Coins Flips, Fair Casinos and Martingales

An Introduction to the ABRACADABRA Theorem

Eytan Chong May 7, 2025

Dunman High School

1. Probability Crash Course

- 2. A Coin-Flip Problem
- 3. Martingales and the Optional Stopping Theorem
- 4. The ABRACADABRA Theorem
- 5. Further Questions

Probability Crash Course

The *sample space*, denoted *S*, is the set of all possible outcomes that can occur. An *event* is a subset of *S*.

The *probability* that an event *E* occurs is denoted $\mathbb{P}[E]$.

The *sample space*, denoted *S*, is the set of all possible outcomes that can occur. An *event* is a subset of *S*.

The *probability* that an event *E* occurs is denoted $\mathbb{P}[E]$.

Suppose I roll a six-sided dice. There are 6 possible outcomes: I roll a 1, I roll a 2, etc. This is my sample space. For convenience, write

 $S = \{1, 2, 3, 4, 5, 6\}$.

Let *E* denote the event "I roll a 1 or a 2". This corresponds to the subset $\{1, 2\}$.

The probability of *E* happening is $\mathbb{P}[E] = \frac{2}{6}$.

A *random variable* is a quantity that depends on random events. It is denoted with capital letters, typically X or Y.

A *random variable* is a quantity that depends on random events. It is denoted with capital letters, typically X or Y.

The outcome of my dice roll is a random variable.

The outcome of a coin flip is a random variable.

A *probability distribution* describes all possible values of the random variable and their corresponding probabilities.

It assigns a probability value to each possible outcome in the sample space.

When writing probability distributions, we write particular values of a random variable using lower-case letters.

A *probability distribution* describes all possible values of the random variable and their corresponding probabilities.

It assigns a probability value to each possible outcome in the sample space.

When writing probability distributions, we write particular values of a random variable using lower-case letters.

The probability distribution of a dice roll is

X	1	2	3	4	5	6
$\mathbb{P}[X=x]$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

For example, $\mathbb{P}[X = 1] = \frac{1}{6}$, $\mathbb{P}[X = 1 \text{ or } 2] = \frac{2}{6}$.

We typically want to know the "average value" of a random variable X. We call this the expectation of X, denoted $\mathbb{E}[X]$.

We define $\mathbb{E}[X]$ as

$$\mathbb{E}[X] = \sum_{x \in S} x \mathbb{P}[X = x].$$

We typically want to know the "average value" of a random variable X.

We call this the expectation of *X*, denoted $\mathbb{E}[X]$.

We define $\mathbb{E}[X]$ as

$$\mathbb{E}[X] = \sum_{x \in S} x \mathbb{P}[X = x].$$

Let the possible values of a random variable Y be 1 and -1, each occurring with probability $\frac{1}{2}$. What is the "average" value of Y, i.e. $\mathbb{E}[Y]$?

We typically want to know the "average value" of a random variable X.

We call this the expectation of *X*, denoted $\mathbb{E}[X]$.

We define $\mathbb{E}[X]$ as

$$\mathbb{E}[X] = \sum_{x \in S} x \mathbb{P}[X = x].$$

Let the possible values of a random variable Y be 1 and -1, each occurring with probability $\frac{1}{2}$. What is the "average" value of Y, i.e. $\mathbb{E}[Y]$?

$$\mathbb{E}[Y] = (1)\left(\frac{1}{2}\right) + (-1)\left(\frac{1}{2}\right) = 0.$$

Let *X* be the outcome of a dice roll. What is $\mathbb{E}[X]$?

Exercise

Let *X* be the outcome of a dice roll. What is $\mathbb{E}[X]$?

$$\mathbb{E}[X] = (1)\left(\frac{1}{6}\right) + (2)\left(\frac{1}{6}\right) + (3)\left(\frac{1}{6}\right) + (4)\left(\frac{1}{6}\right) + (5)\left(\frac{1}{6}\right) + (6)\left(\frac{1}{6}\right) = 3.5.$$

Exercise

Let *X* be the outcome of a dice roll. What is $\mathbb{E}[X]$?

$$\mathbb{E}[X] = (1)\left(\frac{1}{6}\right) + (2)\left(\frac{1}{6}\right) + (3)\left(\frac{1}{6}\right) + (4)\left(\frac{1}{6}\right) + (5)\left(\frac{1}{6}\right) + (6)\left(\frac{1}{6}\right) = 3.5.$$

Suppose the dice is now biased, so X has probability distribution

X	1	2	3	4	5	6
$\mathbb{P}[X=x]$	0.2	0.3	0	0	0.3	0.2

What is $\mathbb{E}[X]$?

Exercise

Let *X* be the outcome of a dice roll. What is $\mathbb{E}[X]$?

$$\mathbb{E}[X] = (1)\left(\frac{1}{6}\right) + (2)\left(\frac{1}{6}\right) + (3)\left(\frac{1}{6}\right) + (4)\left(\frac{1}{6}\right) + (5)\left(\frac{1}{6}\right) + (6)\left(\frac{1}{6}\right) = 3.5.$$

Suppose the dice is now biased, so X has probability distribution

X	1	2	3	4	5	6
$\mathbb{P}[X=x]$	0.2	0.3	0	0	0.3	0.2

What is $\mathbb{E}[X]$?

$$\mathbb{E}[X] = 1(0.2) + 2(0.3) + 3(0) + 4(0) + 5(0.3) + 6(0.2) = 3.6.$$

Sometimes we already know some information about the situation, so we can rule out some outcomes. E.g. we know that we did not roll a 1 or a 2.

Sometimes we already know some information about the situation, so we can rule out some outcomes. E.g. we know that we did not roll a 1 or a 2.

Given this information, the probability of an event changes. For instance, the probability that we roll a 3 is now much higher.

Sometimes we already know some information about the situation, so we can rule out some outcomes. E.g. we know that we did not roll a 1 or a 2.

Given this information, the probability of an event changes. For instance, the probability that we roll a 3 is now much higher.

We write this as

$$\mathbb{P}[X = 3 \mid \underbrace{X \neq 1, X \neq 2}_{\text{given information}}].$$

Conditional Expectation

Similarly, given some information about the situation, the expectation of *X* also changes. The notation is identical:

$$\mathbb{E}[X \mid \underbrace{X \neq 1, X \neq 2}_{\text{given information}}].$$

Conditional Expectation

Similarly, given some information about the situation, the expectation of *X* also changes. The notation is identical:

$$\mathbb{E}[X \mid \underbrace{X \neq 1, X \neq 2}_{\text{given information}}].$$

We can calculate a conditional expectation using

$$\mathbb{E}[X \mid A] = \sum_{x \in S} x \mathbb{P}[X = x \mid A].$$

Conditional Expectation

Similarly, given some information about the situation, the expectation of *X* also changes. The notation is identical:

$$\mathbb{E}[X \mid \underbrace{X \neq 1, X \neq 2}_{\text{given information}}].$$

We can calculate a conditional expectation using

$$\mathbb{E}[X \mid A] = \sum_{x \in S} x \mathbb{P}[X = x \mid A].$$

This is almost identical to what we saw previously:

$$\mathbb{E}[X] = \sum_{x \in S} x \mathbb{P}[X = x].$$

The law of total expectation states that

$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X \mid A_i] \mathbb{P}[A_i],$$

where A_1, A_2, \ldots, A_n partitions the sample space.

The law of total expectation states that

$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X \mid A_i] \mathbb{P}[A_i],$$

where A_1, A_2, \ldots, A_n partitions the sample space.

Suppose you are picking a banknote from two bags, say Bag A and Bag B. Bag A has a \$2 note, a \$5 note and a \$10 note. Bag B has a \$50 note and a \$100 note. You have an 80% chance of taking a note from Bag A. What is your expected profit?

Suppose you are picking a banknote from two bags, say Bag A and Bag B. Bag A has a \$2 note, a \$5 note and a \$10 note. Bag B has a \$50 note and a \$100 note. You have an 80% chance of taking a note from Bag A. What is your expected profit?

Suppose you are picking a banknote from two bags, say Bag A and Bag B. Bag A has a \$2 note, a \$5 note and a \$10 note. Bag B has a \$50 note and a \$100 note. You have an 80% chance of taking a note from Bag A. What is your expected profit?

Let X be my profit. By the law of total expectation,

$$\mathbb{E}[X] = \mathbb{E}[X \mid \text{Bag A}] \mathbb{P}[\text{Bag A}] + \mathbb{E}[X \mid \text{Bag B}] \mathbb{P}[\text{Bag B}]$$
$$= \frac{2+5+10}{3}(0.8) + \frac{50+100}{2}(0.2)$$
$$= 19.53.$$

Hence, I expect to win \$19.53.

A Coin-Flip Problem

Let's look at a simple example.

Let's look at a simple example.

Suppose we flip a fair coin until we get Tails. On average, how many times is the coin flipped?

Let's look at a simple example.

Suppose we flip a fair coin until we get Tails. On average, how many times is the coin flipped?

Ans: 2

Let's look at a simple example.

Suppose we flip a fair coin until we get Tails. On average, how many times is the coin flipped?

Ans: 2

Definition 2.

The **terminator** \mathcal{T} is the sequence that terminates the coin-flipping.

Let W_T be a word constructed by randomly concatenating the letters H and T until we reach a terminator T. Let $L_T = |W_T|$ be the length of the resulting word. What is $\mathbb{E}[L_T]$?

A Coin-Flip Problem

A Naive Approach

A Naive Approach

Suppose T = T.

A Naive Approach

Suppose T = T.

$$\mathbb{P}[T] = \frac{1}{2}.$$

$$\mathbb{P}[T] = \frac{1}{2}.$$

 $\mathbb{E}[L_T] = \frac{1}{\mathbb{P}[T]} = \frac{1}{1/2} = 2.$

$$\mathbb{P}[T] = \frac{1}{2}.$$

 $\mathbb{E}[L_T] = \frac{1}{\mathbb{P}[T]} = \frac{1}{1/2} = 2.$

$$\mathbb{P}[TH] = \frac{1}{4}.$$

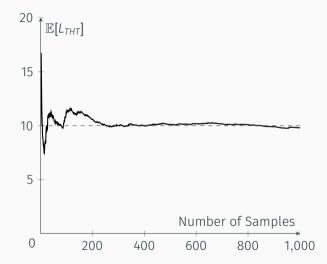
$$\mathbb{P}[TH] = \frac{1}{4}.$$
$$\mathbb{E}[L_{TH}] = \frac{1}{\mathbb{P}[TH]} = \frac{1}{1/4} = 4.$$

$$\mathbb{P}[TH] = \frac{1}{4}.$$
$$\mathbb{E}[L_{TH}] = \frac{1}{\mathbb{P}[TH]} = \frac{1}{1/4} = 4.$$

$$\mathbb{P}[THT] = \frac{1}{8}.$$

$$\mathbb{P}[THT] = \frac{1}{8}.$$
$$\mathbb{E}[L_{THT}] = \frac{1}{\mathbb{P}[THT]} = \frac{1}{1/8} = 8?$$

$$\mathbb{P}[THT] = \frac{1}{8}.$$
$$\mathbb{E}[L_{THT}] = \frac{1}{\mathbb{P}[THT]} = \frac{1}{1/8} = 8?$$



Martingales and the Optional Stopping Theorem

Martingales and the Optional Stopping Theorem

Martingales

A martingale is a random process which models a gambler's fortune in a *fair game*. Is typically represented by a sequence of random variables X_0, X_1, X_2, \ldots A martingale is a random process which models a gambler's fortune in a *fair game*. Is typically represented by a sequence of random variables $X_0, X_1, X_2, ...$

Some motivating questions:

- What is a fair game?
- What properties do fair games possess?

Flip a fair coin.

- If it comes up *H*, we win \$1.
- If it comes up *T*, we lose \$1.

Repeat this process forever.

Let X_n be our wealth after the *n*th coin-flip.

Let Y_n represent the outcome of the *n*th coin-flip.

Let X_n be our wealth after the *n*th coin-flip.

Let Y_n represent the outcome of the *n*th coin-flip.

• The coin is *fair*.

$$\mathbb{P}[Y_n = H] = \mathbb{P}[Y_n = T] = \frac{1}{2}.$$

Let X_n be our wealth after the *n*th coin-flip.

Let Y_n represent the outcome of the *n*th coin-flip.

• The coin is *fair*.

$$\mathbb{P}[Y_n = H] = \mathbb{P}[Y_n = T] = \frac{1}{2}.$$

• The coin-flips are *independent*: The outcomes of past coin-flips do not influence the outcomes of future flips.

$$\mathbb{P}[Y_{n+1} \mid Y_1, \ldots, Y_n] = \mathbb{P}[Y_{n+1}].$$

 $\mathbb{E}[X_{n+1} \mid Y_1, Y_2, \dots Y_n]$

$$\mathbb{E}[X_{n+1} \mid Y_1, Y_2, \dots, Y_n] = (X_n + 1) \mathbb{P}[Y_{n+1} = H \mid Y_1, \dots, Y_n] + (X_n - 1) \mathbb{P}[Y_{n+1} = T \mid Y_1, \dots, Y_n]$$

$$\mathbb{E}[X_{n+1} \mid Y_1, Y_2, \dots, Y_n]$$

= $(X_n + 1) \mathbb{P}[Y_{n+1} = H \mid Y_1, \dots, Y_n] + (X_n - 1) \mathbb{P}[Y_{n+1} = T \mid Y_1, \dots, Y_n]$
= $(X_n + 1) \mathbb{P}[Y_{n+1} = H] + (X_n - 1) \mathbb{P}[Y_{n+1} = T]$

$$\mathbb{E}[X_{n+1} | Y_1, Y_2, \dots, Y_n]$$

= $(X_n + 1) \mathbb{P}[Y_{n+1} = H | Y_1, \dots, Y_n] + (X_n - 1) \mathbb{P}[Y_{n+1} = T | Y_1, \dots, Y_n]$
= $(X_n + 1) \mathbb{P}[Y_{n+1} = H] + (X_n - 1) \mathbb{P}[Y_{n+1} = T]$
= $\frac{1}{2}(X_n + 1) + \frac{1}{2}(X_n - 1)$

$$\mathbb{E}[X_{n+1} \mid Y_1, Y_2, \dots, Y_n] = (X_n + 1) \mathbb{P}[Y_{n+1} = H \mid Y_1, \dots, Y_n] + (X_n - 1) \mathbb{P}[Y_{n+1} = T \mid Y_1, \dots, Y_n] = (X_n + 1) \mathbb{P}[Y_{n+1} = H] + (X_n - 1) \mathbb{P}[Y_{n+1} = T] = \frac{1}{2} (X_n + 1) + \frac{1}{2} (X_n - 1) = X_n.$$

$$\mathbb{E}[X_{n+1} \mid Y_1, Y_2, \dots, Y_n] \\ = (X_n + 1) \mathbb{P}[Y_{n+1} = H \mid Y_1, \dots, Y_n] + (X_n - 1) \mathbb{P}[Y_{n+1} = T \mid Y_1, \dots, Y_n] \\ = (X_n + 1) \mathbb{P}[Y_{n+1} = H] + (X_n - 1) \mathbb{P}[Y_{n+1} = T] \\ = \frac{1}{2}(X_n + 1) + \frac{1}{2}(X_n - 1) \\ = X_n.$$

Our expected wealth after the next flip, given that we know all previous outcomes, is exactly our current wealth.

This is the defining property of a martingale.

Definition 7.

A sequence of random variables X_1, X_2, \ldots is a **martingale** with respect to the sequence Y_1, Y_2, \ldots if

$$\mathbb{E}[X_{n+1} \mid Y_1, \ldots, Y_n] = X_n.$$

Let X_n represent the price of a stock on day n. Then $\{X_n\}$ is a martingale with respect to itself.

Let X_n represent the price of a stock on day n. Then $\{X_n\}$ is a martingale with respect to itself.

Proof.

Suppose $\mathbb{E}[X_{n+1} \mid X_1, \ldots, X_n] > X_n$.

- Buying the stock today and selling tomorrow yields a profit (in expectation).
- Those that own the stock today will not sell today, since its value is expected to increase tomorrow.

Demand increases, supply decrease \implies today's stock price increases.

Let X_n represent the price of a stock on day n. Then $\{X_n\}$ is a martingale with respect to itself.

Proof.

Suppose instead $\mathbb{E}[X_{n+1} \mid X_1, \ldots, X_n] < X_n$.

- Those who want to buy the stock would rather buy it tomorrow, since it will be cheaper.
- Those that own the stock today will want to sell today, since its value is expected to decrease tomorrow.

Demand decreases, supply increases \implies today's stock price decreases.

Let X_n represent the price of a stock on day n. Then $\{X_n\}$ is a martingale with respect to itself.

Proof.

Today's stock price will eventually reach an equilibrium, where

 $\mathbb{E}[X_{n+1} \mid X_1, \ldots, X_n] = X_n.$

This is exactly the condition for $\{X_n\}$ to be a martingale!

Efficient Market Hypothesis (EMH): Share prices reflect all available information and cannot consistently be beat.

Efficient Market Hypothesis (EMH): Share prices reflect all available information and cannot consistently be beat.

The EMH is generally true. The market is not perfectly efficient

See: alpha generation in quantitative finance.

Let $X_n = 10$ for all $n \ge 1$. Is X_1, X_2, \ldots a martingale?

Let $X_n = 10$ for all $n \ge 1$. Is X_1, X_2, \ldots a martingale?

Yes.

Let $X_n = 10$ for all $n \ge 1$. Is X_1, X_2, \ldots a martingale?

Yes.

$$\mathbb{E}[X_{n+1} | Y_1, \dots, Y_n] = \mathbb{E}[10 | Y_1, \dots, Y_n] = 10 = X_n.$$

Let $X_n = n$ for all $n \ge 1$. Is X_1, X_2, \ldots a martingale?

Let $X_n = n$ for all $n \ge 1$. Is X_1, X_2, \ldots a martingale?

No.

Let $X_n = n$ for all $n \ge 1$. Is X_1, X_2, \ldots a martingale?

No.

$$\mathbb{E}[X_{n+1} | Y_1, \dots, Y_n] = \mathbb{E}[n+1 | Y_1, \dots, Y_n] = n+1 \neq n = X_n.$$

Let $Y_1, Y_2, Y_3, ...$ be a sequence of independent random variables, each equal to -1 with probability 1/2 and 1 with probability 1/2. Let $X_n = Y_1 + Y_2 + \cdots + Y_n$ for n > 0. Is X_n a martingale with respect to Y_n ?

Let $Y_1, Y_2, Y_3, ...$ be a sequence of independent random variables, each equal to -1 with probability 1/2 and 1 with probability 1/2. Let $X_n = Y_1 + Y_2 + \cdots + Y_n$ for n > 0. Is X_n a martingale with respect to Y_n ?

Yes.

Let $Y_1, Y_2, Y_3, ...$ be a sequence of independent random variables, each equal to -1 with probability 1/2 and 1 with probability 1/2. Let $X_n = Y_1 + Y_2 + \cdots + Y_n$ for n > 0. Is X_n a martingale with respect to Y_n ?

Yes.

Observe that
$$X_{n+1} = X_n + Y_{n+1}$$
. So
 $\mathbb{E}[X_{n+1} | Y_1, \dots, Y_n] = \mathbb{E}[X_n + Y_{n+1} | Y_1, \dots, Y_n]$
 $= \mathbb{E}[X_n | Y_1, \dots, Y_n] + \mathbb{E}[Y_{n+1} | Y_1, \dots, Y_n]$

Let $Y_1, Y_2, Y_3, ...$ be a sequence of independent random variables, each equal to -1 with probability 1/2 and 1 with probability 1/2. Let $X_n = Y_1 + Y_2 + \cdots + Y_n$ for n > 0. Is X_n a martingale with respect to Y_n ?

Yes.

Observe that $X_{n+1} = X_n + Y_{n+1}$. So $\mathbb{E}[X_{n+1} | Y_1, \dots, Y_n] = \mathbb{E}[X_n + Y_{n+1} | Y_1, \dots, Y_n]$ $= \mathbb{E}[X_n | Y_1, \dots, Y_n] + \mathbb{E}[Y_{n+1} | Y_1, \dots, Y_n]$ $= \mathbb{E}[X_n] + \mathbb{E}[Y_{n+1}]$

Let $Y_1, Y_2, Y_3, ...$ be a sequence of independent random variables, each equal to -1 with probability 1/2 and 1 with probability 1/2. Let $X_n = Y_1 + Y_2 + \cdots + Y_n$ for n > 0. Is X_n a martingale with respect to Y_n ?

Yes.

Observe that
$$X_{n+1} = X_n + Y_{n+1}$$
. So

$$\mathbb{E}[X_{n+1} \mid Y_1, \dots, Y_n] = \mathbb{E}[X_n + Y_{n+1} \mid Y_1, \dots, Y_n]$$

$$= \mathbb{E}[X_n \mid Y_1, \dots, Y_n] + \mathbb{E}[Y_{n+1} \mid Y_1, \dots, Y_n]$$

$$= \mathbb{E}[X_n] + \mathbb{E}[Y_{n+1}]$$

$$= X_n + \left[\left(\frac{1}{2}\right)(1) + \left(\frac{1}{2}\right)(-1)\right]$$

Let $Y_1, Y_2, Y_3, ...$ be a sequence of independent random variables, each equal to -1 with probability 1/2 and 1 with probability 1/2. Let $X_n = Y_1 + Y_2 + \cdots + Y_n$ for n > 0. Is X_n a martingale with respect to Y_n ?

Yes.

Observe that
$$X_{n+1} = X_n + Y_{n+1}$$
. So

$$\mathbb{E}[X_{n+1} | Y_1, \dots, Y_n] = \mathbb{E}[X_n + Y_{n+1} | Y_1, \dots, Y_n]$$

$$= \mathbb{E}[X_n | Y_1, \dots, Y_n] + \mathbb{E}[Y_{n+1} | Y_1, \dots, Y_n]$$

$$= \mathbb{E}[X_n] + \mathbb{E}[Y_{n+1}]$$

$$= X_n + \left[\left(\frac{1}{2}\right)(1) + \left(\frac{1}{2}\right)(-1)\right]$$

$$= X_n.$$

Martingales and the Optional Stopping Theorem

Stopping Times and Strategies

Previously, we required a fair game to be played over infinitely many rounds.

Previously, we required a fair game to be played over infinitely many rounds. This is not very realistic, so we introduce the idea of a *stopping time*. Previously, we required a fair game to be played over infinitely many rounds. This is not very realistic, so we introduce the idea of a *stopping time*.

A stopping time au is the round where a gambler quits playing a game.

He cannot see into the future (view the outcome of future rounds) to decide when to stop playing.

Definition 9.

A stopping time τ with respect to a sequence $\{Y_n\}$ is a random variable taking values in $\mathbb{N} \cup \{\infty\}$ such that for all $n \in \mathbb{N}$, the event $\{\tau = n\}$ depends solely on Y_1, \ldots, Y_n . This event is called the gambler's stopping strategy.

Example 10.

Stopping strategy: quit after 10 games.

```
Stopping time: \tau = 10.
```

Example 10.

Stopping strategy: quit after 10 games.

Stopping time: $\tau = 10$.

Stopping strategy: quit after 3 losses in a row.

Stopping time: $\{\tau = n\}$ is

$$\left\{ \underbrace{Y_{n-2} = -1, \ Y_{n-1} = -1, \ Y_n = -1}_{3 \text{ losses in a row}} \right\}.$$

i. The third time the gambler loses in a row.

i. The third time the gambler loses in a row. (Yes)

- i. The third time the gambler loses in a row. (Yes)
- ii. Two rounds before the gambler profits \$50.

- i. The third time the gambler loses in a row. (Yes)
- ii. Two rounds before the gambler profits \$50. (No)

- i. The third time the gambler loses in a row. (Yes)
- ii. Two rounds before the gambler profits \$50. (No)
- iii. The first time the gambler profits \$50 or goes bankrupt.

- i. The third time the gambler loses in a row. (Yes)
- ii. Two rounds before the gambler profits \$50. (No)
- iii. The first time the gambler profits \$50 or goes bankrupt. (Yes)

- i. The third time the gambler loses in a row. (Yes)
- ii. Two rounds before the gambler profits \$50. (No)
- iii. The first time the gambler profits \$50 or goes bankrupt. (Yes)
- iv. The first time the gambler starts a sequence of 10 losses in a row.

- i. The third time the gambler loses in a row. (Yes)
- ii. Two rounds before the gambler profits \$50. (No)
- iii. The first time the gambler profits \$50 or goes bankrupt. (Yes)
- iv. The first time the gambler starts a sequence of 10 losses in a row. (No)

- i. The third time the gambler loses in a row. (Yes)
- ii. Two rounds before the gambler profits \$50. (No)
- iii. The first time the gambler profits \$50 or goes bankrupt. (Yes)
- iv. The first time the gambler starts a sequence of 10 losses in a row. (No)

Martingales and the Optional Stopping Theorem

The Optional Stopping Theorem

Q: Is there a stopping strategy that returns a profit (on average)?

Q: Is there a stopping strategy that returns a profit (on average)?A: Generally, no.

Theorem 11 (Doob's Optional Stopping Theorem).

Let $\{X_n\}$ be a martingale and let τ be a stopping time, both with respect to $\{Y_n\}$. Then $\mathbb{E}[X_{\tau}] = X_0$ if at least one of the following holds:

- 1. $|X_n|$ is bounded.
- 2. au is bounded.
- 3. 𝔼[*τ*] is finite, and all increments of *X* are bounded, i.e. there exists a constant *C* such that for all *n*,

$$|X_{n+1}-X_n|\leq C.$$

Theorem 11 (Doob's Optional Stopping Theorem).

Let $\{X_n\}$ be a martingale and let τ be a stopping time, both with respect to $\{Y_n\}$. Then $\mathbb{E}[X_{\tau}] = X_0$ if at least one of the following holds:

- 1. $|X_n|$ is bounded.
- 2. au is bounded.
- 3. $\mathbb{E}[\tau]$ is finite, and all increments of X are bounded, i.e. there exists a constant C such that for all n,

$$|X_{n+1}-X_n|\leq C.$$

As long as our stopping strategy is *reasonable enough*, our expected payout must be equal to the amount we started with.

- breaks the validity of our stopping time, or
- breaks all three conditions of the OST.

- breaks the validity of our stopping time, or
- breaks all three conditions of the OST.

Invalid stopping time: We have to look into the future (impossible)

- breaks the validity of our stopping time, or
- breaks all three conditions of the OST.

Invalid stopping time: We have to look into the future (impossible) OST does not apply:

• $|X_n|$ unbounded: We either gain or lose an infinite amount of money (unrealistic).

- breaks the validity of our stopping time, or
- breaks all three conditions of the OST.

Invalid stopping time: We have to look into the future (impossible) OST does not apply:

- $|X_n|$ unbounded: We either gain or lose an infinite amount of money (unrealistic).
- $\tau = \infty$: We play the game forever (impossible).

- breaks the validity of our stopping time, or
- breaks all three conditions of the OST.

Invalid stopping time: We have to look into the future (impossible) OST does not apply:

- $|X_n|$ unbounded: We either gain or lose an infinite amount of money (unrealistic).
- + $\tau = \infty$: We play the game forever (impossible).
- Same problems arise if $\mathbb{E}[\tau] = \infty$ and $|X_{n+1} X_n|$ is unbounded.

- breaks the validity of our stopping time, or
- breaks all three conditions of the OST.

Invalid stopping time: We have to look into the future (impossible) OST does not apply:

- $|X_n|$ unbounded: We either gain or lose an infinite amount of money (unrealistic).
- + $\tau = \infty$: We play the game forever (impossible).
- Same problems arise if $\mathbb{E}[\tau] = \infty$ and $|X_{n+1} X_n|$ is unbounded.

- breaks the validity of our stopping time, or
- breaks all three conditions of the OST.

Invalid stopping time: We have to look into the future (impossible) OST does not apply:

- $|X_n|$ unbounded: We either gain or lose an infinite amount of money (unrealistic).
- + $\tau = \infty$: We play the game forever (impossible).
- Same problems arise if $\mathbb{E}[\tau] = \infty$ and $|X_{n+1} X_n|$ is unbounded.

Hence, practically all strategies obey the OST.

We start with \$*K*.

Each round, we flip a fair coin.

- If it lands *H*, we gain \$1.
- If it lands *T*, we lose \$1.

We keep playing until we go bankrupt, or have a total of \$*N*. What is the probability of going bankrupt? Let Y_n be the outcome of the *n*th flip. Let X_n be our wealth after the *n*th flip. Stopping time $\tau = \min\{n : X_n = 0 \text{ or } X_n = N\}$. We wish to find $\mathbb{P}[X_{\tau} = 0]$.

We previously proved that $\{X_n\}$ is a martingale with respect to $\{Y_n\}$. X_n is bounded: $0 \le X_n \le N$. We previously proved that $\{X_n\}$ is a martingale with respect to $\{Y_n\}$. X_n is bounded: $0 \le X_n \le N$. By OST (scenario 1), $\mathbb{E}[X_T] = X_0 = K$.

 X_n is bounded: $0 \le X_n \le N$.

By OST (scenario 1), $\mathbb{E}[X_{\tau}] = X_0 = K$.

We can also write $\mathbb{E}[X_{\tau}] = N \mathbb{P}[X_{\tau} = N] + 0 \mathbb{P}[X_{\tau} = 0].$

 X_n is bounded: $0 \le X_n \le N$.

By OST (scenario 1), $\mathbb{E}[X_{\tau}] = X_0 = K$.

We can also write $\mathbb{E}[X_{\tau}] = N \mathbb{P}[X_{\tau} = N] + 0 \mathbb{P}[X_{\tau} = 0].$

So $\mathbb{P}[X_{\tau} = N] = \frac{K}{N}$ and $\mathbb{P}[X_{\tau} = 0] = 1 - \frac{K}{N}$.

 X_n is bounded: $0 \le X_n \le N$.

By OST (scenario 1), $\mathbb{E}[X_{\tau}] = X_0 = K$.

We can also write $\mathbb{E}[X_{\tau}] = N \mathbb{P}[X_{\tau} = N] + 0 \mathbb{P}[X_{\tau} = 0].$

So $\mathbb{P}[X_{\tau} = N] = \frac{K}{N}$ and $\mathbb{P}[X_{\tau} = 0] = 1 - \frac{K}{N}$.

The greedier we are, the higher the probability of us going bankrupt.

The ABRACADABRA Theorem

The ABRACADABRA Theorem

The Fair Casino

Imagine you work as a dealer at D'Casino.

There is only one game available for play at D'Casino.

Each round, you flip a fair-coin.

Gamblers go all-in, betting on the outcome of this coin-flip.

- If they win, they double their money, and they play again.
- If they lose, they lose everything and go home.

This repeats until a terminator (say THT) appears, at which point the casino closes.

Let Y_n be the outcome of the *n*th coin flip.

Let τ be the stopping time.

Note that $\{\tau = n\}$ is the event that $Y_{n-2}Y_{n-1}Y_n$ is THT.

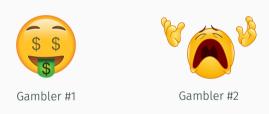
A group of gamblers, obsessed with the sequence *THT*, frequents D'Casino.

Every flip, a new gambler from this group arrives with \$1 and plays the game, hoping that the subsequent flips appear *T*, *H*, *T* in that order.

```
Y_1 = T
```


Gambler #1

- Bets \$1 that $Y_1 = T$.
- Wins \$2 and plays again.



- Bets \$2 that $Y_2 = H$.
- Wins \$4 and plays again.

• Bets \$1 that $Y_2 = T$.

 $Y_2 = H$

• Loses \$1 and stops playing.

A Simple Example

Gambler #1

Gambler #2

Gambler #3

- Bets \$4 that $Y_3 = T$.
- Wins \$8.

- Bets \$1 that $Y_3 = T$.
- Wins \$2.

Since terminator *THT* appears, the game stops.

	Coin Flip #1	Coin Flip #2	Coin Flip #3
Total won	\$2	\$4	\$8 + \$2
Total lost	\$1	\$2 + \$1	\$4 + \$1

	Coin Flip #1	Coin Flip #2	Coin Flip #3
Total won	\$2	\$4	\$8 + \$2
Total lost	\$1	\$2 + \$1	\$4 + \$1

What if we tabulate by gambler instead of by coin-flips?

	Gambler #1	Gambler #2	Gambler #3
Total won	\$2 + \$4 + \$8	-	\$2
Total lost	\$1 + \$2 + \$4	\$1	\$1

Key Idea: We want to track the total money earned by the first *n* gamblers.

Key Idea: We want to track the total money earned by the first *n* gamblers.

Let R_n and C_n be the total revenue earned and total cost incurred by the first n gamblers, respectively.

Let $X_n = R_n - C_n$ be the combined profit earned by the first *n* gamblers.

Gambler #1 bets \$1 that $Y_1 = T$. He loses.

Gambler #1 bets \$1 that $Y_1 = T$. He loses.

We record this as a loss of \$1.

Gambler #1 bets \$1 that $Y_1 = T$. He loses.

We record this as a loss of \$1.

 $R_1 = 0, C_1 = 1.$

Gambler #2 bets \$1 that $Y_2 = T$. He wins. He now has \$2.

Gambler #2 bets \$1 that $Y_2 = T$. He wins. He now has \$2.

He bets \$2 that the $Y_3 = H$. He loses.

Gambler #2 bets \$1 that $Y_2 = T$. He wins. He now has \$2.

He bets \$2 that the $Y_3 = H$. He loses.

We record this as a loss of \$1.

Gambler #2 bets \$1 that $Y_2 = T$. He wins. He now has \$2.

He bets \$2 that the $Y_3 = H$. He loses.

We record this as a loss of \$1.

 $R_2 = 0, C_2 = 2.$

Gambler #3 bets \$1 that $Y_3 = T$. He wins. He now has \$2.

Gambler #3 bets \$1 that $Y_3 = T$. He wins. He now has \$2.

He bets \$2 that $Y_4 = H$. He wins. He now has \$4.

Gambler #3 bets \$1 that $Y_3 = T$. He wins. He now has \$2.

He bets \$2 that $Y_4 = H$. He wins. He now has \$4.

He bets \$4 that $Y_5 = T$. He wins. He now has \$8.

Gambler #3 bets \$1 that $Y_3 = T$. He wins. He now has \$2.

He bets \$2 that $Y_4 = H$. He wins. He now has \$4.

He bets \$4 that $Y_5 = T$. He wins. He now has \$8.

We record this as a gain of \$8 and a loss of \$1. $R_3 = 8, C_3 = 3.$

Gambler #4 bets \$1 that $Y_4 = T$. He loses.

Gambler #4 bets \$1 that $Y_4 = T$. He loses.

We record this as a loss of \$1.

Gambler #4 bets \$1 that $Y_4 = T$. He loses.

We record this as a loss of \$1.

 $R_4 = 8$, $C_4 = 4$.

Gambler #5 bets \$1 that $Y_5 = T$. He wins. He now has \$2.

Gambler #5 bets \$1 that $Y_5 = T$. He wins. He now has \$2.

After the fifth coin-flip, the casino closes. Hence, he cannot continue betting.

Gambler #5 bets \$1 that $Y_5 = T$. He wins. He now has \$2.

After the fifth coin-flip, the casino closes. Hence, he cannot continue betting.

We record this as a gain of \$2 and a loss of \$1.

Gambler #5 bets \$1 that $Y_5 = T$. He wins. He now has \$2.

After the fifth coin-flip, the casino closes. Hence, he cannot continue betting.

We record this as a gain of \$2 and a loss of \$1.

 $R_5 = 10, C_5 = 5.$

Total revenue: $R\tau =$ \$10.

Total cost: $C\tau =$ \$5.

Total profit: $X\tau = R\tau - C\tau =$ \$5.

Proposition 12.

 $\mathbb{E}[L_{THT}] = \mathbb{E}[C_{\tau}].$

Proof.

The number of coin-flips, is equal to the number of gamblers.

Because of the way we recorded losses, each gambler incurs a loss of exactly \$1.

Hence, the number of coin-flips made, L_{THT} , is equal to the total cost incurred, $C_{ au}$.

Taking expectations, $\mathbb{E}[L_{THT}] = \mathbb{E}[C_{\tau}]$.

Proposition 13. $\mathbb{E}[C_{\tau}] = \mathbb{E}[R_{\tau}].$

Because the coin flips are fair, X_n is a martingale. We can show that the stopping time τ is finite, so by the Optional Stopping Theorem,

 $\mathbb{E}[X_{\tau}]=X_0=0,$

but $X_{\tau} = R_{\tau} - C_{\tau}$, so

 $\mathbb{E}[R_{\tau}] = \mathbb{E}[C_{\tau}].$

Proposition 13. $\mathbb{E}[C_{\tau}] = \mathbb{E}[R_{\tau}].$

Because the coin flips are fair, X_n is a martingale. We can show that the stopping time τ is finite, so by the Optional Stopping Theorem,

 $\mathbb{E}[X_{\tau}]=X_0=0,$

but $X_{\tau} = R_{\tau} - C_{\tau}$, so

 $\mathbb{E}[R_{\tau}] = \mathbb{E}[C_{\tau}].$

(For a more rigorous proof, see the next section)

Proposition 14.

 $\mathbb{E}[R_{\tau}] = R_{\tau} = 10.$

Proof.

By the rules of the game, only the last three gamblers can earn money. (why?)

So R_{τ} depends solely on the last three coin-flips.

But the last three coin-flips are always THT.

Hence, R_{τ} is a constant, thus $\mathbb{E}[R_{\tau}] = R_{\tau} = 10$.

We observed that

 $\mathbb{E}[L_{THT}] = \mathbb{E}[C_{\tau}]$ $\mathbb{E}[C_{\tau}] = \mathbb{E}[R_{\tau}]$ $\mathbb{E}[R_{\tau}] = R_{\tau} = 10.$

We observed that

 $\mathbb{E}[L_{THT}] = \mathbb{E}[C_{\tau}]$ $\mathbb{E}[C_{\tau}] = \mathbb{E}[R_{\tau}]$ $\mathbb{E}[R_{\tau}] = R_{\tau} = 10.$

Therefore,

$$\mathbb{E}[L_{THT}] = \mathbb{E}[C] = \mathbb{E}[R] = R = 10.$$

The ABRACADABRA Theorem

Proof of Proposition 13

Proposition 13. $\mathbb{E}[C_{\tau}] = \mathbb{E}[R_{\tau}].$

Proposition 13. $\mathbb{E}[C_{\tau}] = \mathbb{E}[R_{\tau}].$

Outline:

- $\{X_n\}$ is a martingale.
- $\{X_n\}$ and τ obeys the OST.
- Invoke OST.

 $\{X_n\}$ is a martingale with respect to $\{Y_n\}$.

Proof.

It suffices to show that (1) $\mathbb{E}[X_n]$ is finite, and (2) $\mathbb{E}[X_{n+1} | Y_1, \dots, Y_n] = X_n$.

 $\{X_n\}$ is a martingale with respect to $\{Y_n\}$.

Proof.

(1) $\mathbb{E}[X_n]$ is finite.

 X_n attains a maximum when all n gamblers win.

 X_n attains a minimum when all n gamblers lose.

Hence, $|X_n| \le n \cdot 2^n$, so $\mathbb{E}[X_n]$ must also be bounded and thus finite.

```
\{X_n\} is a martingale with respect to \{Y_n\}.
```

Proof.

(2) $\mathbb{E}[X_{n+1} \mid Y_1, \ldots, Y_n] = X_n.$

Let A_n be the total wealth of gamblers that have lost before the *n*th flip.

Since A_n is constant, we have

$$\mathbb{E}[A_{n+1} \mid Y_1, \ldots, Y_n] = A_{n+1} = A_n.$$

 $\{X_n\}$ is a martingale with respect to $\{Y_n\}$.

Proof.

Let B_n be the total wealth of gamblers that are still betting at the *n*th flip.

Since the coin is fair and independent, and the gamblers bet double-or-nothing, we have

$$\mathbb{E}[B_{n+1} | Y_1, \ldots, Y_n] = \frac{1}{2}(2B_n) + \frac{1}{2}(0) = B_n.$$

 $\{X_n\}$ is a martingale with respect to $\{Y_n\}$.

Proof.

Because $X_n = A_n + B_n$,

$$\mathbb{E}[X_{n+1} \mid Y_1, \dots, Y_n] = \mathbb{E}[A_{n+1} \mid Y_1, \dots, Y_n] + \mathbb{E}[B_{n+1} \mid Y_1, \dots, Y_n]$$
$$= A_n + B_n$$
$$= X_n.$$

Hence, $\{X_n\}$ is a martingale with respect to $\{Y_n\}$.

We show that scenario 3 of OST is satisfied: (1) $\mathbb{E}[\tau]$ is finite and (2) increments of X_n are bounded.

We will prove (2) first.

(2) Increments of X_n are bounded.

Maximum increase in X_n occurs when last three gamblers bet on Y_{τ} and win: $X_{n+1} - X_n \leq 3 \cdot 2^3$.

Maximum decrease in X_n occurs when last three gamblers bet on Y_{τ} and lose: $X_{n+1} - X_n \ge -3$.

Hence, $|X_{n+1} - X_n|$ is bounded.

(1) $\mathbb{E}[\tau]$ is finite.

Consider the following modified game:

Suppose the terminator has length n. Each round, n coins are flipped. If these n coins matches the terminator (i.e. come up THT), we stop flipping. If not, we continue on with another round.

Let the stopping time for this game be τ' .

Clearly, this game takes longer to finish: $\mathbb{E}[\tau] \leq \mathbb{E}[\tau']$.

Let M be the number of rounds played under this game.

Each round, coin-flips have a 1/8 chance of matching the terminator.

So M follows a geometric distribution with probability of success p = 1/8. Hence, $\mathbb{E}[M] = 1/p = 8$.

Since a total of 3M coin-flips are made in this game, $0 < \mathbb{E}[\tau] \le \mathbb{E}[\tau'] = 3 \cdot 8$.

Thus, $\mathbb{E}[\tau]$ is bounded and thus finite.

Thus, $\{X_n\}$ and τ satisfy scenario 2 of the OST.

Invoking OST, $\mathbb{E}[X_{\tau}] = X_0 = 0.$

But $X_{\tau} = R_{\tau} - C_{\tau}$, so $\mathbb{E}[C_{\tau}] = \mathbb{E}[R_{\tau}]$ as desired.

The ABRACADABRA Theorem

Correlations and the ABRACADABRA Theorem

Since R_{τ} depends solely on the last few gamblers, we have an easy way of calculating $\mathbb{E}[L_{\tau}]$.

Example 16.

Imagine the terminator THT has already been flipped. Working backwards,

- The third-last gambler wins $$2^3$, since he sees *THT*.
- The second-last gambler wins \$0, since he sees H and loses.
- The last gambler wins $$2^1$, since he sees *T* before the casino closes.

Hence, $\mathbb{E}[L_{THT}] = R_{\tau} = 2^3 + 2^1 = 10.$

We can abstract this process of calculating R_{τ} using the *correlation* of two strings.

Definition 17.

Let X and Y be two words. The **correlation polynomial** of X and Y, denoted $\rho_z(X, Y)$, is a polynomial in z of maximum degree |X|.

The coefficients of $\rho_z(X, Y)$ are determined as follows: place Y under X so that its leftmost character is under the *i*th character of X (from the right). Then, if all pairs of characters in the overlapping segment are identical, the coefficient of z^i is 1, else it is 0.

Example 18.

Let X = HTHTTH and Y = HTTHT. Then $\rho_z(X, Y) = z^4 + z^1$.

X	: F	1	Т	Н	Т	Т	Н					
Y	: F	1	Т	Т	Н	Т						0
			Н	Т	Т	Н	Т					0
				Н	Т	Т	Н	Т				Z^4
					Н	Т	Т	Н	Т			0
						Н	Т	Т	Н	Т		0
							Н	Т	Т	Н	Т	Z^1

Correlation and R_{τ}

We see that $R_{\tau} = \rho_2(\mathcal{T}, \mathcal{T})!$

Correlation and R_{τ}

We see that $R_{\tau} = \rho_2(\mathcal{T}, \mathcal{T})!$

Example 19.

Suppose T = THT. Then $R_{\tau} = \rho_2(THT, THT) = 2^3 + 2^1 = 10$.

Х:	Т	Н	Т			
<i>Y</i> :	Т	Н	Т			2 ³
		Т	Н	Т		0
			Т	Н	Т	2 ¹

We can write this more concisely:

$$\begin{array}{c|ccc} T & H & T \\ \hline THT & 2^3 & 2^1 \end{array}$$

Correlation and R_{τ}

Example 20.

Let $\mathcal{T} = THHTHHTHH$.

So $\mathbb{E}[L_T] = 2^9 + 2^6 + 2^3 = 584.$

Suppose we change the final character to a T: T = THHTHHTHT.

So $\mathbb{E}[L_{\mathcal{T}}] = 2^9 + 2^1 = 514.$

The "self-repetition" of a terminator determines how big $\mathbb{E}[L_{\mathcal{T}}]$ is.

THHTHHTHH self-repeats many times (at the sixth-last and third-last characters), while *THHTHHTHT* only repeats itself at the last character.

Example 21.

A monkey types one random character on a typewriter every second. On average, how long would it take the monkey to type the word "ABRACADABRA"?

Example 21.

A monkey types one random character on a typewriter every second. On average, how long would it take the monkey to type the word "ABRACADABRA"?

We now have 26 letters to construct our sequence from: $\{A, B, C, ..., X, Y, Z\}$. We hence evaluate the correlation polynomial at z = 26 instead.

	A	В	R	А	С	Α	D	Α	В	R	A
ABRACADABRA	26 ¹¹							264			26 ¹

Hence, the expected time taken is $26^{11} + 26^4 + 26$ seconds, or 116.4 million years.

Theorem 22 (ABRACADABRA Theorem).

Suppose we have *n* possible letters. Then

 $\mathbb{E}[L_{\mathcal{T}}] = \rho_n(\mathcal{T}, \mathcal{T}).$

How long would it take the monkey to type "ENTANGLEMENT"?

How long would it take the monkey to type "ENTANGLEMENT"?

	Е	Ν	Т	Α	Ν	G	L	Ε	М	Ε	Ν	Т
ENTANGLEMENT	26 ¹²									26 ³		

So the expected time taken is $26^{12} + 26^3$ seconds, or 3.026 billion years.

Further Questions

What if we have more than one terminator, say $T = \{THT, HTT\}$?

- Can we find $\mathbb{E}[L_{\mathcal{T}}]$?
- What is the probability that $L_{\mathcal{T}}$ ends with THT?
- What is the expected length of L_T , given that L_T ends with THT?

Any questions?