
1 Problems

Problem 1 (1 pt). Let an be a sequence defined by a1 = 9 and

an+1 =
2025an

2025− 2an
.

How many terms in the sequence are integers?

Problem 2 (1 pt). There are n people, each of them speaking at most 3 languages. Between
any three people, at least two speak a common language. Find the least n such that there
always exists a language spoken by at least three people.

Problem 3 (2 pts). Let x be the value of

(1 + tan 1◦) (1 + tan 2◦) (1 + tan 3◦) . . . (1 + tan 45◦) .

Determine the number of positive factors of ⌊x log2 x⌋.1

Problem 4 (2 pts). Determine the largest integer n smaller than 2127 such that(
n− 1

k

)
− (−1)k

is divisible by n for all k = 0, 1, 2, . . . , n− 1.

Problem 5 (3 pts). Let p be the largest prime that divides

1p−2 + 2p−2 + 3p−2 + · · ·+ 99p−2 + 100p−2.

Determine the number of digits of p.

Problem 6 (3 pts). Determine the product of all positive integers n with at least 4 factors
such that n is the sum of the squares of its 4 smallest factors.

Problem 7 (3 pts). Ten thousand balls labelled 1 to 10,000 are to be put into two identical
boxes so that each box contains at least one ball and the greatest common divisor of the
product of the labels of all the balls in one box and the product of the labels of all the
balls in the other box is 1. Determine the number of ways that this can be done.

Problem 8 (5 pts). Alice has 20252025 cards in a row, where the card in position i has the
label i + 2025! (mod 20252025).2 Alice starts by colouring each card either red or blue.
Afterwards, she is allowed to make several moves, where each move consists of choosing
two cards of different colours and swapping them. Determine the minimum number of
moves she has to make (assuming she chooses the colouring optimally) to put the cards
in order (i.e. card i is at position i).

1⌊X⌋ refers to the greatest integer lesser than or equal to X. For instance, ⌊π⌋ = 3, ⌊2⌋ = 2 and
⌊−1.1⌋ = −2.

22025! represents the factorial of 2025, which is defined as 2025× 2024× 2023× · · · × 3× 2× 1.
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2 Answers

27P1. 9P2. 48P3.

2127 − 1P4. 22P5. 130P6.

2561 − 1P7. 20252025 − 31010 5505P8.

3 Solutions

Problem 1

Source: Adapted from 26th PMO Qualifying II Q14

Taking reciprocals, we see that

1

an+1
=

1

an
− 2

2025
,

with 1/a1 = 1/9 = 225/2025. From here, it is easy to see that

a2 =
2025

223
, a3 =

2025

221
, a4 =

2025

219
, a5 =

2025

217
, . . . ,

that is, the denominator keeps decreasing by 2. 2025 has a total of 27 factors lesser than
or equal to 225 (accounting for negative factors), all of which are odd. Thus, the answer
is 27.

Problem 2

Source: 2011 Romanian JBMO TST #2 Q5

We claim that n = 9 is minimal. Indeed, for n ≤ 8, we can construct an example where
each language is spoken by at most 2 people. For n = 8, split the people into two groups
of 4. Set any pair of persons in each group to speak a different language for a total of
6 + 6 = 12 languages, each spoken by 2 persons, each person speaking 3 languages. For
n ≤ 8, simply remove 8− n people from the n = 8 case.

We now prove that when n = 9, there exists a language spoken by at least three people.

Claim 1. When n = 9, there always exists a language spoken by at least three people.

Proof. Seeking a contradiction, suppose each language is spoken by at most two people.
By the pigeon-hole principle, each person A can speak with at most 3 others, say B, C
and D. Likewise, E can speak with (at most) three others, say F , G and H. There is
left at least another person, say Z, and in the group A, E, Z, no language is spoken in
common, a contradiction.

Problem 3

Source: 2003 Purple Comet! Math Meet Q25

It is easy to see that

x =
(cos 1◦ + sin 1◦) (cos 2◦ + sin 2◦) . . . (cos 45◦ + sin 45◦)

cos 1◦ cos 2◦ . . . cos 45◦
.
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By R-formula, we know that cosx◦ + sinx◦ =
√
2 sin((x+ 45)◦), so

x =
√
2
45 sin 46◦ sin 47◦ . . . sin 90◦

cos 1◦ cos 2◦ . . . cos 45◦
.

Since cosx◦ = sin((90− x)◦), the expression simplifies to

x =
√
2
45 cos 44◦ cos 43◦ . . . cos 0◦

cos 1◦ cos 2◦ . . . cos 45◦
=

√
2
45 cos 0◦

cos 45◦
=

√
2
46

= 223.

Thus,
x log2 x = 223 · 231,

whence the number of factors is (23 + 1)(1 + 1) = 48.

Problem 4

Source: Adapted from 2020 SMO Open Round 1 Q18

Claim 2. If n is prime, then
(
n−1
k

)
− (−1)k ≡ 0 (mod n) for all 0 ≤ k ≤ n− 1.

Proof. Recall that (
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
for 1 ≤ k ≤ n− 1. Note also that

(
n
k

)
is divisible by n for 1 ≤ k ≤ n− 1. Thus,(

n− 1

k − 1

)
+

(
n− 1

k

)
≡ 0 (mod n).

We now prove our claim by induction. The base case k = 1 is trivial:(
n− 1

1

)
≡ −

(
n− 1

1− 1

)
= −1 = (−1)1 (mod n).

Now suppose
(
n−1
m

)
≡ (−1)m for some positive integer m. Then(

n− 1

m+ 1

)
≡ −

(
n− 1

m

)
= −(−1)m = (−1)m+1 (mod n).

This closes the induction and we are done.

2127 − 1 is a Mersenne prime, hence the largest n is 2127 − 1.

Problem 5

Source: Adapted from 2024 SMO Open Round 1 Q19

Multiplying the given expression by 100! yields

100!

1
· 1p−1 +

100!

2
· 2p−1 + · · ·+ 100!

100
· 100p−1 ≡ 0 (mod p).

However, Fermat’s Little Theorem states that ap−1 ≡ 1 (mod p) for all natural numbers
a such that p ∤ a. Assuming that p > 100, we have that

100!

1
+

100!

2
+ · · ·+ 100!

100
≡ 0 (mod p).

The largest prime factor of the LHS is 2284070837741348234617 which has 22 digits, so
the answer is 22.
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Problem 6

Source: 2018 SMO Junior Round 2 Q4

Let the smallest factors of n be d1, d2, d3, d4, arranged in increasing order (i.e. d1 <
d2 < d3 < d4), so that

n = d21 + d22 + d23 + d24.

If n is odd, then all its factors must also be odd, but this implies

n ≡ 12 + 12 + 12 + 12 ≡ 0 (mod 2),

a contradiction, so n must be even. From this, we immediately gather d1 = 1 and d2 = 2,
so

n− 5 = d23 + d24.

Since n is even, the LHS (and thus the RHS) is odd, so exactly one of d3 and d4 is even.
Case 1 . Suppose d3 is even. Write d3 = 2m, where m is a positive integer. Since

d3 > d2 = 2, we require m > 1. If m > 2, then m is a divisor between d2 and d3, a
contradiction. So we must have m = 2, whence d3 = 4. Thus,

n = 12 + 22 + 42 + d24 = 21 + d24,

since d4 | n, we see that d4 | 21, so d4 = 7 (note that d4 ̸= 3 since d4 > d3 = 4). But this
yields n = 70, which is not divisible by d3 = 4, so we have no solution in this case.

Case 2 . Suppose d4 is even. Write d4 = 2m, where m is a positive integer. If m = 2,
then d4 = 4, which leaves d3 = 3, yielding n = 30. But 30 is not divisible by 4, so n = 30
is not a solution. If m > 2, then m is also a divisor, so d3 = m, which gives

n = 12 + 22 +m2 + (2m)2 = 5 + 5m2.

Since m | n, we see that m | 5, whence m = 5, yielding n = 130, which can be verified to
be a solution.
Thus, the only solution is n = 130, and that is our answer.

Problem 7

Source: Adapted from 2018 SMO Junior Round 2 Q3

Let P< be the set of all primes between 1 and 5000, and let P> be the set of all primes
between 5000 and 10,000, along with the number 1. Call also the two boxes Box A and
Box B.
Observe that if n is in Box A, then all its factors (and multiples) must also be in Box

A. Without loss of generality, suppose 2 is in Box A. Let p ∈ P<. Then 2p < 10, 000 and
has a factor of 2, so it must be in Box A. But p is also a factor of 2p, so p must be in Box
A as well. From this, it follows that any integer that has a prime factor in P< must be in
Box A. Thus, the only integers not guaranteed to be in Box A are precisely the elements
of P>. Since |P>| = 561, it follows that there are 2561 − 1 ways to distribute primes in
P> among the two boxes. Note that we subtract one as we cannot distribute all primes
to Box A, since Box B would be empty which is not allowed.
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Problem 8

Source: Adapted from 2022 SMO Open Round 2 Q4

We prove a more general result, where Alice starts of with n cards with a label offset of
k. We claim that Alice requires a minimum of n− gcd(n, k) moves.
Consider a graph over vertices labelled 1 through n. If the card at position i has label

j, draw a directed edge from i to j. Since each vertex has indegree 1 and outdegree 1, the
graph is composed of disjoint cycles. We now consider the effect of swapping two cards
(say, at positions i and j) on our graph.

Claim 3. If the cards at i and j were initially in the same cycle, then the cycle will split
into two cycles upon swapping the two cards.

Proof. Without loss of generality, let the cycle that i and j are in be

(i′, i, i′′, . . .︸︷︷︸
I

, j′, j, j′′, . . .︸︷︷︸
J

).

Consider the effect of swapping i and j on the cycle. Since the label on the card at position
i′ is still i, we see that i′ still maps to i. Similarly, j′ → j. However, the card at position
j (originally at position i) now has the label i′′, hence we now have j → i′′. Similarly,
i → j′′. It is hence easy to see that the cycle now splits as

(i′, i, j′′, . . .︸︷︷︸
J

)(j′, j, i′′, . . .︸︷︷︸
I

).

Claim 4. If the cards at i and j were initially in different cycles, then the two cycles will
merge upon swapping the two cards.

Proof. Using a similar argument as Claim 3, the cycles

(i′, i, i′′, . . . .︸︷︷︸
I

)

and
(j′, j, j′′, . . .︸︷︷︸

J

)

will merge into a single cycle

(i′, i, j′′, . . .︸︷︷︸
J

, j′, j, i′′, . . .︸︷︷︸
I

)

upon swapping positions i and j.

From Claims 3 and 4, it follows that every move, the number of cycles increases by at
most one. We now show that the initial number of cycles is gcd(n, k).

Claim 5. The number of cycles is initially gcd(n, k).

Proof. Let D = {d ∈ Zn | 1 ≤ d ≤ gcd(n, k)}. Let C(m) be the cycle starting from some
integer m. Then C(m) is clearly of the form

(m,m+ k,m+ 2k,m+ 3k, . . . ,m+ (l − 1)k),

where l = n/ gcd(n, k) is the smallest positive integer such that lk ≡ 0 (mod n).
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Consider C(m) for any choice of m. Since k ≡ 0 (mod gcd(n, k)), it follows that each
member of C(m) is congruent to m (mod gcd(n, k)). In addition, from the minimality of
l, all elements of C(m) are distinct. Thus, there is exactly one d ∈ D that is also in C(m)
(namely, d ≡ m (mod gcd(n, k))). Conversely, each d ∈ D has a unique cycle m that it is
a member of. Hence, the number of cycles is gcd(n, k) as desired.

Since there are n cycles when all cards are in their correct position, Alice must make at
least n− gcd(n, k) moves. We now construct a strategy that guarantees Alice can indeed
win in n− gcd(n, k) moves.

Claim 6. Alice can win in n− gcd(n, k) moves.

Proof. Let all cards with labels 1, 2, . . . , gcd(n, k) be red, and all other cards be blue. By
Claim 5, each cycle initially contains exactly one red card. For each cycle, keep swapping
the red card with the card that is pointing towards it. Doing so removes one blue card
every move. Since the cycle has length n/ gcd(n, k), each cycle requires n/ gcd(n, k) − 1
moves to completely sort it. Since there are gcd(n, k) cycles to sort, Alice can sort all
cycles within n− gcd(n, k) moves, as desired.

In our problem, n = 20252025 and k = 2025!. A simple application of Legendre’s formula
gives 2025! = 310105505 . . . , so the answer is 20252025 − 31010 5505.
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