(
64
r

)
, where

(
n
r

)
= n!

r!(n−r)! and 0! = 1. Find log2 S.

Solution. Note that (1 + x)64 =
∑64

r=1

(
64
r

)
xr. Differentiating with respect to x gives

64(1 + x)63 =
∑64

r=1 r
(
64
r

)
xr−1. Evaluating at x = 1, we have 64 · 263 =

∑64
r=1 r

(
64
r

)
= S.

Hence, log2 S = 69.

Question 3 [Ans: 4]

Let x be the largest number in the interval [0, 2π] such that (sinx)2024−(cosx)2024 = 1.
Find ⌊x⌋.
(Note: If you think that such a number x does not exist, enter your answer “99999”.)

Solution. Observe that (sinx)2024, (cosx)2024 ∈ [0, 1]. Hence, the equation holds if and
only if (sinx)2024 = 1 and (cosx)2024 = 0. Thus, sinx = ±1 and cosx = 0, whence x = 3π

2
and ⌊x⌋ = 4.

Question 4 [Ans: 99999]

Find the number of real numbers x that satisfies the equation |x− 2| + |x− 3| =
|2x− 5|.
(Note: If you think that there are no such numbers, enter “0”; if you think that there
are infinitely many such numbers, enter “99999”.)

Solution. Consider x < 2. The given equation simplifies to (2 − x) + (3 − x) = 5 − 2x,
whence x is free. There are hence infinitely many solutions.

Question 5 [Ans: 3]

Among all the real numbers that satisfies the inequality ex ≥ 1 + 2e−x, find the
minimum value of ⌈ex + e−x⌉.

Solution. Multiplying through by ex yields a quadratic in ex: (ex)2 − ex − 2 ≥ 0. Thus,
ex ≥ 2 (keeping in mind that ex > 0). Since ex+e−x is increasing for x > 0, the minimum
value occurs when ex = 2, whence the desired answer is ⌈2 + 1/2⌉ = 3.

https://www.youtube.com/watch?v=Iwn4KPxmEpw
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Question 6 [Ans: 2025]

Find the smallest positive integer C greater than 2024 such that the sets A ={
2x2 + 2x+ C : x ∈ Z

}
and B =

{
x2 + 2024x+ 2 : x ∈ Z

}
are disjoint.

Solution. Observe that x2+2024x+2 ≡ 2, 3 (mod 4), while 2x2+2x+C ≡ C (mod 4).
Thus, so long as C ̸≡ 2, 3 (mod 4), we will have A and B disjoint. The smallest such C is
hence 2025, which has a residue of 1 modulo 4.

Question 7 [Ans: 110]

Let ABCD be a convex quadrilateral inscribed in a circle ω. The bisector of ∠BAC
meets ω at E (̸= A), the bisector of ∠ABD meets ω at F (̸= B), AE intersects BF
at P and CF intersects DE at Q. Suppose EF = 20, PQ = 11. Find the area of the
quadrilateral PEQF .

A

B

C

D

E

F

P

Q

θ θ

φ
φ

θ

φ

θ

φ

Solution. Let ∠BAC = 2θ and ∠ABD = 2φ. Using angles in same segment on ABEF ,
we have ∠BFE = ∠BAE = θ, and ∠AEF = ∠ABF = φ. Using angles in same segment
on AECF , we have ∠CFE = ∠CAE = θ. Using angles in same segment on BEDF , we
have ∠FBD = ∠FED = φ. By ASA, △PEF ≡ △QEF , whence PEQF is a kite. Hence,
[PEQF ] = 1

2 · EF · PQ = 110.

Question 8 [Ans: 5]

Let f(x) =
√
x2 + 1 +

√
(4− x)2 + 4. Find the minimum value of f(x).

Solution. Let A(0,±1), B(x, 0) and C(4,±2). Observe that AB =
√
x2 + 1 and BC =√

(4− x)2 + 4. It follows that f(x) = AB + BC attains its minimum when ABC is a
straight line (crucially, B must be in between A and C). To achieve this, we can set
A(0,−1) and C(4, 2). Thus, min f(x) = AC = 5.
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Question 9 [Ans: 17]

It is known that a ≥ 0 satisfies

√
4 +

√
4 +

√
4 +

√
4 + a = a. Find the value of

(2a− 1)2.

Solution. Observe that
√
4 + a = a, whence a2 − a− 4 = 0. Thus,

(2a− 1)2 = 4
(
a2 − a− 4

)
+ 17 = 17.

Question 10 [Ans: 160]

A rectangle with sides parallel to the horizontal and vertical axes is inscribed in the
region bounded by the graph of y = 60− x2 and the x-axis. If the area of the largest
such rectangle has area k

√
5, find the value of k.

Solution. Let A be the area of the rectangle. Let the rectangle have width 2x. Then
A = 2x

(
60− x2

)
= 120x− 2x3. Hence, dA/dx = 120− 6x2. The sole stationary point of

A (which can easily be verified as a maximum) hence occurs when x = 2
√
5. The area of

the rectangle is thus 160
√
5, whence k = 160.

Question 11 [Ans: 10]

Let x be a real number satisfying the equation xx
5
= 100. Find the value of

⌊
x5
⌋
.

Solution. Raising the given equation to the 5th power yields
(
x5
)x5

= 1010, whence
x5 = 10.

Question 12 [Ans: 10]

Let a, b, c, d, e be distinct integers with a+ b+ c+ d+ e = 9. If m is an integer such
that

(m− a)(m− b)(m− c)(m− d)(m− e) = 2009,

determine the value of m.

Solution. Note that 2009 = 72 · 41. Since a, b, c, d, e are distinct, the five terms must be
7, −7, 41, 1 and −1. Summing, we get 5m− (a+ b+ c+ d+ e) = 41, whence m = 10.

Question 13 [Ans: 3]

Let {x} be the fractional part of the number x, i.e., {x} = x−⌊x⌋. If S =
∫ 9
0 {x}2 dx,

find ⌊S⌋.

Solution. Observe that {x} has period 1, and is equivalent to x on the interval [0, 1).
Thus,

S =

∫ 9

0
{x}2 dx = 9

∫ 1

0
x2 dx = 3.
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Question 14 [Ans: 81]

The solution of the inequality |(x+ 1)(x− 6)| > |(x+ 4)(x− 2)| can be expressed as
x < a or b < x < c. If S = |a|+ |b|+ |c|, find ⌊14S⌋.

Solution. As we are interested in the extreme ends of the solution range, we consider the
case of equality, i.e. |(x+ 1)(x− 6)| = |(x+ 4)(x− 2)|.
Case 1 . Consider (x + 1)(x − 6) = (x + 4)(x − 2). Expanding and simplifying, we get

x = 2/7.
Case 2 . Consider (x+ 1)(x− 6) = −(x+ 4)(x− 2). Expanding and simplifying, we get

(2x− 7)(x+ 2) = 0, whence x = −2 and x = 7/2.
Together, it stands to reason that a = −2, b = 2/7 and c = 7/2, whence 14S = 81.

Question 15 [Ans: 2]

Given that x, y > 0 and x
√

2− y2 + y
√
2− x2 = 2, find the value of x2 + y2.

Solution 1. Let X = x2 and Y = y2. Squaring the given equation, we have

X(2− Y ) + 2xy
√

(2−X)(2− Y ) + Y (2−X) = 4.

This gives
xy
√

(2−X)(2− Y ) = 2− (X + Y ) +XY.

Squaring once more, we obtain

XY (2−X)(2− Y ) = [2− (X + Y ) +XY ]2 .

Upon simplification, one gets

(X + Y )2 − 4(X + Y ) + 4 = 0,

whence x2 + y2 = X + Y = 2.

Solution 2 (Abusing uniqueness). Suppose x = y. We thus get x
√
2− x2 = 1, whence

x = y = 1. Since x2 + y2 is a constant (by the way the question is asked), we have
x2 + y2 = 2.

Question 16 [Ans: 17]

A convex polygon has n sides such that no three diagonals are concurrent. It is known
that all its diagonals divide the polygon into 2500 regions. Determine n.

Solution. Let P be a convex polygon with n sides such that no three diagonals are
concurrent. By Euler’s formula, we have

V − E + F = 1,

where V , E and F are the number of vertices, edges and faces of P respectively. Note
that we disregard the region “outside” P . Observe that any four of the n vertices of P
gives a unique vertex in the interior of P . Hence, V = n +

(
n
4

)
. Next, observe that each

vertex of P has degree n− 1, while each vertex in the interior of P has degree 4. By the
degree sum formula, 2E = n(n− 1) + 4

(
n
4

)
. We hence obtain the following expression for

F :

F =

(
n

4

)
+

n(n− 3)

2
+ 1.

Setting F = 2500, we see that n = 17.
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Question 17 [Ans: 4]

Find the number of integers n between −2029 and 2029 inclusive such that (n+2)2+n2

is divisible by 2029.

Solution. Re-expressing the given condition in the language of modular arithmetic, we
get (n+ 2)2 + n2 ≡ 0 (mod 2029). Simplifying, we obtain

(n+ 1)2 ≡ −1 (mod 2029). (1)

Now observe that (
−1

2029

)
= (−1)

2029−1
2 = 1,

where
(
a
p

)
is the Legendre symbol of a and p. We have hence established that −1 is

a quadratic residue modulo 2029 (i.e. there exists some integer m such that m2 ≡ −1
(mod 2029)). There are hence two integer solutions to (1). However, since the solutions
are 2029-periodic, we get a total of 4 solutions.

Question 18 [Ans: 2516]

Let f be a function such that for any real number x, we have f(x)+2f(2−x) = x+x2.
Find the value of f(1) + f(2) + f(3) + · · ·+ f(34).

Solution. Let S =
∑34

n=1 f(n) and T =
∑1

n=−32 f(n). From the given equation, we have

S + 2T =
34∑
n=1

(
n+ n2

)
. (1)

Now consider the transformation x 7→ 2−x. We get f(2−x)+2f(x) = (2−x)+ (2−x)2.
Hence,

T + 2S =
34∑
n=1

[
(2− n) + (2− n)2

]
. (2)

Simultaneously solving (1) and (2) yields

S =
1

3

34∑
n=1

(
2
[
(2− n) + (2− n)2

]
− (n+ n2)

)
= 2516.

Question 19 [Ans: 761]

Find the largest possible positive prime integer p such that p divides

S(p) = 1p−2 + 2p−2 + 3p−2 + 4p−2 + 5p−2 + 6p−2 + 7p−2 + 8p−2.

Solution. Multiplying S(p) through by 8! yields

8!

1
· 1p−1 +

8!

2
· 2p−1 + · · ·+ 8!

8
· 8p−1 ≡ 0 (mod p).

However, Fermat’s little theorem states that ap−1 ≡ 1 (mod p) for all natural numbers a
such that p ∤ a. Assuming that p > 8, we have that

8!

1
+

8!

2
+ · · ·+ 8!

8
≡ 0 (mod p).

The LHS works out to be 109584 = 24 · 32 · 761. Hence, the largest possible p is 761.
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Question 20 [Ans: 1009]

Let f be a function such that f(x)+ f( 1
1−x) = 1+ 1

x for all x /∈ {0, 1}. Find the value
of ⌊180 · f(10)⌋.

Solution. Substituting x = 10, we get

f(10) + f(−1
9) =

11

10
.

Substituting x = −1
9 , we get

f(−1
9) + f( 9

10) = −8.

Substituting x = 9
10 , we get

f( 9
10) + f(10) =

19

9
.

Solving the three equations simultaneously, we get 180 · f(10) = 1009.

Question 21 [Ans: 2]

Let C be a circle with equation (x − a)2 + (y − b)2 = r2, where at least one of the
a and b are irrational numbers. Find the maximum possible numbers of points (p, q)
on C where both p and q are rational numbers.

Solution. Observe that it is possible for a circle with “irrational centre” to have two
rational points. For instance, the circle with centre (0,

√
2) and radius 3 contains the

rational points (−1, 0) and (1, 0).
We now show that three or more rational points is possible only if the coordinates of

the centre of the circle are rational. Suppose there exists a circle with three rational
points (P , Q and R). Then the gradients of chords PQ and QR are rational. Thus, the
gradients of the perpendicular bisector of PQ and QR are also rational. It follows that the
equation of the perpendicular bisector of PQ and QR have rational coefficients. However,
the perpendicular bisectors of any two chords must meet in the centre, implying that the
coordinates of the centre are rational. This concludes the proof.

Question 22 [Ans: 24]

On the plane there are 2024 points coloured either red or blue such that each red
point is the centre of a circle passing through 3 blue points. Determine the least
number of blue points.

Solution. Let there be b blue points. Observe that the absolute maximum number of red
points is equal to the number of triplets of blue points (each triplet uniquely defines a red
point). That is, there are at most

(
b
3

)
red points. We thus require

(
b
3

)
+ b ≥ 2024. The

smallest b that satisfies this is b = 24.
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Question 23 [Ans: 45]

It is given that the positive real numbers x1, . . . , x2026 satisfy
x21

x21 + 1
+· · ·+ x22026

x22026 + 1
=

2025. Find the maximum value of
x1

x21 + 1
+ · · ·+ x2026

x22026 + 1
.

Solution 1. From the given equation, we see that

2026∑
n=1

(
1− 1

x2n + 1

)
= 2025 =⇒

2026∑
n=1

1

x2n + 1
= 1.

By the Cauchy-Schwarz inequality, one thus has(
2026∑
n=1

xn
x2n + 1

)2

≤

2026∑
n=1

(
xn√
x2n + 1

)2
2026∑

n=1

(
1√

x2n + 1

)2
 = 2025.

The maximum is thus 45.

Solution 2 (Abusing symmetry). Observe that the given expressions are all symmetric

polynomials. Letting x1 = x2 = x3 = · · · = x2026, one gets that 2026·
x2
i

x2
i+1

= 2025, whence

x2i +1 = 2026 and xi = 45. Thus, the expression in question evaluates to 2026 · 45
2026 = 45.

Question 24 [Ans: 441]

Let n denote the number of ways of arranging all the letters of the word MATHE-
MATICS in one row such that

• both M’s precede both T’s; and

• neither the two M’s nor the two T’s are next to each other.

Determine the value of n
6! .

Solution. To ensure that both M’s are both T’s are not adjacent to each other, we
consider the second M and the letter in front of it as one group, and the first T and the
letter after it as one group. This gives a total of 9 groups. Since there are 4 groups with
M’s and T’s, we have

(
9
4

)
ways to arrange the M’s and T’s. Meanwhile, there are 7!

2! ways
to arrange the remaining letters (note that we divide by 2! to account for the double A).
Hence, n =

(
9
4

)
· 7!
2! , whence

n
6! = 441.
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Question 25 [Ans: 146]

The incircle of the triangle ABC centred at I touches the sides BC, CA, AB at D,
E, F respectively. Let D′ be the intersection of the extension of ID with the circle
through B, I, C; E′ be the intersection of the extension of IE with the circle through
A, I, C; and F ′ the intersection of the extension of IF with the circle through A, I,
B. Suppose AB = 52, BC = 56, CA = 60. Find DD′ + EE′ + FF ′.

A

BC D

E

F

I
s
−
a

s
−
c

s− c s− b

s−
a

s−
b

Solution. It is well known that the points tangents to the incircle divide the triangle into
lengths of s − a, s − b, s − c, as shown in the figure above. Here, s is the semiperimeter
1
2(a+ b+ c), a = BC, b = CA and c = AB.

From Heron’s formula, one has [ABC] =
√
s(s− a)(s− b)(s− c). Thus, the inradius r

is given by r = 1
s

√
s(s− a)(s− b)(s− c).

We now formulate equations involving DD′, EE′ and FF ′. Invoking the power of a
point theorem in the circumcircle of △BIC, one has (s − c)(s − b) = r ·DD′. Likewise,
we obtain the formulae (s− c)(s− a) = r · EE′ and (s− a)(s− b) = r · FF ′. Thus,

DD′ + EE′ + FF ′ =
(s− a)(s− b) + (s− b)(s− c) + (s− c)(s− a)

r
= 146.
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10.3.2. Round 2 Solutions

Resources: Review by Way Tan, Review by Glen Lim, AoPS threads

Question 1

In triangle ABC, ∠B = 90◦, AB > BC, and P is the point such that BP = BC and
∠APB = 90◦, where P and C lie on the same side of AB. Let Q be the point on AB
such that AP = AQ, and let M be the midpoint of QC. Prove that the line through
M parallel to AP passes through the midpoint of AB.

A

B C

P

Q

M

Solution. We will use coordinate bashing to solve this problem. Firstly, let A(0, a),
B(0, 0), and C(1, 0). Note that we fix C(1, 0) as we can always scale the triangle to make
BC = 1.

Since BP = BC = 1, we know that P lies on the unit circle x2 + y2 = 1. Furthermore,
since ∠APB = 90◦, P also lies on the circle with diameter AB, which has equation
x2+(y− 1

2a)
2 = (12a)

2. Solving the two equations simultaneously, along with the constraint

x > 0 (since P and C lie on the same side of AB), we get P ( 1a
√
a2 − 1, 1a).

Now note that AQ = AP =
√

( 1a
√
a2 − 1)2 + ( 1a − a)2 =

√
a2 − 1. Hence, Q(0, a −

√
a2 − 1). Thus, M(12 ,

1
2(a−

√
a2 − 1)).

Note that the gradient of AP is a−1/a

0−
√
a2−1/a

= −
√
a2 − 1. Let l be the line passing

through M parallel to AP . By the point-slope formula, l has the equation

l : y − a−
√
a2 − 1

2
= −

√
a2 − 1

(
x− 1

2

)
.

When x = 0, we have y = a
2 . Hence, l passes through (0, 12a), which is the midpoint of

AB as desired.

Remark. The condition AB > BC is equivalent to a > 1, which is crucial in ensuring that√
a2 − 1 remains real.

https://www.youtube.com/watch?v=0MPzDde9pgU
https://simoxmenblog.blogspot.com/2024/06/smo-open-2024-speedrun.html
https://artofproblemsolving.com/community/c3938457_2024_singapore_mo_open
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Question 2 [Ans: 1
2n(n+ 1)]

Let n be a fixed positive integer. Find the minimum value of

x31 + · · ·+ x3n
x1 + · · ·+ xn

where x1, x2, . . . , xn are distinct positive integers.

Solution (KHOMNYO2). Without loss of generality, suppose x1 < x2 < · · · < xn. We begin
by showing

∑n
i=1 x

3
i ≥ (

∑n
i=1 xi)

2 via induction. The case where n = 1 is trivial. Suppose

that
∑k

i=1 x
3
i ≥ (

∑k
i=1 xi)

2 for some k. Consider (
∑k+1

i=1 xi)
2:

(
k+1∑
i=1

xi

)2

=

(
k∑

i=1

xi

)2

+ 2xk+1

k∑
i=1

xi + x2k+1

≤
k∑

i=1

x3i + 2xk+1

k∑
i=1

xi + x2k+1

=

k+1∑
i=1

x3i + xk+1

(
2

k∑
i=1

xi + xk+1 − x2k+1

)
.

It hence suffices to show that x2k+1 ≥ 2
∑k

i=1 xi+xk+1. Rearranging, we get the equivalent

statement 1
2xk+1(xk+1 − 1) ≥

∑k
i=1 xi. Indeed, we see that

xk+1(xk+1 − 1)

2
≥ xk(xk + 1)

2
= 1 + 2 + · · ·+ xk ≥ x1 + x2 + · · ·+ xk

where the last inequality holds because {x1, x2, . . . , xk} ⊆ {1, 2, . . . , xk}. This closes the
induction.

Applying our newly-established inequality to the problem at hand, we see that

x31 + · · ·+ x3n
x1 + · · ·+ xn

≥ (x1 + · · ·+ xn)
2

x1 + · · ·+ xn
≥ x1 + · · ·+ xn ≥ 1 + · · ·+ n =

n(n+ 1)

2
.

Question 3

Prove that for every positive integer n there exists an n-digit number divisible by 5n

all of whose digits are odd.

Solution. We prove via induction that for all n ∈ N, there must exist some n-digit number
an divisible by 5n all of whose digits are odd. When n = 1, it is trivial to see that a1 = 5.
Now suppose ak exists for some k ∈ N. Let S = {1, 3, 5, 7, 9}. We now show that there
exists an s ∈ S such that ak+1 = s · 10k + ak.

Observe that s·10k+ak = 5k
(
s · 2k +m

)
. Recall that 2k can only end with a 2, 4, 6, or 8

in base 10. Hence, the only residues 2k can take on modulo 5 are 1, 2, 3, and 4. Meanwhile,
s can take on any residue modulo 5. It is thus obvious that s · 2k can take on any residue
modulo 5. Hence, by picking s ≡ −m (mod 5), we will have 5k+1 | 5k

(
s · 2k +m

)
as

desired. This closes the induction.

https://artofproblemsolving.com/community/c6h3371489p31383129
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Question 4 [Ans: n+ 1]

Alice and Bob play a game. Bob starts by picking a set S consisting of M vectors of
length n with entries either 0 or 1. Alice picks a sequence of numbers y1 ≤ y2 ≤ · · · ≤
yn from the interval [0, 1], and a choice of real numbers x1, x2, . . . , xn ∈ R. Bob wins
if he can pick a vector (z1, z2, . . . , zn) ∈ S such that

n∑
i=1

xiyi ≤
n∑

i=1

xizi,

otherwise Alice wins. Determine the minimum value of M so that Bob can guarantee
a win.

Solution (DVDthe1st). Note that we can rewrite Bob’s winning condition as

⟨x,y⟩ ≤ max
z∈S

⟨x, z⟩.

Geometrically, Bob wins if he can find some z ∈ S whose projection on x is longer than
the projection of y on x. Hence, y must be in the convex hull of S. However, observe
that the space of all possible y forms a simplex in n-dimensional space. In particular, this
simplex has n+ 1 vertices of the form

vi = (0, . . . , 0︸ ︷︷ ︸
i

, 1, . . . , 1︸ ︷︷ ︸
n−i

).

Thus, picking S = {v0,v1, . . . ,vn} will guarantee a win for Bob, whence M = n+ 1. We
now show that this is indeed the minimum.

Suppose there exists some vi /∈ S. Alice can capitalize on this by picking

x = (−1, . . . ,−1︸ ︷︷ ︸
i

, 1, . . . , 1︸ ︷︷ ︸
n−i

) and y = vi.

This is because x ·y attains its maximum only when y = vi. Hence, Bob can only win by
choosing z = vi. But because vi /∈ S, he cannot do so and will thus lose.

Question 5 [Ans: p+ 1]

Let p be a prime number. Determine the largest possible n such that the following
holds: it is possible to fill an n × n table with integers aik in the ith row and kth
column, for 1 ≤ i, k ≤ n, such that for any quadruple i, j, k, l with 1 ≤ i < j ≤ n
and 1 ≤ k < l ≤ n, the number aikajl − ailajk is not divisible by p.

Solution (Glen Lim). Observe that the condition p ∤ aikajl − ailajk is equivalent to∣∣∣∣aik ail
ajk ajl

∣∣∣∣ ̸≡ 0 (mod p)

That is, (aik, ajk) and (ail, ajl) are linearly independent. n is thus the maximum number
of vectors in F2

p that are pairwise linearly independent.

We now show that n ≤ p + 1. Take an arbitrary non-zero vector v ∈ F2
p. Then there

are clearly p − 1 non-zero vectors parallel to v, namely v, 2v, . . . , (p − 1)v. Since there
are p2 − 1 non-zero vectors in F2

p, the maximum number of pairwise linearly independent

https://simoxmenblog.blogspot.com/2024/09/behind-scenes-of-smo-q4-part-1-proposal.html
https://simoxmenblog.blogspot.com/2024/06/smo-open-2024-speedrun.html
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vectors is p2−1
p−1 = p+1. Hence, n ≤ p+1. Indeed, we can construct the following set with

p+ 1 vectors that are pairwise linearly independent:{(
1
0

)
,

(
0
1

)
,

(
1
1

)
,

(
2
1

)
, . . . ,

(
p− 1
1

)}
.

To finish off the problem, we construct a valid (p+1)×(p+1) grid. We do so as follows:

• a11 = 0 (the top left corner is 0)

• a1i = ai1 = 1 for 2 ≤ i ≤ p+1 (all other cells in the first row and first column are 1)

• aik = i − k for 2 ≤ i, j ≤ p + 1 (cells in the remaining p × p grid are the difference
between the row number and the column number)

As an example, the following grid shows the p = 5 case.

0 1 1 1 1 1

1 0 1 2 3 4

1 4 0 1 2 3

1 3 4 0 1 2

1 2 3 4 0 1

1 1 2 3 4 0

We now show that p ∤ aikajl − ailajk.
Case 1 . Consider the case where i = 1. Then a1kajl−a1lajk = ajl−ajk. However, each

cell in the jth row has a different number, whence it is clear that ajl − ajk ̸≡ 0 (mod p).
A similar argument works for k = 1.
Case 2 . Consider the case where i, k ̸= 1. Then aikajl − ailajk = (i − k)(j − l) − (i −

l)(j − k) = (i− j)(k − l), which clearly cannot be 0 modulo p.
Hence, maxn = p+ 1.
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