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1 A Simple Coin-Flip Problem

Our journey begins with a classic coin-flip problem:

A fair coin is flipped repeatedly until a given sequence of Heads and Tails
appears. On average, how many times is the coin flipped?

Let us unpack this problem and phrase it mathematically. To do so, we introduce the
following notation and terminology.

Definition 1. Let A be an alphabet, which is the set of characters from which words
are constructed. In the case of coin-flips, A = {H,T}, where H represents Heads and
T represents Tails.

Definition 2. A terminator is a word that terminates the coin-flipping. The set of all
terminators is denoted T .
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Definition 3. A word w is said to be immediately terminated under T if

• w ends with a terminator t ∈ T ; and

• w contains no other terminators.

The set of all words immediately terminated under T is denoted IT .

Example 4. Let T = {HHT, THH}. That is to say, we stop flipping the coin the
moment we get HHT or THH. The set of words we might get when playing the game
is then

IT = {HHT,HHHT,HHHHT, . . . , THH,HTHH,TTHH, . . .} .

Note that the word HTHHT , despite ending with HHT , is not in IT . This is because
it contains the another terminator: HTHHT .

Note that in order for our problem to make sense, a terminator cannot contain another
terminator. Equivalently, T ⊆ IT . This prevents nonsensical scenarios, such as T =
{HTT,HT} or T = {HTH,TH}.

We now rephrase our original problem:

Let WT be a word constructed by randomly concatenating letters until WT ∈
IT , and let LT = |WT | be its length. What is E[LT ]?

For now, we will simplify the problem and assume |T | = 1. In the following subsections,
we will present two common approaches one might take in answering this (simplified)
problem.

1.1 A Common (but wrong!) Approach

Suppose T = {T}. In context, this means that we stop flipping the coin the moment we
get Tails. Intuitively, because the probability of getting T is 1/2, one might guess that we
will, on average, get one T every two flips, so

E
[
L{T}

]
=

1

P[T ]
=

1

1/2
= 2.

This is indeed the correct answer.
Suppose now that T = {TH}. Following a similar line of reasoning, one might conclude

that

E
[
L{TH}

]
=

1

P[TH]
=

1

1/4
= 4,

which is once again the correct answer.
However, this argument quickly breaks down once we consider more complicated termi-

nators. For instance, if T = {THT}, the above pattern suggests that

E
[
L{THT}

]
=

1

P[THT ]
=

1

1/8
= 8.

However, empirical evidence suggests that E
[
L{THT}

]
is actually 10.
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Figure 1: 1 thousand samples of L{THT} suggests that E
[
L{THT}

]
is 10, not 8.

How, then, do we determine E[LT ] accurately all the time?

1.2 Case Closed – or is it?

One might observe that depending on which face the coin lands on, the expected number
of flips will change accordingly. Thus, by analysing all possible cases, we can form an
equation in E[LT ], which we can then easily solve.
To facilitate further discussion, we first introduce the notion of a left- and right-slice of

a word.

Definition 5. The left-slice of a word w, denoted Ln(w), refers to the first n characters
of w. Analogously, the right-slice of w, denoted Rn(w), refers to the last n characters
of w.

Example 6. Let w = HTHH. The following table gives the left-slices of w for different
n.

n Ln(w) Rn(w)

1 H H

2 HT HH

3 HTH THH

4 HTHH HTHH

To illustrate the method of case-by-case analysis, consider T = {THT}.

1. If the first coin is H, we have effectively wasted one flip since starting with H does
not contribute to getting THT . Thus,

E[LT | L1(WT ) = H] = E[LT ] + 1.

2. If the first coin is T , we have two subcases to consider:

a) If the second coin is T , we have effectively “gone back” to the case where our
first coin is T . Thus,

E[LT | L2(WT ) = TT ] = E[LT ].

b) If the second coin is H, we have two more subcases to consider:
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i. If the third coin is T , we have reached the terminator. Thus,

E[LT | L3(WT ) = THT ] = 3.

ii. If the third coin is H, we have effectively “gone back” to the case where
our first coin is H. This means that we wasted 3 flips, so

E[LT | L3(WT ) = THH] = E[LT ] + 3.

Since all words must start with either H, TT , THT or THH, by the law of total
expectation,

E[LT ] = E[LT | L1(WT ) = H]P[L1(WT ) = H]

+ E[LT | L2(WT ) = TT ]P[L2(WT ) = TT ]

+ E[LT | L3(WT ) = THT ]P[L3(WT ) = THT ]

+ E[LT | L3(WT ) = THH]P[L3(WT ) = THH].

Because the coin is fair, the probability that Ln(WT ) = w for some arbitrary word w is
simply 1/2n. Substituting the values we found,

E[LT ] =
E[LT ] + 1

21
+

E[LT ]

22
+

3

23
+

E[LT ] + 3

23
.

After simplification, we get E[LT ] = 10, which aligns with the results obtained from our
simulation.
Of course, this is a perfectly sound solution to the problem, and one can always calculate

the correct value of E[LT ] using this algorithm. However, it becomes incredibly inefficient
and tedious when the terminators become more complicated, rendering it effectively use-
less.

1.3 All In!

Fortunately for us, there is a simple and elegant way to calculate E[LT ].
To set the stage, imagine that you work as a dealer at D’Casino. Unlike most casinos,

D’Casino is a fair casino; it neither wins nor loses money in the long run. Furthermore,
there is only one game available for play at D’Casino:

Each round, you, the dealer, flip a fair-coin. Gamblers go all-in, betting on
the outcome of this coin-flip. If they win, they double their money, and they
play again. If they lose, the casino takes everything and they go home empty-
handed. This repeats until a terminator (say THT ) appears, at which point
the casino closes and everybody goes home.

As luck would have it, a group of gamblers, obsessed with the sequence THT , frequents
D’Casino. Every flip, a new gambler from this group arrives with $1 and plays the game,
hoping that the subsequent flips appear T , H, T in that order.

To illustrate this, suppose the coins come up HTTHT . Let Rn and Cn be the total
revenue earned and total cost incurred by the gamblers at the nth flip, respectively.
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n Event Rn Cn

1 Gambler #1 walks into the casino and bets $1 that the first coin-flip is
a T . He loses and leaves the casino.

0 1

2 Gambler #2 walks into the casino and bets $1 that the second coin-flip
is a T . He wins and doubles his money. He then bets $2 that the third
coin-flip is an H. He loses the bet, and leaves the casino with a net loss
of $1.

0 2

3 Gambler #3 walks into the casino and bets $1 that the third coin-flip is
a T . He wins and doubles his money. He then bets $2 that the fourth
coin-flip is an H. He wins and doubles his money once again. Finally,
he bets $4 that the fifth coin-flip is a T . Miraculously, he wins, earning
$7 overall. For consistency, we will record this as a win of $8, and a loss
of $1.

8 3

4 Gambler #4 walks into the casino and bets $1 that the fourth coin-flip
is a T . He immediately loses.

8 4

5 Lastly, Gambler #5 walks into the casino and bets $1 that the fifth
coin-flip is a T . He wins the bet, pocketing $2. However, after the
fifth coin-flip, the casino closes, since the terminator THT has just been
flipped. Like before, we record this as a win of $2 and a loss of $1.

10 5

The total revenue earned, R, is hence $10, while the total cost incurred, C, is $5. Let
X = R− C = $5 be the profit made by the gamblers.
We now make three key observations:

• Because of the way we recorded losses, each gambler contributes only $1 to C.
Additionally, by our set-up, each gambler corresponds to exactly one coin-flip. Thus,
the total cost incurred is equal to the number of coin-flips made. Taking expectations,
we have

E[C] = E
[
L{THT}

]
. (1.1)

• Only the last three gamblers stand a chance to earn money; R depends solely on
the last three gamblers. Because the last three coin-flips must always be THT , it
follows that R is a constant, so

E[R] = R = 10. (1.2)

• Because the casino is fair, the expected profit should be 0. Since X = R − C, we
have

E[R] = E[C]. (1.3)

Chaining (1.1), (1.2) and (1.3) yields

E
[
L{THT}

]
= E[C] = E[R] = R = 10,

which is indeed what we got using case-by-case analysis earlier.
As we will see in a later section, this “fair casino” method, as compared to case-by-case

analysis, can be generalized and applied to different problems much more easily. Before
we get ahead of ourselves, we first iron out the details and formalize our argument using
the language of martingales.
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2 Martingales and the Optional Stopping Theorem

2.1 Martingales

Put simply, a martingale is a random process, typically represented by a sequence of
random variables {Xn}n∈N, which models a gambler’s fortune in a fair game.

To motivate our formal definition of a martingale, consider the following game:

Flip a fair coin. If it comes up Heads, we win $1, but if it comes Tails, we lose
$1. Repeat this process forever.

There are two key properties that this game possesses:

• The coin is fair : The probability of getting Heads will always remain at 50%. Like-
wise, the probability of getting Tails will always remain at 50%.

• Each coin-flip is independent : The outcomes of past flips will not influence the
outcome of future flips.1

As a consequence of this fairness, our expected wealth after the next flip, given
everything we currently know (e.g. outcomes of previous flips, any observed patterns,
etc.), is exactly our current wealth.

We can generalize this idea. Let Xn represent some quantity that we are interested in
(e.g. total wealth) at round n of a fair game. Let Fn represent all the information we
know up to round n. Then, because of fairness and independence, given full knowledge
of the past, the future expectation of X is equal to the current value of X.
Mathematically,

E[Xn+1 | Fn] = Xn.

This brings us to the formal definition of a martingale.

Definition 7. A sequence of random variables {Xn}n∈N is a martingale with respect to
a filtration {Fn}n∈N if,

• E[Xn] is finite, and

• E[Xn+1 | Fn] = Xn (the “fairness/independence” principle).

Remark. Typically, the filtration Fn is simply the information we get from observing the
past outcomes X0, X1, . . . , Xn. This is commonly referred to as the natural filtration.

Apart from gambling, another context in which martingales can be applied in is the
stock market. Let the sequence {Xn} represents the price of a stock traded on the stock
exchange, and let the filtration {Fn} represent the price history of the stock. In this
context, the fairness principle states “the price of the stock tomorrow, given its price
history, is equal to the price of the stock today.” Intuitively, this should be a reasonable
assumption: if one expects the price of the stock to double from $10 today to $20 tomorrow,
they would be incentivized to buy the stock today and sell tomorrow. Meanwhile, those
that own the stock would be incentivized to hold on to the stock and sell it tomorrow.
This increase in demand and fall in supply bids up the price of the stock to $20 today,
which is exactly what we expected the price to be tomorrow. Hence, the sequence {Xn}
is a martingale.

1Though these properties may seem trivial, it is nevertheless important to highlight them as it may
sometimes run against our human intuition. For example, the probability that the next flip is Heads,
given that the previous 100 flips were all tails, will still remain at 1/2. This misguided belief that we
are more likely to win after a series of losses is commonly known as the Gambler’s Fallacy.
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Exercise A. Determine if the following sequences are martingales.

Xn = 10,i. Xn = n,ii.

iii. Let X1, X2, X3, . . . be a sequence of independent random variables, each equal
to −1 with probability 1/2 and 1 with probability 1/2. Let Y0 = 0 and Yn =
X1 +X2 + · · ·+Xn for n > 0. Is Yn a martingale with respect to Xn?

2.2 Stopping Strategies and Stopping Times

Given a martingale {Xn}, we might ask: what is our expected payout under a given
strategy? To answer this question, we must first define what it means to stop playing a
game.

Definition 8. A stopping time τ with respect to a filtration {Fn}n∈N, is a random
variable taking values in N ∪ {∞} such that for all n ≥ 0, the event {τ = n} is a
member of Fn. In other words, {τ = n} can be written as an event depending solely on
X0, X1, . . . , Xn. This event is called the gambler’s stopping strategy.

In layman terms, τ can be thought of as the round at which a gambler quits playing
the game. In addition, the condition {τ = n} ∈ Fn means that the gambler quits using
only information available to him before round n; he cannot see into the future (view the
outcome of Xn+1, Xn+2, . . . ) to decide when to stop playing.

Example 9. Suppose a gambler employs a stopping strategy where he quits after playing
10 games. Then his stopping time is simply τ = 10.
Another gambler may employ a different stopping strategy, opting to quit after losing

three times in a row. If the gambler plays a fair game with a $1 stake, the event {τ = n}
can be expressed asX1 = −1, X2 = −1, X3 = −1, . . . , Xn−3 = −1︸ ︷︷ ︸

all losses

, Xn−2 = 1, Xn−1 = 1, Xn = 1︸ ︷︷ ︸
3 wins in a row

 .

Exercise B. Suppose a gambler plays a fair game with a $1 stake per round. Determine
if the following events are stopping strategies.

i. The third time the gambler loses in a row.

ii. Two rounds before the gambler profits $50.

iii. The first time the gambler profits $50 or goes bankrupt.

iv. The first time the gambler starts a sequence of 10 losses in a row.

2.3 The Optional Stopping Theorem

With a broader range of stopping strategies available to us, we extend our original question
and ask: is there a stopping strategy that allows us to expect a payout greater than our
initial amount? As it turns out, the answer is generally a no.

Theorem 10 (Doob’s Optional Stopping Theorem). Let {Xn}n∈N be a martingale and let
τ be a stopping time, both with respect to a filtration {Fn}n∈N. Then E[Xτ ] = X0 if at
least one of the following holds:
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1. The martingale is bounded.

2. The stopping time τ is bounded.

3. The stopping time τ has finite expectation, and all increments of X are bounded,
i.e. there exists a constant C such that for all n,

|Xn+1 −Xn| ≤ C.

The Optional Stopping Theorem (OST) tells us that as long as our stopping strategy is
reasonable enough, our expected payout, E[Xτ ], must be equal to the amount we started
with, X0. One can think of the OST as the mathematician’s version of the adage “there
is no edge in a fair game”.
To see why all reasonable strategies obey the OST, suppose we somehow came up with

a profitable strategy. That is, we managed to force E[Xτ ] > X0. Then this strategy either

• breaks the validity of our stopping time, or

• breaks the conditions of the OST.

An invalid stopping time implies that we can somehow look into the future, which is clearly
impossible. Furthermore, the three conditions of the OST are hard to break in real life:

• Casinos typically have bet limits, so |Xn| is typically bounded and we cannot break
the first condition.

• Gamblers have finite lifespans, so τ must also be bounded and we cannot break the
second condition.

• For similar reasons (bet limits and finite lifespans), the third condition also cannot
be broken.

Thus, a profitable strategy is nigh impossible to come up with, and so for all practical
purposes, any reasonable strategy we come up with obeys the OST.

3 ABRACADABRA

We now formalize our elegant solution using martingales.
As before, define Rn and Cn to be the total revenue earned and total cost incurred

by the gamblers at the nth flip. Define Xn = Rn − Cn to be the combined wealth of
the gamblers at the nth flip. Let our stopping strategy be the event that a terminator
appears, and let τ be the stopping time under this strategy.
We now show that {Xn} satisfies the two defining criteria of a martingale:

• The Xn is at a maximum when all n gamblers win. Likewise, Xn is at a minimum
when all n gamblers lose. We thus have the bounds

|Xn| ≤ n · 2n,

so E[Xn] must also be bounded and hence finite.

• Let An be the total wealth of gamblers that have lost before the nth flip. Corre-
spondingly, let Bn be the total wealth of gamblers that are still playing at the nth
flip. Since the coin is fair and independent, and the gamblers bet double-or-nothing,
we have

E[Bn+1 | Fn] =
1

2
(2Bn) +

1

2
(0) = Bn.

Since Xn = An +Bn, it follows that

E[Xn+1 | Fn] = E[An+1 | Fn] + E[Bn+1 | Fn] = An +Bn = Xn.



9

We now wish to show that our wealth martingale {Xn}, along with the stopping time τ ,
obeys Doob’s OST. Specifically, we will show that τ and |Xn+1 −Xn| are both bounded
(the third scenario). To do so, suppose D’Casino opens a new game:

Suppose the terminator has length n. Each round, n coins are flipped. If these
n coins matches the terminator, we stop flipping. If not, we continue on with
another round.

Let the random variable Y represent the number of rounds played under this game. Since
Y measures the number of failures (rounds) until a success (we obtain the terminator),
we see that Y follows a geometric distribution with probability of success p = 1/2n. It
follows that

E[Y ] =
1

p
= 2n.

Quite clearly, we expect this game to take a longer time to conclude than our original
game. Since a total of nY coin-flips are made in this game, it follows that

E[τ ] = E[LT ] ≤ E[nY ] = n · 2n,

so τ is bounded. Similarly, the maximum change in X is bounded above by

|Xk+1 −Xk| ≤ n · 2n.

Thus, the third scenario of Doob’s OST is satisfied, whence we conclude that

E[Xτ ] = E[X0] = 0.

By the same key observations made earlier, we have

E[LT ] = E[Cτ ] = E[Rτ ] = Rτ .

Since Rτ depends solely on the last few gamblers, we now have an easy way of calculating
the expected number of coin flips E[LT ].

Example 11. To illustrate, consider yet again the example where T = {THT}. Our goal
is to calculate Rτ . To do so, we simply imagine that the terminator THT has already
been flipped and then work backwards.

• The third-last gambler wins $23, since he sees THT .

• The second-last gambler wins $0, since he sees H and immediately loses.

• The last gambler wins $21, since he sees T before the casino closes.

Hence, we have Rτ = 10, whence E[LT ] = 10.

We now introduce a more efficient way to calculate Rτ . First, we introduce the notion
of correlation between two strings, as defined in [1]:

Definition 12. Let X and Y be two words. The correlation of X and Y , denoted
(X : Y ), is a string of 1’s and 0’s with the same length as X. The ith bit (from the
left) of (X : Y ) is determined as follows: place Y under X so that its leftmost character
is under the ith character of X (from the left). Then, if all pairs of characters in the
overlapping segment are identical, the ith bit of (X : Y ) is 1, else it is 0.
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Example 13. Let X = HTHTTH and Y = HTTHT . Then (X : Y ) = 001001, as
depicted below:

X: H T H T T H

Y : H T T H T 0
H T T H T 0

H T T H T 1
H T T H T 0

H T T H T 0
H T T H T 1

Note that in general, (X : Y ) ̸= (Y : X). For instance, using the same X and Y as the
above example, we have (Y : X) = 00010.

Definition 14. We often wish to interpret the correlation (X : Y ) as a number in some
base z, in which case we write (X : Y )z. We call this the correlation polynomial of X
and Y . For instance, in the above example, we have

(HTHTTH : HTTHT )2 = 24 + 21.

With this new terminology, one can easily see that Rτ is simply (t, t)2, where t is the
terminator.

Example 15. Once again, suppose T = {THT}. Notice that (THT : THT ) is 101, as
illustrated below:

X: T H T

Y : T H T 1
T H T 0

T H T 1

Thus, (THT : THT )2 = 23 + 21 = 10, which is precisely Rτ !
We can summarize this data using a matrix:

T H T

THT 23 21

Unlike the case-by-case method we explored earlier, this method can easily be applied
to terminators of longer lengths, as demonstrated in the following example.

Example 16. Let T = {THHTHHTHH}. Computing correlations, we obtain the
following matrix:

T H H T H H T H H

THHTHHTHH 29 26 23

Hence, E[LT ] = 29 + 26 + 23 = 584.
If we change the final character to a T , i.e. T = {THHTHHTHT}, then our matrix

becomes

T H H T H H T H T

THHTHHTHH 29 21

Hence, E[LT ] = 29 + 21 = 514.
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From the above examples, one can see that it is the “self-repetition” of the terminators
that determines how long it takes to reach them. For instance, THHTHHTHH self-
repeats many times (at the sixth-last and third-last characters), while THHTHHTHT
only repeats itself at the last character.
Even if the alphabet A changes, the core idea remains the same:

Example 17. Consider the following problem:

An immortal monkey types one random character on a typewriter every
second. How long would it take this monkey to type the word “ABRA-
CADABRA”?

In this context, our alphabet now contains 26 characters (A, B, C, etc.). To maintain
the fairness of the casino, the payout for each win should now be 26 times the bet.
Hence, the base of our correlation should be 26.
Comparing the correlation “ABRACADABRA” with itself, we see that our matrix is

A B R A C A D A B R A

ABRACADABRA 2611 264 261

The expected time taken is thus 2611 + 264 + 26 seconds, or 116.4 million years.

More generally, we can state our result as follows:

Theorem 18 (ABRACADABRA Theorem). Let T = {t} with alphabet A. Then

E[LT ] = (t : t)|A|.

This result is known in the literature as the ABRACADABRA Theorem, named after
the problem posed in Example 17.

As a bonus, one can express (t : t)|A| in terms of left- and right-slices:

(t : t)|A| =

|t|∑
i=1

|A|i 1{Ri(t) = Li(t)},

where the indicator function 1(P ) returns 1 if the statement P is true and 0 otherwise.

4 Extending our Results

We now turn our attention to solving the problem in its most general form. First, let us
introduce one more piece of notation:

Definition 19. Let t ∈ T . We define [t] to be the set of all immediately terminated
words w that end with t. Mathematically,

[t] =
{
w ∈ IT : R|t|(w) = t

}
.

Example 20. If T = {HHT, THH}, then

[HHT ] = {HHT,HHHT,HHHHT, . . .}

and
[THH] = {THH,HTHH,TTHH, . . .} .
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Suppose now that we have n terminators T = {t1, t2, . . . , tn}. Since [t1], [t2], . . . , [tn]
form a partition of IT , by the law of total expectation,

E[LT ] =

n∑
i=1

E[LT | WT ∈ [ti]]P[WT ∈ [ti]].

This is the approach we will take in calculating E[LT ].

4.1 Probabilities

We now seek a formula for P[WT ∈ [ti]].
To build our intuition, we first look at the case where T = {THT,HTT}. Once again,

suppose you are a dealer at D’Casino, whose job is to flip a fair coin until either THT
or HTT appears. This time, D’Casino has introduced a slight modification to the coin-
flipping game:

Each round, a fair coin is flipped, and a game is played between two parties,
A and B:

A goes all-in, betting $n on the outcome of the coin-flip. If A wins, they win
$n from B, and they play again. If A loses, B takes everything, and the two
stop playing.

This repeats until a terminator appears, at which point the casino closes and
everybody goes home.

When compared to the original game, we see that A plays the role of the “gambler”, while
B plays the role of the “dealer”.
Now, suppose we have two groups of gamblers, Group 1 and Group 2, that frequent

D’Casino. The gamblers in Group 1 are obsessed with the sequence THT , while those in
Group 2 are obsessed with HTT . Every flip, a new gambler from each group arrives with
$1. The two gamblers then play two games simultaneously:

• In the first game, the Group 1 gambler is A and the Group 2 gambler is B. The
Group 1 gambler bets that the next few coin-flips will be THT .

• In the second game, the Group 2 gambler is A and the Group 1 gambler is B. The
Group 2 gambler bets that the next few coin-flips will be HTT .

To illustrate, suppose the coin-flips come up HHTHT . Let Rn(i, j) be the total revenue
earned in Game i by Group j at the nth flip. Define also

Xn = (Rn(1, 1) +Rn(2, 1))︸ ︷︷ ︸
Group 1’s revenue

− (Rn(1, 2) +Rn(2, 2))︸ ︷︷ ︸
Group 2’s revenue

to be the difference in revenue between the two groups.
We will focus on Game 1 first. Recall that Group 1 is A, betting on THT , while Group

2 is B. As this is almost identical to what we have seen before, we will keep it brief.
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n Event Rn(1, 1) Rn(1, 2)

1 Gambler #1 loses his first bet. 0 1

2 Gambler #2 loses his first bet. 0 2

3 Gambler #3 wins all three bets. He hence earns $7 overall.
For consistency, we record this as a gain of $8 to Group 1, and
a gain of $1 to Group 2.

8 3

4 Gambler #4 loses his first bet. 8 4

5 Gambler #5 wins his first bet before the casino closes. Like
before, we record this as a gain of $2 to Group 1, and a gain
of $1 to Group 2.

10 5

We now do the same thing for Game 2. Here, Group 2 is A, betting on HTT , while
Group 1 is B.

n Event Rn(2, 1) Rn(2, 2)

1 Gambler #1 loses his second bet. 1 0

2 Gambler #2 loses his third bet. 2 0

3 Gambler #3 loses his first bet. 3 0

4 Gambler #4 wins his first and second bet, but the casino closes
before his third. We record this as a gain of $4 to Group 2,
and a gain of $1 to Group 1.

4 4

5 Gambler #5 loses his first bet. 5 4

Like before, we make three key observations:

• In both games, due to the way we recorded revenues, the revenue of the group playing
B increases by one every round. That is, Rn(1, 2) = Rn(2, 1) = n. Hence,

Xn = (Rn(1, 1) +Rn(2, 1))− (Rn(1, 2) +Rn(2, 2)) = Rn(1, 1)−Rn(2, 2). (4.1)

• In both games, only the last three gamblers stood a chance to earn money. Thus,
Rn(1, 1) and Rn(2, 2) depend solely on the last three gamblers in each game.

• Since the games are fair, the difference in revenue, {Xn} is a martingale.2 Hence,
by the Optional Stopping Theorem,

E[Xτ ] = E[X0] = 0. (4.2)

From (4.1) and (4.2), it follows that

E[Rτ (1, 1)] = E[Rτ (2, 2)]. (4.3)

We now calculate E[Rτ (1, 1)] and E[Rτ (2, 2)].

• Suppose WT ∈ [THT ]. That is to say, the last three coin-flips are THT . Then
Group 1’s revenue in Game 1 is given by the correlation (THT : THT )2:

E[Rτ (1, 1) | WT ∈ [THT ]] = (THT : THT )2 = 23 + 21 = 10.

Similarly, Group 2’s revenue in Game 2 is given by the correlation (THT : HTT )2:

E[Rτ (2, 2) | WT ∈ [THT ]] = (THT : HTT )2 = 22 = 4.

2One can adapt the argument used in Section 3 to rigorously show that {Xn} is indeed a martingale.
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• Now suppose WT ∈ [HTT ]. With completely analogous arguments, we see that

E[Rτ (1, 1) | WT ∈ [HTT ]] = (HTT : THT )2 = 21 = 2

and
E[Rτ (2, 2) | WT ∈ [HTT ]] = (HTT : HTT )2 = 23 = 8.

By the law of total expectation, it follows that

E[Rτ (1, 1)] = 10P[WT ∈ [THT ]] + 2P[WT ∈ [HTT ]]

and
E[Rτ (2, 2)] = 4P[WT ∈ [THT ]] + 8P[WT ∈ [HTT ]]

By (4.3), the two are equal, giving us the equation

10P[WT ∈ [THT ]] + 2P[WT ∈ [HTT ]] = 4P[WT ∈ [THT ]] + 8P[WT ∈ [HTT ]].

Further, by the law of total probability,

P[WT ∈ [THT ]] + P[WT ∈ [HTT ]] = 1.

This gives us a system of two linear equations in two unknowns, which we can easily solve:

P[WT ∈ [THT ]] = P[WT ∈ [HTT ]] =
1

2
.

4.2 Correlation Matrices and Probability Vectors

We now introduce a more elegant way of calculating such probabilities, using the language
of linear algebra.
Once again, consider T = {THT,HTT}. We begin by summarizing the data using a

matrix, just like we did in Section 3:

T H T H T T

THT 23 21 21

HTT 22 23

Because of its importance, we give this matrix a special name: the correlation matrix
of T .

Definition 21. The correlation matrix of T = {t1, . . . , tn} with alphabet A is an n× n
matrix MT = (mij), where

mij = (tj : ti)|A|.

We also define another object called the probability vector of T :

Definition 22. The probability vector of T = {t1, . . . , tn}, denoted pT , is defined as

pT =

P[WT ∈ [t1]]
...

P[WT ∈ [tn]]

 .

Then, to get E[Rτ (i, i)], we simply multiply the correlation matrix MT with the prob-
ability vector pT and read off the ith row of the resulting vector.
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In context, we have

MT pT =

(
10 2
4 8

)(
P[WT ∈ [THT ]]
P[WT ∈ [HTT ]]

)
=

(
10P[WT ∈ [THT ]] + 2P[WT ∈ [HTT ]]
4P[WT ∈ [THT ]] + 8P[WT ∈ [HTT ]]

)
,

which perfectly aligns with what we calculated above.
To find the probabilities, we simply form our system of equations (by equating the two

rows) and solve!
With this method in mind, let us compute some probabilities:

Example 23. Let T = {TTT, THH}. For convenience, let T1 and T2 denote the events
WT ∈ [TTT ] and WT ∈ [THH] respectively. Our correlation matrix is of the form

T T T T H H

TTT 23 22 21

THH 21 23

The revenue earned by each group is hence(
14 0
2 8

)(
P[T1]
P[T2]

)
=

(
14P[T1]

2P[T1] + 8P[T2]

)
.

Equating the two, we have the system of equations{
P[T1] + P[T2] = 1,

14P[T1] = 2P[T1] + 8P[T2].

Solving, we obtain P[T1] = 2/5 and P[T2] = 3/5.

This method even works for terminators of differing lengths.

Example 24. Let T = {TT, THT}. Let T1 and T2 denote the events WT ∈ [TT ] and
WT ∈ [THT ] respectively. Our correlation matrix is of the form

T T T H T

TT 22 21 21

THT 21 23 21

The revenue earned by each group is hence(
6 2
2 10

)(
P[T1]
P[T2]

)
=

(
6P[T1] + 2P[T2]
2P[T1] + 10P[T2]

)
.

Equating the two, we have the system of equations{
P[T1] + P[T2] = 1,

6P[T1] + 2P[T2] = 2P[T1] + 10P[T2].

Solving, we obtain P[T1] = 2/3 and P[T2] = 1/3.

This method also easily generalizes when we consider more terminators. For instance,
if |T | = 3, then our set-up consists of three groups that play three “cyclical” games:

• Group 1 (A) vs Group 2 (B)

• Group 2 (A) vs Group 3 (B)
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• Group 3 (A) vs Group 1 (B)

Additionally, we will obtain the equation

E[Rτ (1, 1)] = E[Rτ (2, 2)] = E[Rτ (3, 3)]

using an argument completely analogous to |Tc| = 2 case (consider the balance between
any two groups and invoke the OST).

Example 25. Let T = {THT, TTT,HHH}. Let T1, T2 and T3 denote the events WT ∈
[THT ], WT ∈ [TTT ] andWT ∈ [HHH] respectively. Computing our correlation matrix,
we get

T H T T T T H H H

THT 23 21 21

TTT 21 23 22 21

HHH 23 22 21

The revenue earned by each group is thus given by the rows of the following vector:10 2 0
2 14 0
0 0 14

P[T1]
P[T2]
P[T3]

 =

10P[T1] + 2P[T2]
2P[T1] + 14P[T2]

14P[T3]

 .

For reasons entirely analogous to the |T | = 2 case, all three rows must be equal. This
gives us two equations: row 1 = row 2 and row 1 = row 3.3 This gives us the following
systems of equations: 

P[T1] + P[T2] + P[T3] = 1,

10P[T1] + 2P[T2] = 2P[T1] + 14P[T2],

10P[T1] + 2P[T2] = 14P[T3],

Solving, we have P[T1] = 21/52, P[T2] = 14/52 and P[T3] = 17/52.4

Now that we are fully acquainted with the correlation matrices, we proceed to derive a
general formula for pT .

Theorem 26. Let T = {t1, t2, . . . , tn}. Let 1 = (1, 1, . . . , 1) be the n × 1 vector that is
all ones. Then

pT =
1

1TM−1
T 1

M−1
T 1.

Proof. Let Ai be the ith row of MT pT . Since A1 = A2 = . . . An = λ, we have

MT pT =


A1

A2
...
An

 = λ


1
1
...
1

 = λ1.

Pre-multiplying by M−1
T , we obtain

pT = λM−1
T 1.

4Note that row 1 = row 2 and row 1 = row 3 implies row 2 = row 3, so we do not need to include row 2
= row 3 in our system.
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By the law of total probability, we must have 1TpT = 1. Pre-multiplying the above
equation by 1T,

1 = λ1TM−1
T 1 =⇒ λ =

1

1TM−1
T

.

Thus,

pT =
1

1TM−1
T 1

M−1
T 1.

Remark. 1TM−1
T 1 is the sum of all entries of the matrix M−1

T .

This expression allows us to easily calculate the probabilities using software.

4.3 The Expected Length

Using our formula for pT , we now aim to find a closed form for E[LT ]. We will do so using
yet another “fair casino” argument.
To build our intuition, we once again consider the case where we have only two termi-

nators, say T = {THT,HTT}. As usual, you, as the dealer at D’Casino, keep flipping a
coin until either terminator is achieved. This time, D’Casino only offers its original game,
which is restated below:

Each round, a fair-coin is flipped. Gamblers go all-in, betting on the outcome of
this coin-flip. If they win, they double their money, and they play again. If they
lose, the casino takes everything and they go home empty-handed. This repeats
until a terminator appears, at which point the casino closes and everybody goes
home.

Suppose now that we have two groups of gamblers that frequent D’Casino. Group 1
is obsessed with THT , while Group 2 is obsessed with HTT . Every flip, a new gambler
from each group enters D’Casino and bets $1 on their respective sequence.

To illustrate, suppose the coin-flips come up HHTHT . Let Rn(i) and Cn(i) be the
total revenue earned and total cost incurred by Group i gamblers at the nth flip. Let

Xn = (Rn(1)− Cn(1))︸ ︷︷ ︸
Group 1’s profit

+(Rn(2)− Cn(2))︸ ︷︷ ︸
Group 2’s profit

be the total profit made by the two groups at the nth flip.
We begin by analysing Group 1’s profits.

n Event Rn(1) Cn(1)

1 Gambler #1 loses his first bet. 0 1

2 Gambler #2 loses his first bet. 0 2

3 Gambler #3 wins all three bets. He hence earns $7 overall. For
consistency, we record this as a revenue of $8 and a loss of $1.

8 3

4 Gambler #4 loses his first bet. 8 4

5 Gambler #5 wins his first bet before the casino closes. Like before,
we record this as a revenue of $2 and a loss of $1.

10 5

We now analyse Group 2’s profit.
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n Event Rn(2) Cn(2)

1 Gambler #1 loses his second bet. 0 1

2 Gambler #2 loses his third bet. 0 2

3 Gambler #3 loses his first bet. 0 3

4 Gambler #4 wins his first and second bet, but the casino closes
before his third. We record this as a revenue of $4 and a loss of
$1.

4 4

5 Gambler #5 loses his first bet. 4 5

We now make the same key observations as we did back in Section 1.3.

• Due to the way we record losses, Cτ (i) is equal to the number of coin-flips made.
Taking expectations

E[Cτ (i)] = E[LT ]. (4.4)

• Only the last three gamblers in each group stand a chance to win money.

• Because the casino is fair, the total profit {Xn} is a martingale. Hence, by the OST,

E[Xτ ] = E[X0] = 0. (4.5)

Chaining (4.4) and (4.5), we have

E[Rτ (1) +Rτ (2)] = E[Cτ (1) + Cτ (2)] = 2E[LT ].

By the law of total expectation, one can write this as

2E[LT ] = E[Rτ (1) +Rτ (2) | WT ∈ [THT ]]P[WT ∈ [THT ]]

+ E[Rτ (1) +Rτ (2) | WT ∈ [HTT ]]P[WT ∈ [HTT ]]. (4.6)

Now consider our correlation matrix:

T H T H T T

THT 23 21 21

HTT 22 23

Reading off the first column (which corresponds to the event WT ∈ [THT ]), we see that

E[Rτ (1) | WT ∈ [THT ]] = 23 + 21 and E[Rτ (2) | WT ∈ [THT ]] = 22.

Similarly, looking at the second column, we see that

E[Rτ (1) | WT ∈ [HTT ]] = 21 and E[Rτ (2) | WT ∈ [HTT ]] = 23.

From the previous section, we found that both probabilities were 1/2. Substituting all of
these values back into (4.6), we have

2E[LT ] = (10 + 4)

(
1

2

)
+ (2 + 8)

(
1

2

)
= 12,

so E[LT ] = 6.
Generalizing this is quite simple. If we have n terminators T = {t1, . . . , tn}, then

E[LT ] =
n∑

i=1

1

n
(sum of ith column of MT ) P[WT ∈ [ti]]. (4.7)

We can phrase this more neatly using linear algebra:
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Theorem 27. Let T = {t1, . . . , tn}. Then

E[LT ] =
1

1TM−1
T 1

.

Proof. The sum of the ith column is given by the ith entry of MT
T 1. (4.7) can hence be

written as an inner product:

E[LT ] =
1

n

(
MT

T 1
)T

pT .

Invoking Theorem 26, this simplifies to

E[LT ] =
1

n

(
MT

T 1
)T 1

1TM−1
T 1

(
M−1

T 1
)
=

1

n
(
1TM−1

T 1
)1TMT M

−1
T 1 =

1T1

n
(
1TM−1

T 1
) .

Since 1T1 = n, we obtain our desired result.

Let us look at some examples.

Example 28. Let T = {THT,HTT}. Our correlation matrix is given by

T H T H T T

THT 23 21 21

HTT 22 23

The inverse of MT is

M−1
T =

1

36

(
4 −1
−2 5

)
.

Using the above result, we have

E[LT ] =
1

1
36(4− 1− 2 + 5)

= 6.

Example 29. Let T = {TT, THT}. Our correlation matrix is given by

T T T H T

TT 22 21 21

THT 21 23 21

One can calculate the inverse of MT to be

M−1
T =

1

28

(
5 −1
−1 3

)
.

Thus,

E[LT ] =
1

1
28 (5− 1− 1 + 3)

=
14

3
.

5 Further Questions

In this workshop, we managed to derive closed forms for E[LT ] and P[WT ∈ [t]]. There
are, however, many more questions we can ask about this game:
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• Is there a closed form for E[LT | WT ∈ [t]]?

• If WT ∈ [t], what is the distribution of LT ? How many words in [t] have length n?
Equivalently, given that LT = n, what is the probability that WT ∈ [t]?

• Given n terminators, each at most length k, what is the minimum and maximum
value of E[LT ]?

• What is the significance of M−1
T ? What does it mean to “invert” a correlation

matrix?

Slightly modifying our original coin-flip problem also opens up a whole can of worms:

• What if we stopped flipping the coin once we see all terminators?

• What if we allowed up to k appearances of a single terminator?

• If we flip a fair coin n times, what is the probability that a terminator t appears?
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