
On the Critical Density of
Minesweeper Boards

Authors

Eytan Chong
Sim Hayden
Ma Weiyi

Brandan Goh Yu Hong

Teacher-Mentor

Mdm. Khoo Geok Hwa

Dunman High School

May 3, 2024

Abstract

We introduce the critical density of a Minesweeper board and investigate how
the dimensions of a board affects it. We first present a mathematical analysis
of Minesweeper gameplay and implement a Minesweeper solver. We then
model our simulated results with the logistic function in order to calculate
the critical densities of various board sizes. Lastly, we discuss the general
trend of the calculated critical densities and show that the critical density
converges to approximately 0.159 for all sufficiently large board sizes.
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1 Introduction

Minesweeper is a single-player logic puzzle played on a grid of square cells. A
number of mines are randomly distributed throughout the board. Initially, all cells
are unopened. The player can open a cell by clicking it. If a mined cell is opened, the
player loses. If a safe cell is opened, the number of adjacent mined cells is revealed.
To win, the player must open all safe cells.

Figure 1.1

An example of a won game. All safe cells
have been opened. Here, the numbers rep-
resent the number of mined cells adjacent
to each cell. Note that the flags represent
mined cells that have been identified by
the player.

Figure 1.2

An example of a lost game. A mined cell
has been opened. It is marked by the mine
with a red background.

1.1 Research Problem

In this paper, we investigate the relationship between the critical density and the
dimensions of a Minesweeper board. We define the critical density of a Minesweeper
board to be the maximum density of mines (the ratio of the number of mines to the
number of cells) that allows the player to win the game with certainty, assuming
perfect play. In other words, below the critical density, a player playing perfectly
can expect to win almost every game, while above the critical density, the same
player can expect to lose almost every game.

1.2 Literature Review

The topic of critical densities in Minesweeper has been researched on before in the
literature. Dempsey and Guinn [1] demonstrated that the critical densities of select
square boards was between 0.20 and 0.30. However, the study was limited to a solver
that considered only inference; no guesses were taken. Sinha et al. [2] have also
observed a similar range when testing Minesweeper solvers. Percolation theory has
also been used by Qing et al. [3] to determine the critical densities of select square
boards, giving a more precise estimate of 0.2035 ± 0.002, though their definition
of “critical density” differs from the one defined here. Nevertheless, our research
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provides a more complete understanding of the critical density by accounting for
guesses and boards of all sizes.

1.3 Outline

The outline of the paper is as follows. Sections 2 through 6 goes through the develop-
ment of our Minesweeper solver. We begin by introducing notation and definitions
for important objects in Minesweeper in Section 2. We then cover inference and
guessing, the two major techniques used in solving Minesweeper, in Sections 3 and 4
respectively. In Section 5, we show that starting in the corner is optimal. Lastly, in
Section 6, we consolidate the previous three sections and present an implementation
of our solver.

In Section 7, we introduce the logistic function as a curve fitting model. We
then define and derive a closed form for the critical density of a Minesweeper board.
Next, in Section 8, we describe our methodology for finding the critical density of
a given board size. In Section 9, we present and analyse our results. Finally, we
conclude our paper in Section 10.

1.4 Claim of Originality

For clarity, we assert the originality of all lemmas, propositions, and algorithms
presented within this paper. All mathematical constructs put forth in this work
have been meticulously derived and formulated through independent research. Un-
less explicitly stated otherwise, the definitions provided in this paper are also fully
original.

2 Preliminaries

In this section, we introduce notation for important objects in Minesweeper. We
first define a Minesweeper board in Section 2.1. Then, in Section 2.2, we define
other objects of interest. Throughout this section, we build upon the notation used
by Crow [4] and Huang [5].

2.1 Minesweeper Board

Definition 1. A Minesweeper board B is given by the 6-tuple

B = (D,A,M,S,M, S) (2.1)

where:

• D represents the dimensions of B,

• A is the set of cells on B,

• M and S represent the assigned state of B, and

• M and S represent the known state of B.
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Definition 2. The dimensions D of a board is defined as

D = (p, q,m) (2.2)

where p, q ∈ N are the length and width of the board respectively and m ∈ N0

is the number of mines on the board.

In writing, it is conventional to describe a board with dimensions (p, q,m) as a
“p× q /m board”.

Definition 3. Given a board with dimensions D = (p, q,m), the set of all
cells on the board is notated A with the definition

A = [0, p)× [0, q) ⊂ Z2 (2.3)

Definition 4. M ⊆ A is the set of all cells on a given board that contain
mines. Elements ofM are termed “mined cells”.

Definition 5. S ⊆ A is the set of all cells on a given board that do not
contain mines. Elements of S are termed “safe cells”.

SinceM and S are a partition of A, they obey the relation

M = S∁ (2.4)

From Definition 2, we also have

|M| = m (2.5)

Definition 6. M ⊆M is the set of all cells on a given board that are known
to be inM.

Definition 7. S ⊆ S is the set of all cells on a given board that are known
to be in S.

2.2 Miscellaneous Definitions

Definition 8. U ⊆ A is the set of all cells on a given board whose states are
unknown.

U = (M ∪ S)∁ (2.6)

Definition 9. Given a cell a ∈ A, the set of cells adjacent to a is given by
the function K : A → 2A with the definition

K(a) = {b ∈ A : DChebyshev(a, b) = 1} (2.7)
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Figure 2.1

As an example, let a be the green-coloured
cell in Figure 2.1. Then, K(a) is the set
of the red-coloured cells.

Definition 10. Given a cell a ∈ A, the set of cells adjacent to a that are also
in a set X ⊆ A is given by the function KX : A → 2A with the definition

KX(a) = K(a) ∩X (2.8)

Definition 11. The mine count (number of adjacent mined cells) of a cell
a ∈ S is given by N : S → Z such that

N(a) = |KM(a)| (2.9)

Definition 12. The set B ⊆ S is defined as

B = {a ∈ S : |KU(a)| > 0} (2.10)

Elements of B are termed “boundary cells”.

Definition 13. Given two boards B1 and B2, we say B2 is a continuation of
B1, denoted B1 ⇒ B2, if the following statements hold.

D1 = D2 (2.11)

M1 ⊆M2 (2.12)

S1 ⊆ S2 (2.13)

Definition 14. The set of all boards is denoted B.

3 Inference Algorithm

Inference is one of the two major techniques used in solving Minesweeper. Put
simply, inference involves making deductions about the state of unknown cells based
on the information available.

In this section, we discuss a novel algorithm that can infer the state of unknown
cells. In Section 3.1, we show how solving Minesweeper can be reduced into a
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constraint satisfaction problem. We then sketch an outline of our inference algorithm
in detail in Section 3.2. Next, in Section 3.3, we discuss the individual processes that
make up the inference algorithm in detail. Finally, we present an implementation
of our inference algorithm in Section 3.4.

3.1 Constraint Satisfaction Problem

The main idea behind inference involves viewing the problem of solving Minesweeper
into a constraint satisfaction problem [6]. We can do so by transforming all the
information present on the board into a system of constraints and solving it. The
most natural and common transformation is the indicator function ofM.

Definition 15. The indicator function ofM is the function 1M : A → {0, 1}
such that

1M(a) =

{
0, a /∈M
1, a ∈M

(3.1)

Proposition 1. |X ∩M| =
∑

a∈X 1M(a) for all X ⊆ A.

Proof. ∑
a∈X

1M(a) =
∑

a∈X∩M

1M(a) +
∑

a∈X∩S

1M(a)

=
∑

a∈X∩M

1 +
∑

a∈X∩S

0

= |X ∩M|

(3.2)

With Proposition 1, we can easily express our Minesweeper board as a system
of constraints using 1M. We introduce two types of constraints, namely local con-
straints and global constraints.

Definition 16. The local constraint of a cell a ∈ S is defined as

N(a) =
∑

b∈K(a)

1M(b) (3.3)

Definition 17. The global constraint of a board with m mines is defined as

m =
∑
a∈A

1M(a) (3.4)

Remark. Here, we used the fact that N(a) = |K(a) ∩M| and m = |A ∩M|
and applied Proposition 1.

In fact, this system of constraints is all we need for inference. By solving the
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system of constraints, we can determine the state of a cell from its image under 1M.
More concretely, for all cells a ∈ A,

a ∈


M, 1M(a) = 1

S, 1M(a) = 0

U, 1M(a) unconstrained

(3.5)

3.1.1 Optimised Constraints

The astute reader would have noticed that we can optimise the computation of local
constraints by only considering unknown adjacent cells. More concretely, for some
a ∈ S,

N(a) =
∑

b∈K(a)

1M(b)

=
∑

b∈KM (a)

1M(b) +
∑

b∈KS(a)

1M(b) +
∑

b∈KU (b)

1M(b)

= |KM(a)|+ 0 +
∑

b∈KU (a)

1M(b)

(3.6)

Observe now that if a ∈ S \ B, then |KU(a)| = 0, whence
∑

b∈KU (a) 1M(b) = 0
and there is no information about unknown cells to infer. We thus only consider the
cells in B.

Definition 18. The optimised local constraint of a cell a ∈ B is defined as

N(a)− |KM(a)| =
∑

b∈KU (a)

1M(b) (3.7)

In a similar fashion, we can disregard all cells in M ∪ S in our computation of
the global constraint since

m =
∑
a∈A

1M(a)

=
∑
a∈M

1M(a) +
∑
a∈S

1M(a) +
∑
a∈U

1M(a)

= |M |+ 0 +
∑
a∈U

1M(a)

(3.8)

Definition 19. The optimised global constraint of a board with m mines is
defined as

m− |M | =
∑
a∈U

1M(a) (3.9)

Example To illustrate the inference algorithm, consider the following 4 × 3 / 3
board in Figure 3.1.
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Figure 3.1 Figure 3.2

Applying Definitions 3.7 and 3.9, we have the following system of constraints.
Note that we do not care about cell (3, 2) as it is in the set S \ B.

N((0, 2))− |KM((0, 2))| =
∑

b∈KU ((0,2))
1M(b)

N((1, 2))− |KM((1, 2))| =
∑

b∈KU ((1,2))
1M(b)

N((2, 1))− |KM((2, 1))| =
∑

b∈KU ((2,1))
1M(b)

N((3, 1))− |KM((3, 1))| =
∑

b∈KU ((3,1))
1M(b)

m− |M | =
∑

a∈U
1M(a)

Our system of constraints quickly simplifies to



1 = 1M((0, 1))

1 = 1M((0, 1))

1 = 1M((1, 0)) + 1M((2, 0)) + 1M((3, 0))

1 = 1M((2, 0)) + 1M((3, 0))

2 = 1M((0, 1)) + 1M((0, 0)) + 1M((1, 0)) + 1M((2, 0)) + 1M((3, 0))

It is clear that 1M((0, 1)) = 1. Substituting it back into our system yields
1 = 1M((1, 0)) + 1M((2, 0)) + 1M((3, 0))

1 = 1M((2, 0)) + 1M((3, 0))

1 = 1M((0, 0)) + 1M((1, 0)) + 1M((2, 0)) + 1M((3, 0))

Subtracting the second equation from the first equation gives us the constraint

1M((1, 0)) = 0

Similarly, subtracting the first equation from the third equation gives

1M((0, 0)) = 0

Substituting these values back into the system leaves us with the single constraint

1 = 1M((2, 0)) + 1M((3, 0))

Observe now that both 1M((2, 0)) = 0 and 1M((2, 0)) = 1 yield valid solutions to
the above constraint. Similarly, both 1M((3, 0)) = 0 and 1M((3, 0)) = 1 yield valid
solutions. We thus have that 1M((2, 0)) and 1M((3, 0)) are both unconstrained.

To sum, we have inferred the following assignments.
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1M((0, 1)) = 1

1M((0, 0)) = 0

1M((1, 0)) = 0

1M((2, 0)) unconstrained

1M((3, 0)) unconstrained

By Relation 3.5, we conclude that (0, 1) ∈ M and (0, 0), (1, 0) ∈ S, while (2, 0)
and (3, 0) remain in U . This finally gives us the board depicted in Figure 3.2.

3.2 Sketch

In order to discuss our implementation of the inference algorithm, we must first
understand the processes and decisions we made in the example above that allowed
us to solve the board.

We first converted the given board state into a system of constraints using Formu-
las 3.7 and 3.9. Then, we observed that there was a trivial solution to a constraint,
namely 1M((0, 1)) = 1, and substituted it back into the system of constraints. As
there were no more trivial solutions, we began constructing new constraints by sub-
tracting existing constraints from one another. This led to the creation of two new
trivial solutions (1M((0, 0)) = 0 and 1M((1, 0)) = 0). Once again, we substituted
them back into the system. Finally, we were left with a single constraint. With no
more trivial solutions and no new constraints to construct, we could not infer any
further and thus halted.

Indeed, this simple example is enough to provide an intuition for our inference
algorithm. The flow of the algorithm is illustrated in Figure 3.3.

3.3 Processes

In this section, we discuss the details of the four main processes of our inference
algorithm. As listed in Figure 3.3, they are:

1. Deriving constraints (Section 3.3.1)

2. Solving trivial constraints (Section 3.3.2)

3. Constructing constraints (Section 3.3.3)

4. Assigning solved cells (Section 3.3.4)

To aid our discussion of the various processes, we first introduce the following
definitions.

Definition 20. A constraint C is defined by the tuple

C = (s,X) (3.10)

where s ∈ N0 is said to be the sum of C and X ⊆ A is said to be the cells of
C.

More familiarly, a constraint (s,X) can be expressed as s =
∑

a∈X 1M(a).
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Start

Derive con-
straints from
board state

Solve trivial
constraints

Construct
constraints

Any new constraints?

Assign all
solved cells
to M or S

End

Yes

No

Figure 3.3
A flowchart of our inference algorithm.
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Definition 21. The set of all true constraints (within the context of the same
board) is denoted C.

Definition 22. A constraint (s,X) ∈ C is said to be solved if

|X| = 1 (3.11)

Figure 3.4

Consider the 5 × 5 / 5 board on the
left. The constraint (2, {(0, 1), (1, 1)}) is
in C since it is true. The constraint
(2, {(3, 1), (4, 1)}) is not in C since it is
false.

3.3.1 Deriving Constraints

This process entails the derivation of constraints from a given board state. As
previously discussed in Section 3.1, we can do so by constructing the optimised
local constraints of all boundary cells and the board’s optmised global constraint.

Algorithm 3.1 Derives constraints from the given board state

Input: B ∈ B
Output: constraints ⊆ C
1: procedure DeriveConstraints(B)
2: constraints← ∅

// Add optimised local constraint for each boundary cells (see Definition 3.7)
3: for all a ∈ B do
4: constraints← constraints ∪ (N(a)− |KM(a)|, KU(a))
5: end for

// Add optimised global constraint (see Definition 3.9)
6: constraints← constraints ∪ (m− |M |, U)

7: return constraints

8: end procedure

3.3.2 Solving Trivial Constraints

As the name suggests, this process solves constraints that have an obvious solution.
In order to define what makes a solution obvious, consider the constraint C =

(s,X), where X ⊆ U . There are exactly
(|X|

s

)
ways that C can be solved. Observe

that
(|X|

s

)
= 1 if and only if s is 0 or |X|, whence C has a unique solution and is

thus considered trivial.
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Definition 23. A constraint (s,X) ∈ C is said to be trivial if one of the
following two conditions hold:

s = 0 (3.12)

s = |X| (3.13)

Lemma 1. For finite sets A and B, if A ∩B = ∅, then |A|+ |B| = |A ∪B|.

Proof. The inclusion-exlusion principle states |A ∪ B| = |A| + |B| − |A ∩ B|.
Since A ∩ B = ∅, it follows that |A ∩ B| = 0. Our desired result follows
immediately.

Lemma 2. For finite sets A and B, if A ⊆ B and |A| = |B|, then A = B.

Proof. Let C = B \A. Then A∪C = B, whence |A∪C| = |B|. By Lemma 1,
|A|+ |C| = |B|, hence |C| = 0. Thus, C = ∅ and A = B.

Proposition 2. (0, X) ∈ C =⇒ ∀ a ∈ X : (0, a) ∈ C

Proof. By Proposition 1, it suffices to show that |X ∩M| = 0 implies X ⊆ S.
Since |X ∩ M| = 0 = |∅| and ∅ ⊆ X ∩ M, by Lemma 2, we have that
X ∩M = ∅. Thus, X ⊆M∁ = S.

Proposition 3. (|X|, X) ∈ C =⇒ ∀ a ∈ X : (1, a) ∈ C

Proof. By Proposition 1, it suffices to show that |X ∩ M| = |X| implies
X ⊆ M. Observe that X ∩ M ⊆ X. By Lemma 2, X ∩ M = X, thus
X ⊆M.

Algorithm 3.2 Solves trivial constraints

Input: constraints ⊆ C
Output: solvedConstraints ⊆ C
1: procedure SolveTrivials(constraints)
2: solvedConstraints← ∅

3: for all (s,X) ∈ constraints do
// Apply Proposition 2

4: if s = 0 then
5: for all a ∈ X do
6: solvedConstraints← solvedConstraints ∪ (0, {a})
7: end for

// Apply Proposition 3
8: else if s = |X| then
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9: for all a ∈ X do
10: solvedConstraints← solvedConstraints ∪ (1, {a})
11: end for
12: end if
13: end for

14: return solvedConstraints

15: end procedure

3.3.3 Constructing Constraints

As previously discussed, we can construct new constraints by subtracting existing
ones from one another. As an example, consider the constraints C1 = (2, {a, b, c})
and C2 = (1, {a, b}). We can subtract C2 from C1 to construct the constraint
(2− 1, {a, b, c} \ {a, b}) = (1, {c}).

It must be noted, however, that not all pairs of constraints can be subtracted;
for a pair of constraints C1 and C2 with cells X1 and X2 respectively, we require
X2 ⊂ X1 for C2 to be subtracted from C1 so as to ensure that the resultant sum∑

a∈X2\X1
1M(a) is well defined.

Definition 24. Given two constraints C1 = (s1, X1) ∈ C and C2 = (s2, X2) ∈
C such that X1 ⊃ X2, the difference C1 − C2 is defined as

C1 − C2 = (s1 − s2, X1 \X2) (3.14)

Algorithm 3.3 Constructs constraints

Input: constraints ⊆ C
Output: constructed ⊆ C
1: procedure ConstructConstraints(constraints)
2: constructed← ∅

// Iterate through all pairs of constraints
3: for all (s1, X1) ∈ constraints do
4: for all (s2, X2) ∈ constraints do

// Check that subtraction is well defined
5: if X1 ⊃ X2 then

// Subtract the two constraints (see Definition 24)
6: constructed← constructed ∪ (s1 − s2, X1 \X2)
7: end if
8: end for
9: end for

10: return constructed

11: end procedure
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3.3.4 Assigning Solved Cells

Lastly, we assign the cells of solved constraints to either M or S by checking the
sum of each solved constraint and applying Relation 3.5.

Algorithm 3.4 Assigns solved cells to M or S

Input: solvedConstraints ⊆ C
Output: M ′ ⊇M , S ′ ⊇ S
1: procedure AssignSolvedCells(solvedConstraints)
2: M ′ ←M
3: S ′ ← S
4: for all (s,X) ∈ constraints do

// Check that the constraint is solved
5: if |X| = 1 then

// Cell is safe
6: if s = 0 then
7: S ′ ← S ′ ∪X

// Cell is mined
8: else if s = 1 then
9: M ′ ←M ′ ∪X

10: end if
11: end if
12: end for

13: return M ′, S ′

14: end procedure

3.4 Implementation

Our implementation of the inference algorithm, written in pseudocode, is as follows.
The source code can be found in Annex A.1.

Algorithm 3.5 Inference algorithm

Input: B ∈ B
Output: B′ ∈ B : B ⇒ B′

1: procedure Infer(B)
2: B′ ← B
3: newConstraintsConstructed← true

4: oldConstraints← ∅

// Derive constraints from board state (see Algorithm 3.1)
5: constraints← DeriveConstraints(B)

// Keep inferring until no new constraints can be constructed
6: while newConstraintsConstructed do

// Solve trivial constraints (see Algorithm 3.2)
7: constraints← constraints ∪ SolveTrivials(constraints)
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// Construct constraints (see Algorithm 3.3)
8: constructed← ConstructConstraints(constraints)
9: constraints← constraints ∪ constructed

// Determine if any new constraints have been constructed
10: if oldConstraints = constraints then
11: newConstraintsConstructed← false

12: end if
13: oldConstraints← constraints

14: end while

// Assign solved cells to M or S (see Algorithm 3.4)
15: M ′, S ′ ← AssignSolvedCells(solvedConstraints)

16: return B′

17: end procedure

4 Guessing Algorithm

Guessing is the second major technique used in solving Minesweeper. As the name
suggests, guessing involves making educated guesses on the state of cells.

In this section, we discuss an original algorithm that determines the best cell
to be opened. In Section 4.1 we introduce the notion of safety as a metric to base
our guessing algorithm on. We then sketch an outline of our guessing algorithm in
Section 4.2. Lastly, in Section 4.3, we discuss our implementation of the guessing
algorithm while going through its individual processes in detail.

To aid our discussion, we introduce the following notation.

Definition 25. The set of all boards that continue a board B is denoted
⇒
B.

Definition 26. The set E ⊆ U is defined as

E = {a ∈ U : |KB(a)| > 0} (4.1)

Elements of E are termed “exposed cells”.

Definition 27. The set F ⊆ U is defined as

F = {a ∈ U : |KB(a)| = 0} (4.2)

Elements of F are termed “floating cells”.

4.1 Safety

Safety is the metric that we will be considering in our guessing algorithm. The
safety of a cell is defined as the probability that it is safe.
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Definition 28. The safety of a cell a ∈ U is denoted PS(a) and is defined as

PS(a) = P(a ∈ S) (4.3)

4.1.1 Configurations and Weights

It is obvious that the safety of a cell a ∈ U on a board B can be calculated as

PS(a) =
|{B′ ∈

⇒
B : a ∈ S ′}|

|
⇒
B|

(4.4)

To calculate PS(a), one could näıvely generate all boards in
⇒
B by brute force.

While this could work for smaller boards, it is unsustainable in the long run. To
give a sense of perspective, there are more 20 × 20 / 75 boards than atoms in the
universe.

To circumvent this problem, we introduce the concept of configurations and
weights. Put simply, a configuration C of a board B is a unique way to “assign”
all cells in E into either M or S. The corresponding weight WC is the number of
unique ways to “assign” the remaining mines into the remaining unknown cells, i.e.

F . We can hence calculate |
⇒
B| as the sum of the weights of all configurations.

|
⇒
B| =

∑
C

WC (4.5)

We go through the calculation of |{B′ ∈
⇒
B : a ∈ S ′}| in the subsequent sections.

For now, we rigorously define and introduce notion for configurations and weights.

Definition 29. A configuration C of a board B is defined by the 3-tuple

C = (CM , CS, CU) (4.6)

such that

• CM , CS and CU are a partition of E

• there exists a board B′ ∈
⇒
B such that CM ⊆M′ and CS ⊆ S ′.

Definition 30. A configuration C is said to be proper if CU = ∅.

Definition 31. The set of all configurations of a board B is denoted Con(B).

Definition 32. The set of all proper configurations of a board B is denoted
ConP (B).

Definition 33. Given a proper configuration C ∈ ConP (B), its weight WC is
defined as
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WC = |{B′ ∈
⇒
B : CM ⊆M′ ∧ CS ⊆ S}| (4.7)

Proposition 4. Given a proper configuration C ∈ ConP (B), its corresponding
weight WC =

( |F |
m−|M |−|CM |

)
Proof. Observe that there are |F | remaining unknown cells andm−|M |−|CM |
mines left to “assign”. WC is thus equivalent to the number of ways to choose
m− |M | − |CM | objects (mines) from |F | total objects (unknown cells).

With our definitions, we can refine Equation 4.5 as follows

|
⇒
B| =

∑
C∈ConP (B)

WC (4.8)

4.1.2 Exposed Cells

In this section, we calculate PS(a) for some a ∈ E. From Definition 29, we see that

a ∈ S ′ for some board B′ ∈
⇒
B if and only if a ∈ CS for some proper configuration

C ∈ ConP (B). Hence,

|{B′ ∈
⇒
B : a ∈ S ′}| =

∑
C∈ConP (B)

a∈SC

WC (4.9)

Thus, from Equations 4.4 and 4.8,

PS(a) =
∑

C∈ConP (B)
a∈SC

WC

/ ∑
C∈ConP (B)

WC (4.10)

4.1.3 Floating Cells

In this section, we calculate PS(a) for some a ∈ F on a board B. We begin by
proving that the expected number of mines in E is equal to

∑
a∈E P(a ∈M).

Proposition 5. E[|E ∩M|] =
∑

a∈E P(a ∈M)

Proof. SinceM = S∁, it suffices to show that

E[|E ∩ S|] =
∑
a∈E

P(a ∈ S) (4.11)

Consider the LHS. From the definition of an expected value,

E[|E ∩ S|] =
|E|∑
n=0

n · |{B
′ ∈

⇒
B : |E ∩ S ′| = n}|

|
⇒
B|

(4.12)

Now consider the RHS. Since P(a ∈ S) = PS(a), from Equation 4.4,
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∑
a∈E

P(a ∈ S) =
∑
a∈E

|{B′ ∈
⇒
B : a ∈ S ′}|

|
⇒
B|

(4.13)

It thus suffices to show

|E|∑
n=0

n · |{B′ ∈
⇒
B : |E ∩ S ′| = n}| =

∑
a∈E

|{B′ ∈
⇒
B : a ∈ S ′}| (4.14)

Finally, consider a proper configuration C ∈ ConP (B) with |E ∩ SC | = nC .

Observe that C ∈ {B′ ∈
⇒
B : |E ∩ S ′| = nC}. Thus, C contributes nC to the

sum on the LHS. Furthermore, since |E ∩ SC | = nC , it follows that C also
contributes nC to the sum on the RHS. Hence, after considering all configu-
rations in Con(B), we see that Equality 4.14 must hold and thus our desired
result is true.

We now relate E[|E ∩M|] and E[|F ∩M|].

Proposition 6. E[|F ∩M|] = m− |M | − E[|E ∩M|]

Proof. Observe that A = M ∪ S ∪ E ∪ F . Hence,

A ∩M =
⋃

X∈{M,S,E,F}

X ∩M (4.15)

Since M , S, E and F are all pairwise disjoint,

|A ∩M| =
∑

X∈{M,S,E,F}

|X ∩M| (4.16)

Firstly, we clearly have |A ∩ M| = m. Secondly, since M ⊆ M, we have
|A∩M| = |M |. Lastly, S ∩M = ∅, hence |S ∩M| = 0. Simplifying our sum
and rearranging some terms, we obtain

|F ∩M| = m− |M | − |E ∩M| (4.17)

It quickly follows that

E[|F ∩M|] = m− |M | − E[|E ∩M|] (4.18)

In a manner similar to that of Proposition 4, we can calculate the expected

number of boards in
⇒
B as

E[|
⇒
B|] =

(
|F |

E[|F ∩M|]

)
(4.19)

Likewise, we can calculate the expected number of boards in
⇒
B where some a ∈ F

is safe as
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E[|{B′ ∈
⇒
B : a ∈ S ′}|] =

(
|F | − 1

E[|F ∩M|]

)
(4.20)

From Equation 4.4,

PS(a) =

(
|F | − 1

E[|F ∩M|]

)/(
|F |

E[|F ∩M|]

)
(4.21)

Using the definition of a binomial coefficient and simplifying, we thus obtain the
following formula for the safety of a floating cell.

PS(a) = 1− E[|F ∩M|]
|F |

(4.22)

As a final remark, we note that PS(a) is independent of a. Hence, the safety of
all floating cells are equal.

4.2 Sketch

In this section, we sketch an outline of our guessing algorithm. In order to develop
an intuition for the flow of our guessing algorithm, we consider the 5 × 5 / 6 board
B in Figure 4.1.

Figure 4.1

63 73 63

63 73 77 73 63

73 77 77 73

63 73 77 73 63

63 73 63

Figure 4.2

After finding all proper configurations in ConP (B) and calculating their cor-
responding weights, one can easily calculate the safety of all unknown cells with
Formulas 4.10 and 4.22. Figure 4.2 shows the safety of each unknown cell, scaled by
100. Finally, we guess the cell that has the highest safety. In our example, the cells
(1, 2), (2, 1), (2, 4) and (3, 2) all have the highest score. We thus select one of them
at random to guess. Figure 4.3 illustrates the flow of our guessing algorithm.

4.3 Processes

In this section, we discuss the details of the three main processes of our guessing
algorithm. As listed in Figure 4.3, they are:

1. Determining configurations (Section 4.3.1)

2. Calculating safety (Section 4.3.2)

3. Guess cell with highest safety (Section 4.3.3)
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Start

Determine all
configurations

Calculate
safety for all
unknown cells

Guess a cell
with the

highest safety.

End

Figure 4.3
A flowchart of our guessing algorithm.

4.3.1 Determining Configurations

In order to determine all proper configurations of a given board B, we will be
employing a recursive algorithm. Consider an improper configuration C and some
cell a ∈ CU . Then, we run the inference algorithm on B, with the assumptions that
a ∈ S, CS ⊆ S and CM ⊆ M. The inference algorithm then returns more solved
constraints, which we use to generate a new configuration C ′. If C ′ is proper, we add
it to our list of proper configurations. If not, we run the entire algorithm once more
on C ′ and add the results to our list. Next, we do the same procedure described
above, this time with the initial assumption that a ∈ M. Lastly, we return our list
of proper configurations. A sketch is provided in Figure 4.4.

4.3.2 Calculating Safety

As previously discussed in Section 4.1, the safety of exposed cells can be calcu-
lated using Formula 4.10, while the safety of floating cells can be calculated using
Formula 4.22.

Algorithm 4.1 Calculates safety of all unknown cells

Input: B ∈ B
Output: safety ⊆ A× R
1: procedure CalculateSafety(B)
2: configurations← GetConfigurations((∅,∅, E)) (see Figure 4.4)
3: safety← ∅

// Get combined weight of all configurations
4: totalWeight← 0
5: for all C ∈ configurations do
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Start
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C ′′ is proper?
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ConP (B)

Run algorithm
on C ′′ and
add results
to ConP (B)

Return
ConP (B)

End

No

Yes

Figure 4.4
A flowchart of the GetConfigurations algorithm.
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6: end for
7: totalWeight← totalWeight+WC

// Calculate safety of exposed cells (see Formula 4.1.2)
8: expectedExposedMines← |E|
9: for all exposedCell ∈ E do
10: safeConfigurations← 0
11: for all C ∈ configurations do
12: if exposedCell ∈ CS then
13: safeConfigurations← safeConfigurations+WC

14: end if
15: end for
16: exposedSafety← safeConfigurations/totalWeight
17: expectedExposedMines← expectedExposedMines− exposedSafety

18: safety← safety ∪ (exposedCell, exposedSafety)
19: end for

// Calculate safety of floating cells (see Formula 4.22)
20: expectedFloatingMines← m− |M | − expectedExposedMines

21: for all floatingCell ∈ F do
22: safety← safety ∪ (floatingCell, 1− expectedFloatingMines/|F |)
23: end for

24: return safety

25: end procedure

4.3.3 Guess Cell with Highest Safety

Lastly, we find all cells that have the highest safety and guess one of them at random.
The following algorithm describes this process.

Algorithm 4.2 Guesses a random cell with the highest safety

Input: B ∈ B
1: procedure Guess(B)

// Get safety of all unknown cells
2: allSafety← CalculateSafety(B) (see Algorithm 4.1)

// Gets highest safety value
3: highestSafety← max {safety : (cell, safety) ∈ allSafety}

// Guess a cell with the highest safety at random
4: for all (cell, safety) ∈ allSafety do
5: if safety = highestSafety then
6: return cell

7: end if
8: end for
9: end procedure
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5 First Click

In most modern implementations of Minesweeper, the first click, despite being a
guess, is guaranteed to be safe. In this section, we show that starting at a corner
is optimal. We do so by showing that P(N(a) = 0) for some cell a decreases with
respect to |K(a)|.

Lemma 3. If U = A, then P(N(a) = 0) ∝
(
pq−|K(a)|−1

m

)
for all a ∈ A.

Proof. Consider some cell a ∈ A. In order for N(a) to be 0, we must have
K(a)∪a ⊆ S. We must thus assignmmines in the remaining |A\(K(a)∪a)| =
pq−|K(a)− 1 cells. There are hence

(
pq−|K(a)|−1

m

)
total possible continuations

of B whereN(a) = 0. Since the total number of continuations of B is constant,
we have our desired result.

Proposition 7. For distinct cells a, b ∈ F , if |K(a)| > |K(b)|, then P(N(a) =
0) ≤ P(N(b) = 0).

Proof. Since |K(a)| > |K(b)|, we have pq−|K(a)|−1−m+k < pq−|K(b)|−
1−m+ k for all k ∈ Z. We thus obtain the inequality

m∏
k=1

(pq − |K(a)| − 1−m+ k) ≤
m∏
k=1

(pq − |K(b)| − 1−m+ k) (5.1)

Observe that this is equivalent to

(pq − |K(a)| − 1)!

(pq − |K(a)| − 1−m)!
≤ (pq − |K(b)| − 1)!

(pq − |K(b)| − 1−m)!
(5.2)

By the definition of a binomial coefficient, we have(
pq − |K(a)| − 1

m

)
≤

(
pq − |K(b)| − 1

m

)
(5.3)

Finally, an application of Lemma 3 gives P(N(a) = 0) ≤ P(N(b) = 0).

Since corner, edge and centre cells each have 3, 5 and 8 adjacent cells respectively,
we conclude that starting the game in a corner is optimal. To simplify matters, we
always start by opening (0, 0).

6 Minesweeper Solver

Now that we have discussed both our inference and guessing algorithms, we can
finally piece them together to complete our original Minesweeper solver.

Intuitively, to maximise our win rate, we should never guess if we can infer.
This simple rule is the basis of our solver; we solve a board by repeatedly running
our inference algorithm until no inferences can be made, in which case we run our
guessing algorithm. We then repeat this process until the game ends.

A sketch of our Minesweeper solver is illustrated in Figure 6.1. The relevant
source code can be found in Annex A.1.
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Figure 6.1
A flowchart of our solver.
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7 Critical Density

Recall in the statement of our research problem that we defined the critical density of
Minesweeper board to be the maximum density of mines that allows the player to win
the game with certainty, assuming perfect play. Now that we have a Minesweeper
solver that allows us to play almost perfectly, we aim to establish a closed form for
the critical density of a board.

Definition 34. The mine density ρ of a Minesweeper board with dimensions
(p, q,m) is given by

ρ =
m

pq
(7.1)

Definition 35. The win rate of a Minesweeper board is denoted W .

We first consider a board B with dimensions (p, q,m). Then, we plot W as ρ
varies from 0 to 1. It is obvious that for low mine densities, W will be quite high.
Likewise, for high mine densities, W will be quite low. This motivates us to model
the aforementioned curve with the logistic function.

Definition 36. The logistic function L : [0, 1]→ R is defined as

L(ρ) =
L

1 + ek(ρ−Q)
+ b (7.2)

for some constants L, k,Q, b ∈ R such that L, k > 0.

Since the critical density P is indicated by a sharp drop in the plot of W against
ρ, we define P to be the mine density at which the minimum of L′(ρ) is achieved.

Definition 37. The critical density P of a Minesweeper board is defined as

P = argmin
ρ

L′(ρ) (7.3)

We now derive a closed form for P . We first show that the only zero of L′′(ρ) is
Q.

Proposition 8. L′′(ρ) = 0 ⇐⇒ ρ = Q.

Proof. From Definition 36, one can easily show that

L′′(ρ) = L2k2ek(ρ−Q) · ek(ρ−Q) − 1

(1 + ek(ρ−Q))3
(7.4)

It is hence obvious that ( ⇐= ) is true. We now consider ( =⇒ ). Note that
L, k, ek(ρ−Q) > 0. Thus, for L′′(ρ) to be 0,

ek(ρ−Q) − 1 = 0 (7.5)

whence ρ can only be Q.
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Since Q is the only zero of L′′(ρ) and L′(ρ) ≤ 0 for all ρ, it must be that Q the
minimum of L′(ρ) is achieved when ρ = Q. We can thus conclude that P = Q when
0 ≤ Q ≤ 1. If Q < 0, we take P = 0. Likewise, if Q > 1, we take P = 1. We thus
have the following closed form for P .

P =


0, Q < 0

Q, 0 ≤ Q ≤ 1

1, Q > 1

(7.6)

8 Methodology

In this section, we go through our methodology of determining the critical density
P of a Minesweeper board of size p by q.

8.1 W -correction

Before we discuss our methodology, we must note that the plot of W against ρ
does not exactly fit a logistic curve. In particular, as ρ tends towards 1, W suddenly
shoots up to 1. Consider a 4×4 / 15 board as an example. Despite having a high mine
density of 0.9375, this board has a 100% win rate because the first click is guaranteed
to be safe. Likewise, the win rate of a 4× 4 / 14 board is approximately 0.07. This
unexpected trend can be attributed to sheer luck; after revealing a guaranteed safe
cell on the first click, the only realistic way of winning is to correctly guess the
remaining pq−m− 1 safe cells at random. This results in an approximate win rate
of

∏pq−m−1
k=1

pq−m−1−k
pq−k

. To counter this, we implement the following two strategies.

Firstly, if the win rate of a p× q /m board has been simulated to be 0, then we
take the win rate of a p × q /m′ board for all m′ > m to also be 0. This strategy
works well against larger boards; it is unlikely for the win rate of a large board to
never hit 0. However, this strategy fails against smaller boards as there are not
enough possible values of m to allow W to fall to 0 before shooting back up to 1.
The second strategy addresses this shortcoming.

Let D1 and D2 be two board dimensions such that m1 < m2. If ρ1 > 0.75
and W1 < W2, we immediately take W2 to be 0. This effectively stops the above
phenomenon before it can happen.

Altogether, we call these two strategies “W -correction”.

8.2 Sketch

We now sketch an outline of our methodology. We begin by generating 1000
Minesweeper boards with dimensions (p, q,m) for all 0 < m < pq. We then solve
the generated boards using our Minesweeper solver as described in Section 6. We
then record our solver’s win rate for each m, enforcing W -correction in the process.
Next, we plot W against ρ. We then use Powell’s dog-leg algorithm [7], a popular
optimisation algorithm, to fit the logistic curve L(ρ) to the resulting plot. This
returns the values of the parameters of L(ρ). Lastly, as per Equation 7.6, we can
easily calculate P from Q.
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9 Results and Analysis

Using our methodology, we calculate the critical densities of all p× q Minesweeper
boards where p, q ≤ 10 and plot them in Figure 9.1. In Figure 9.2, we plot P against
the aspect ratio p

q
as q runs from 2 to 10.
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Figure 9.2

We now analyse our results. Throughout our analysis, we take p ≤ q for brevity.
We split our analysis into three sections, each focusing on a different trend in our
data. In particular, we will be discussing the cases when p = 1, p = 2 and p > 2,
which can be clearly distinguished on Figure 9.2.

9.1 p = 1 Trend

As one can observe from Figure 9.1, P is inversely related to q when p = 1. To
investigate this trend, we calculate the critical densities of all 1 × q Minesweeper
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board with q ≤ 50 and plot them on Figure 9.3. We then fit the resulting curve
with the series

∑∞
n=0 anq

−n.
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Figure 9.3

As q → ∞, we have P → a0. Plotting a0 for the first k partial sums yields
Figure 9.4.
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Figure 9.4

We thus conjecture that a0 → 0 as k →∞, whence P → 0 as q →∞ for p = 1.

9.2 p = 2 Trend

When p = 2, one can observe that P = 0 for almost all q. A closer look at the win
rate data of these board sizes reveals the reason behind this behaviour.

Figure 9.5 plots the win rate of a 2 × 10 board. We observe that due to the
narrowness of the board, all clicks are practically 50/50 guesses. Thus, the win rate
starts off at around 0.50 and immediately begins to decrease. This makes the win
rate trend appear to be a sigmoid curve that has been shifted significantly to the
left. Hence, Q is either less than or close to 0. This results in P = 0 for most q.
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9.3 p > 2 Trend

From Figure 9.2, one can observe that for p × q boards where p > 2, the critical
density P remains stable at approximately 0.20 regardless of the aspect ratio p

q
.

We also note that P decreases as q increases. This inverse relationship is especially
obvious when p

q
= 1. This suggests that there exists some asymptotic critical density

P ⋆ = limq→∞ P that is the same for all aspect ratios p
q
.

We now approximate P ⋆. We begin by plotting P for all q× q boards and model
the resulting plot with the function a

q−b
+ c for some constants a, b and c. This is

illustrated in Figure 9.6.
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Our model returns a = 0.366581, b = 0.0305678 and c = 0.158938 as the pa-
rameters for the best-fit plot. We thus have that P ⋆ is approximately equal to
0.159.
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10 Conclusion

In sum, we have developed an original Minesweeper solver that can infer logically
and guess smartly. We also devised an original algorithm to calculate the critical
density of any board size. We then used the algorithm to calculate the critical
density of all board sizes smaller than 10× 10. Finally, we analysed our results and
concluded that the critical density converges to approximately 0.159 for all board
sizes where p > 2. We also demonstrated that the critical density converges to 0 for
all board sizes where p ≤ 2.

10.1 Applications

Our results provide a metric for the difficulty of Minesweeper boards. For sufficiently
large boards, below the critical density, players can expect the board to be trivially
easy to solve, while above the critical density, players can expect the board to
be near-impossible to solve. However, near the critical density, the board would
be challenging for the player, but not outright impossible. This sweet-spot would
allow players to improve on their Minesweeper abilities, such as their inference and
guessing skills. Hence, our results provide a valuable resource for players to maximise
their training efficiency, all while having fun tackling a board that is neither too easy
nor too hard.

10.2 Limitations

The biggest limitation of our research is our Minesweeper solver; when compared to
more popular solvers, our solver is not as good in terms of win rate and efficiency.
For example, Hill’s solver [8] is able to solve 10 thousand 10× 10 / 20 boards with a
win rate of 61.1% in approximately 20 seconds. In comparison, our solver can only
solve a thousand boards with a win rate of 46.8% in 4 minutes.

By using a stronger solver, the win rates of almost all boards would improve,
leading to an increase in the critical densities of almost all dimensions. Furthermore,
the critical densities of larger board sizes could be calculated. Overall, this would
result in a more accurate calculation of the asymptotic critical density P ⋆. This
explains why our calculated value for P ⋆ is significantly lower than the 0.20 observed
by Demsey and Guinn [1] and Sinha et al. [2] We believe that a stronger solver would
give an asymptotic critical density that more closely matches the aforementioned
observations.

10.3 Future Directions

We have identified two possible ways to expand on our research.
Firstly, the critical density of Minesweeper variants can be analysed by adapting

our methodology. Such variants include higher dimensional boards and boards with
non-square tiles. We posit that the asymptotic critical density P ⋆ could serve as a
measure for the complexity of Minesweeper variants; the lower the critical density,
the more complex the variant is.

Secondly, one could also consider different definitions for the critical density. In
this paper, we defined the critical density in terms of win rate. However, the critical
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density could be based on other metrics, such as the time taken to solve a board, or
average number of guesses taken.
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A Code

A.1 Solver

The following files have been reproduced here on the basis that they are impor-
tant components to the solver. The complete source code can be accessed via
github.com/asdia0/Minesweeper.

Inferrer.cs

1 using System.Collections.Generic;

2 using System.Linq;

3
4 namespace Minesweeper.Solver

5 {

6 public class Inferrer

7 {

8 public HashSet <Constraint > Constraints { get; set; }

9
10 public HashSet <Constraint > Solutions { get; set; }

11
12 public bool HasContradiction { get; set; }

13
14 public Inferrer(Grid grid)

15 {

16 this.Constraints = [];

17 this.Solutions = [];

18
19 foreach (Cell boundaryCell in grid.BoundaryCells)

20 {

21 HashSet <int > cellVariables = Utility.CellsToIDs(

boundaryCell.AdjacentCells.Intersect(grid.

UnknownCells)).ToHashSet ();

22 this.Constraints.Add(new(cellVariables , (int)

boundaryCell.RemainingMineCount));

23 }

24 }

25
26 public void Solve ()

27 {

28 bool run = true;

29
30 List <Constraint > oldConstraints = [];

31
32 while (run)

33 {

34 this.SolveTrivials ();

35 this.ConstructConstraints ();

36 this.RemoveUnnecessaryConstraints ();

37 this.UpdateSolutions ();

38
39 bool runTemp = this.Constraints.Except(

oldConstraints).Any() && !this.HasContradiction;

40 oldConstraints = [.. this.Constraints ];

41 run = runTemp;

42 }

43 }

44
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45 public void SolveTrivials ()

46 {

47 HashSet <Constraint > trivialAllSafe = this.Constraints.

Where(i => i.Sum == 0).ToHashSet ();

48 HashSet <Constraint > trivialAllMined = this.Constraints.

Where(i => i.Sum == i.Variables.Count).ToHashSet ();

49
50 foreach (Constraint constraint in trivialAllSafe)

51 {

52 foreach (int variable in constraint.Variables)

53 {

54 this.Solutions.Add(new([ variable], 0));

55 }

56
57 this.Constraints.Remove(constraint);

58 }

59
60 foreach (Constraint constraint in trivialAllMined)

61 {

62 foreach (int variable in constraint.Variables)

63 {

64 this.Solutions.Add(new([ variable], 1));

65 }

66
67 this.Constraints.Remove(constraint);

68 }

69 }

70
71 public void RemoveUnnecessaryConstraints ()

72 {

73 this.Constraints.RemoveWhere(i => i.Variables.Count ==

0);

74 }

75
76 public void ConstructConstraints ()

77 {

78 int constraintCount = this.Constraints.Count;

79
80 List <Constraint > constraintList = [.. this.Constraints

];

81
82 for (int i = 0; i < constraintCount; i++)

83 {

84 for (int j = 0; j < constraintCount; j++)

85 {

86 Constraint X = constraintList[i];

87 Constraint Y = constraintList[j];

88
89 bool canSubtract = X.Subtract(Y, out Constraint

difference);

90
91 if (canSubtract)

92 {

93 this.HasContradiction = difference.Sum < 0;

94 this.Constraints.Add(difference);

95 }

96 }

97 }
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98 }

99
100 public void UpdateSolutions ()

101 {

102 this.Solutions.UnionWith(this.Constraints.Where(i => i.

IsSolved));

103 this.Constraints = this.Constraints.Except(this.

Solutions).ToHashSet ();

104
105 foreach (Constraint solution in this.Solutions.Distinct

())

106 {

107 int ID = solution.Variables.First();

108
109 foreach (Constraint constraint in this.Constraints)

110 {

111 bool solutionPresent = constraint.Variables.

Remove(ID);

112
113 if (solutionPresent)

114 {

115 constraint.Sum -= solution.Sum;

116 }

117 }

118 }

119 }

120 }

121 }
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Guesser.cs

1 using System;

2 using System.Collections.Generic;

3 using System.Linq;

4
5 namespace Minesweeper.Solver

6 {

7 public class Guesser

8 {

9 public Grid Grid { get; set; }

10
11 public HashSet <Constraint > Constraints { get; set; }

12
13 public Guesser(Grid grid)

14 {

15 this.Grid = grid;

16 this.Constraints = [];

17
18 foreach (Cell boundaryCell in grid.BoundaryCells)

19 {

20 HashSet <int > cellVariables = [.. Utility.CellsToIDs

(boundaryCell.AdjacentCells.Intersect(grid.

UnknownCells))];

21 Constraints.Add(new(cellVariables , (int)

boundaryCell.RemainingMineCount));

22 }

23 }

24
25 public HashSet <HashSet <Constraint >> GetGroups(HashSet <

Constraint > constraints)

26 {

27 HashSet <HashSet <Constraint >> results = [];

28
29 HashSet <HashSet <Constraint >> preliminaryGroups =

GetPreliminaryGroups(constraints);

30
31 foreach (HashSet <Constraint > preliminaryGroup in

preliminaryGroups)

32 {

33 results.UnionWith(GetFinalGroups(preliminaryGroup))

;

34 }

35
36 results.RemoveWhere(i => i.Count == 0);

37
38 return results;

39 }

40
41 public HashSet <HashSet <Constraint >> GetPreliminaryGroups(

HashSet <Constraint > constraints)

42 {

43 HashSet <HashSet <Constraint >> groups = [];

44
45 HashSet <Constraint > remainingConstraints = [..

constraints ];

46
47 HashSet <Constraint > toSearch = [];

48 HashSet <Constraint > group = [];

iv



49 HashSet <Constraint > searched = [];

50
51 while (remainingConstraints.Count > 0)

52 {

53 Constraint seed = null;

54
55 if (toSearch.Count != 0)

56 {

57 seed = toSearch.First();

58 }

59 else

60 {

61 groups.Add(group);

62 group = [];

63 seed = remainingConstraints.First();

64 }

65
66 foreach (int id in seed.Variables)

67 {

68 toSearch.UnionWith(remainingConstraints.Where(i

=> i.Variables.Contains(id)));

69 }

70
71 toSearch = toSearch.Except(searched).ToHashSet ();

72
73 group.Add(seed);

74
75 searched.Add(seed);

76 remainingConstraints.Remove(seed);

77 }

78
79 groups.Add(group);

80
81 return groups;

82 }

83
84 public HashSet <HashSet <Constraint >> GetFinalGroups(HashSet <

Constraint > constraints)

85 {

86 HashSet <Constraint > constraintsTemp = [.. constraints ];

87 HashSet <HashSet <Constraint >> groups = [];

88
89 HashSet <HashSet <int >> intersections = Utility.GetGroups

(constraints.Select(i => i.Variables).ToHashSet ());

90
91 foreach (HashSet <int > intersection in intersections)

92 {

93 Constraint constraint = constraintsTemp.Where(i =>

i.Variables == intersection).FirstOrDefault ();

94
95 if (constraint is null)

96 {

97 continue;

98 }

99
100 HashSet <Constraint > constraintSupersets =

constraintsTemp.Where(i => i.Variables.

IsProperSupersetOf(intersection)).ToHashSet ();
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101
102 foreach (Constraint constraintSuperset in

constraintSupersets)

103 {

104 constraintsTemp.Remove(constraintSuperset);

105 constraintsTemp.Add(new(constraintSuperset.

Variables.Except(intersection).ToHashSet (),

constraintSuperset.Sum - constraint.Sum));

106 }

107
108 groups.Add([ constraint ]);

109 }

110
111 groups.Add(constraintsTemp);

112
113 return groups;

114 }

115
116 public HashSet <Configuration > GetGroupConfigurations(

Configuration seed , int depth = 0, int maxDepth = 5)

117 {

118 HashSet <Configuration > configs = [];

119
120 List <int > variables = [.. seed.Assignments.Keys];

121 List <int > unsolvedVariables = [.. seed.Assignments.

Where(i => i.Value == null).Select(i => i.Key)];

122 List <int > solvedVariables = [.. seed.Assignments.Where(

i => i.Value != null).Select(i => i.Key)];

123
124 if (unsolvedVariables.Count == 0)

125 {

126 return [seed];

127 }

128
129 int ID = unsolvedVariables.First();

130
131 Inferrer solverSafe = new(this.Grid);

132 foreach (int solvedVariable in solvedVariables)

133 {

134 solverSafe.Constraints.Add(new Constraint ([

solvedVariable], (int)seed.Assignments[

solvedVariable ]));

135 }

136 solverSafe.Constraints.Add(new Constraint ([ID], 0));

137
138 solverSafe.Solve ();

139
140 Configuration newConfigurationSafe = new(variables ,

solverSafe.Solutions

141 .Where(i => variables.Contains(i.Variables.

First()))

142 .ToHashSet ());

143
144 if (! newConfigurationSafe.Assignments.Where(i => i.

Value < 0).Any())

145 {

146 if (newConfigurationSafe.IsSolved)

147 {
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148 configs.Add(newConfigurationSafe);

149 }

150 else if (depth <= maxDepth)

151 {

152 configs.UnionWith(GetGroupConfigurations(

newConfigurationSafe , depth + 1));

153 }

154 else

155 {

156 configs.UnionWith ([ GetOneConfiguration(

newConfigurationSafe)]);

157 }

158 }

159
160 Inferrer solverMined = new(this.Grid);

161 foreach (int solvedVariable in solvedVariables)

162 {

163 solverMined.Constraints.Add(new Constraint ([

solvedVariable], (int)seed.Assignments[

solvedVariable ]));

164 }

165 solverMined.Constraints.Add(new Constraint ([ID], 1));

166
167 solverMined.Solve ();

168
169 Configuration newConfigurationMined = new(variables ,

solverMined.Solutions

170 .Where(i => variables.Contains(i.Variables.

First()))

171 .ToHashSet ());

172
173 if (! newConfigurationMined.Assignments.Where(i => i.

Value < 0).Any())

174 {

175 if (newConfigurationMined.IsSolved)

176 {

177 configs.Add(newConfigurationMined);

178 }

179 else if (depth <= maxDepth)

180 {

181 configs.UnionWith(GetGroupConfigurations(

newConfigurationMined , depth + 1));

182 }

183 else

184 {

185 configs.UnionWith ([ GetOneConfiguration(

newConfigurationMined)]);

186 }

187 }

188
189 return configs.Where(i => i.Assignments != null).

ToHashSet ();

190 }

191
192 public Configuration GetOneConfiguration(Configuration seed

)

193 {

194 List <int > variables = [.. seed.Assignments.Keys];
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195 List <int > unsolvedVariables = [.. seed.Assignments.

Where(i => i.Value == null).Select(i => i.Key)];

196 List <int > solvedVariables = [.. seed.Assignments.Where(

i => i.Value != null).Select(i => i.Key)];

197
198 int ID = unsolvedVariables.First();

199
200 Inferrer solverSafe = new(this.Grid);

201
202 foreach (int solvedVariable in solvedVariables)

203 {

204 solverSafe.Constraints.Add(new Constraint ([

solvedVariable], (int)seed.Assignments[

solvedVariable ]));

205 }

206
207 solverSafe.Constraints.Add(new Constraint ([ID], 0));

208
209 solverSafe.Solve ();

210
211 if (! solverSafe.HasContradiction)

212 {

213 Configuration newConfigurationSafe = new(variables ,

solverSafe.Solutions

214 .Where(i => variables.Contains(i.Variables.

First()))

215 .ToHashSet ());

216
217 if (newConfigurationSafe.IsSolved)

218 {

219 return newConfigurationSafe;

220 }

221 else

222 {

223 return GetOneConfiguration(newConfigurationSafe

);

224 }

225 }

226
227 Inferrer solverMined = new(this.Grid);

228
229 foreach (int solvedVariable in solvedVariables)

230 {

231 solverMined.Constraints.Add(new Constraint ([

solvedVariable], (int)seed.Assignments[

solvedVariable ]));

232 }

233
234 solverMined.Constraints.Add(new Constraint ([ID], 1));

235
236 solverMined.Solve ();

237
238 if (! solverMined.HasContradiction)

239 {

240 Configuration newConfigurationMined = new(variables

, solverMined.Solutions

241 .Where(i => variables.Contains(i.Variables.

First()))
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242 .ToHashSet ());

243
244 if (newConfigurationMined.IsSolved)

245 {

246 return newConfigurationMined;

247 }

248 else

249 {

250 return GetOneConfiguration(

newConfigurationMined);

251 }

252 }

253
254 return new();

255 }

256
257 public Dictionary <int , double > GetSafety ()

258 {

259 if (Grid.ExposedCells.Count == 0)

260 {

261 return this.Grid.UnknownCells.ToDictionary(key =>

key.Point.ID , value => 1 - (double)(this.Grid.

RemainingMines) / this.Grid.UnknownCells.Count);

262 }

263
264 List <HashSet <Configuration >> groupConfigurations = [];

265
266 foreach (HashSet <Constraint > group in this.GetGroups(

this.Constraints))

267 {

268 Configuration config = new(group.SelectMany(i => i.

Variables).Distinct ().ToList (), []);

269 HashSet <Configuration > groupConfiguration = this.

GetGroupConfigurations(config);

270 groupConfiguration.RemoveWhere(i => i.Assignments.

Values.Where(i => i < 0).Any());

271 groupConfigurations.Add ([.. groupConfiguration ]);

272 }

273
274 Dictionary <int , double > safetyValues = this.Grid.

UnknownCells.ToDictionary(key => key.Point.ID , value

=> (double)0);

275
276 Dictionary <Configuration , double > weights = [];

277
278 foreach (HashSet <Configuration > groupConfiguration in

groupConfigurations)

279 {

280 foreach (Configuration configuration in

groupConfiguration)

281 {

282 weights.Add(configuration , Utility.Choose(this.

Grid.FloatingCells.Count , this.Grid.

RemainingMines - configuration.Sum));

283 }

284 }

285
286 double denominator = weights.Values.Sum();
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287
288 foreach (HashSet <Configuration > groupConfiguration in

groupConfigurations)

289 {

290 foreach (Configuration configuration in

groupConfiguration)

291 {

292 foreach (int exposedCell in Utility.CellsToIDs(

this.Grid.ExposedCells).Intersect(

configuration.Assignments.Where(i => i.Value

== 0).Select(i => i.Key)))

293 {

294 safetyValues[exposedCell] += weights[

configuration ];

295 }

296 }

297 }

298
299 foreach (int exposedCell in safetyValues.Keys)

300 {

301 safetyValues[exposedCell] = safetyValues[

exposedCell] / denominator;

302 }

303
304 double expectedFloatingMines = this.Grid.RemainingMines

- safetyValues.Count + safetyValues.Values.Sum();

305
306 double floatingSafety = 1 - expectedFloatingMines /

this.Grid.FloatingCells.Count;

307
308 foreach (int floatingCell in Utility.CellsToIDs(this.

Grid.FloatingCells))

309 {

310 safetyValues[floatingCell] = floatingSafety;

311 }

312
313 return safetyValues;

314 }

315 }

316 }
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Solver.cs

1 public static int Solve(Grid grid)

2 {

3 grid.OpenCell(grid.Cells [0]);

4
5 while (grid.State == State.Ongoing)

6 {

7 Inferrer solver = new(grid);

8 solver.Solve ();

9
10 if (solver.Solutions.Count != 0)

11 {

12 foreach (Constraint solution in solver.Solutions)

13 {

14 Cell cell = Utility.IDToCell(grid , solution.

Variables.First ());

15
16 switch (solution.Sum)

17 {

18 case 0:

19 grid.OpenCell(cell);

20 break;

21 case 1:

22 grid.FlagCell(cell);

23 break;

24 default:

25 throw new MinesweeperException("Invalid

solution: " + solution);

26 }

27 }

28 }

29 else

30 {

31 Guesser guesser = new(grid);

32 Dictionary <int , double > scores = guesser.GetSafety ();

33
34 foreach (Cell safeCells in Utility.IDsToCells(grid ,

scores.Where(i => i.Value == 1).Select(i => i.Key)))

35 {

36 grid.OpenCell(safeCells);

37 }

38
39 double maxScore = scores.OrderByDescending(kvp => kvp.

Value).First ().Value;

40
41 Cell toOpen = Utility.IDsToCells(grid , scores.Where(i

=> i.Value == maxScore).Select(i => i.Key))

42 .OrderBy(i => i.AdjacentCells.Count)

43 .ThenByDescending(i => i.AdjacentCells.Intersect(

grid.OpenedCells).Count())

44 .First();

45
46 grid.OpenCell(toOpen);

47 }

48 }

49
50 if (grid.State == State.Success)

51 {
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52 return 1;

53 }

54 else

55 {

56 return 0;

57 }

58 }
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A.2 Critical Density

CriticalDensity.py

1 from scipy.optimize import curve_fit

2 import numpy as np

3 import os

4 import matplotlib.pyplot as plt

5
6 class Dimension:

7 def __init__(self , p, q):

8 self.p = min(p, q)

9 self.q = max(p, q)

10
11 def __str__(self):

12 return str(self.p) + str(self.q)

13
14 def __eq__(self , other):

15 if not isinstance(other , Dimension):

16 raise NotImplementedError

17
18 return self.p == other.p and self.q == other.q

19
20 def __hash__(self):

21 return hash(str(self))

22
23 directory = os.getcwd () + "/docs"

24 winRates = {}

25 criticalDensities = {}

26
27 def LogisticFunction(x, b, L, k, Q):

28 return b + L / (1 + np.exp(k * (x-Q)))

29
30 def GetLogisticParameters(dimension , xdata , ydata):

31 xdata = np.array(xdata)

32 ydata = np.array(ydata)

33
34 initialGuesses = [min(ydata), max(ydata) - min(ydata), 10, np.

median(xdata)]

35 param_bounds =([-np.inf ,0,0,-np.inf],[np.inf ,3,np.inf ,np.inf])

36
37 parameters , covariance = curve_fit(LogisticFunction , xdata ,

ydata , p0=initialGuesses , bounds=param_bounds , method=’

dogbox ’, maxfev =1000000)

38
39 return [* parameters]

40
41 def LoadWinRates(maxDimension):

42 for num in range(2, maxDimension + 1):

43 with open(f’{directory }/ WinRates /{num}.csv’, "r") as f:

44 for line in f.readlines ():

45 data = line.split(",")

46
47 p = int(data [0])

48 q = int(data [1])

49 m = int(data [2])

50 winRate = float(data [3])

51
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52 mineDensity = m/(p*q)

53 dimension = Dimension(p, q)

54
55 if mineDensity > 0.75 and winRates[dimension

][1][ -1] < winRate:

56 winRate = 0

57
58 if dimension in winRates:

59 winRates[dimension ][0]. append(mineDensity)

60 winRates[dimension ][1]. append(winRate)

61
62 else:

63 winRates[dimension] = [[ mineDensity], [winRate

]]

64
65 def CalculateCriticalDensities ():

66 for dimension in winRates:

67 mineDensity = winRates[dimension ][0]

68 winRate = winRates[dimension ][1]

69
70 mineDensity.insert(0, 0)

71 winRate.insert(0, 1)

72
73 mineDensity.append (1)

74 winRate.append (0)

75
76 parameters = GetLogisticParameters(dimension , mineDensity ,

winRate)

77 criticalDensity = parameters [3]

78
79 if criticalDensity < 0:

80 criticalDensity = 0

81 elif criticalDensity > 1:

82 criticalDensity = 1

83
84 criticalDensities[dimension] = criticalDensity

85
86 def WriteCriticalDensities(maxDimension):

87 with open(f’{directory }/ CriticalDensities.csv’, "w") as g:

88 g.write("p,q,P\n")

89
90 for p in range(1, maxDimension + 1):

91 for q in range(1, maxDimension + 1):

92 dimension = Dimension(p, q)

93
94 if dimension == Dimension(1, 1):

95 g.write("1,1,nan\n")

96 continue

97
98 g.write(f"{p},{q},{ criticalDensities[dimension ]}\n"

)

99 g.flush()

100
101 def RebaseToAspectRatio(maxDimension):

102 for i in range(2, maxDimension + 1):

103 ratioDensityDict = {}

104
105 for dimension in [j for j in criticalDensities if i == j.q
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]:

106 ratioDensityDict[dimension.p/i] = criticalDensities[

dimension]

107
108 with open(f’{directory }/ RatioCD /{i}.csv’, "w") as g:

109 g.write("ratio ,CD\n")

110
111 for aspectRatio in ratioDensityDict:

112 g.write(f"{aspectRatio },{ ratioDensityDict[

aspectRatio ]}\n")

113 g.flush()

114
115 if __name__ == "__main__":

116 maxDimension = 10

117
118 LoadWinRates(maxDimension)

119 CalculateCriticalDensities ()

120 WriteCriticalDensities(maxDimension)

121 RebaseToAspectRatio(maxDimension)
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B Data

B.1 Win Rate

Due to the size of the win rate data, it is not printed in this paper and can only be
accessed via asdia.dev/minesweeper-critical-density/win-rates.csv.

B.2 Critical Density

p q P p q P

1 2 1 4 5 0.24417529634429253
1 3 1 4 6 0.24611222387092954
1 4 1 4 7 0.23715170452873602
1 5 0.5681473499112628 4 8 0.2258446843926504
1 6 0.4716362057677376 4 9 0.22227246964036515
1 7 0.3573598239211957 4 10 0.21501775629655295
1 8 0.3200466082058473 5 5 0.21081575907312486
1 9 0.30940463606882607 5 6 0.21912865353261837
1 10 0.2822166976806722 5 7 0.20552189546717414
2 2 1 5 8 0.20190924155988516
2 3 0 5 9 0.19542866372751225
2 4 0.07172544132146422 5 10 0.18807656414318988
2 5 0 6 6 0.22438667018416458
2 6 0 6 7 0.22028216887894334
2 7 0 6 8 0.21389993159016554
2 8 0 6 9 0.21044808514885935
2 9 0 6 10 0.20625288737080402
2 10 0 7 7 0.21466887936812817
3 3 0.27837876338731626 7 8 0.20858547016901607
3 4 0.28151285279312666 7 9 0.20689137479962186
3 5 0.2548740484439963 7 10 0.2022594055980943
3 6 0.24522567024938602 8 8 0.20199382622106984
3 7 0.23751576681494638 8 9 0.20434960152369053
3 8 0.22864034399741218 8 10 0.20140219935313744
3 9 0.2178173885321011 9 9 0.2019203353155787
3 10 0.21296825578136416 9 10 0.19966867277772682
4 4 0.26976512506230443 10 10 0.19679192187271458
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