asdia.sty is a $\LaTeX$ style file for homework and assignments based on Pascal Michaillat’s latex-math .

Documentation

Packages

asdia.sty automatically loads the following packages (with libraries in brackets):


Brackets

Bracket Example Usage Example Output
Parenthesis \bp{x} $(x)$
Square Brackets \bs{x} $[x]$
Curly Brackets \bc{x} $\{x\}$
Absolute Value \abs{x} $\lvert x \rvert$
Norm \norm{x} $\lVert x \rVert$
Floor \floor{x} $\lfloor x \rfloor$
Ceiling \ceil{x} $\lceil x \rceil$
Parenthesis for Function Arguments f \of{x} $f{(x)}$

Functions and Operators

Common Functions

Command Example Usage Example Output
Logarithm \ln{x + 1} $\ln(x + 1)$
Exponential \exp{x + 1} $\exp(x + 1)$
Sine \sin[n]{x} $\sin^n(x)$
Cosine \cos[n]{x} $\cos^n(x)$
Tangent \tan[n]{x} $\tan^n(x)$
Cosecant \csc[n]{x} $\csc^n(x)$
Secant \sec[n]{x} $\sec^n(x)$
Cotangent \cot[n]{x} $\cot^n(x)$
Arcsine \arcsin[n]{x} $\arcsin^n(x)$
Arccosine \arccos[n]{x} $\arccos^n(x)$
Arctangent \arctan[n]{x} $\arctan^n(x)$

Functional Operators

Command Example Usage Example Output
Inverse \inv f $f^{-1}$
Range \ran f $R_{f}$
Domain \dom f $D_{f}$
Indicator \ind{X} $\mathbf{1}_{X}$
Maximum \max[x]{y} $\operatorname{max}_x\{y\}$
Supremum \sup[x]{y} $\operatorname{sup}_x\{y\}$
Argmax \argmax $\operatorname{argmax}$
Minimum \min[x]{y} $\operatorname{min}_x\{y\}$
Infimum \inf[x]{y} $\operatorname{inf}_x\{y\}$
Argmin \argmin $\operatorname{argmin}$

Geometry

Command Example Usage Example Output
Area \area $\operatorname{Area}$
Length \length $\operatorname{Length}$
Volume \volume $\operatorname{Volume}$

Complex Numbers

Command Example Usage Example Output
Real Part \Re{z} $\operatorname{Re}(z)$
Imaginary Part \Im{z} $\operatorname{Im}(z)$
Argument \Arg{z} $\operatorname{arg}(z)$
Complex Conjugate z\cconj $z^\ast$

Calculus

Command Example Usage Example Output
Differential \d x $\mathrm{d} x$
Ordinary Derivative (display) \der[n]{y}{x} $\dfrac{\mathrm{d}^n y}{\mathrm{d}x^n}$
Ordinary Derivative (text) \derx[n]{y}{x} $\mathrm{d}^n y / \mathrm{d}x^n$
Partial Derivative (display) \pder[n]{y}{x} $\dfrac{\partial^n y}{\partial x^n}$
Partial Derivative (text) \pderx[n]{y}{x} $\partial^n y / \partial x^n$
U-Substitution \usub{u &= 2x\\du &= 2dx} $$\begin{aligned}u &= 2x \\ du &= 2dx\end{aligned}$$
Evaluation of Derivative \evalder{\der{y}{x}}{y = 0} $\left. \dfrac{\mathrm{d} y}{\mathrm{d} x} \right|_{y = 0}$
Evaluation of Integral \evalint{F(x)}{a}{b} $\left[F(x)\right]_{a}^{b}$

Linear Algebra

Command Example Usage Example Output
Boldface Vector \vec{v} $\mathbf{v}$
2D Column Vector \cvecii{x}{y} $\begin{pmatrix}x\\ y\end{pmatrix}$
3D Column Vector \cveciii{x}{y}{z} $\begin{pmatrix}x\\ y \\ z\end{pmatrix}$
Dot Product \vec{u} \dotp \vec{v} $\mathbf{u} \cdot \mathbf{v}$
Cross Product \vec{u} \crossp \vec{v} $\mathbf{u} \times \mathbf{v}$
Boldface Matrix \matr{A} $\bm{A}$
Trace \tr{X} $\operatorname{tr}(X)$
Determinant \det{X} $\det(X)$

Statistics

Command Example Usage Example Output
Variance \var[t]{X} $\operatorname{var}_t (X)$
Covariance \cov[t]{X} $\operatorname{cov}_t (X)$
Correlation \corr[t]{X} $\operatorname{corr}_t (X)$
Standard Deviation \sd[t]{X} $\operatorname{sd}_t (X)$
Standard Error \se[t]{X} $\operatorname{se}_t (X)$
Expectation \E[t]{X} $\mathbb{E}_t (X)$
Probability \P[t]{X} $\mathbb{P}_t (X)$

Misc

Command Example Usage Example Output
Degree Symbol 180 \deg $180^{\circ}$
Significant Figures \tosf n $\text{ ($n$ s.f.)}$
Decimal Places \todp n $\text{ ($n$ d.p.)}$
Reject \reject{\because x > 0} $\qquad \text{(rej. $\because x > 0$)}$
Newton-Raphson Method \nrm{x_0}{f} $x_0 - \dfrac{f(x_0)}{f’(x_0)}$
Cases \case{1}{$x$ is odd} $\textbf{Case 1: $x$ is odd}$

Accents

Accent Example Usage Example Output
Overline \ol{x} $\overline{x}$
Over Right Arrow \oa{x} $\overrightarrow{x}$
Underline \ul{x} $\underline{x}$
Hat \wh{x} $\widehat{x}$
Tilde \wt{x} $\widetilde{x}$

Letters

Calligraphic Letters

Command Output
\Ac $\mathcal{A}$
\Bc $\mathcal{B}$
\Cc $\mathcal{C}$
\Dc $\mathcal{D}$
\Ec $\mathcal{E}$
\Fc $\mathcal{F}$
\Gc $\mathcal{G}$
\Hc $\mathcal{H}$
\Ic $\mathcal{I}$
\Jc $\mathcal{J}$
\Kc $\mathcal{K}$
\Lc $\mathcal{L}$
\Mc $\mathcal{M}$
\Nc $\mathcal{N}$
\Oc $\mathcal{O}$
\Pc $\mathcal{P}$
\Qc $\mathcal{Q}$
\Rc $\mathcal{R}$
\Sc $\mathcal{S}$
\Tc $\mathcal{T}$
\Uc $\mathcal{U}$
\Vc $\mathcal{V}$
\Wc $\mathcal{W}$
\Xc $\mathcal{X}$
\Yc $\mathcal{Y}$
\Zc $\mathcal{Z}$

Blackboard Letters

Command Output
\Q $\mathbb{Q}$
\N $\mathbb{N}$
\Z $\mathbb{Z}$
\R $\mathbb{R}$
\C $\mathbb{C}$

Greek Letters

Command Output
\a $\alpha$
\b $\beta$
\c $\chi$
\de $\delta$
\D $\Delta$
\e $\epsilon$
\ve $\varepsilon$
\f $\phi$
\vf $\varphi$
\g $\gamma$
\G $\Gamma$
\h $\eta$
\i $\iota$
\k $\kappa$
\vk $\varkappa$
\l $\lambda$
\L $\Lambda$
\m $\mu$
\n $\nu$
\o $\omega$
\O $\Omega$
\p $\psi$
\r $\rho$
\vr $\varrho$
\s $\sigma$
\vs $\varsigma$
\S $\Sigma$
\t $\theta$
\u $\upsilon$
\U $\Upsilon$
\x $\xi$
\X $\Xi$
\z $\zeta$