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Preface

About this Book

This book is a collection of notes and exercises based on the mathematics courses offered
at Dunman High School1. The scope of this book follows that of the 2025 H2 Mathemat-
ics (9758), H2 Further Mathematics (9649) and H3 Mathematics (9820) syllabi for the
Singapore-Cambridge A-Level examinations.

Notation

All definitions, results, recipes (methods) and examples are colour-coded green, blue,
purple and red respectively.
Challenging exercises are marked with a “ ” symbol.
The area of a polygon A1A2 . . . An is notated [A1A2 . . . An]. In particular, the area of a

triangle ABC is notated [△ABC].
For formatting reasons, an inline column vector is notated as (x, y, z)T.
Let n be a positive integer. Then [n] represents the set {1, 2, . . . , n}.

Contributing

The source code for this book is available on GitHub at asdia0/TripleMath. Contribu-
tions are more than welcome.

1It must be stated that these notes are unofficial and are obviously not endorsed by the school.

https://www.seab.gov.sg/files/A%20Level%20Syllabus%20Sch%20Cddts/2025/8865_y25_sy.pdf
https://www.seab.gov.sg/files/A%20Level%20Syllabus%20Sch%20Cddts/2025/9649_y25_sy.pdf
https://www.seab.gov.sg/files/A%20Level%20Syllabus%20Sch%20Cddts/2025/9820_y25_sy.pdf
https://github.com/asdia0/TripleMath
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1 Equations and Inequalities

1.1 Quadratic Equations

In this section, we will look at the properties of quadratic equations as well as their roots.

Proposition 1.1.1 (Quadratic Formula). The roots α and β of a quadratic equation ax2+
bx+ c = 0, where a ̸= 0 can be found using the quadratic formula:

α, β =
−b±

√
b2 − 4ac

2a
.

Proof. Completing the square, we get

ax2 + bx+ c = a

(
x+

b

2a

)2

− b2

4a
+ c = 0,

which rearranges as (
x+

b

2a

)2

=
b2 − 4ac

4a2
.

Taking roots and simplifying,

x+
b

2a
= ±

√
b2 − 4ac

2a
=⇒ x =

−b±
√
b2 − 4ac

2a
.

Definition 1.1.2. The expression under the radical, b2−4ac, is known as the discriminant
and is denoted ∆.

Proposition 1.1.3 (Nature of Roots).

• If ∆ > 0, the roots are real and distinct.

• If ∆ = 0, the roots are equal.

• If ∆ < 0, the roots are complex.

Proof. Let the roots to the quadratic equation ax2 + bx + c = 0 be α and β. By the
quadratic formula,

α, β =
−b

2a
±

√
∆

2a
.

Clearly, if ∆ > 0, then
√
D > 0, whence the two roots are different. If ∆ = 0, then√

D = 0, whence α = β = −b/2a. If ∆ < 0, then
√
D is not real, whence α and β are

complex.

Remark. Not only are α and β complex, but they are also complex conjugates. We will
cover this later in §13.
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Proposition 1.1.4 (Vieta’s Formula for Quadratics). Let α and β be the roots of the
quadratic ax2 + bx+ c = 0, where a ̸= 0. Then

α+ β = − b

a
, αβ =

c

a
.

Proof. Since α and β are roots, we can rewrite the quadratic as

ax2 + bx+ c = a(x− α)(x− β) = a
[
x2 − (α+ β)x+ αβ

]
.

Comparing coefficients yields

α+ β = − b

a
, αβ =

c

a
.

1.2 System of Linear Equations

Definition 1.2.1. A set of two or more equations to be solved simultaneously is called
a system of equations. If the system has only equations that contain unknowns of the
first degree, it is a system of linear equations.

Definition 1.2.2. A system of equations is said to be consistent if it admits solutions.
Conversely, if there are no solutions to the system, it is said to be inconsistent.

Example 1.2.3. The system {
3x+ 6y = 3

3x+ 8y = 9

is consistent, since x = −5, y = 3 is a solution. On the other hand, the system

{
3x+ 6y = 3

6x+ 12y = 7

is inconsistent, as it does not admit any solutions (why?).

Proposition 1.2.4. If a system of linear equations is consistent, it either has a unique
solution or infinitely many solutions.

Proof. Geometrically, if a collection of lines has more than one common point, they must
all be equivalent.

1.3 Inequalities

Fact 1.3.1 (Properties of Inequalities). Let a, b, c,∈ R.

• (transitivity) If a > b and b > c, then a > c.

• (addition) If a > b, then a+ c > b+ c.

• (multiplication) If a > b and c > 0, then ac > bc; if c < 0, then ac < bc.
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1.3.1 Solving Inequalities

In this section, we introduce two main methods of solving inequalities.

Recipe 1.3.2 (Graphical Method). Plot the function and observe which x-values satisfy
the inequality.

Recipe 1.3.3 (Test-Value Method).

1. Indicate the root(s) of the function on a number line (i.e. where f(x) = 0).

2. Choose an x-value within each interval as your test-value.

3. Using the test-value, evaluate whether the function is positive/negative within
that interval.

Note that the test-value method is only useful for inequalities where one side is 0, e.g.
f(x) > 0.

Sample Problem 1.3.4 (Test-Value Method). Solve the inequality 2x− x2 ≥ −3.

Solution. In order to apply the test-value method, we must first make one side of the
inequality 0:

2x− x2 ≥ −3 =⇒ x2 − 2x− 3 ≤ 0.

Since x2 − 2x − 3 = (x + 1)(x − 3), the critical values are x = −1 and x = 3. Picking
x = −2, x = 0 and x = 4 as our test-values, we see that x2 − 2x − 3 is only negative on
the interval (−1, 3). Hence, the solution is [−1, 3]. □
In the case where the function is rational, i.e. f(x)/g(x), there is an additional method

we can use.

Recipe 1.3.5 (Clearing Denominators). Multiply the square of the denominator, i.e.
[g(x)]2, throughout the inequality.

Note that the square ensures that the sign of the inequality is preserved.

1.4 Modulus Function

Definition 1.4.1. The modulus function |x|, where x ∈ R, is defined as

|x| =
{

x if x ≥ 0,

−x if x < 0.

The modulus function can be thought of as the “distance” between a number and the
origin (the number 0) on the real number line.

Fact 1.4.2 (Properties of Modulus Function). For any x ∈ R and k > 0,

• |x| ≥ 0.

•
∣∣x2
∣∣ = |x|2 = x2 and

√
x2 = |x|.

• |x| < k ⇐⇒ −k < x < k.

• |x| = k ⇐⇒ x = −k or x = k.

• |x| > k ⇐⇒ x < −k or x > k.
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2 Numerical Methods of Finding Roots

2.1 Bolzano’s Theorem

The following theorem forms the basis for finding roots numerically.

Theorem 2.1.1 (Bolzano’s Theorem). Let f(x) be a continuous function on the interval
[a, b]. If f(a) and f(b) have opposite signs, i.e. f(a)f(b) < 0, then there exists at least
one real root in [a, b].

Additionally, if f(x) is strictly monotonic on [a, b], then there is exactly one real root
in [a, b].

2.2 Numerical Methods for Finding Roots

A numerical method for finding roots typically consists of two stages:

1. Estimate the location of the root

Obtain an initial approximate value of this root.

2. Improve on the estimate (via an iterative process)

An iterative process is a repetitive procedure designed to produce a sequence of ap-
proximations {xn} so that the sequence converges to a root. The process is continued
until the required accuracy is reached.

In this chapter, we will look at three numerical methods for finding roots, namely linear
interpolation, fixed point iteration and the Newton-Raphson method.

2.3 Linear Interpolation

Linear interpolation is a numerical method based on approximating the curve y = f(x) to
a straight line in the vicinity of the root. The approximate root of the equation f(x) = 0
is the intersection of this straight line with the x-axis.

2.3.1 Derivation

α c

A

B

x

Figure 2.1
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Suppose f(x) = 0 has exactly one root α in the interval [a, b], where f(a) and f(b) have
opposite signs. By the point-slope formula, the line connecting the points (a, f(a)) and
(b, f(b)) is given by

y − f(a) =
f(b)− f(a)

b− a
(x− a).

At the point (c, 0),

0− f(a) =
f(b)− f(a)

b− a
(c− a) =⇒ c =

af(b)− bf(a)

f(b)− f(a)
.

Linear interpolation can be repeatedly applied by replacing either the lower or upper
bound of the interval with the previously found approximation.

2.3.2 Convergence

Convergence of the approximations is guaranteed for linear interpolation. However, how
good the estimation is depends on how ”straight” the graph of y = f(x) is in [a, b], i.e. the
rate at which f ′(x) is changing in [a, b]. This rate also affects the rate of convergence: if
f ′(x) changes considerably, the rate of convergence is slow; if f ′(x) does not change much,
the rate of convergence is fast.

2.4 Fixed Point Iteration

Fixed point iteration is used to find a root of an equation f(x) = 0 which can be written in
the form x = F (x). The roots of the equation are the abscissae of the points of intersection
of the line y = x and y = F (x).

2.4.1 Derivation

Let α be a root to f(x) = 0. Since f(x) = 0 can be written in the form x = F (x), we
clearly have α = F (α). Now observe that we can replace the argument α with F (α):

α = F (α) = F ◦ F (α) = F ◦ F ◦ F (α) = . . . .

Hence,
α = F ◦ F ◦ F ◦ · · · ◦ F (x).

2.4.2 Geometrical Interpretation

Geometrically, fixed-point iteration can be seen as repeatedly ”reflecting” the initial ap-
proximation point (x1, F (x1)) about the line y = x, while keeping the resultant point on
the curve y = F (x).

x1x2 x3O

x

y

Figure 2.2
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2.4.3 Convergence

Convergence is not guaranteed. The rate at which the approximations converge to α
depends on the value of |F ′(x)| near α. The smaller |F ′(x)| is, the faster the convergence.
It should be noted that fixed-point iteration fails if |F ′(x)| > 1 near α.

x1x2 x3O

x

y

Figure 2.3: Divergence occurs when |F ′(x)| > 1 near α.

2.5 Newton-Raphson Method

The Newton-Raphson method is a numerical method that improves on linear interpolation
by considering the tangent line at the initial approximation to the root.

2.5.1 Derivation

α x2 x1
O

x

y

Figure 2.4

Let α be a root to f(x) = 0. Consider the tangent to y = f(x) at the point where x = x1.
In most circumstances, the point (x2, 0) where this tangent cuts the x-axis will be nearer to
the point (α, 0) than (x1, 0) was. By the point-slope formula, the equation of the tangent
to the curve at x = x1 is

y − f(x1) = f ′(x1)(x− x1).

Since (x2, 0) lies on the tangent line, we have

x2 = x1 −
f(x1)

f ′(x1)
.

By repeating the Newton-Raphson process, we are able to get better approximations to
α. In general,

xn+1 = xn − f(xn)

f ′(xn)
.
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2.5.2 Convergence

The rate of convergence when using the Newton-Raphson method depends on the first
approximation used and the shape of the curve in the neighbourhood of the root. In
extreme cases, these factors may lead to failure (divergence). The three main cases are:

• |f ′(x1)| is too small (extreme case when f ′(x1) = 0),

• f ′(x) increases/decreases too rapidly (|f ′′(x)| is too large),

• x1 is too far away from α.

αx1x2 O

x

y

Figure 2.5: Divergence occurs when x1 is too far away from α.
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3 Functions

3.1 Definition and Notation
Definition 3.1.1. A function f is a rule or relation that assigns each and every element
of x ∈ X to one and only one element y ∈ Y . We write this as f : X → Y and read it
as “f maps x to Y ”. X is called the domain of f , denoted Df , while Y is called the
codomain of f . The elements of y that get mapped to under f is known as the range
of f , denoted Rf . Mathematically, Rf = {f(x) | x ∈ Df} .

To define a function, we must state its rule and specify the domain. There are two ways
to represent this:

f : x 7→ x2 + 1︸ ︷︷ ︸
the rule

, x ∈ R︸ ︷︷ ︸
Df

or f(x) = x2 + 1︸ ︷︷ ︸
the rule

, x ∈ R︸ ︷︷ ︸
Df

.

Note that two functions are equal if and only if they have the same rule and domain.
For instance, the function g : x 7→ x2 + 1, x ∈ Z is not equal to f (as defined above) since
their domains are not equal (R ̸= Z).

Note that f is not the same as f(x); f is a map, while f(x) is the value that f maps x
to.

3.2 Graph of a Function

Definition 3.2.1. The graph of f(x) is the collection of all points (x, y) in the xy-plane
such that the values x and y satisfy y = f(x).

Proposition 3.2.2 (Vertical Line Test). A relation f is a function if and only if every
vertical line x = k, k ∈ Df cuts the graph of y = f(x) at one and only one point.

Proof. By definition, a function f is a relation which maps each element in the domain to
one and only one image.

3.3 One-One Functions
Definition 3.3.1. A function is said to be one-one if no two distinct elements in the
given domain have the same image under f . Mathematically,

x1 ̸= x2 =⇒ f(x1) ̸= f(x2).

Equivalently, f is one-one if f(x1) = f(x2) implies x1 = x2.

Proposition 3.3.2 (Horizontal Line Test). A function f is one-one if and only if any
horizontal line y = k, k ∈ Rf cuts the graph of y = f(x) at one and only one point.

Proof. We only prove the backwards case as the forwards case is trivial. Suppose y = k
and y = f(x) intersect more than once. Then there exist two distinct elements x1 and x2
in Df such that f(x1) = f(x2), whence f is not one-one.
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Proposition 3.3.3 (Strict Monotonicity Implies One-One). All strictly monotone functions
are one-one.

Proof. Seeking a contradiction, assume that there exists a strictly increasing function
f : X → Y which is not one-one. Then there exists x1, x2 ∈ X such that x1 ̸= x2 =⇒
f(x1) = f(x2). Without loss of generality, assume x1 < x2, since f is strictly increasing.
Then f(x1) < f(x2), a contradiction. Therefore, all strictly increasing functions are one-
one. Similarly, all strictly decreasing functions are one-one.

To prove that a function is not one-one, it is sufficient to provide a specific counter-
example.

3.4 Inverse Functions

Definition 3.4.1. Let f : X → Y be a function. Its inverse function, f−1 : Y → X is a
function that undoes the operation of f . Mathematically, for all x ∈ Df ,

f−1(y) = x ⇐⇒ f(x) = y.

Fact 3.4.2 (Properties of Inverse Function).

• f−1 exists if and only if f is one-one.

• Df = Rf−1 and Rf = Df−1 .

• The graphs of f and f−1 are reflections of each other in the line y = x.

y
=
x

O

x

y y = f

y = f−1

Figure 3.1: The graphs of f and f−1 are reflections of each other in the line y = x.

3.5 Composite Functions

Definition 3.5.1. Let f and g be functions. Then the composite function gf is defined
by

gf(x) = g(f(x)) = g ◦ f(x), x ∈ Df .

Proposition 3.5.2 (Existence of Composite Function). The composite function gf exists
when Rf ⊆ Dg.

Proof. Suppose Rf ̸⊆ Dg. Then there exists some element y in Rf that is not in Dg.
Let the pre-image of y under f be x. Then gf(x) = g(y) is undefined, whence gf is not
well-defined and is hence not a function.
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Note that in general, composition of functions is not commutative, i.e. fg ̸= gf .
We write the composition of f with itself n times as fn(x). For instance, ff(x) =

f(f(x)) can be written as f2(x). This should not be confused with [f(x)]n.

3.5.1 Composition of Inverse Function

Suppose f : x 7→ y has an inverse f−1 : y 7→ x. By the definition of an inverse function.

f−1 ◦ f(x) = f ◦ f−1(x) = x.

Though f−1f and ff−1 have the same rule, they may have different domains. This is
because Df−1f = Df , while Dff−1 = Df−1 .
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4 Graphs and Transformations

4.1 Characteristics of a Graph

When we sketch a graph, we need to take note of the following characteristics and indicate
them on the sketch accordingly:

• Axial intercepts. x- and y-intercepts.

• Stationary points. Maximum, minimum points and stationary points of inflexion.

• Asymptotes. Horizontal, vertical and oblique asymptotes.

When sketching a graph, the shape and any symmetry must be clearly seen.

4.2 Asymptotes

Definition 4.2.1. An asymptote is a straight line such that the distance between the
curve and the line approaches zero at the extreme end(s) of a graph, i.e. the curve
approaches the line but never touches it at these ends.

Definition 4.2.2. Let a and b be constants.

• If x → ±∞, y → a, then the line y = a is a horizontal asymptote.

• If x → a, y → ±∞, then the line x = a is a vertical asymptote.

• If x → ±∞, y − (ax+ b) → 0, then the line y = ax+ b is an oblique asymptote.

4.3 Even and Odd Functions

Definition 4.3.1. A function f(x) is even if and only if f(−x) = f(x) for all x in its
domain.

Geometrically, a function is even if and only if the graph y = f(x) is symmetrical about
the y-axis.

Definition 4.3.2. A function f(x) is odd if and only if f(−x) = −f(x) for all x in its
domain.

Geometrically, a function is odd if and only if the graph y = f(x) is symmetrical about
the origin.

4.4 Graphs of Rational Functions

A rational function f is a ratio of two polynomials P (x) and Q(x), where Q(x) ̸≡ 0.
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4.4.1 Rectangular Hyperbola

A rectangular hyperbola is a hyperbola with asymptotes that are perpendicular to each
other. The general formula for a rectangular hyperbola is y = ax+b

cx+d , where a, b, c and d

are constants. Note that the curve y = ax+b
cx+d has a vertical asymptote x = −d/c and a

horizontal asymptote y = a/c. The two possible shapes of a rectangular hyperbola are
shown below.

x = −d/c

y = a/c

O

x

y

Figure 4.1: Hyperbolas of the form y = ax+b
cx+d .

4.4.2 Hyperbolas of the Form y = ax2+bx+c
dx+e

A hyperbola of the form y = ax2+bx+c
dx+e , where a, b, c, d and e are constants, has one vertical

and one oblique asymptote. The vertical asymptote has equation x = −e/d. To deduce
the oblique asymptote, we must first convert the equation to the form y = px+ q + r

dx+e
(via long division or otherwise). These graphs will generally take one of the two forms
below, which can be easily deduced by checking the axial intercepts.

x = −e/d

y = px+ q

O

x

y

Figure 4.2: Hyperbolas of the form y = ax2+bx+c
dx+e .
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4.5 Graphs of Basic Conics

A conic is a curve that can be formed by intersecting a right circular conical surface with
a plane. We will examine four types of conics: parabola, circle, ellipse and hyperbola.
When sketching graphs of conics, it is important to identify their unique characteristics.

4.5.1 Parabola

Parabolas are curves with equations y = ax2 or x = by2, where a and b are constants.

O

x

y a > 0
a < 0

Figure 4.3: Parabolas with equation y = ax2.

Parabolas with equation y = ax2 have a line of symmetry x = 0 and a vertex at the
origin.

O

x

y b > 0
b < 0

Figure 4.4: Parabolas with equation x = by2.

Parabolas with equation x = by2 have a line of symmetry y = 0 and a vertex at the
origin.

4.5.2 Circle

A circle is a set of all points in a plane which are the same distance (radius r) from a fixed
point (centre). A basic circle with centre at the origin O and radius r is shown below.
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y

x

r

O

Figure 4.5: Circle with equation x2 + y2 = r2.

Any straight line that passes through the centre of the circle is a line of symmetry. The
above circle has vertices at (r, 0), (−r, 0), (0, r) and (0,−r).
In general,

• the standard form of the equation of a circle with centre at (h, k) and radius r is
(x− h)2 + (y − k)2 = r2, where r > 0.

• the general form of the equation of a circle is Ax2 +Ay2 +Bx+ Cy +D = 0.

4.5.3 Ellipse

An ellipse is a circle that has been scaled parallel to the x- and/or y-axes. The standard

form of the equation of an ellipse centred at (0, 0) is x2

a2
+ y2

b2
= 1, where a, b > 0. a and b

are known as the horizontal and vertical radii respectively.

y

x

O

a−a

b

−b

Figure 4.6: Ellipse with equation x2

a2
+ y2

b2
= 1.

The lines of symmetry for the above ellipse are the x- and y-axes, while its vertices are
(a, 0), (−a, 0), (0, b) and (0,−b).
In general,
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• the standard form of the equation of an ellipse with centre at (h, k) and radius r is
(x−h)2

a2
+ (y−k)2

b2
= 1, where r > 0.

• the general form of the equation of an ellipse is Ax2 +Bx2 + Cx+Dy + E = 0.

4.5.4 Hyperbola

The hyperbola is a conic with two oblique asymptotes. The standard form of a hyperbola

centred at the origin O is either x2

a2
− y2

b2
= 1 or y2

b2
− x2

a2
= 1, where a, b > 0, depending on

the orientation of the hyperbola.

a−a

b

−b

y = bx/a

y = −bx/a

O

x

y x2

a2
− y2

b2
= 1

y2

b2
− x2

a2
= 1

Figure 4.7

Both hyperbolas have the origin as their centres, the x- and y-axes as their lines of
symmetry, and their two oblique asymptotes are y = ± b

ax. The hyperbola with equation
x2

a2
− y2

b2
= 1 has vertices (−a, 0) and (a, 0), i.e. a is the horizontal distance from the centre

to the vertices. Similarly, the hyperbola with equation y2

b2
− x2

a2
= 1 has vertices (0,−b)

and (0, b), i.e. b is the vertical distance from the centre to the vertices.
In general,

• the standard form of the equation of a hyperbola with centre at (h, k) and radius r

is (x−h)2

a2
− (y−k)2

b2
= 1 or (y−k)2

b2
− (x−h)2

a2
= 1 where a, b > 0.

• the general form of the equation of a hyperbola is Ax2 −Bx2 + Cx+Dy + E = 0.

4.6 Parametric Equations

Definition 4.6.1. A set of parametric equations define a curve by expressing the coor-
dinates (x, y) in terms of an independent variable t (the parameter), i.e. x = f(t) and
y = g(t).

Example 4.6.2 (Parametric Equations of a Circle). The parametric equations x = cos θ,
y = sin θ, θ ∈ [0, 2π) defines a unit circle.

Note that changing the domain of the parameter may change the shape of the curve,
even if the same pair of parametric equations are used. Using the above example, if we
instead take θ ∈ [0, π) the resulting curve is that of a semicircle.
To convert a pair of parametric equations to Cartesian form, the parameter must be

eliminated. This can be done by either expressing t in terms of x and/or y.
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Example 4.6.3 (Parametric to Cartesian via Substitution). Consider the parametric equa-
tions x = t2 +2t, y = t2 − 2t. Observe that x− y = 4t, whence t = (x− y)/4. Thus, the
Cartesian equation of the resulting curve is

y =

(
x− y

4

)2

+ 2

(
x− y

4

)
.

A similar process is used to convert implicit Cartesian equations into parametric form.
Note that explicit Cartesian equations can be trivially converted: simply take x = t.

4.7 Basic Linear Transformations

4.7.1 Translation

For a > 0,

How y = f(x) was
transformed

Graphical effect on
y = f(x)

Effect on x or y values

y replaced with y − a Translated a units in the
positive y-direction.

(x, y) 7→ (x, y + a)

y replaced with y + a Translated a units in the
negative y-direction.

(x, y) 7→ (x, y − a)

x replaced with x− a Translated a units in the
positive x-direction.

(x, y) 7→ (x+ a, y)

x replaced with x+ a Translated a units in the
negative x-direction.

(x, y) 7→ (x− a, y)

4.7.2 Reflection

For a > 0,

How y = f(x) was
transformed

Graphical effect on
y = f(x)

Effect on x or y values

y replaced with −y Reflected in the x-axis. (x, y) 7→ (x,−y)

x replaced with −x Reflected in the y-axis. (x, y) 7→ (−x, y)

4.7.3 Scaling

For a > 0,

How y = f(x) was
transformed

Graphical effect on
y = f(x)

Effect on x or y values

y replaced with y/a Scaled by a factor of a
parallel to the y-axis.

(x, y) 7→ (x, ay)

x replaced with x/a Scaled by a factor of a
parallel to the x-axis.

(x, y) 7→ (ax, y)
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4.8 Relating Graphs to the Graph of y = f(x)

4.8.1 Graph of y = |f(x)|
Note that

y = |f(x)| =
{
f(x) f(x) ≥ 0,

f(−x) f(x) < 0.

Recipe 4.8.1 (Graph of y = |f(x)|). To obtain the graph of y = |f(x)| from the graph
of y = f(x),

• Retain the portion of y = f(x) above the x-axis.

• Reflect in the x-axis the portion of y = f(x) below the x-axis.

Example 4.8.2 (Graph of y = |f(x)|). Consider the following graph of y = f(x).

(−1,−2)

y = 2

x = 2

O

x

y y = f(x)

Figure 4.8

Reflecting the portion of the curve below the x-axis, we get the following graph of
y = |f(x)|.

(−1, 2)y = 2

x = 2

O

x

y y = |f(x)|

Figure 4.9
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4.8.2 Graph of y = f(|x|)
Note that

y = f(|x|) =
{
f(x) x ≥ 0,

f(−x) x < 0.

Recipe 4.8.3 (Graph of y = f(|x|)). To obtain the graph of y = f(|x|) from the graph
of y = f(x),

• Retain the portion of y = f(x) where x ≥ 0.

• Delete the portion of y = f(x) where x < 0.

• Copy and reflect in the y-axis the portion of y = f(x) where x ≥ 0.

Example 4.8.4 (Graph of y = f(|x|)). Let the graph of y = f(x) be as in Fig. 4.8.
Following the above steps, we see that the graph of y = f(|x|) is

y = 2

x = 2x = −2

O

x

y y = f(|x|)

Figure 4.10

4.8.3 Graph of y = 1/f(x)

There are several key features and behaviours that we must note when drawing the graph
of y = 1/f(x).

• If y = f(x) increases, 1/f(x) decreases and vice versa.

• For a minimum point (a, b) where b ̸= 0 on the graph of y = f(x), it corresponds to
a maximum point (a, 1/b) on the graph of y = 1/f(x) and vice versa.

• For an x-intercept (a, 0) on the graph of y = f(x), it corresponds to a vertical
asymptote x = a on the graph of y = 1/f(x) and vice versa.

• Oblique asymptotes on the graph of y = f(x) become horizontal asymptotes at y = 0
on the graph of y = 1/f(x).

Example 4.8.5 (Graph of y = 1/f(x)). Let the graph of y = f(x) be as in Fig. 4.8.
Following the above pointers, we see that the graph of y = 1/f(x) is
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2
(−1,−1

2)

y = 1
2

O

x

y y = 1/f(x)

Figure 4.11
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5 Polar Coordinates

5.1 Polar Coordinate System

Definition 5.1.1. Let the pole (or origin) be a point O in the plane. Let the initial line
(or polar axis) be a half-line starting at O. Let P be any other point in the plane. Then
P has polar coordinates (r, θ), where r is the distance from O to P and θ is the angle
between the initial line and the line OP .

r

P (r, θ)

θ

O

θ = 0

θ = π
2

Figure 5.1

There are some conventions regarding the pole and the initial line.

• The initial line is usually drawn horizontally to the right.

• The polar angle θ is positive if measured in the anti-clockwise direction from the
initial line and negative in the clockwise direction.

• If P = 0, then r = 0, and we may use (0, θ) to represent the pole for any value of θ.

Recall that in the Cartesian coordinate system, each point has a unique representation.
This is not the case in the polar coordinate system. For example, the point (1, 54π) could
also be written as (1, 134 π) or as (−1, 14π). In general, because a complete anti-clockwise
rotation is given by the angle 2π, the point (r, θ) can also be represented by (r, θ + 2nπ)
and (−r, (2n+ 1)π), where n is any integer.

To avoid this ambiguity, it is common to restrict to 0 ≤ θ < 2π or −π < θ ≤ π and to
take r ≥ 0.
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5.2 Relationship between the Polar and Cartesian Coordinate
Systems

Suppose the point P has Cartesian coordinates (x, y) and polar coordinates (r, θ). From
the figure above, we have

cos θ =
x

r
, sin θ =

y

r
.

Thus,
x = r cos θ, y = r sin θ.

Note that while the above were deduced from the case where r > 0 and 0 < θ < π
2 , these

equations are valid for all values of r and θ.
From the figure, we also have

r2 = x2 + y2, tan θ =
y

x
,

which allows us to find r and θ when x and y are known.

5.3 Polar Curves

Definition 5.3.1. The graph of a polar equation r = f(θ) consists of all points P (r, θ)
whose coordinates satisfy the equation.

Fact 5.3.2 (Symmetry of Polar Curves).

• If the equation is invariant under θ 7→ −θ, the curve is symmetric about the polar
axis.

• If the equation is invariant under r 7→ −r, or when θ 7→ θ + π, the curve is
symmetric about the pole (i.e. the curve remains unchanged when rotated by
180◦ about the origin).

• If the equation is invariant when θ 7→ π − θ, the curve is symmetric about the
vertical line θ = π

2 .

• If r is a function of cosnθ only, the curve is symmetric about the horizontal half
lines θ = k

nπ, k ∈ Z.

• If r is a function of sinnθ only, the curve is symmetric about the vertical half-lines
θ = 2k+1

2n π, k ∈ Z.

• If only even powers of r occur in the equation, the curve is symmetric about the
pole.

Proposition 5.3.3 (Tangents to Polar Curves). The gradient of the tangent to a polar
curve r = f(θ) at any point is

dy

dx
=

r′ sin θ + r cos θ

r′ cos θ − r sin θ
.

Proof. Recall that
x = r cos θ, y = r sin θ.

Differentiating with respect to θ,

dx

dθ
= r′ cos θ − r sin θ,

dy

dθ
= r′ sin θ + r cos θ.
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Thus,
dy

dx
=

dy/dθ

dx/dθ
=

r′ sin θ + r cos θ

r′ cos θ − r sin θ
.

Remark. To find horizontal tangents (i.e. dy/dx = 0), we can solve dy/dθ = 0 (provided
dx/dθ ̸= 0). Likewise, to find vertical tangents (i.e. dy/dx undefined), we can solve
dx/dθ = 0 (provided dy/dθ ̸= 0). Lastly, if we are looking for tangent lines at the pole,
where r = 0, the equation simplifies to

dy

dx
= tan θ,

provided dr/dθ ̸= 0.
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Part II

Sequences and Series
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6 Sequences and Series

6.1 Sequences

Definition 6.1.1. A sequence or progression is a set of numbers u1, u2, u3, . . . , un, . . .
arranged in a defined order according to a certain rule. In general, un is called the nth
term.

Remark. A sequence can be thought of as a function with domain Z+.

Definition 6.1.2. A sequence is said to be finite if it terminates; otherwise it is an infinite
sequence.

Definition 6.1.3. If an infinite sequence un approaches a unique value l as n → ∞, then
the sequence is said to converge to l. We say that l is the limit of un. A sequence that
does not converge is said to diverge.

When describing sequences, one should identify

• Trends (increasing/decreasing, constant, alternating)

• Long-run behaviour of an infinite sequence (convergent or divergent)

6.2 Series
Definition 6.2.1. A series is the sum of the terms of a sequence un. The sum to n terms
is denoted by Sn, i.e.

Sn = u1 + u2 + · · ·+ un−1 + un.

Similar to sequences, a series can be finite or infinite. If a series is infinite, it can further
be categorized as convergent or divergent.

6.3 Arithmetic Progression

Definition 6.3.1. An arithmetic progression (AP) is a sequence un in which each term
differs from the preceding term by a constant called the common difference. The first
term of an AP is usually denoted by a and the common difference by d. Mathematically,

un = a+ (n− 1)d.

Definition 6.3.2. An arithmetic series is obtained by adding the terms of an arithmetic
progression.

Proposition 6.3.3. The nth term Sn of an arithmetic series is given by

Sn =
n(a+ l)

2
,

where l is the last term of the AP, i.e.

l = un = a+ (n− 1)d.



30 6 Sequences and Series

Proof. Note that for all integers k ∈ [1, n],

uk + un−k+1 = [a+ (k − 1)d] + [a+ (n− k)d] = a+ [a+ (n− 1)d] = a+ l.

Hence, by pairing the kth term with the (n− k + 1)th term, we get

2Sn = (u1+un)+(u2+un−1)+· · ·+(un−1+u2)+(un+u1) = n (a+ l) =⇒ Sn =
n(a+ l)

2
.

6.4 Geometric Progression

Definition 6.4.1. A geometric progression (GP) is a sequence un in which each term is
obtained form the preceding one by multiplying a non-zero constant, called the common
ratio. The first term of a GP is usually denoted by a and the common ratio by r.
Mathematically,

un = arn−1.

Remark. In the case where r = 1, the geometric progression becomes an arithmetic pro-
gression.

Definition 6.4.2. A geometric series is the sum of the terms of a geometric progression.

Proposition 6.4.3. The nth term Sn of a geometric series is given by

Sn =
a(1− rn)

1− r
,

where r ̸= 1. If the series is infinite, the sum to infinity S∞ exists only if |r| < 1 and is
given by

S∞ =
a

1− r
.

Proof. By the definition of a series, we have

Sn = a+ ar + · · ·+ arn−2 + arn−1. (1)

Multiplying both sides by r yields

rSn = ar + ar2 + · · ·+ arn−1 + arn. (2)

Subtracting (2) from (1), we have

(1− r)Sn = a− arn =⇒ Sn =
a(1− rn)

1− r
.

Suppose |r| < 1. In the limit as n → ∞, we have rn → 0. Hence,

S∞ =
a(1− 0)

1− r
=

a

1− r
.
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6.5 Sigma Notation

Definition 6.5.1. The series uk+uk+1+· · ·+um can be denoted using Σ (sigma) notation
as

uk + uk+1 + · · ·+ um =
m∑

r=k

ur.

Here, r is called the index, and can be replaced with any letter. k is the lower limit of
r, while m is the upper limit of r. There are a total of m− k + 1 terms in the sum.

Fact 6.5.2 (Properties of Sigma Notation).

n∑

r=1

(ur ± vr) =
n∑

r=1

ur ±
n∑

r=1

vr.

n∑

r=1

cur = c
n∑

r=1

ur.

n∑

r=m

ur =

n∑

r=1

ur −
m−1∑

r=1

ur, n > m > 1.

Fact 6.5.3 (Standard Series). The sum of the following standard series can be quoted
and applied without proof. Note that m = q − p + 1 is the number of terms being
summed.

• Series of constants
q∑

r=p

a = ma.

• Arithmetic series
q∑

r=p

r =
m

2
(p+ q) .

• Geometric series
q∑

r=p

ar =
ap (am − 1)

a− 1
.
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7 Recurrence Relations

Definition 7.0.1. A recurrence relation is an equation that defines a sequence based on
a rule that gives the next term as a function of the previous term(s).

7.1 First Order Linear Recurrence Relation with Constant
Coefficients

Definition 7.1.1. A first order linear recurrence relation with constant coefficients is
a recurrence relation of the form

un = aun−1 + b,

where a and b are constants. If b = 0, the recurrence relation is said to be homogeneous.

There are two main ways to solve the above recurrence relation: by converting the
recurrence relation into a geometric progression, or solving by procedure.

7.1.1 Converting to Geometrical Progression

Recipe 7.1.2 (Converting to Geometrical Progression). Let k be the constant such that

un + k = a (un−1 + k) .

Then we clearly have k = b
a−1 . We now define a new sequence vn = un + k. This turns

our recurrence relation into
vn = avn−1,

whence vn is in geometric progression. Thus, vn = v1a
n−1. Writing this back in terms

of un, we get
un + k = (u1 + k)an−1 =⇒ un = (u1 + k)an−1 − k.

Example 7.1.3 (Solving by GP). Consider the recurrence relation

u1 = 0, un =
1

2
un−1 + 10, n > 1.

Let k be the constant such that

un + k =
1

2
(un−1 + k) .

Then

k =
10

1/2− 1
= −20.

We hence have

un − 20 =
1

2
(un−1 − 20) ,

whence the sequence {un − 20} is in geometric progression with common ratio 1/2.
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Thus,

un − 20 = (u1 − 20)

(
1

2

)n−1

.

Rearranging, we obtain the solution

un = −20

(
1

2

)n−1

+ 20 = −40

(
1

2

)n

+ 20.

7.1.2 Solving by Procedure

Definition 7.1.4. Given a first order linear recurrence relation with constant coefficients
un = aun−1 + b,

• un = aun−1 is the associated homogeneous recurrence relation.

• u
(c)
n = Can is the general solution of the associated homogeneous recurrence rela-

tion and is called the complementary solution.

• u
(p)
n = k is the particular solution to the recurrence relation.

Fact 7.1.5 (Solving by Procedure). The general solution is given by

un = u(c)n + u(p)n = Can + k.

Example 7.1.6 (Solving by Procedure). Consider the recurrence relation

u1 = 0, un =
1

2
un−1 + 10, n > 1.

Observe that the associated homogeneous recurrence relation is un = 1
2un−1. Hence,

the complementary solution is

u(c)n = C

(
1

2

)n

for some arbitrary constant C. Let the particular solution be u
(p)
n = k. Then

k =
1

2
k + 10 =⇒ k = 20.

Hence, the general solution is

un = u(c)n + u(p)n = C

(
1

2

)n

+ 20.

Using the initial condition u1 = 0, we have

0 = C

(
1

2

)1

+ 20 =⇒ C = −40.

Thus,

un = −40

(
1

2

)n

+ 20.
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7.2 Second Order Linear Homogeneous Recurrence Relation
with Constant Coefficients

Definition 7.2.1. A second order linear homogeneous recurrence relation with con-
stant coefficients is a recurrence relation of the form

un = aun−1 + bun−2,

where a and b are constants.

Recipe 7.2.2 (Solving by Procedure). To solve the recurrence relation

un = aun−1 + bun−2,

1. Form the quadratic equation

x2 − ax− b = 0.

This is called the characteristic equation.

2. Find the roots α and β of this characteristic equation.

3. Then un has the general solution

• un = Aαn +Bβn, if α ̸= β (distinct roots, may be real or non-real).

• un = (A+Bn)αn, if α = β (real and equal roots).

• un = Arn cosnθ +Brn sinnθ, if α = reiθ and β = re−iθ (non-real roots).

Proof. For un+1 = pun + qun−1 with given initial conditions u1 and u2, let the constant k
be such that

un+1 − kun = (p− k)(un − kun−1). (1)

Note that this is a GP. Comparing coefficients of un−1, we get

(p− k)k = −q =⇒ k2 − pk − q = 0.

This is the characteristic equation. Let the roots to the characteristic equation be k = α
and k = β. By Vieta’s formulas,

α+ β = −
(−p

1

)
= p.

Now, using the fact that (1) is in GP, we get

un+1 − kun = (p− k)n−1(u2 − ku1). (2)

Substituting k = α into (2), we obtain

un+1 − αun = βn−1 (u2 − αu1) . (3a)

Substituting k = β into (2), we obtain

un+1 − βun = αn−1 (u2 − βu1) . (3b)

We now analyse the case where α = β and α ̸= β separately.
Case 1 : α = β. Since the two roots are equal, (3a) and (3b) are equivalent. Taking

either,

un+1 − αun = αn−1(u2 − αu1) =⇒ un+1

αn−1
− un

αn−2
= u2 − αu1.
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The sequence
{

un
αn−2

}
is hence in AP with common difference u2 − αu1. Invoking the

closed form for AP, we obtain

un
αn−2

=
u1
α−1

+ (n− 1)(u2 − αu1) =⇒ un = αn−2
( u1
α−1

+ (n− 1)(u2 − αu1)
)
.

Simplifying,

un =

[(
2u1
α

− u2
α2

)
+
(u2
α2

− u1
α

)
n

]
αn = (A+Bn)αn.

Case 2 : α ̸= β. Observe that (3b)−(3a)
α−β yields

un =
αn−1(u2 − βu1)− βn−1(u2 − αu1)

α− β
.

Simplifying, we have

un =

[
u2 − βu1
α(α− β)

]
αn +

[
u2 − αu1
β(β − α)

]
βn = Aαn +Bβn.

We now consider the case where α and β are non-real. By the conjugate root theorem,
we can write α = reiθ and β = re−iθ. Substituting this into the above result, we have

un = A
(
reiθ

)n
+B

(
re−iθ

)n
= rn

(
Aeinθ +Be−inθ

)
.

By Euler’s identity,

un = rn [(A+B) cosnθ + i(A−B) sinnθ] = Crn cosnθ +Drn sinnθ.
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Part III

Vector Geometry and Linear Algebra
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8 Vectors

8.1 Basic Definitions and Notations
Definition 8.1.1. A vector is an object that has both magnitude and direction. Geo-

metrically, we can represent a vector by a directed line segment
−−→
PQ, where the length

of the line segment represents the magnitude of the vector, and the direction of the line
segment represents the direction of the vector. Vectors are typically denoted by bold

print (e.g. a) or by
−−→
PQ.

Definition 8.1.2. The magnitude of a vector a is the length of the line representing a,
and is denoted by |a|.

Definition 8.1.3. Two vectors a and b are said to be equal vectors if they both have
the same magnitude and direction. a and b are said to be negative vectors if they have
the same magnitude but opposite directions.

Definition 8.1.4 (Multiplication of a Vector by a Scalar). Let λ be a scalar. If λ > 0, then
λa is a vector of magnitude λ |a| and has the same direction as a. If λ < 0, then λa is
a vector of magnitude −λ |a| and is in the opposite direction of a.

Definition 8.1.5. The zero vector is the vector with a magnitude of 0 and is denoted 0.

Definition 8.1.6. Let a and b be non-zero vectors. Then a and b are said to be parallel
if and only if b can be expressed as a non-zero scalar multiple of a. Mathematically,

a ∥ b ⇐⇒ (∃λ ∈ R \ {0}) : b = λa.

Definition 8.1.7. A unit vector is a vector with a magnitude of 1. Unit vectors are
typically denoted with a hat (e.g. â).

Observe that for any non-zero vector a, the unit vector parallel to a is given by

â =
a

|a| .

Definition 8.1.8. The Triangle Law of Vector Addition states that

−−→
AB +

−−→
BC =

−→
AC.

Geometrically, we add two vectors a and b by placing them head to tail, taking the
resultant vector as their sum.

A

B
C

a

b

a+ b

Figure 8.1

We subtract vectors by adding a+−(b).
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Definition 8.1.9. The angle between two vectors refers to the angle between their
directions when the arrows representing them both converge or both diverge.

Definition 8.1.10. A free vector is a vector that has no specific location in space. The

position vector of some point A relative to the origin O is unique and is denoted
−→
OA.

A displacement vector is a vector that joins its initial position to its final position. For

instance,
−→
OA is the displacement vector from O to A.

Definition 8.1.11. A set of vectors are said to be coplanar if their directions are all
parallel to the same plane.

Fact 8.1.12. Any vector c that is coplanar with a and b can be expressed as a unique
linear combination of a and b, i.e.

(∃!λ, µ ∈ R) : c = λa+ µb.

Theorem 8.1.13 (Ratio Theorem). If P divides AB in the ratio λ : µ, then

−−→
OP =

µa+ λb

λ+ µ
.

Proof. Since P divides AB in the ratio λ : µ, we have

−→
AP =

λ

λ+ µ

−−→
AB =

λ

λ+ µ
(b− a).

Thus,
−−→
OP =

−→
OA+

−→
AP = a+

λ

λ+ µ
(b− a) =

µa+ λb

λ+ µ
.

Corollary 8.1.14 (Mid-Point Theorem). If P is the mid-point of AB, then

−−→
OP =

a+ b

2
.

8.2 Vector Representation using Cartesian Unit Vectors

8.2.1 2-D Cartesian Unit Vectors

Definition 8.2.1 (2-D Cartesian Unit Vectors). In the 2-D Cartesian plane, i = (1, 0)T is
defined to be the unit vector in the positive direction of the x-axis, while j = (0, 1)T is
defined to be the unit vector in the positive direction of the y-axis.

Thus, if P is the point with coordinates (a, b), then we can express
−−→
OP in terms of the

unit vectors i and j. In particular,
−−→
OP = ai+ bj.

Proposition 8.2.2 (Magnitude in 2-D).

∣∣∣∣
(
a
b

)∣∣∣∣ =
√

a2 + b2.

Proof. Follows immediately from Pythagoras’ theorem.
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8.2.2 3-D Cartesian Unit Vectors

Definition 8.2.3 (3-D Cartesian Unit Vectors). In the 3-D Cartesian plane, i = (1, 0, 0)T,
j = (0, 1, 0)T and k = (0, 0, 1)T denote the unit vectors in the positive direction of the
x, y and z-axes respectively.

Proposition 8.2.4 (Magnitude in 3-D).

∣∣∣∣∣∣



a
b
c



∣∣∣∣∣∣
=
√
a2 + b2 + c2.

Proof. Use Pythagoras’ theorem twice.

Fact 8.2.5 (Operations on Cartesian Vectors). To add vectors given in Cartesian unit
vector form, the coefficients of i, j and k are added separately.



x1
y1
z1


+



x2
y2
z2


 =



x1 + x2
y1 + y2
z1 + z2


 .

Subtraction and scalar multiplication follows immediately.

8.3 Scalar Product

Definition 8.3.1. The scalar product (or dot product) of two vectors a and b is defined
by

a · b = |a| |b| cos θ,
where θ is the angle between the two vectors (note that 0 ≤ θ ≤ π).

Remark. a · b is called the scalar product as the result is a real number (a scalar). It is
also called the dot product because of the notation.

Fact 8.3.2 (Algebraic Properties of Scalar Product). Let a, b and c be vectors and let
λ ∈ R. Then

• (commutative) a · b = b · a.

• (distributive over addition) a · (b+ c) = a · b+ a · c.

• a · a = |a|2.

• (λa) · b = a · (λb) = λ(a · b).

Proposition 8.3.3 (Geometric Properties of Scalar Product). Let a and b be non-zero
vectors, and let θ be the angle between them.

• a · b = 0 if and only if θ = π
2 , i.e. a ⊥ b.

• a · b > 0 if and only if θ is acute.

• a · b < 0 if and only if θ is obtuse.

Proof. The sign of a · b is determined solely by cos θ.
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Proposition 8.3.4 (Scalar Product in Cartesian Unit Vector Form).



x1
y1
z1


 ·



x2
y2
z2


 = x1x2 + y1y2 + z1z2.

Proof. Since i, j and k are pairwise perpendicular, their pairwise scalar products are 0.
That is,

i · j = j · k = k · i = 0.

Hence, by the distributive property of the scalar product,

(x1i+ y1j+ z1k) · (x2i+ y2j+ z2k) = x1x2i · i+ y1y2j · j+ z1z2k · k.

Lastly, since i, j and k are all unit vectors,

i · i = j · j = k · k = 1.

Thus, 

x1
y1
z1


 ·



x2
y2
z2


 = x1x2 + y1y2 + z1z2.

8.3.1 Applications of Scalar Product

Proposition 8.3.5 (Angle between Two Vectors). Let θ be the angle between two non-zero
vectors a and b. Then

cos θ =
a · b
|a| |b| .

Proof. Follows immediately from the definition of the scalar product.

Definition 8.3.6. Let a and b denote the position vectors of A and B respectively,
relative to the origin O. Let θ be the angle between a and b, and let N be the foot of
the perpendicular from the point A to the line passing through O and B.

Then, the length ON is defined to be the length of projection of the vector a onto

the vector b. Also,
−−→
ON is the vector projection of a onto b.

Proposition 8.3.7 (Length of Projection). The length of projection of a onto b is
∣∣∣a · b̂

∣∣∣.

Proof. Consider the case where θ is acute.

A

B
NO

a

b

θ

Figure 8.2

From the diagram,

ON = OA cos θ = |a| a · b
|a| |b| =

a · b
|b| = a · b̂.
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A similar argument shows that when θ is obtuse, ON = −a · b̂. Hence, in any case,

ON =
∣∣∣a · b̂

∣∣∣.

Proposition 8.3.8 (Vector Projection). The vector projection of a onto b is (a · b̂)b̂.

Proof. Case 1 : θ is acute. Then
−−→
ON is in the same direction as b. Hence,

−−→
ON = |ON | b̂ = (a · b̂)b̂.

Case 2 : θ is obtuse. Then
−−→
ON is in the opposite direction as b. Hence,

−−→
ON = |ON |

(
−b̂
)
= −(a · b̂)(−b̂) = (a · b̂)b̂.

8.4 Vector Product

Definition 8.4.1. The vector product (or cross product) of two vectors a and b is
denoted by a× b and is defined by

a× b = |a| |b| sin θn̂,

where θ is the angle between a and b and n̂ is the unit vector perpendicular to both a
and b, in the direction determined by the right-hand grip rule.

Remark. a × b is called the vector product as the result is a vector. It is also called the
cross product due to its notation.

Fact 8.4.2 (Algebraic Properties of Vector Product). Let a, b and c be three vectors, and
θ be the angle between a and b.

• (anti-commutative) a× b = −b× a.

• (distributive over addition) a× (b+ c) = (a× b) + (a× c).

• |a× b| = |a| |b| sin θ.

• (λa)× b = a× (λb) = λ(a× b), where λ ∈ R.

Proposition 8.4.3 (Geometric Properties of Vector Product). Let a and b be non-zero
vectors and θ be the angle between them.

• |a× b| = 0 if and only if a ∥ b.

• |a× b| = |a| |b| if and only if a ⊥ b.

Proof. Follows from the definition of the vector product (consider θ = 0, π2 , π).

Proposition 8.4.4 (Vector Product in Cartesian Unit Vector Form).



x1
y1
z1


 ·



x2
y2
z2


 =



y1z2 − z1y2
z1x2 − x1z2
x1y2 − y1x2


 .
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Proof. From the geometric properties of the vector product, we have

i× i = j× j = k× k = 0.

Furthermore, since i, j and k are pairwise perpendicular, by the right-hand grip rule, one
has

i× j = k, j× k = i, k× i = j.

Hence, by the distributive property of the vector product,

(x1i+ y1j+ z1k)× (x2i+ y2j+ z2k)

= x1y2k+ x1z2(−j) + y1x2(−k) + y1z2i+ z1x2j+ z1y2(−i)

= (y1z2 − z1y2)i+ (z1x2 − x1z2)j+ (x1y2 − y1x2)k.

8.4.1 Applications of Vector Product

Proposition 8.4.5 (Length of Side of Right-Angled Triangle). Let a and b denote the
position vectors of A and B respectively, relative to the origin O. Let θ be the angle
between a and b, and let N be the foot of the perpendicular from A to OB. Then

AN =
∣∣∣a× b̂

∣∣∣ .

Proof. With reference to Fig. 8.2, we have

AN = OA sin θ = |a| |a× b|
|a| |b| =

|a× b|
b

=
∣∣∣a× b̂

∣∣∣ .

Proposition 8.4.6 (Area of Triangles and Parallelogram). Let ABCD be a parallelogram,

let a =
−−→
AB and b =

−→
AC, and let θ be the angle between a and b. Then

[△ABC] =
1

2
|a× b|

and
[ABCD] = |a× b| .

Proof. Recall that the formula for the area of a triangle is

[△ABC] =
1

2
(AB)(AC) sin θ =

1

2
|a| |b| sin θ =

1

2
|a× b| .

Since the area of parallelogram ABCD is twice that of △ABC, we immediately have

[ABCD] = |a× b| .
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9 Three-Dimensional Vector Geometry

9.1 Lines

9.1.1 Equation of a Line

Definition 9.1.1. The vector equation of the line l passing through point A with position
vector a and parallel to b is given by

r = a+ λb, λ ∈ R,

where r is the position vector of any point on the line, and λ is a real, scalar parameter.
The vector b is also called the direction vector of the line.

Remark. Note that a can be any position vector on the line and b can be any vector
parallel to the line. Hence, the vector equation of a line is not unique.

Definition 9.1.2. Let l : r = a+λb, λ ∈ R. By writing r = (x, y, z)T, a = (a1, a2, a3)
T

and b = (b1, b2, b3)
T, we have





x = a1 + λb1

y = a2 + λb2

z = a3 + λb3

, λ ∈ R.

This set of three equations is known as the parametric equations of the line l.

Definition 9.1.3. From the parametric form of the line l, by making λ the subject, we
have

λ =
x− a1
b1

=
y − a2
b2

=
z − a3
b3

.

This equation is known as the Cartesian equation of the line l.

Remark. If b1 = 0, we simply have x = a1. A similar result arises when b2 = 0 or b3 = 0.

9.1.2 Point and Line
Proposition 9.1.4 (Relationship between Point and Line). A point C lies on a line l : r =
a+ λb, λ ∈ R, if and only if

(∃λ ∈ R) :
−−→
OC = a+ λb.

Proof. Trivial.

Proposition 9.1.5 (Perpendicular Distance between Point and Line). Let C be a point not
on the line l : r = a+ λb, λ ∈ R. Let F be the foot of perpendicular from C to l. Then

CF =
∣∣∣−→AC × b̂

∣∣∣ .

Proof. Trivial (recall the application of the vector product in finding side lengths of right-
angled triangles).
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Recipe 9.1.6 (Finding Foot of Perpendicular from Point to Line). Let F be the foot of

perpendicular from C to the line l : r = a+λb, λ ∈ R. To find
−−→
OF , we use the fact that

• F lies on l, i.e.
−−→
OF = a+ λb for some λ ∈ R.

•
−−→
CF is perpendicular to l, i.e.

−−→
CF · b = 0.

9.1.3 Two Lines
Definition 9.1.7. The relationship between two lines in 3-D space can be classified as
follows:

• Parallel lines: The lines are parallel and non-intersecting;

• Intersecting lines: The lines are non-parallel and intersecting;

• Skew lines: The lines are non-parallel and non-intersecting.

Remark. Note that parallel and intersecting lines are coplanar, while skew lines are non-
coplanar.

Recipe 9.1.8 (Relationship between Two Lines). Consider two distinct lines, l1 : r =
a+ λb, λ ∈ R and l2 : r = c+ µd, µ ∈ R.

• l1 and l2 are parallel lines if their direction vectors are parallel.

• l1 and l2 are intersecting lines if there are unique values of λ and µ such that
a+ λb = c+ µd.

• l2 and l2 are skew lines if their direction vectors are not parallel and there are no
values of λ and µ such that a+ λb = c+ µd.

Proposition 9.1.9 (Acute Angle between Two Lines). Let the acute angle between two
lines with direction vectors b1 and b2 be θ. Then

cos θ =
|b1 · b2|
|b1| |b2|

.

Proof. Observe that we are essentially finding the angle between the direction vectors of
the two lines, which is given by

cos θ =
b1 · b2

|b1| |b2|
.

However, to ensure that θ is acute (i.e. cos θ ≥ 0), we introduce a modulus sign in the
numerator. Hence,

cos θ =
|b1 · b2|
|b1| |b2|

.
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9.2 Planes

9.2.1 Equation of a Plane

Definition 9.2.1. Suppose the plane π passes through a fixed point A with position
vector a, and π is parallel to two vectors b1 and b2, where b1 and b2 are not parallel
to each other. Then the vector equation (in parametric form) of π is given by

π : r = a+ λb1 + µb2,

where r is the position vector of any point P on π, and λ and µ are real parameters.

Definition 9.2.2. Suppose the plane π passes through a fixed point A with position

vector a, and π has normal vector n. Let P be an arbitrary point on π. Then
−→
AP

is perpendicular to the normal vector n, i.e.
−→
AP · n = 0. Since

−→
AP = r − a, by the

distributivity of the scalar product, one has

r · n = a · n.

This is the scalar product form of the vector equation of π, which is more commonly
written as

r · n = d.

Definition 9.2.3. Let the plane π have scalar product form

π : r · n = a · n.

Let r = (x, y, z)T, a = (a1, a2, a3)
T and n = (n1, n2, n3)

T. Then

π : n1x+ n2y + n3z = a1n1 + a2n2 + a3n3

is the Cartesian equation of π, which is more commonly written as

π : n1x+ n2y + n3z = d.

Recipe 9.2.4 (Converting between Forms). To convert from parametric form to scalar
product form, take n = b1 × b2. To convert from the Cartesian equation to parametric
form, express x in terms of y and z, then replace y and z with λ and µ respectively.

Example 9.2.5 (Parametric to Scalar Product Form). Let the plane π have parametric
form r = (1, 2, 3)T+λ (4, 5, 6)T+µ (7, 8, 9)T. Then the normal vector to π is given by

n =



4
5
6


×



7
8
9


 =



−3
6
−3


 ∥




1
−2
1


 .

Hence,

d =



1
2
3


 ·




1
−2
1


 = 0,
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whence π has scalar product form

r ·




1
−2
1


 = 0.

Example 9.2.6 (Cartesian to Parametric Form). Let the plane π have Cartesian equation

x+ y + z = 10.

Solving for x and replacing y and z with λ and µ respectively, we get

x = 10− λ− µ, y = λ, z = µ.

Hence, π has parametric form

r =



x
y
z


 =



10− λ− µ

λ
µ


 =



10
0
0


+ λ



−1
1
0


+ µ



−1
0
1


 , λ, µ ∈ R.

9.2.2 Point and Plane
Proposition 9.2.7 (Relationship between Point and Plane). A point lies on a plane if and
only if its position vector (or its equivalent coordinates) satisfies the equation of the
plane.

Proof. Trivial.

Proposition 9.2.8 (Perpendicular Distance between Point and Plane). Let F be the foot
of perpendicular from a point Q to the plane π with vector equation π : r · n = d. Let
A be a point on π. Then QF , the perpendicular distance from Q to π, is given by

QF =
∣∣∣−→QA · n̂

∣∣∣ = |d− q · n|
|n| .

Proof. Note that QF is the length of projection of
−→
QA onto the normal vector n. Hence,

QF =
∣∣∣−→QA · n̂

∣∣∣

follows directly from the formula for the length of projection. Now, observe that

−→
QA · n =

−→
OA · n−−−→

OQ · n = d− q · n.

Hence,

QF =

∣∣∣−→QA · n
∣∣∣

|n| =
|d− q · n|

|n| .

Corollary 9.2.9. OF , the perpendicular distance from the plane π to the origin O, is

OF =
|d|
|n| .



9.2 Planes 49

Recipe 9.2.10 (Foot of Perpendicular from Point to Plane). Let F be the foot of perpen-
dicular from a point Q to the plane π with vector equation π : r · n = d. To find the

position vector
−−→
OF , we use the fact that

• QF is perpendicular to π, i.e.
−−→
QF = λn for some λ ∈ R, and

• F lies on π, i.e.
−−→
OF · n = d.

Example 9.2.11 (Foot of Perpendicular from Point to Plane). Let the plane π have equa-
tion π : r · (1, 2, 3)T = 10. Let Q(4, 5, 6), and let F be the foot of perpendicular from Q

to π. We wish to find
−−→
OF .

Since QF is perpendicular to π, we have

−−→
QF = λ



1
2
3


 , λ ∈ R.

Hence,

−−→
OF =

−−→
OQ+

−−→
QF =



4
5
6


+ λ



1
2
3


 .

Taking the scalar product on both sides, we get

10 =
−−→
OF ·



1
2
3


 =





4
5
6


+ λ



1
2
3




 ·



1
2
3


 = 32 + 14λ.

Thus, λ = −11/7, whence

−−→
OF =



4
5
6


− 11

7



1
2
3


 =

1

7



17
13
9


 .

9.2.3 Line and Plane
Fact 9.2.12 (Relationship between Line and Plane). Given a line l : r = a + λb, λ ∈ R,
and a plane π : r · n = d, there are three possible cases:

• l and π do not intersect. l and π are parallel and have no common point.

• l lies on π. l and π are parallel and any point on l is also a point on π.

• l and π intersect once. l and π are not parallel.

There are two methods to determine the relationship between a line and a plane.

Recipe 9.2.13 (Using Normal Vector).

• If l and π do not intersect, then b · n = 0 and a · n ̸= d.

• If l lies on π, then b · n = 0 and a · n = d.

• If l and π intersect once, then b · n ̸= 0.
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Recipe 9.2.14 (Solving Simultaneous Equations). Solve l : r = a + λb, λ ∈ R and
π : r · n = d simultaneously.

• If there are no solutions, then l and π do not intersect.

• If there are infinitely many solutions, then l lies on π.

• If there is a unique solution, then l and π intersect once.

Proposition 9.2.15 (Acute Angle between Line and Plane). Let θ be the acute angle
between the line l : r = a+ λb, λ ∈ R and the plane π : r · n = d. Then

sin θ =
|b · n|
|b| |n| .

Proof. We first find ϕ, the acute angle between l and the normal. Recall that

cosϕ =
|b · n|
|b| |n| .

Since ϕ = π
2 − θ, we have

cos
(π
2
− θ
)
= sin θ =

|b · n|
|b| |n| .

9.2.4 Two Planes
Proposition 9.2.16 (Acute Angle between Two Planes). The acute angle θ between two
planes π1 : r · n1 = d1 and π2 : r · n2 = d2 is given by

cos θ =
|n1 · n2|
|n1| |n2|

.

Proof. Consider the following diagram.

π1

π2

n2

n1

θ

θ

Figure 9.1

It is hence clear that the acute angle between the two planes is equal to the acute angle
between the two normal vectors. Thus,

cos θ =
|n1 · n2|
|n1| |n2|

.
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Fact 9.2.17 (Relationship between Two Planes). Given two distinct planes π1 : r ·n1 = d1
and π2 : r · n2 = d2, there are two possible cases:

• π1 and π2 do not intersect. The two planes are parallel (n1 ∥ n2).

• π1 and π2 intersect at a line. The two planes are not parallel (n1 ∦ n2).

Suppose the two planes are not parallel to each other. There are two methods to obtain
the equation of the line of intersection.

Recipe 9.2.18 (Via Cartesian Form). Write the equations of the two planes in Cartesian
form and solve the two equations simultaneously.

Recipe 9.2.19 (Via Normal Vectors). Observe that as the line of intersection l lies on
both planes, l is perpendicular to both the normal vectors n1 and n2. Hence, l is parallel
to their cross product, n1 × n2. Thus, if we know a point on the line of intersection l
(say point A with position vector a), then the vector equation of l is given by

l : r = a+ λb, λ ∈ R,

where b is any scalar multiple of n1 × n2.
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10 Matrices

Definition 10.0.1. An m × n matrix A is an array of numbers with m rows and n
columns, with A = (aij), where aij is the entry in row i and column j.

A =




a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


 .

Example 10.0.2. If

A =

(
1 2 3
4 5 6

)
,

then A is a 2× 3 matrix with a21 = 4.

Note that row and column vectors are effectively matrices with one row and one column
respectively.

10.1 Special Matrices

Definition 10.1.1. A null matrix is a matrix with all entries equal to 0. We denote the
m× n null matrix by 0m×n, or simply 0.

Example 10.1.2. Examples of null matrices include

(
0
)
,

(
0 0
0 0

)
,

(
0 0 0
0 0 0

)
.

Definition 10.1.3. A square matrix of order n is a matrix with n rows and n columns.

Example 10.1.4. Examples of square matrices include

(
4
)
,

(
1 2
3 0

)
,



1 2 3
2 5 3
1 0 8


 .

Definition 10.1.5. Given a square matrix A = (aij), the diagonal of A (also called
the main, principal or leading diagonal) is the sequence of entries a11, a22, . . . , ann. The
entries aii are called the diagonal entries while aij , i ̸= j are called non-diagonal entries.

Definition 10.1.6. A diagonal matrix is a square matrix whose non-diagonal entries are
zero, i.e. aij = 0 whenever i ̸= j.

Example 10.1.7. Examples of diagonal matrices include

(
4
)
,

(
1 0
0 2

)
,



2 0 0
0 4 0
0 0 0


 .
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Definition 10.1.8. An identity matrix is a diagonal matrix whose diagonal entries are
all 1. We denote the identity matrix of order n by In, or simply as I.

Example 10.1.9. Examples of identity matrices include

I1 =
(
1
)
, I2 =

(
1 0
0 1

)
, I3 =



1 0 0
0 1 0
0 0 1


 .

Definition 10.1.10. A symmetric matrix is a square matrix such that aij = aji for all
i, j.

Example 10.1.11. Examples of symmetric matrices include

(
4
)
,

(
0 4
4 2

)
,




1 −1 0
−1 3 2
0 2 2


 .

Definition 10.1.12. A square matrix (aij) is upper triangular if aij = 0 whenever i > j;
and lower triangular if aij = 0 whenever i < j.

Example 10.1.13. Examples of triangular matrices include

(
4
)
,



1 −1 0
0 3 2
0 0 2


 ,




2 0 0 0
1 3 0 0
6 0 0 0
−2 −1 0 1


 .

The second matrix is an upper triangular matrix, while the third matrix is a lower
triangular matrix. The first matrix can be considered both an upper and lower triangular
matrix.

Note that a diagonal matrix is both an upper and lower triangular matrix.

10.2 Matrix Operations

10.2.1 Equality

Definition 10.2.1. Two matrices A and B are equal if and only if they have the same
size and their entries are identical.

10.2.2 Addition
Definition 10.2.2. Let A and B be matrices of the same size, and let C = A + B be
their sum. Then (cij) = (aij + bij). That is, to add two matrices (of the same size), we
simply add their corresponding entries.

Example 10.2.3.



1 2 3
4 5 6
7 8 9


+



1 2 3
2 4 6
3 6 9


 =




2 4 6
6 9 12
10 14 18


 .
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Fact 10.2.4 (Properties of Matrix Addition). The set of matrices forms an Abelian group
under addition.

• Matrix addition is commutative, i.e. A+B = B+A.

• Matrix addition is associative, i.e. A+ (B+C) = (A+B) +C.

• The null matrix is the additive identity, i.e. A+ 0 = 0+A = A.

• All matrices have an additive inverse, i.e. A−A = 0.

10.2.3 Scalar Multiplication

Definition 10.2.5. Let A be a matrix and let λ ∈ R be a scalar. Then λ(aij) = (λaij).
That is, to multiply a matrix by a scalar λ, we simply multiply each entry by λ.

Example 10.2.6.

2



1 2 3
4 5 6
7 8 9


 =




2 4 6
8 10 12
14 16 18


 .

Fact 10.2.7 (Properties of Scalar Multiplication). Let α, β ∈ R be scalars, and let A and
B be matrices of the same size.

• Scalar multiplication is associative, i.e. α(βA) = (αβ)A.

• Scalar multiplication is distributive over addition, i.e. (α+ β)A = αA+ βA and
α(A+B) = αA+ αB.

• 1 is the multiplicative identity, i.e. 1A = A.

• 0A = 0.

10.2.4 Matrix Multiplication

Definition 10.2.8. Let A be an m × p matrix, and let B be a p × n matrix. Then the
matrix product C = AB is the m× n matrix with entries determined by

cij =

p∑

k=1

aikbkj

for i = 1, . . . ,m and j = 1, . . . , n. Here, cij can be viewed as the dot product of the ith
row of A with the jth column of B.

Example 10.2.9. Let

A =

(
−1 0
2 3

)
and B =

(
1 2
3 0

)
.

Then the matrix product AB is given by

AB =

(
(−1)(1) + (0)(3) (−1)(2) + (0)(0)
(2)(1) + (3)(3) (2)(2) + (3)(0)

)
=

(
−1 −2
11 4

)
.
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Meanwhile, the matrix product BA is given by

BA =

(
(1)(−1) + (2)(2) (1)(0) + (2)(3)
(3)(−1) + (0)(2) (3)(0) + (0)(3)

)
=

(
3 6
−3 0

)
.

Fact 10.2.10 (Properties of Matrix Multiplication).

• Matrix multiplication is not commutative, i.e. AB ̸= BA.

• Matrix multiplication is associative, i.e. A (BC) = (AB)C.

• Matrix multiplication is distributive over addition, i.e. A (B+C) = AB + AC
and (B+C)A = BA+CA.

• AB = 0 does not imply that A = 0 or B = 0.

• AB = AC does not imply that B = C, i.e. the cancellation law does not apply.

Definition 10.2.11 (Powers of Matrices). If A is a square matrix, and n is a non-negative
integer, we define An as follows:

An =




I, n = 0,

AA . . .A︸ ︷︷ ︸
n times

, n ≥ 1.

Here, I is the identity matrix of the same size as A.

Note that in general, (AB)n ̸= AnBn, where B is also a square matrix of suitable size.

10.2.5 Transpose

Definition 10.2.12. The transpose of a matrix A = (aij) is denoted AT and is given by
(aji), i.e. the rows and columns are switched.

Example 10.2.13. Let

A =



1 2
3 4
5 6


 .

Then

AT =

(
1 3 5
2 4 6

)
.

Fact 10.2.14 (Properties of Transpose). Let A be a matrix and let c ∈ R be a scalar.

• The transpose is an involution, i.e.
(
AT
)T

= A.

• The transpose is associative, i.e. (cA)T = cAT.

• The transpose is additive, i.e. (A+B)T = AT +BT.

• The transpose reverses the order of matrix multiplication, i.e. (AB)T = BTAT.

Note also that A = AT if and only if A is a symmetric matrix.
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10.3 Solving Systems of Linear Equations

One use of matrix multiplication is to express a system of linear equations. For example,

{
3x1 + 4x2 + 5x3 = 6

x1 + 5x2 − 6x3 = 5
=⇒

(
3 4 5
1 5 −6

)

x1
x2
x3


 =

(
6
5

)
.

The system of equations on the left can be expressed as a matrix equation on the right.
What is great about a matrix equation is that we can express a large system of linear
equations in a very compact form Ax = b, where x and b are column vectors. In general,





a11x1 + · · ·+ a1nxn = b1
a21x1 + · · ·+ a2nxn = b2

...
am1x1 + · · ·+ amnxn = bm

=⇒




a11 · · · a1n
a21 · · · a2n
...

. . .
...

am1 · · · amn




︸ ︷︷ ︸
A




x1
x2
...
xn




︸ ︷︷ ︸
x

=




b1
b2
...
bm




︸ ︷︷ ︸
b

.

By translating a system of linear equations into a matrix equation, we can use the
power of linear algebra to systematically solve for x, which in turn will yield solutions
(x1, x2, . . . , xn) to our original system of linear equations. We now look at how to system-
atically solve such matrix equations of the form Ax = b using Gaussian elimination.

10.3.1 Elementary Row Operations

Definition 10.3.1. An elementary row operation on a matrix refers to one of the fol-
lowing actions performed on it:

• Interchanging row i and row j, denoted Ri ↔ Rj .

• Multiply row i by a non-zero constant k, denoted kRi.

• Adding k times of row i to row j, denoted Rj + kRi.

Example 10.3.2. The following examples demonstrate the three elementary row opera-
tions. Observe how the elementary row operations are written directly to the left of the
corresponding rows.



1 2 3
4 5 6
7 8 9


→R2↔R3



1 2 3
7 8 9
4 5 6






1 2 3
4 5 6
7 8 9


→

10R1



10 20 30
4 5 6
7 8 9






1 2 3
4 5 6
7 8 9


→

R3−7R1



1 2 3
4 5 6
0 −6 −12




Multiple elementary row operations can also be combined in a single step:



1 2 3
4 5 6
7 8 9


→

2R1

R2−R1

2R3




2 4 6
3 3 3
14 16 18


 .
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10.3.2 Gaussian Elimination

Gaussian elimination (also known as Gauss-Jordan elimination, or row reduction) is a
systematic algorithm used to convert a system of equations into an equivalent system of
equations using elementary row operations. That is, the new system of equations has the
same solution as the origin system of equations.
Firstly, we rewrite our system of equations as an augmented matrix

(
A b

)
:





a11x1 + · · ·+ a1nxn = b1
a21x1 + · · ·+ a2nxn = b2

...
am1x1 + · · ·+ amnxn = bm

=⇒
(
A b

)
=




a11 · · · a1n b1
a21 · · · a2n b2
...

. . .
...

...
am1 · · · amn bm


 .

The augmented part is the right-most column, separated by a vertical line to help remind
us that these numbers come from the constants in the linear equations (b).
Observe the equivalence between performing elementary row operations on this aug-

mented matrix versus what we might do algebraically to solve the system:

Operations on Equations Elementary Row Operations on
Augmented Matrix

swapping two equations swapping two rows

multiplying an equation by a non-zero
constant

multiplying a row by a non-zero constant

adding a multiple of one equation to
another equation

adding a multiple of one row to another
row

The objective of Gaussian elimination is thus to repeatedly perform elementary row
operations to our augmented matrix until we get a form where we can easily solve for
x1, . . . , xn.

Row-Echelon Form

One such form we aim for is the row-echelon form.

Definition 10.3.3. A matrix is said to be in row-echelon form (REF) if

• the first non-zero term in any row (called a leading term) is always to the right
of the leading term of the previous row, and

• rows consisting of only zeros are at the bottom.

Example 10.3.4. Consider the following matrices:

A =



1 3 4 5
0 4 2 8
0 0 0 5


 , B =



1 3 4 5
1 4 2 8
0 0 0 0


 .

A is in REF since all leading terms (coloured green) are to the right of the leading term
of the previous row. On the other hand, B is not in REF, since the leading term b21
(coloured red) is not to the right of the leading term b11.

Note that a matrix may have multiple row-echelon forms, i.e. REF is not unique.
Once we manipulate our augmented matrix into its REF, we can easily solve for our

solutions x1, . . . , xn using back-substitution.
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Example 10.3.5. Consider the following augmented matrix, which has been manipulated
into its REF via elementary row operations:



1 1 3 2
0 −4 −4 4
0 0 −15 9


 =⇒





x1 + x2 + 3x3 = 2

− 4x2 − 4x3 = 4

− 15x3 = 9

.

From the third equation, we easily get x3 = −3/5. Substituting this into the second
equation, we get x2 = −2/5. Further substituting this into the first equation, we have
x1 = 11/5.

Reduced Row-Echelon Form

Another form we typically aim for when performing Gaussian elimination is the reduced
row-echelon form.

Definition 10.3.6. A matrix is said to be in reduced row-echelon form (RREF) if it is
already in REF, with two further restrictions:

• all leading terms are 1, and

• a column with a leading term has zeroes for all other terms in that column.

Example 10.3.7. Consider the following matrices:

A =



1 0 3
0 1 4
0 0 0


 , B =



1 3 3
0 1 4
0 4 0


 .

A is in RREF, since all leading terms (coloured green) are 1 and all other entries in
those columns are 0. However, B is not in RREF. This is because b22 is a leading term,
but there are non-zero entries in that column (coloured red).

Unlike REF, the RREF of a matrix is unique.
By manipulating our augmented matrix into its RREF, we can easily obtain our solu-

tions x1, . . . , xn.

Example 10.3.8. Consider the following augmented, which has been manipulated into
RREF using elementary row operations:



1 0 3 4
0 1 4 8
0 0 0 0


 =⇒

{
x1 + 3x3 = 4

x2 + 4x3 = 8
.

Letting x3 be a free parameter λ ∈ R, we have

x1 = 4− 3λ, x2 = 8− 4λ, x3 = λ.

10.3.3 Consistent and Inconsistent Systems

Back in §1, we termed a system of linear equations consistent if it admits a solution, and
inconsistent if it does not. We also learnt that a consistent system of linear equations
either has a unique solution or infinitely many solutions. Using Gaussian elimination, we
can easily determine the number of solutions it admits.
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Proposition 10.3.9. Let
(
A′ b′) be the RREF of

(
A b

)
.

• If A′ = I, the system has a unique solution.

• If the ith row of A′ is all zeroes, and b′i = 0, then the system has infinitely many
solutions.

• If the ith row of A′ is all zeroes, and b′i = 1, then the system has no solution.

The first statement is trivially true, since Ix = b′ =⇒ x = b′. To see why the second
and third statements are true, consider the following matrices:

B =



1 0 3 1
0 1 1 2
0 0 0 0


 , C =



1 0 3 1
0 1 1 2
0 0 0 1


 .

B represents the system {
x1 + 3x3 = 1

x2 + x3 = 2
.

In this case, we have more unknowns than equations, so we will obtain infinitely many
solutions (e.g. by taking x3 = λ, where λ ∈ R is a free parameter). On the other hand,
the third row of C represents the equation

0x1 + 0x2 + 0x3 = 1,

which is clearly impossible. Thus, there will be no solutions to the system.

10.3.4 Homogeneous Systems of Linear Equations

Recall that a system of linear equations is said to be homogeneous if all the constant terms
are zero. The corresponding matrix equation is thus Ax = 0. Clearly, every homogeneous
system has x = 0 as a solution. This solution is called the trivial solution. If there are
other solutions, they are called non-trivial solutions.

10.4 Invertible Matrices

While Gaussian elimination remains a good way of solving a system of linear equations,
looking at them as a matrix equation can also be useful.
The left side of Ax = b may be viewed as a matrix A acting on a vector x and sending

it to the vector b. Solving the matrix equation hence amounts to finding the pre-image of
b under A. This motivates us to find a multiplicative inverse to A.

Definition 10.4.1. The multiplicative inverse of a square matrix A, denoted A−1, has
the property

A−1A = AA−1 = I.

If such a matrix A−1 exists, then A is said to be invertible, or non-singular.

If A−1 exists, the solution for the equation Ax = b will simply be x = A−1b. Further,
this solution will be unique for each b (since A−1 will not map b to multiple vectors).

We now state some properties regarding the inverse of a matrix:
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Fact 10.4.2 (Properties of Invertible Matrices). Let A and B be square matrices of the
same size. Let a ∈ R be a scalar and let n be a non-negative integer.

• The inverse of a matrix is unique.

• If aA is invertible, then (aA)−1 = 1
aA

−1.

• If A is invertible, then
(
A−1

)−1
= A.

• If AT is invertible, then
(
AT
)−1

=
(
A−1

)T
.

• If AB is invertible, then (AB)−1 = B−1A−1.

• If An is invertible, then (An)−1 = A−n =
(
A−1

)n
.

We now discuss how to find the inverses of matrices.

10.4.1 Inverse of a 2× 2 Matrix

Proposition 10.4.3 (2× 2 Inverse Formula). Let

A =

(
a b
c d

)
.

Then its inverse is given by

A−1 =
1

ad− bc

(
d −b
−c a

)
.

Notice that the 2 × 2 inverse formula is not valid in the case where ad − bc = 0. This
quantity, ad− bc, is called the determinant of the 2× 2 matrix, and it plays a special role
in determining whether a matrix is invertible. We will discuss more about determinants
in the next chapter.

10.4.2 Inverse of an n× n Matrix

Though there is a general formula for the inverse of an n×nmatrix, it is tedious to compute
for n ≥ 3. Luckily, there is a general procedure that we can employ. This procedure rests
on the fact that any elementary row operation can be represented as a left-multiplication
by an elementary matrix.

Definition 10.4.4. An n× n matrix is an elementary matrix if it can be obtained from
the n× n identity matrix In by performing a single row operation.

Example 10.4.5. As an example, consider

A =



1 0 2 3
2 −1 3 6
1 4 4 0


 .

If we add 3 times the 3rd row to the 1st row, we will obtain



1 0 2 3
2 −1 3 6
1 4 4 0


→

R1+3R3



4 12 14 3
2 −1 3 6
1 4 4 0


 .
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Now observe that if we pre-multiply A by the elementary matrix

B =



1 0 3
0 1 0
0 0 1


 ,

we get

BA =



1 0 3
0 1 0
0 0 1





1 0 2 3
2 −1 3 6
1 4 4 0


 =



4 12 14 3
2 −1 3 6
1 4 4 0


 ,

which is exactly the same result as doing the row operation.

The correspondence between elementary row operations and elementary matrices allows
us to construct the following algorithm to find the inverse of an invertible matrix A.

Recipe 10.4.6 (Finding Matrix Inverse). If A is invertible, then A−1A = I. If we can
find a sequence of elementary row operations, corresponding to successive matrix left-
multiplications of the elementary matrices E1,E2, . . . ,Ek, such that

Ek . . .E2E1A = I,

then we have Ek . . .E2E1 = A−1.

In practice, however, we will perform the left-multiplications on an augmented matrix
of the form

(
A I

)
:

Ek . . .E2E1

(
A I

)
=
(
Ek . . .E2E1A Ek . . .E2E1

)
=
(
I A−1

)
.

10.5 Determinant of a Matrix

The previous section showed the importance of invertibility and uses elementary row op-
erations to help us determine if a matrix is invertible. Here, we introduce the idea of the
determinant of a matrix and how this number tells us if a matrix is invertible.
Definition 10.5.1. The determinant of an n× n matrix A, denoted by

|A| = det(A) =

∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

∣∣∣∣∣∣∣∣∣
,

is the minimal polynomial (in the entries of A, i.e. a11, a12, etc.) that is 0 if and only
if A is singular.

10.5.1 The 1× 1 and 2× 2 Determinant

For 1× 1 matrices, (a)−1 = (1/a), so the matrix has an inverse if and only if a ̸= 0. Thus,
|a| = a.

For 2times2 matrices, recall that
(
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
.

The inverse hence does not exist when ad− bc = 0. Hence,
∣∣∣∣
a b
c d

∣∣∣∣ = ad− bc.
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10.5.2 Cofactor Expansion

Beyond the 2 × 2 matrix, the closed form of an n × n determinant becomes much more
unwieldy to remember and use. Luckily, there is a general procedure that we can use to
calculate the determinant of any n× n matrix.

Proposition 10.5.2 (Cofactor Expansion). Suppose we have an n × n matrix A = (aij).
Let Mij be the (n − 1) × (n − 1) matrix obtained from A by deleting the ith row and
the jth column. Then the determinant of A is given by

det(A) =

{
a11, n = 1,

a11A11 + a12A12 + · · ·+ a1nA1n, n > 1
,

where Aij = (−1)i+j det(Mij) is the cofactor of entry aij .

Note that the term (−1)i+j has value 1 when the sum of i and j is even, and −1 when
the sum is odd. This may be viewed as a “signed” array as follows:




+ − + − · · ·
− + − + · · ·
+ − + − · · ·
− + − + · · ·
...

...
...

...
. . .




.

Example 10.5.3. Using the method of cofactor expansion along the first row, the deter-
minant of a 3× 3 matrix

A =



a11 a12 a13
a21 a22 a23
a31 a32 a33




is given by

det(A) = a11

∣∣∣∣
a22 a23
a32 a33

∣∣∣∣− a12

∣∣∣∣
a21 a23
a31 a33

∣∣∣∣+ a13

∣∣∣∣
a21 a22
a31 a32

∣∣∣∣ .

The formula given by Proposition 10.5.2 is not unique: we can expand cofactors along
any row or column of the matrix to get the determinant. This is particularly useful when
a particular row/column contains many zeroes.

Example 10.5.4. Let

A =



1 0 3
2 0 4
3 2 9


 .

Expanding along the second column, we see that

det(A) = −0

∣∣∣∣
2 4
3 9

∣∣∣∣+ 0

∣∣∣∣
1 3
3 9

∣∣∣∣− 2

∣∣∣∣
1 3
2 4

∣∣∣∣ = 4.

10.5.3 Properties

We now look at the properties of determinants.



10.5 Determinant of a Matrix 63

Fact 10.5.5 (Properties of Determinants). Let A and B be square matrices of order n.

• det(A) = det
(
AT
)
.

• det(A+B) ̸= det(A) + det(B).

• det(cA) = cn det(A), where c is a scalar.

• det(AB) = det(A) det(B).

• If A is a triangular matrix, then det(A) is the product of the diagonal entries of
A.

• A is invertible if and only if det(A) ̸= 0.

• If A is invertible, then det
(
A−1

)
= 1/ det(A).

• If A has a row or column of zeroes, then det(A) = 0.

Fact 10.5.6 (Effects of Elementary Row/Column Operations on Determinant).

• If B is the matrix that results when a row/column of A is multiplied by a scalar
k, then det(B) = k det(A).

• If B is the matrix that results when two rows/columns of A are interchanged, then
det(B) = −det(A).

• If B is the matrix that results when a multiple of one row/column of A is added
to another row/column, then det(B) = det(A).

The above results are a result of the fact that det(EA) = det(E) det(A), where E is an
elementary matrix.
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11 Linear Transformations

Definition 11.0.1. A linear transformation is a function T : Rn → Rm is a function that
satisfies the following two properties:

• T (u+ v) = T (u) + T (v) for all vectors u,v ∈ Rn,

• T (ku) = kT (u) for all scalars k ∈ R and vectors u ∈ Rn.

Taken together, these two properties mean that linear transformations preserve the
structure of linear combinations.

Proposition 11.0.2 (Linear Transformations Preserve Linear Combinations). Let k1, . . . , kr ∈
R and v1, . . . ,vr ∈ Rn. Then

T (k1v1 + · · ·+ krvr) = k1T (v1) + · · ·+ krT (vr).

When k = 0, the second property of linear transformations also implies that T (0) = 0.
That is, a linear transformation must map 0 to 0.

Recipe 11.0.3 (Determining if a Function is a Linear Transformation). To determine if a
function f : Rn → Rm is a linear transformation, we go through the following “checklist”,
arranged in increasing difficulty to see:

• Check if f(0) = 0.

• Check if f(kv) = kf(v).

• Check if f(u+ v) = f(u) + f(v).

If f passes the above checklist, we then proceed to show that f(k1v1+k2v2) = k1f(v1)+
k2f(v2). This would immediately imply that f satisfies the two properties and is thus
a linear transformation.

Example 11.0.4. Let T : R2 → R3 be a function defined by

T

(
x
y

)
=




x
x+ y
x− y


 .

Clearly, T (0) = 0, so T passes the first check. By inspection, T also satisfies the
remaining two checks. We are now confident that T is a linear transformation, so we
consider T (k1v1 + k2v2), where v1 = (x1, y1)

T and v2 = (x2, y2)
T. Then

T (k1v1 + k2v2) = T

(
k1x1 + k2x2
k1y1 + k2y2

)
=




k1x1 + k2x2
(k1x1 + k2x2) + (k1y1 + k2y2)
(k1x1 + k2x2)− (k1y1 + k2y2)




= k1




x1
x1 + y1
x1 − y1


+ k2




x2
x2 + y2
x2 − y2


 = k1T (v1) + k2T (v2).
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Thus, T is indeed a linear transformation.

11.1 Matrix Representation

Observe that the transformation T in the above example may also be written as

T

(
x
y

)
=




x
x+ y
x− y


 =



1 0
1 1
1 −1



(
x
y

)
.

This is because matrix multiplication may also be seen as a form of linear transformation.

Proposition 11.1.1 (Matrix Multiplication is a Linear Transformation). Let A be an m×
n matrix. Then, multiplication by A will take an n-dimensional vector to an m-
dimensional vector, so T (x) = Ax is a function from Rn to Rm. Moreover, it is linear,
as for any x,y ∈ Rn and k ∈ R,

T (x+ y) = A(x+ y) = Ax+Ay = T (x) + T (y)

and
T (kx) = A(kx) = kAx = kT (x).

Surprisingly, there are no other examples of linear transformations from Rn to Rm; ma-
trix multiplication is the only kind of linear transformation there is for functions between
finite-dimensional spaces:

Proposition 11.1.2. Let T : Rn → Rm be a linear transformation. Let x ∈ Rn. Then
T (x) = Ax for some m× n matrix A.

Proof. Let ei be the ith standard basis vector. Let x = (x1, . . . , xn) be an n-dimensional
vector. Then

T (x) = T (x1e1 + · · ·+ xnen) = x1T (e1) + · · ·+ xnT (en) =
(
T (e1) · · · T (en)

)
x = Ax.

Since T (ei) is an m-dimensional vector (by the definition of T ), it follows that A has m
rows and n columns, i.e. A is an m× n matrix.
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11.2 Linear Spaces

Definition 11.2.1. A linear space (or vector space) over R is a set V equipped with
two operations, addition (+) and scalar multiplication (·), such that for any vectors
u,v,w ∈ V and for all c, d ∈ R, the following ten axioms are satisfied:

1. Closure under addition: u+ v ∈ V .

2. Addition is commutative: u+ v = v + u.

3. Addition is associative: (u+ v) +w = u+ (v +w).

4. Existence of additive identity: There is a zero vector, 0, such that 0+ u = u.

5. Existence of additive inverse: There is a vector −u such that u+ (−u) = 0.

6. Closure under scalar multiplication: cu ∈ V .

7. Scalar multiplication is distributive over vector addition: c(u+ v) = cu+ cv.

8. Scalar multiplication is distributive over scalar addition: (c+ d)u = cu+ du.

9. Scalar multiplication is associative: c(du) = (cd)u.

10. Existence of scalar multiplicative identity: There exists a scalar, 1, such that
1u = u.

One can think of a linear space as an Abelian group (under addition, Axioms 1-5) with
the added structure of “scalar multiplication” (Axioms 6-10).

11.2.1 Examples of Linear Spaces

Definition 11.2.2. The Euclidean n-space, denoted by Rn, is the set of all n-vectors
(ordered n-tuples) (u1, u2, . . . , un) of real numbers.

Rn = {(u1, . . . , un) | u1, . . . , un ∈ R} .

Proposition 11.2.3. Rn is a linear space equipped with scalar addition and scalar mul-
tiplication.

Rn is the quintessential example of a linear space, and is the linear space that we will
deal with most. We can also generalize the above statements from vectors to matrices:

Proposition 11.2.4. The set of all m× n matrices with real entries forms a linear space
(equipped with matrix addition and scalar multiplication).

There are also more abstract examples of linear spaces:

Proposition 11.2.5. The set of all polynomials with real coefficients of at most degree
n ≥ 0, forms a linear space under the usual addition and multiplication.

Lastly, there is the trivial vector space:

Definition 11.2.6. Let V be a singleton, i.e. V = {0}. Define 0+ 0 = 0 and k0 = 0 for
all scalars k. Then V is the zero vector space.
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11.3 Subspaces

Definition 11.3.1. Suppose V is a linear space under (+, ·), and W ⊆ V . If W is also a
linear space under (+, ·), then W is a subspace of V .

Example 11.3.2. Consider the set S = {(a, b, 0) | a, b ∈ R}. One can clearly show that
S is a linear space equipped with the usual addition and scalar multiplication. Since
S ⊆ R3, it follows that S is a subspace of R3.

Example 11.3.3. If V is a linear space, then V and {0} are both subspaces of V .

Because subspaces inherit addition and multiplication, we do not need to check Axioms
2, 3, 7, 8 and 9. Further, Axiom 5 is guaranteed if Axiom 6 is valid. Thus, we really only
need to verify Axioms 1, 4 and 6 when testing for subspaces.

Recipe 11.3.4 (Test for Subspace). Let W be a non-empty subset of a linear space V .
Then W is a subspace of V if and only if the following conditions hold

• 0 ∈ W .

• (Closure under addition) For all u,v ∈ W , we have u+ v ∈ W .

• (Closure under multiplication) For all c ∈ R and u ∈ u, we have cu ∈ W .

Conversely, to show that W is not a subspace, we can try to disprove any of the three
conditions. Typically, the first condition (0 ∈ W ) is the easiest to disprove. If that fails,
we construct a counter-example for closure under addition/multiplication.

Sample Problem 11.3.5. Let W be any plane in R3 that passes through the origin.
Prove that W is a subspace of R3 under the standard operations.

Solution. Let
W = {r = λa+ µb | λ, µ ∈ R} .

• Taking λ = µ = 0, we see that 0 ∈ W .

• Define r1 = λ1a+ µ1b and r2 = λ2a+ µ2b. Observe that

r1 + r2 = (λ1a+ µ1b) + (λ2a+ µ2b) = (λ1 + λ2)a+ (µ1 + µ2)b.

Since λ1+λ2, µ1+µ2 ∈ R, it follows that r1+r2 ∈ W , so W is closed under addition.

• Let k ∈ R. Then
kr = k (λa+ µb) = (kλ)a+ (kµ)b.

Since kλ, kµ ∈ R, it follows that kr ∈ W , so W is closed under multiplication.

Thus, W is a subspace of R3. □

Sample Problem 11.3.6. Let W be the set of vectors in R3 whose length does not exceed
1. Determine whether W is a subspace of R3.

Solution. Take u = (1, 0, 0)T and v = (0, 1, 0)T. Since |u| = |v| = 1 ≤ 1, they are both
elements of W . Now consider the length of u+ v:

|u+ v| =

∣∣∣∣∣∣



1
0
0


+



0
1
0



∣∣∣∣∣∣
=

∣∣∣∣∣∣



1
1
0



∣∣∣∣∣∣
=

√
2 ≥ 1.
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Thus, u + v /∈ W , so W is not closed under addition. Thus, W is not a linear space, so
W is not a subspace of R3. □
In Sample Problem 11.3.5, we saw how any plane passing through the origin in R3 is a

subspace. We can generalize this further:

Subspaces of R1 Subspaces of R2 Subspaces of R3

• {0} • {0} • {0}
• R1 • Lines through the origin • Lines through the origin

• R2 • Planes through the origin
• R3

In fact, these are the only subspaces of R1, R2 and R3. Note that this pattern holds for
all Rn.

11.4 Span and Linear Independence

11.4.1 Linear Spans

Definition 11.4.1. Let S = {v1, . . . ,vr} be a non-empty subset of a linear space V .
Then the span of S, denoted spanS or span{v1, . . . ,vr}, is the set containing all linear
combinations of vectors of S. That is,

spanS = span{v1, . . . ,vr} = {a1v1 + · · ·+ arvr | a1, . . . , ar ∈ R} .

Note that span∅ = {0}, since the sum of nothing is 0.

Example 11.4.2. Let v1,v2 ∈ Rn. Then S = span{v1,v2} = {av1 + bv2 | a, b ∈ R}.

• If v1 and v2 are non-parallel, then S represents a plane (parallel to v1 and v2)
that passes through the origin in Rn.

• If v1 and v2 are parallel, then S represents a line (parallel to both v1 and v2) that
passes through the origin in Rn.

• If v1 and v2 are both 0, then S is simply the origin.

Proposition 11.4.3. Let S be a subset of a linear space V . Then spanS is a subspace
of V .

Proof. Let S = {v1, . . . ,vr}. By definition, we have

spanS = {a1v1 + · · ·+ arvr | a1, . . . , ar ∈ R} .

• Taking a1 = · · · = an = 0, we see that 0 ∈ spanS.

• Let a,b ∈ spanS. We can write

a = a1v1 + · · ·+ arvr and b = b1v1 + · · ·+ brvr,

where a1, . . . , ar, b1, . . . , br ∈ R. Now consider their sum:

a+b = (a1v1 + · · ·+ arvr) + (b1v1 + · · ·+ brvr) = (a1 + b1)v1 + · · ·+ (ar + br)vr.

Since a1 + b1, . . . , ar + br ∈ R, it follows that a + b is also a linear combination of
v1, . . . ,vr, i.e. a+ b ∈ spanS. Thus, spanS is closed under addition.
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• Let k ∈ R. Consider ka:

ka = k (a1v1 + · · ·+ arvr) = ka1v1 + · · ·+ karvr.

Since ka1, . . . , kar ∈ R, it follows that ka ∈ spanS. Thus, spanS is closed under
multiplication.

Thus, S is a subspace of V .

A natural question to ask is “When is a vector in the span of a set of vectors?” For
instance, is 


1
2
3


 ∈ span







4
5
6


 ,



7
8
9





?

It turns out this is equivalent to finding coefficients x1, x2 ∈ R such that

x1



4
5
6


+ x2



7
8
9


 =



1
2
3


 .

This, in turn, is equivalent to the matrix equation


4 7
5 8
6 9



(
x1
x2

)
=



1
2
3


 .

Of course, we can use an augmented matrix and calculate its RREF to determine x1 and
x2: 


4 7 1
5 8 2
6 9 3


→



1 0 2
0 1 −1
0 0 0


 .

This gives x1 = 2 and x2 = −1, so


1
2
3


 ∈ span







4
5
6


 ,



7
8
9





 .

This leads us to the following result:

Proposition 11.4.4. The equation Ax = b has a solution if and only if b is a linear
combination of the columns of A, i.e. b is in the span of columns of A.

Sample Problem 11.4.5. Determine if R3 is spanned by

S =







1
2
1


 ,



1
0
2





 .

Solution. Let v = (a, b, c)T ∈ R3. Consider the equation

x1



1
2
1


+ x2



1
0
2


 =⇒



1 1
2 0
1 2



(
x1
x2

)
=



a
b
c


 .

Using row-operations on the resulting augmented matrix, we obtain


1 0 b/2
0 1 c− a
0 0 2a− b/2− c


 .

The system is only consistent when 2a− b/2− c = 0. That is, not all vectors v ∈ R3 can
be written as a linear combination of vectors in S. Thus, R3 is not spanned by S. □
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Sample Problem 11.4.6. Determine if R3 is spanned by

S =







1
2
1


 ,



1
0
2


 ,



1
1
0


 ,



1
0
0





 .

Solution. Let v = (a, b, c)T ∈ R3. Consider the equation

x1



1
2
1


+ x2



1
0
2


+ x3



1
1
0


+ x4



1
0
0


 =⇒



1 1 1
2 0 1
1 2 0





x1
x2
x3


 =



a− x4

b
c


 .

Since the matrix on the LHS has non-zero determinant, it is invertible, so there exist
x1, x2, x3, x4 ∈ R such that the above equation is satisfied. That is to say, every vector in
R3 can be expressed as a linear combination of vectors in S. Thus, R3 is spanned by S. □

11.4.2 Linear Independence

Consider the previous sample question. For different choices of x4, we get different values
of x1, x2, x3. That is, for a particular vector v, there is more than one way of expressing v
as a linear combination of the vectors in S. This is because the fourth vector, (1, 0, 0)T,
is redundant as it is a linear combination of the other three vectors, i.e.



1
0
0


 = −2

3



1
2
1


+

1

3



1
0
2


+

4

3



1
1
0


 .

We say that S is linearly dependent.

Definition 11.4.7. A set of vectors {v1, . . . ,vk} is linear dependent if there are coeffi-
cients c1, . . . , ck, not all zero, such that

c1v1 + · · ·+ ckvk = 0.

Otherwise, the set of vectors is linearly independent.

Equivalently, the set of vectors are linearly dependent if at least one vector is expressible
as a linear combination of the other vectors.

Sample Problem 11.4.8. Determine if the following set of vectors is linearly indepen-
dent:

S =







1
2
1


 ,



1
0
2





 .

Solution. Consider the following equation:

c1



1
2
1


+ c2



1
0
2


 =



0
0
0


 =⇒



1 1
2 0
1 2



(
c1
c2

)
=



0
0
0


 .

Converting to RREF, we obtain


1 0
0 1
0 0



(
c1
c2

)
=



0
0
0


 .

Thus, the only solutions are c1 = c2 = 0, so S is linearly independent. □
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Sample Problem 11.4.9. Determine if the following set of vectors is linearly indepen-
dent:

S =







1
2
1


 ,



1
0
2


 ,



1
1
0


 ,



1
0
0





 .

Solution. Consider the following equation:

c1



1
2
1


+ c2



1
0
2


+ c3



1
1
0


+ c4



1
0
0


 =



0
0
0


 =⇒



1 1 1 1
2 0 1 0
1 2 0 0







c1
c2
c3
c4


 =



0
0
0


 .

Converting to RREF, we obtain



1 0 0 −2/3
0 1 0 1/3
0 0 1 4/3







c1
c2
c3
c4


 =



0
0
0


 .

By backwards substitution, we obtain

c1 = −2λ, c2 = λ, c3 = 4λ, c4 = −λ,

where λ ∈ R. Thus, there exist non-trivial solutions, so S is linearly dependent. □
We now outline a general strategy to test if a set of vectors is linearly independent.

Recipe 11.4.10 (Test for Linear Independence). We are given r vectors v1, . . . ,vr ∈ Rn.
Case 1 . If r > n, then the r vectors must be linearly dependent.
Case 2 . If r ≤ n, we find x = (x1, . . . , xr)

T such that Ax = 0 where A =(
v1 . . . vr

)
is an n × r matrix. Whether the r vectors are linearly dependent be-

comes a question of whether the equation Ax = 0 has only the trivial solution x = 0.
To answer this question we can

• in general, use row operations to reduce A to REF. If there are exactly r non-zero
rows, then Ax = 0 has only the trivial solution.

• (if r = n) compute the determinant of A. If detA ̸= 0, then Ax = 0 has only the
trivial solution.

Geometrical Interpretations of Linear Independence

In R2, two vectors u and v are linearly dependent if and only if they lie on the same line
(with their initial points at the origin).

u
v

O

Figure 11.1: Linearly independent

u

v

O

Figure 11.2: Linearly dependent

In R3, three vectors u, v and w are linearly dependent if and only if they lie on the same
line or plane (with their initial points at the origin).
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11.5 Basis and Dimension

Definition 11.5.1. A basis S = {v1, . . . ,vr} for a linear space V is a set of vectors such
that

• S spans V , and

• S is linearly independent.

Definition 11.5.2. Let e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1).
The set {e1, e2, . . . , en} is called the standard basis of Rn.

Sample Problem 11.5.3. Show that the set

S =








1
0
1
0


 ,




0
1
−1
2


 ,




0
2
2
1


 ,




1
0
0
1








is a basis for R4.

Solution. We first show that S spans R4. Consider v = (a, b, c, d)T, where a, b, c, d ∈ R.
Consider

k1




1
0
1
0


+ k2




0
1
−1
2


+ k3




0
2
2
1


+ k4




1
0
0
1


 =




a
b
c
d


 =⇒




1 0 0 1
0 1 2 0
1 −1 2 0
0 2 1 1







k1
k2
k3
k4


 =




a
b
c
d


 .

Since the matrix on the LHS has non-zero determinant, every v can be expressed as a
linear combination of the vectors of S. Thus, S spans R4.
We now show that S is linearly independent. Consider

k1




1
0
1
0


+ k2




0
1
−1
2


+ k3




0
2
2
1


+ k4




1
0
0
1


 =




0
0
0
0


 =⇒




1 0 0 1
0 1 2 0
1 −1 2 0
0 2 1 1







k1
k2
k3
k4


 =




0
0
0
0


 .

Since the matrix on the LHS has non-zero determinant, the equation has only the trivial
solution. Thus, S is linearly independent. □

One particularly useful property about bases is that there is only one way to build a
vector as a linear combination of given basis vector.

Theorem 11.5.4. If {v1, . . . ,vn} is a basis for a linear space V , then every vector v ∈ V
can be expressed in the form v = k1v1 + · · ·+ knvn in exactly one way.

While a linear space can have many bases, the number of basis vectors must be the
same. This number is called the dimension of V .

Definition 11.5.5. The dimension of a non-zero linear space V is the number of vectors
in a basis for V , and is denoted dimV . By convention, we define the dimension of the
zero linear space {0} to be 0.

As an example, the linear space Rn has dimension n (recall that the standard basis
consists of n vectors).
We now state several remarks relating spans, linear independence and bases.
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Proposition 11.5.6. Let V be a linear space with finite dimension n, and let S ⊆ V .

• If |S| > n, then S is linearly dependent.

• If |S| < n, then S cannot span V .

• If |S| = n, then S is a basis of V if and only if S is linearly independent if and
only if S spans V .

The last property allows us to easily determine if a set is a basis of a linear space.

Proposition 11.5.7. Let V be a linear space with finite dimension n, and let S ⊆ V be
finite.

• If S spans V but is not a basis of V , then it can be reduced to a basis by removing
certain vectors from S.

• If S is linearly independent but not a basis of V , then it can be enlarged to a basis
by adding in certain vectors from V .

11.6 Vector Spaces Associated with Matrices

11.6.1 Row Space, Column Space and Null Space

Given an m× n matrix, there are three special subspaces of Rm and Rn, namely the row
space, column space and null space.

Definition 11.6.1. Let A = (a)ij be an m × n matrix. Define the row vectors of A to
be

ri =
(
ai1 ai2 . . . ain

)T
.

Then the row space of A, denoted rowA, is the span of the row vectors of A.

Because it is the span of vectors in Rn, it is a subspace of Rn.

Definition 11.6.2. Let A = (a)ij be an m× n matrix. Define the column vectors of A
to be

cj =




a1j
a2j
...

amj


 .

Then the column space of A, denoted colA, is the span of the column vectors of A.

Because it is the span of vectors in Rm, it is a subspace of Rm.

Definition 11.6.3. Let A be an m × n matrix. The null space of A is the solution set
to the homogeneous system of equations Ax = 0, i.e.

{x ∈ Rn : Ax = 0} .

The null space is a subspace of Rn.

Proposition 11.6.4. The row space is orthogonal to the null space.

Proof. Let x be in the null space of A, and let y be in the row space of A. Let ri be the
ith row vector of A. Then

Ax =




r1 · x
...

rm · x


 =



0
...
0


 .
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It follows that ri · x = 0 for all 1 ≤ i ≤ m. Thus,

y · x =

(
m∑

i=1

kiri

)
· x =

m∑

i=1

ki (ri · x) = 0,

so y and x are orthogonal. Thus, the row space is orthogonal to the null space.

11.6.2 Range Space and Kernel

Let the linear transformation T : Rn → Rm be represented by the m×n matrix A. In this
section, we will introduce two special subspaces related to T , namely the range space and
kernel of T . These two subspaces are equal to the column and null spaces ofA respectively.

Definition 11.6.5. The range space of T , denoted rangeT , consists of all vectors b such
that Ax = b.

Proposition 11.6.6. rangeT is equal to the column space of A.

Proof. Consider the equation Ax = b. Let ci be the ith column vector of A. Then we
have

Ax =
(
c1 . . . cn

)


x1
...
xn


 = x1c1 + · · ·+ xncn = b.

Any vector b ∈ rangeT can be expressed as a linear combination of c1, . . . , cn. Thus, b
is in the column space of A. Likewise, any vector b in the column space of A is also in
the range space of T . Thus, rangeT is equal to the column space of A.

Definition 11.6.7. The kernel of T , denoted kerT , is the set of all vectors x such that
Ax = 0.

Proposition 11.6.8. kerT is equal to the null space of A.

Proof. Trivial.

11.6.3 Basis for Row Space

Definition 11.6.9. Two matrices A and B are said to be row-equivalent if their row
spaces are the same.

Proposition 11.6.10. A and its REF/RREF are row-equivalent.

Proof. Recall that an elementary row operation produces a new row that is a linear com-
bination of the old rows. Thus, elementary row operations do not change the row space
of a matrix. Since the REF/RREF of A can be obtained solely from elementary row
operations, it follows that A and its REF/RREF are row-equivalent.

This result allows us to easily find the basis of the row space of A.

Recipe 11.6.11 (Finding Basis of Row Space). Let B be the REF/RREF of A. Then the
non-zero row vectors in B form a basis for the row space of A.

Example 11.6.12. Let

A =




1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 21


 .
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Its RREF is given by 


1 0 −1 −2 0
0 1 2 3 0
0 0 0 0 1
0 0 0 0 0


 .

Thus, a row space basis of A is








1
0
−1
−2
0




,




0
1
2
3
0




,




0
0
0
0
1








.

11.6.4 Basis for Column Space

One way of finding a basis for the column space of A would be to find a basis for the row
space of AT. However, there is a much simpler approach, which we now derive.

Proposition 11.6.13. Row operations do not change the linear dependence on columns.

Proof. Suppose we have a matrix A =
(
c1 . . . cn

)
. The linear independence of the

column vectors depends on the solution set x to the equation

x1c1 + . . . xncn = 0 =⇒ Ax = 0.

Suppose now that we perform row operations on A to obtain a new matrix A′. By writing
the above equation as an augmented matrix, we see that the row operations do not change
the solution set x!

(
A 0

)
→
(
A′ 0

)
=⇒ x1c

′
1 + · · ·+ xnc

′
n = 0.

Thus, if ci and cj were originally linearly independent, the corresponding columns c′i and
c′j will remain linearly independent. Likewise for columns that were originally linearly
dependent. Thus, row operations do not change linear dependence on columns.

Note however, that row operations do not preserve the column space of A. For instance,

(
1 0
0 0

)
and

(
0 0
1 0

)

are row-equivalent, but their column spaces are entirely different.
As a consequence of the above result, we obtain the following corollaries:

Corollary 11.6.14. If A and B are row-equivalent, a given set of columns of A forms a
basis for col(A) if and only if the corresponding set of columns of B forms a basis for
col(B).

With this, we have our standard procedure for finding a basis for the column space of
A:

Recipe 11.6.15 (Finding Basis of Column Space). Let B be the REF/RREF of A. Look
at the columns of B with a leading entry. Then the corresponding columns of A form
a basis of col(A).
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Example 11.6.16. Let

A =




1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 21


 .

Its RREF is given by

B =




1 0 −1 −2 0

0 1 2 3 0

0 0 0 0 1
0 0 0 0 0


 .

The first, second and fifth columns of B contain a leading entry. Thus, the first, second
and fifth columns of A form a basis of col(A):








1
6
11
16


 ,




2
7
12
17


 ,




5
10
15
21








.

11.6.5 Basis for Null Space

In the proof of Proposition 11.6.13, we saw how row operations do not change the solution
set of the equation Ax = 0. Hence, if B is the REF/RREF of A, then the equations
Ax = 0 and Bx = 0 will have the same solution set.

Recipe 11.6.17 (Finding Basis of Null Space). Let B be the REF/RREF of A. Then the
null space of A is the solution set x of Bx = 0.

Example 11.6.18. Let

A =




1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 21


 .

Its RREF is given by

B =




1 0 −1 −2 0
0 1 2 3 0
0 0 0 0 1
0 0 0 0 0


 .

We notice that columns 3 and 4 do not have leading entries. The variables corresponding
to these columns can thus be set as free variables.

Bx =




1 0 −1 −2 0
0 1 2 3 0
0 0 0 0 1
0 0 0 0 0







x1
x2
x3
x4
x5




=




0
0
0
0
0




=⇒





x1 − x3 − 2x4 = 0

x2 + 2x3 + 3x4 = 0

x5 = 0

.
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Setting x3 = s and x4 = t, we have




x1
x2
x3
x4
x5




=




s+ 2t
−2s− 3t

s
t
0




= s




1
−2
1
0
0




+ t




2
−3
0
1
0




.

Thus, the basis of the null space of A is








1
−2
1
0
0




,




2
−3
0
1
0








.

11.7 Rank and Nullity for Matrices

Definition 11.7.1. The row rank of A is the dimension of the row space of A. The
column rank of A is the dimension of the column space of A.

Proposition 11.7.2. Row and column ranks are equal.

Proof. Recall the procedure we took to find the basis for the row and column space of a
matrix:

• The column space basis consists of columns in the original matrix corresponding to
the leading entries in the REF/RREF.

• The row space basis consists of the rows of the REF/RREF corresponding to the
leading entries.

Since each leading entry corresponds to exactly one row and one column, the sizes of
the row and column spaces bases must be equal. Hence, the row and column ranks are
equal.

We give this common value a special name:

Definition 11.7.3. The rank of A is the dimension of the row/column space of A. It is
denoted by rankA.

Let A be an m×n matrix. Because the row rank is at most m, and the column rank is
at most n, we have that rankA ≤ min{m,n}. If equality is achieved, we give A a special
name:
Definition 11.7.4. Let A be an m × n matrix. If rankA = min{m,n}, we say A has
full rank.

Proposition 11.7.5. rank(AB) ≤ min{rankA, rankB}.

Proof. Every column in AB can be expressed as a linear combination of the columns of
A, so col(AB) ⊆ colA. Taking dimensions, we see that

rank(AB) = dim col(AB) ≤ dim colA = rankA.

Similarly, every row in AB can be expressed as a linear combination of the rows of B, so
row(AB) ⊆ rowB. Taking dimensions,

rank(AB) = dim row(AB) ≤ dim rowB = rankB.

Combining these two inequalities gives us what we want.
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We can slightly extend the above result:

Proposition 11.7.6. If B is an invertible n× n matrix, then rank(AB) = rank(BA) =
rankA for all n× n matrices A.

Proof. Observe that

rankA = rank
(
ABB−1

)
≤ rank(AB) ≤ rankA,

so rank(AB) = rankA. Similarly,

rankA = rank
(
B−1BA

)
≤ rank(BA) ≤ rankA.

so rank(BA) = rankA.

Definition 11.7.7. The nullity of A is the dimension of the null space of A. It is denoted
by nullityA.

Theorem 11.7.8 (Rank-Nullity Theorem). For an m× n matrix A,

rankA+ nullityA = number of columns of A, n.

Proof. rankA is equal to the number of columns in the RREF that contains a leading
entry, while nullityA is equal to the number of columns in the RREF that does not
contain a leading entry. Thus, their sum must be the number of columns in the RREF,
which is n.

We can determine the number of solutions to a system of linear equations using the
rank of its corresponding matrix:

Recipe 11.7.9 (Finding Number of Solutions). LetAx = b be a system of linear equations
in n variables. Then

• if rankA = rank
(
A b

)
= n, the system if consistent and has a unique solution.

• if rankA = rank
(
A b

)
< n, then the system is consistent and has an infinite

number of solutions.

• if rankA < rank
(
A b

)
, then the system is inconsistent and thus has no solution.

In the case where the system is consistent, we can apply the following result to find all
possible solutions to the system:

Proposition 11.7.10. If xp is a particular solution of a consistent non-homogeneous
systemAx = b, then every solution of the system can be written in the form x = xp+xh,
where xh is a solution to the corresponding homogeneous system Ax = 0.

Proof. Let xp be a fixed solution of Ax = b, and let x be an arbitrary solution. Then

Ax = b and Axp = b.

Subtracting these equations yields

A (x− xp) = 0,

so x− xp is a solution of the homogeneous system Ax = 0. Let {v1, . . . ,vk} form a basis
for the null space of A. Then there exist c1, . . . , ck ∈ R such that

x− xp = c1v1 + · · ·+ ckvk.

Letting xh = c1v1 + · · ·+ ckvk, we see that

x = xp + xh

as desired.
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11.8 Rank and Nullity for Linear Transformations

Definition 11.8.1. Let T be a linear transformation. The dimension of the range of T
is called the rank of T and the dimension of the kernel of T is called the nullity of T .

Theorem 11.8.2 (Rank-Nullity Theorem for Linear Transformations). For a linear trans-
formation T : Rm → Rn, where T (x) = Ax, we have

rankT + nullity T = rankA+ nullityA = n.

Proof. Recall that the range of T is the column space of A and the kernel of T is the null
space of A. Hence,

rankT = dim rangeT = dim colA = rankA

and
nullity T = dimkerT = dim(null space of A) = nullityA.

By the Rank-Nullity Theorem for matrices, we have

rankT + nullity T = rankA+ nullityA = n.
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12 Eigenvalues, Eigenvectors and Diagonal
Matrices

12.1 Eigenvalues and Eigenvectors

Definition 12.1.1. Let A be an n × n matrix. Let the non-zero vector x ∈ Rn be such
that Ax is a scalar multiple of x. That is, x satisfies the equation

Ax = λx

for some scalar λ. The scalar λ is an eigenvector of A, and x is the eigenvector of A
corresponding to λ.

12.1.1 Geometrical Interpretation

Let x be an eigenvector of A with eigenvalue λ. Geometrically, this means A maps x
along the same line through the origin as x, but scaling it by a factor of λ. If λ < 0, the
direction is reversed.

x

λx = Ax

O

Figure 12.1: λ > 1

x

λx = Ax

O

Figure 12.2: 0 ≤ λ ≤ 1

x

Ax = λx

O

Figure 12.3: λ < 0

12.1.2 Finding Eigenvalues and Eigenvectors

Definition 12.1.2. The characteristic polynomial χ(λ) of an n × n matrix A is the n
degree polynomial in λ given by

χ(λ) = det(A− λI) .

The characteristic equation of A is

χ(λ) = 0.

Proposition 12.1.3. λ is an eigenvalue of A if and only if it satisfies the characteristic
equation of A.

Proof. To find eigenvalues and eigenvectors, we must solve the equation Ax = λx. Ma-
nipulating this equation, we see that

Ax− λx = (A− λI)x = 0.

Since x is non-zero, the null space of A− λI must be non-trivial. Thus, A− λI must be
singular, so

χ(λ) = det(A− λI) = 0.
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Thus, λ satisfies the characteristic equation of A.

Since the characteristic equation can be easily solved, we now have a straightforward
way of finding eigenvalues and eigenvectors.

Recipe 12.1.4 (Finding Eigenvalues and Eigenvectors). We solve the characteristic equa-
tion χ(λ) = det(A− λI) = 0 to find possible eigenvalues λ. For each λ found, we find
its associated eigenvector(s) by finding the basis of the null space of A− λI.

Sample Problem 12.1.5. Find the eigenvalues and eigenvectors of the matrix

A =

(
1 2
5 4

)
.

Sample Problem 12.1.6. The characteristic polynomial is

χ(λ) = det(A− λI) = det

(
1− λ 2
5 4− λ

)
= λ2 − 5λ− 6 = (λ− 6)(λ+ 1).

Thus, the solutions to the characteristic equation χ(λ) = 0 are λ = 6 and λ = −1.
Let x = (x, y)T be a non-zero vector with Ax = λx.
Case 1 : λ = 6. We have

A− λI =

(
−5 2
5 −2

)(
x
y

)
=

(
0
0

)
.

Solving, we get 5x− 2y = 0. Taking x = 2 and y = 5, the corresponding eigenvector is

x =

(
2
5

)
.

Case 2 : λ = −1. We have

A− λI =

(
2 2
5 5

)(
x
y

)
=

(
0
0

)
.

Solving, we get x+ y = 0. Taking x = 1 and y = −1, the corresponding eigenvector is

x =

(
1
−1

)
.

If A is a 3× 3 matrix, we can use cross products to easily find eigenvectors.

Sample Problem 12.1.7. Let

A =




2 0 1
−1 2 3
1 0 2


 .

Find the eigenvector of A corresponding to λ = 1.

Sample Problem 12.1.8. Let x be the desired eigenvector. Consider

(A− I)x =




1 0 1
−1 1 3
1 0 1


x =



0
0
0


 .
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By multiplying out the LHS, we get the following two equations:

x ·



1
0
1


 = 0, x ·



−1
1
3


 = 0.

These are precisely the equations of two planes, normal to (1, 0, 1)T and (−1, 1, 3)T

respectively, that also pass through the origin. Thus, x lies on the line of intersection
between the two planes. The direction vector of this line is given by the cross product
of the two normal vectors, so

x =



1
0
1


×



−1
1
3


 =



−1
−4
1


 .

Note that an n × n matrix may have less than n eigenvalues and eigenvectors. For
instance, (

3 1
0 3

)

has the sole eigenvalue λ = 3 with corresponding eigenvector (1, 0)T.
Also, one eigenvalue may have multiple corresponding eigenvectors. For instance,



0 0 −2
1 2 1
1 0 3




has eigenvalue λ = 2, which corresponds to two linearly independent eigenvectors:

x1 =



−1
0
1


 , x2 =



0
1
0


 .

12.1.3 Useful Results
Proposition 12.1.9. Eigenvectors corresponding to distinct eigenvalues must be linearly
independent.

Proof. By way of contradiction, suppose the eigenvectors are linearly dependent. Let j be
the maximal j such that x1, . . . ,xj are linearly independent. Then xj+1 can be expressed
as a linear combination of x1, . . . ,xj :

xj+1 = a1x1 + · · ·+ ajxj . (1)

Applying A on both sides, we see that

λj+1xj+1 = a1λ1x1 + · · ·+ ajλjxj . (2)

Since x1, . . . ,xj are linearly independent, we can compare their coefficients in (1) and (2),
which gives

ai = ai
λi

λj+1
=⇒ λi = λj+1

for all 1 ≤ i ≤ j. But this clearly contradicts the supposition that the eigenvalues are
distinct. Thus, the eigenvectors must be linearly independent.
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Proposition 12.1.10. If A is a triangular matrix, then the eigenvalues of A are the
entries on the principal diagonal of A.

Proof. Recall that the determinant of a triangular matrix is the product of its principal
diagonal entries. Thus,

χ(λ) = det(A− λI) = (a11 − λ) (α22 − λ) . . . (ann − λ) ,

whence the roots are λ = a11, a22, . . . , ann.

Proposition 12.1.11. Suppose x is an eigenvector of an n×n matrix A with correspond-
ing eigenvalue λ.

(a) For any real number k, x is an eigenvector of the matrix kA, with corresponding
eigenvalue kλ.

(b) For any positive integer m, x is an eigenvector of the matrix Am, with correspond-
ing eigenvalue λm.

(c) If A is invertible, then x is an eigenvector of A−1 with corresponding eigenvalue
λ−1 when λ ̸= 0.

(d) If x is also an eigenvector of an n× n matrix B with corresponding eigenvalue µ,
then x is an eigenvector of the sum A+B, with corresponding eigenvalue λ+ µ.

Proof of (a). Since A = λx, we have (kA)x = (kλ)x.

Proof of (b). We use induction. Let the statement P (m) be such that

P (m) ⇐⇒ x is an eigenvector of the matrix Am with corresponding eigenvalue λm.

The base case m = 1 is trivial. Suppose P (k) is true for some k ∈ N. Then

Ak+1x = A
(
Akx

)
= A

(
λkx

)
= λk (Ax) = λk (λx) = λk+1x.

Thus, P (k) =⇒ P (k + 1). This closes the induction.

Proof of (c). Since A = λx, we have

x = A−1Ax = A−1λx = λ
(
A−1x

)
=⇒ A−1x = λ−1x.

Proof of (d). Since A = λx and B = µx, we have

(A+B)x = Ax+Bx = λx+ µx = (λ+ µ)x.

Corollary 12.1.12. Let x be an eigenvector of A with corresponding eigenvalue λ. Define
a polynomial p(X) = a0 + a1X + a2X

2 + · · ·+ anX
n. Then p(λ)x = p(A)x.

Note that we are taking a0 to mean a0I on the RHS.

Definition 12.1.13. A submatrix of A is a matrix obtained from A by deleting a col-
lection of rows and/or columns. A principal minor of A is a submatrix whereby the
indices of the deleted rows are the same as the indices of the deleted columns.
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Example 12.1.14. Given

A =



1 2 3
4 5 6
7 8 9


 ,

the following three matrices are submatrices of A:

B1 =

(
1 2
4 5

)
, B2 =

(
4 6
7 9

)
.

To obtain B1, we deleted the third row and third column. To obtain B2, we deleted the
first row and second column. Note that B1 is also a principal submatrix.

Proposition 12.1.15. Let A be an n× n matrix. Let

Ek =
∑

S∈Sk

|S|

be the sum of the determinants of all k × k principal submatrices. We define E0 = 1.
Then the characteristic polynomial χ(λ) of A is given by

χ(λ) =
n∑

i=0

(−1)iEn−iλ
i.

Example 12.1.16. Consider

A =




2 0 1
−1 2 3
1 0 2


 .

Then

E1 = |2|+ |2|+ |2| = 6,

E2 =

∣∣∣∣
2 0
−1 2

∣∣∣∣+
∣∣∣∣
2 3
0 2

∣∣∣∣+
∣∣∣∣
2 1
1 2

∣∣∣∣ = 11,

E3 =

∣∣∣∣∣∣

2 0 1
−1 2 3
1 0 2

∣∣∣∣∣∣
= 6.

Invoking the above result, we see that

χ(λ) = −λ3 + E1λ
2 − E2λ+ E3 = −λ3 + 6λ2 − 11λ+ 6.

Corollary 12.1.17. If A is an n× n matrix,

• The sum of the n eigenvalues of A (counting multiplicity) is equal to the trace of
A.

• The product of the n eigenvalues of A (counting multiplicity) is equal to the
determinant of A.

Proof. Apply Vieta’s formula to the above result.
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12.2 Diagonal Matrices

Recall that a diagonal matrix D is a square matrix where all off-diagonal entries are zero.
Diagonal matrices have nice properties that make computations involving them simple
and convenient:

• detD is the product of its diagonal entries.

• If detD ̸= 0, then D−1 is a diagonal matrix with the corresponding reciprocals in
the diagonal.

• Dn is a diagonal matrix with the corresponding powers in the diagonal.

For instance, if

D =



1 0 0
0 2 0
0 0 3


 ,

then

D100 =



1100 0 0
0 2100 0
0 0 3100


 and D−100 =



1−100 0 0
0 2−100 0
0 0 3−100


 .

12.2.1 Diagonalization

The useful properties of diagonal matrices motivates us to find a way to write an n × n
matrix in terms of a diagonal matrix, i.e. diagonalize A in some way.

Definition 12.2.1. A matrix A is diagonalizable if there exists an invertible matrix Q
such that A = QDQ−1, where D is a diagonal matrix. We say that Q diagonalizes A.

Proposition 12.2.2. If A is diagonalizable, then the columns of Q are the linearly in-
dependent eigenvectors of A, and the diagonal matrix D contains the corresponding
eigenvalues.

Proof. Let A be an n × n matrix with eigenvectors x1, . . . ,xn corresponding to the real
eigenvalues λ1, . . . , λn. Let Q be the matrix with x1, . . . ,xn as its columns and let D be
a diagonal matrix with its diagonal entries as λ1, . . . , λn:

Q =
(
x1 . . . xn

)
, D =



λ1 . . . 0
...

. . .
...

0 . . . λn


 .

Then

AQ =
(
Ax1 . . . Axn

)
=
(
λ1x1 . . . λnxn

)
=
(
x1 . . . xn

)


λ1 . . . 0
...

. . .
...

0 . . . λn


 = QD.

Post-multiplying both sides by Q−1, which exists since the columns of Q are linearly
independent, we have A = QDQ−1.

Note that if A has n real and distinct eigenvalues, it will have n linearly independent
eigenvectors, so it will be diagonalizable. However, if it has repeated eigenvalues, it may
not be diagonalizable.
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Sample Problem 12.2.3. Let

A =




2 0 1
−1 2 3
1 0 2


 .

Find a matrix Q and a diagonal matrix D such that A = QDQ−1.

Solution. We previously found the corresponding eigenvectors for eigenvalues 1, 2, 3 to be



1
4
−1


 ,



0
1
0


 ,



1
2
1


 .

Thus,

Q =




1 0 1
4 1 2
−1 0 1


 and D =



1 0 0
0 2 0
0 0 3


 .

□
Note that Q and D are not unique. Using the above sample problem, we could have

taken

Q =



1 1 0
2 4 1
1 −1 0


 and D =



3 0 0
0 1 0
0 0 2


 .

12.2.2 Computing Matrix Powers

One of the more useful purposes of diagonalization is to compute matrix powers.

Proposition 12.2.4. Suppose A = QDQ−1 is diagonalizable. Then

Ak = QDkQ−1.

Proof. Observe that

Ak =
(
QDQ−1

) (
QDQ−1

)
. . .
(
QDQ−1

)
= QD

(
Q−1Q

)
D
(
Q−1Q

)
. . .DQ−1

= QDD . . .DQ−1 = QDkQ−1.

Sample Problem 12.2.5. Let

A =




2 0 1
−1 2 3
1 0 2


 .

Compute A10.

Solution. We previously found that A = QDQ−1, where

Q =




1 0 1
4 1 2
−1 0 1


 and D =



1 0 0
0 2 0
0 0 3


 .

Thus,

A10 = QD10Q−1 =




1 0 1
4 1 2
−1 0 1





110 0 0
0 210 0
0 0 310






1 0 1
4 1 2
−1 0 1




−1

,
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which evaluates to

A10 =



29525 0 29524
55979 1024 60071
29524 0 29525


 .

□
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13 Introduction to Complex Numbers

Definition 13.0.1. The imaginary unit i is a root to the equation

x2 + 1 = 0.

13.1 Cartesian Form
Definition 13.1.1. A complex number z has Cartesian form x + iy, where x and y
are real numbers. We call x the real part of z, denoted Re z. Likewise, we call y the
imaginary part of z, denoted Im z.

Definition 13.1.2. The set of complex numbers is denoted C and is defined as

C = {z : z = x+ iy, x, y ∈ R} .

Remark. The set of real numbers, R, is a proper subset of the set of complex numbers, C.
That is, R ⊂ C.

Fact 13.1.3 (Algebraic Operations on Complex Numbers). Let z1, z2, z3 ∈ C.

• Two complex numbers are equal if and only if their corresponding real and imag-
inary parts are equal.

z1 = z2 ⇐⇒ Re z1 = Re z2 and Im z1 = Im z2.

• Addition of complex numbers is commutative, i.e.

z1 + z2 = z2 + z1

and associative, i.e.
(z1 + z2) + z3 = z1 + (z2 + z3).

• Multiplication of complex numbers is commutative, i.e.

z1z2 = z2z1,

associative, i.e.
z1(z2z3) = (z1z2)z3

and distributive, i.e.
z1(z2 + z3) = z1z2 + z1z3.

Proposition 13.1.4. Complex numbers cannot be ordered.

Proof. Seeking a contradiction, suppose i > 0. Multiplying both sides by i, we have
i2 = −1 > 0, a contradiction. Hence, we must have i < 0. However, multiplying both
sides by i and changing signs (since i < 0), we have i2 = −1 > 0, another contradiction.
Thus, C cannot be ordered.
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13.2 Argand Diagram

We can represent complex numbers in the complex plane using an Argand diagram.

Definition 13.2.1. The Argand diagram is a modified Cartesian plane where the x-axis
represents real numbers and the y-axis represents imaginary numbers. The two axes are
called the real axis and imaginary axis correspondingly.
On the Argand diagram, the complex number z = x + iy, where x, y ∈ R, can be

represented by

• the point Z(x, y) or Z(z); or

• the vector
−→
OZ.

Z (x, y) or Z (z)

−→
OZ

O

Re

Im

Figure 13.1

In an Argand diagram, let the points Z and W represent the complex numbers z and

w respectively. Then
−→
OZ and

−−→
OW are the corresponding vectors representing z and w.

13.2.1 Modulus

Recall in §1, we defined the modulus of a real number x as the “distance” between x and
the origin on the real number line. Generalizing this notion to complex numbers, it makes
sense to define the modulus of a real number z as the “distance” between z and the origin
on the complex plane. This uses Pythagoras’ theorem.

Definition 13.2.2. The modulus of a complex number z is denoted |z| and is defined as

|z| =
√
Re(z)2 + Im(z)2.

13.2.2 Complex Conjugate

Definition 13.2.3. The conjugate of the complex number z = x+ iy is denoted z∗ with
definition

z∗ = x− iy.

We refer to z and z∗ as a conjugate pair of complex numbers.

On an Argand diagram, the conjugate z∗ is the reflection of z about the real axis.
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Fact 13.2.4 (Properties of Complex Conjugates).

• (distributive over addition) (z + w)∗ = z∗ + w∗.

• (distributive over multiplication) (zw)∗ = z∗w∗.

• (involution) (z∗)∗ = z.

• z + z∗ = 2Re(z).

• z − z∗ = 2 Im(z) i.

• zz∗ = Re(z)2 + Im(z)2 = |z|2.

Because conjugation is distributive over addition and multiplication, we also have the
following identities:

(kz)∗ = kz∗, (zn)∗ = (z∗)n ,

where k ∈ R and n ∈ Z.
Using the conjugate of a complex number z, the reciprocal of z can be computed as

1

z
=

z∗

zz∗
=

z∗

|z|2
.

13.2.3 Argument

Definition 13.2.5. The argument of a complex number z is the directed angle θ that
Z(z) makes with the positive real axis, and is denoted by arg(z). Note that arg(z) > 0
when measured in an anticlockwise direction from the positive real axis, and arg(z) < 0
when measured in a clockwise direction from the positive real axis.

Note that arg(z) is not unique; the position of Z(z) is not affected by adding an integer
multiple of 2π to θ. Therefore, if arg(z) = ϕ, then ϕ + 2kπ, where k ∈ Z, is also an
argument of z. We hence introduce the principal argument of z.

Definition 13.2.6. The value of arg(z) in the interval (−π, π] is known as the principal
argument of z.

The modulus r = |z|, complex conjugate z∗ and argument θ = arg(z) of a complex
number z can easily be identified on an Argand diagram:

r

Z1(z)

Z2(z
∗)

θ

O

Re

Im

Figure 13.2
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13.3 Polar Form

Instead of using Cartesian coordinates on an Argand diagram, we can use polar coordi-
nates, leading to the polar form of a complex number. This polar form can be expressed
in two ways: trigonometric form and exponential form.

Definition 13.3.1. The trigonometric form of the complex number z is

z = r (cos θ + i sin θ) ,

where r = |z| and θ = arg(z), −π < θ ≤ π.

Theorem 13.3.2 (Euler’s Identity). For all θ ∈ R,

eiθ = cos θ + i sin θ.

Proof 1 (Series Expansion). By the standard series expansion of ex, we have

eiθ = 1 + iθ +
(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+

(iθ)5

5!
+ . . . .

Simplifying and grouping real and imaginary parts together,

eiθ =

(
1− θ2

2!
+

θ4

4!
+ . . .

)
+ i

(
θ − θ3

3!
+

θ5

5!
+ . . .

)
,

which we recognize to be the standard series expansions of cos θ and sin θ respectively.
Hence,

eiθ = cos θ + i sin θ.

Proof 2 (Differentiation). Let f(θ) = e−iθ (cos θ + i sin θ). Differentiating with respect to
θ,

f ′(θ) = e−iθ (− sin θ + i cos θ)− ie−iθ (cos θ + i sin θ) = 0.

Hence, f(θ) is constant. Evaluating f(θ) at θ = 0, we have f(θ) = 1, whence

e−iθ (cos θ + i sin θ) = 1 =⇒ eiθ = cos θ + i sin θ.

Definition 13.3.3. The exponential form of the complex number z is

z = reiθ,

where r = |z| and θ = arg(z), −π < θ ≤ π.

Recall z∗ is the reflection of z about the real axis. Hence, we clearly have the following:

Proposition 13.3.4 (Conjugation in Polar Form). If z = reiθ, then z∗ = re−iθ. Also,

arg(z∗) = −θ = − arg(z) , |z| = r = |z∗| .

Using the proposition above, we can convert the results z + z∗ = 2Re(z) and z − z∗ =
2 Im(z) i into polar form:
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Proposition 13.3.5.

eiθ + e−iθ = 2 cos θ, eiθ − e−iθ = (2 sin θ) i.

Lastly, we observe the effect of multiplication and division on the modulus and argument
of complex numbers.

Proposition 13.3.6 (Multiplication in Polar Form). Let z1 = r1e
iθ1 and z2 = r2e

iθ2 . Then

|z1z2| = r1r2 = |z1| |z2| , arg(z1z2) = θ1 + θ2 = arg(z1) + arg(z2) .

Proof. Observe that

z1z2 =
(
r1e

iθ1
)(

r2e
iθ2
)
= (r1r2)e

i(θ1+θ2).

The results follow immediately.

Corollary 13.3.7 (Exponentiation in Polar Form). For n ∈ Z,

|zn| = rn = |z|n , arg(zn) = nθ = n arg(z) .

Proof. Repeatedly apply the above proposition.

Proposition 13.3.8 (Division in Polar Form). Let z1 = r1e
iθ1 and z2 = r2e

iθ2 . Then

∣∣∣∣
z1
z2

∣∣∣∣ =
r1
r2

=
|z1|
|z2|

, arg

(
z1
z2

)
= θ1 − θ2 = arg(z1)− arg(z2) .

Proof. Observe that
z1
z2

=
r1e

iθ1

r2eiθ2
=

r1
r2
ei(θ1−θ2).

The results follow immediately.

13.4 De Moivre’s Theorem

Theorem 13.4.1 (De Moivre’s Theorem). For n ∈ Q, if z = r (cos θ + i sin θ) = reiθ, then

zn = rneinθ = rn (cosnθ + i sinnθ) .

Proof. Write zn in exponential form before converting it into trigonometric form.

We now discuss some of the applications of de Moivre’s theorem.

Recipe 13.4.2 (Finding nth Roots). Suppose we want to find the nth roots of a complex
number w = reiθ. We begin by setting up the equation

zn = w = rei(θ+2kπ),

where k ∈ Z. Next, we take nth roots on both sides, which yields

z = r1/nei(θ+2kπ)/n.

Lastly, we pick values of k such that arg z = θ+2kπ
n lies in the principal interval (−π, π].
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Definition 13.4.3. Let n ∈ Z. The nth roots of unity are the n solutions to the equation

zn − 1 = 0.

Proposition 13.4.4 (Roots of Unity in Polar Form). The nth roots of unity are given by

z = cos
2kπ

n
+ i sin

2kπ

n
= ei(2kπ/n),

where k ∈ Z.

Proof. Use de Moivre’s theorem.

Fact 13.4.5 (Geometric Properties of Roots of Unity). On an Argand diagram, the nth
roots of unity

• all lie on a circle of radius 1.

• are equally spaced apart.

• form a regular n-gon.

De Moivre’s theorem can also be used to derive trigonometric identities. The trigono-
metric identities one will be required to prove typically involve reducing “powers” to
“multiple angles” (e.g. expressing sin3 θ in terms of sin θ and sin 3θ), or vice versa.

Proposition 13.4.6 (Power to Multiple Angles). Let z = cos θ + i sin θ = eiθ. Then

zn + z−n = 2 cosnθ, zn − z−n = 2i sinnθ.

Proof. Use de Moivre’s theorem

Recipe 13.4.7 (Multiple Angles to Powers). Suppose we want to express cosnθ and sinnθ
in terms of powers of sin θ and cos θ. We begin by invoking de Moivre’s theorem:

cosnθ + i sinnθ = (cos θ + i sin θ)n .

Next, using the binomial theorem,

cosnθ + i sinnθ =

n∑

k=0

(
n

k

)
cosk θ sinn−k θ.

We then take the real and imaginary parts of both sides to isolate cosnθ and sinnθ:

cosnθ = Re

n∑

k=0

(
n

k

)
cosk θ sinn−k θ, sinnθ = Im

n∑

k=0

(
n

k

)
cosk θ sinn−k θ.

Example 13.4.8. Suppose we want to write sin 2θ in terms of sin θ and cos θ. Using de
Moivre’s theorem,

cos 2θ + i sin 2θ = (cos θ + i sin θ)2 = cos2 θ + 2i cos θ sin θ − sin2 θ.

Comparing imaginary parts, we obtain sin 2θ = 2 cos θ sin θ as expected.

Another way to derive new trigonometric identities is to differentiate known identities.
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Example 13.4.9. Using the “power to multiple angle” formula above, one can show that

cos6 θ =
1

32
(cos 6θ + 6 cos 4θ + 15 cos 2θ + 10) .

Differentiating, we obtain a new trigonometric identity:

sin θ cos5 θ =
1

32
(sin 6θ + 4 sin 4θ + 5 sin 2θ) .

13.5 Solving Polynomial Equations over C
Theorem 13.5.1 (Fundamental Theorem of Algebra). A non-zero, single-variable, degree
n polynomial with complex coefficients has n roots in C, counted with multiplicity.

Theorem 13.5.2 (Conjugate Root Theorem). For a polynomial equation with all real
coefficients, non-real roots must occur in conjugate pairs.

Proof. Suppose z is a non-real root to the polynomial P (z) = anz
n + an−1z

n−1 + · · · +
a1z + a0, where an, an−1, . . . , a1, a0 ∈ R. Consider P (z∗).

P (z∗) = an (z
∗)n + an−1 (z

∗)n−1 + · · ·+ a1 (z
∗) + a0.

By conjugation properties, this simplifies to

P (z∗) =
(
anz

n + an−1z
n−1 + · · ·+ a1z + a0

)∗
,

which clearly evaluates to 0, whence z∗ is also a root of P (z).
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14 Geometrical Effects of Complex Numbers

14.1 Geometrical Effect of Addition

The following diagram shows the geometrical effect of addition on complex numbers. Here,
the point P represents the complex number z+w. Observe that OWPZ is a parallelogram
(due to the parallelogram law of vector addition).

Z (z)

W (w)

P (z + w)

O

Re

Im

Figure 14.1

14.2 Geometrical Effect of Scalar Multiplication

The following diagram shows the geometrical effect of multiplying a complex number by
a real number k. Here, Z1 represents a point where k > 1, Z2 where 0 < k < 1, and Z3

where k < 0. Observe that the points lie on the straight line passing through the origin
O and the point Z.

Z

Z3

Z2

Z1

O

Re

Im

Figure 14.2
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14.3 Geometrical Effect of Complex Multiplication

Let points P , Q and R represent the complex numbers z1, z2 and z3 respectively, as
illustrated in the Argand diagram below.

P (z1)

Q(z2)

R(z1z2)

r1

r2

r1r2

θ2

θ2
θ1

O

Re

Im

Figure 14.3

Geometrically, the point R(z1z2) is obtained by

1. scaling by a factor of r2 on
−−→
OP to obtain a new modulus of r1r2, followed by

2. rotating
−−→
OP through an angle θ2 about O in an anti-clockwise direction if θ2 > 0 to

obtain a new argument θ1 + θ2 (or in a clockwise direction if θ2 < 0).

14.4 Loci in Argand Diagram

Definition 14.4.1. The locus (plural: loci) of a variable point is the path traced out by
the point under certain conditions.

14.4.1 Standard Loci
Fact 14.4.2 (Circle). For |z − a| = r, with P representing the complex number z and
A representing the fixed complex number a and r > 0, the locus of P is a circle with
centre A and radius r.

A

r

O

Re

Im locus of P

Figure 14.4
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Fact 14.4.3 (Perpendicular Bisector). For |z − a| = |z − b|, with P representing the com-
plex number z, points A and B representing the fixed complex numbers a and b respec-
tively, the locus of P is the perpendicular bisector of the line segment joining A and
B.

B

A

O

Re

Im locus of P

Figure 14.5

Fact 14.4.4 (Half-Line). For arg(z − a) = θ, with P representing the complex number
z and point A representing the fixed complex number a, the locus of P is the half-line
starting from A (excluding this point) and inclined at a directed angle θ to the positive
real axis.

A

θ

O

Re

Im locus of P

Figure 14.6

14.4.2 Non-Standard Loci

When sketching non-standard loci, one useful technique is to write the equation in Carte-
sian form, i.e. letting z = x+ iy, x, y ∈ R.

Example 14.4.5. Let P be the point representing the complex number z, where z satisfies
the equation Re z+2 Im z = 2. We begin by writing z in Cartesian form, i.e. z = x+ iy,
x, y ∈ R. Substituting this into the equation, we have x+ 2y = 2. Thus, the locus of P
is given by the equation x+ 2y = 2.

14.4.3 Loci and Inequalities

We will use the inequality |z − (3 + 4i)| < 5 as an example to illustrate the general pro-
cedure of finding the locus of an inequality.
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We begin by considering the equality case. As we have seen above, |z − (3 + 4i)| = 5
corresponds to a circle centred at (3, 4) with radius 5. This is the “boundary” of our locus.

A

r

O

Re

Im boundary

Figure 14.7

Notice that the circle is dashed as the inequality is strict; if the inequality was not strict,
i.e. |z − (3 + 4i)| ≤ 5, the circle would be drawn with a solid line.
Now, observe that the complex plane has been split into two parts: the interior and

exterior of the circle. To determine which region satisfies our inequality, we simply test a
complex number in each region.

• Since 3 + 4i is in the interior of the circle, and |(3 + 4i)− (3 + 4i)| = 0 < 5, the
interior of the circle satisfies the inequality.

• Since 10 + 4i is in the exterior of the circle, and |(10 + 4i)− (3 + 4i)| = 7 > 5, the
exterior of the circle does not satisfy the inequality.

We thus conclude that the locus of |z − (3 + 4i)| < 5 is the interior region of the circle,
as shaded below:

A

r

O

Re

Im required locus

Figure 14.8

14.4.4 Further Use of the Argand Diagram

Many interesting and varied problems involving complex numbers can be solved simply
using an Argand diagram. For instance, one may ask what the range of arg z is, given that
z satisfies some other constraint, e.g. |z − i| = 1. Given how diverse these problems may
be, there is no general approach to solving them. However, there are several tips that one
should keep in mind when doing these problems:
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• Think geometrically, not algebraically. Draw out the given constraints on an Argand
diagram. Most of the time, the given constraints are simply the three standard loci
above (circles, perpendicular bisector and half-lines).

• When working with circles and an external point, drawing tangents and diameters
may help. This allows one to use properties of circles (e.g. tangents are perpendicular
to the radius).

• Keep an eye out for symmetry or similar figures.
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15 Differentiation

15.1 Limits

Let a be a constant.

• x → a means “x approaches the value a”,

• x → a− means “x approaches the value a from a value slightly more than a”,

• x → a+ means “x approaches the value a from a value slightly more than a”,

• limx→a f(x) means “the limit of f(x) as x approaches a”.

Definition 15.1.1. The limit of f(x) as x approaches a exists if there exists some l ∈ R
such that

lim
x→a−

f(x) = l = lim
x→a+

f(x).

We write
lim
x→a

f(x) = l.

15.2 Derivative
Definition 15.2.1. The gradient of a straight line is defined as the ratio of the change
in the y-coordinate to that of the x-coordinate between any two points on the line.
Mathematically, the gradient m is given by

m =
y2 − y1
x2 − x1

,

where (x1, y1) and (x2, y2) are two points on the line.

Definition 15.2.2. The tangent to the curve at A is the line touching the curve at A.

Definition 15.2.3. The instantaneous rate of change or gradient of a curve at any
point is defined as the gradient of the tangent to the curve at the point.

Definition 15.2.4. The derivative of a function f(x), denoted d
dxf(x) or f

′(a), represents
the instantaneous rate of change of f(x) with respect to x.

If y = f(x), we write the derivative as dy
dx or y′. Note that the symbol d

dx means “the
derivative with respect to x of” and should be treated as an operation, not a fraction.

Definition 15.2.5. The nth derivative of y with respect to x is

dny

dxn
= f (n)(x) =

d

dx

(
dn−1y

dxn−1

)
,

where n ∈ Z+.
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15.2.1 Differentiation from First Principles

Consider a curve y = f(x). Let A(x, f(x)) and B(x + ∆x, f(x + ∆x)) be two points on
the curve, where ∆x is a small increment in x.
Observe that the gradient of the tangent to the curve at A can be approximated by the

gradient of the chord AB, denoted mAB. The closer B is to A, the better the approx-
imation. Therefore, the gradient of the curve at point A is limB→AmAB. Now observe
that

mAB =
f(x+∆x)− f(x)

(x+∆x)− x
=

f(x+∆x)− f(x)

∆x
.

Additionally, as B → A, ∆x → 0. Hence,

lim
B→A

mAB = lim
∆x→0

f(x+∆x)− f(x)

∆x
= lim

∆x→0

∆y

∆x
=

dy

dx
.

For convenience, we replace ∆x with h. The derivative is hence

dy

dx
=

d

dx
f(x) = lim

h→0

f(x+ h)− f(x)

h
.

15.3 Differentiation Rules

Proposition 15.3.1 (Differentiation Rules). Let k ∈ R and suppose u and v are functions
of x. Then

• (Sum/Difference Rule) If y = u± v then y′ = u′ ± v′.

• (Product Rule) If y = uv, then y′ = u′v + uv′.

• (Quotient Rule) If y = u
v , then y′ = u′v−uv′

v2
.

• (Chain Rule) If y = f(x) and x = g(t), then dy
dt = dy

dx
dx
dt .

The sum, product and quotient rules are easy to prove from first principles. We hence
only prove the chain rule. However, we first need to define differentiability of a func-
tion:

Definition 15.3.2. A function f(x) is differentiable at a if there exists some function
q(x) continuous at a such that

[q(x) =
f(x)− f(a)

x− a
.

Note that there is at most one such q(x), and if it exists, then q(x) = f ′(x).

We now prove the chain rule.

Proof of Chain Rule. Suppose y = f(x) and x = g(t). Suppose also that f(x) is differen-
tiable at x = g(a), and that g(t) is differentiable at a.

Since f(x) is differentiable at x = g(a), by the above definition, there exists a function
q(x) such that

q(x) =
f(x)− f(g(a))

x− g(a)
.

Replacing x with g(t), we get

q(g(t)) =
f(g(t))− f(g(a))

g(t)− g(a)
=⇒ g(t)− g(a) =

f(g(t))− f(g(a))

q(g(t))
. (1)
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Similarly, since g(t) is differentiable at a, by the above definition, there must exist a
function r(t) continuous at a such that

r(t) =
g(t)− g(a)

t− a
=⇒ g(t)− g(a) = r(t)(t− a). (2)

Equating (1) and (2), we have

f(g(t))− f(g(a))

q(g(t))
= r(t)(t− a).

Rearranging,

q(g(t))r(t) =
f(g(t))− f(g(a))

t− a
=

(f ◦ g)(t)− (f ◦ g)(a)
t− a

.

By our assumptions, q(g(t))r(t) is continuous at t = a. Hence, by the above definition,
q(g(t))r(t) is the derivative of (f ◦ g)′(t). Since q(x) = f ′(x) and r(t) = g′(t), we arrive at

(f ◦ g)′(t) = f ′(g(t))g′(t).

In Liebniz notation, this reads as

d

dt
f(g(t)) =

[
d

dx
f(g(t))

] [
d

dt
g(t)

]
.

Since x = g(t) and y = f(x) = f(g(t)), this can be written more compactly as

dy

dt
=

dy

dx

dx

dt
.

From the chain rule, we can derive the following property:

Proposition 15.3.3. Suppose dx/dy ̸≡ 0. Then

dy

dx
=

1

dx/dy
.

Proof. By the chain rule,

1 =
dy

dy
=

dy

dx

dx

dy
=⇒ dy

dx
=

1

dx/dy
.

Note that this property does not generalize to higher derivatives. For instance, d2y
dx2 ̸=

1
d2x/dy2

.
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15.4 Derivatives of Standard Functions

Let n, a ∈ R.

y y′ y y′ y y′

xn nxn−1 sinx cosx cosx − sinx

ax ax ln a secx secx tanx cscx − cscx cotx

loga x 1/(x ln a) tanx sec2 x cotx − csc2 x

y y′

arcsinx 1/
√
1− x2, |x| < 1

arccosx −1/
√
1− x2, |x| < 1

arctanx 1/(1 + x2)

15.5 Implicit Differentiation

Definition 15.5.1. An explicit function is one of the form y = f(x), i.e. the dependent
variable y is expressed explicitly in terms of the independent variable x, e.g. y =
2x sinx + 3. An implicit function is one where the dependent variable y is expressed
implicitly in terms of the independent variable x, e.g. xy + sin y = 2.

Recipe 15.5.2 (Implicit Differentiation). y′ is found by differentiating every term in the
equation with respect to x and with subsequent arrangement, making y′ the subject.

Implicit differentiation requires the use of the chain rule:

d

dx
g(y) =

d

dy
g(y) · dy

dx
.

Example 15.5.3 (Implicit Differentiation). Consider the implicit function 3y3 + x2y = 2.
Implicitly differentiating each term with respect to x, we obtain

9y2y′ +
(
x2y′ + 2xy

)
= 0 =⇒ y′ =

−2xy

9y2 + x2
.

Proposition 15.5.4 (Derivative of Inverse Functions).

d

dx
f−1(x) =

1

f ′ (f−1(x))
.

Proof. Let y = f−1(x). Then f(y) = x. Implicitly differentiating,

f ′(y) y′ = 1 =⇒ y′ =
1

f ′(y)
=

1

f ′ (f−1(x))
.

We can use the above result to derive the derivatives of the inverse trigonometric func-
tions and the logarithm.
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Example 15.5.5 (Derivative of arcsinx). Let f(x) = sinx. Then f ′(x) = cosx. Using
the above result,

d

dx
arcsinx =

1

cos(arcsinx)
=

1√
1− x2

.

Example 15.5.6 (Derivative of loga x). Let f(x) = ax. Then f ′(x) = ax ln a. Using the
above result,

d

dx
loga x =

1

aloga x ln a
=

1

x ln a
.

15.6 Parametric Differentiation

Sometimes it is difficult to obtain the Cartesian form of a parametric equation, so we are
unable to express dy/dx in terms of x. However, we are still able to obtain dy/dx in terms
of the parameter t using the chain rule. If x = f(t) and g(t), then

dy

dx
=

dy

dt

dt

dx
.

Example 15.6.1 (Parametric Differentiation). Suppose x = sin 2θ, y = cos 4θ. Differenti-
ating x and y with respect to θ, we see that

dx

dθ
= 2 cos 2θ,

dy

dθ
= −4 sin 4θ.

Hence, by the chain rule,
dy

dx
=

dy

dθ

dθ

dx
=

−2 sin 4θ

cos 2θ
.
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16 Applications of Differentiation

16.1 Monotonicity

Definition 16.1.1. Let f be a function, and let I ⊆ Df be an interval. Let x1 and x2 be
distinct elements in I.

• f is strictly increasing if x1 < x2 =⇒ f(x1) < f(x2).

• f is strictly decreasing if x1 < x2 =⇒ f(x1) > f(x2)

Proposition 16.1.2 (Sign of f ′(x) Describes Monotonicity). If f ′(x) > 0 for all x ∈ I,
then f is strictly increasing on I. Similarly, if f ′(x) < 0 for all x ∈ I, then f is strictly
decreasing on I.

Proof. Suppose f ′(x) > 0 for all x ∈ I. By the Mean Value Theorem, there exists some
c ∈ I such that

f ′(c) =
f(x2)− f(x1)

x2 − x1
.

Since f ′(c) > 0 and x1 < x2, it follows that f(x1) < f(x2), whence f is strictly increasing.
The proof of the second statement is similar.

Note that the converse of the above results is not true. Consider the function f(x) =
x1/3. Clearly, f(x) is increasing on R, yet f ′(x) = x−2/3/3 is undefined at x = 0.

16.2 Concavity

Definition 16.2.1. Let f be a function, and let I ⊆ Df be an interval.

• f is concave upwards on I if the gradient of f increases as x increases.

• f is concave downwards on I if the gradient of f decreases as x increases.

Geometrically, f is concave upwards if the graph of y = f(x), x ∈ I lies above its
tangents. Likewise, f is concave downwards if the graph lies below its tangents.

Proposition 16.2.2 (Sign of f ′′(x) Describes Concavity). If f ′′(x) > 0 for all x ∈ I, then
f is concave upwards on I. Similarly, if f ′′(x) < 0 for all x ∈ I, then f is concave
downwards on I.

Proof. Suppose f ′′(x) > 0 for all x ∈ I. Then f ′ is increasing on I. The gradient of f
hence increases as x increases, whence f is concave upwards. The proof of the second
statement is similar.



16.3 Stationary Points 111

16.3 Stationary Points

Definition 16.3.1. A stationary point on a curve y = f(x) is a point where f ′(x) = 0.

A

B

C

D

E

O

x

y

Figure 16.1: Types of stationary points.

There are two types of stationary points:

• turning points: maximum points (A) and minimum points (B)

• stationary points of inflexion: C

Definition 16.3.2. A point of inflexion is a point on the curve at which the curve crosses
its tangent and the concavity of the curve changes from up to down or vice versa.

Note that a point of inflexion is not necessarily stationary; points D and E in the above
figure are non-stationary points of inflexion.

16.3.1 Turning Points

In the neighbourhood of turning points, the gradient of the curve, f ′(x), changes sign.

Maximum Points

In the neighbourhood of a maximum turning point A, the gradient f ′(x) decreases from
positive values, through zero at A, to negative values. The y-coordinate of A is known as
the maximum value of y.

Minimum Points

In the neighbourhood of a minimum turning point B, the gradient f ′(x) increases from
negative values, through zero at B, to positive values. The y-coordinate of B is known as
the minimum value of y.

16.3.2 Stationary Points of inflexion

In the neighbourhood of a stationary point of inflexion, the gradient of the curve, f ′(x)
does not change sign.
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16.3.3 Methods to Determine the Nature of Stationary Points

Suppose y = f(x) has stationary point at x = a.

Recipe 16.3.3 (First Derivative Test). Check the signs of f ′(x) when x → a− and x → a+.

x a− a a+ a− a a+ a− a a+

f ′(x) +ve 0 −ve −ve 0 +ve
+ve 0 +ve
−ve 0 −ve

Nature Maximum point Minimum point Stationary point of inflexion

Example 16.3.4 (First Derivative Test). Let f(x) = x2. Note that f ′(x) = 2x. Solving
for f ′(x) = 0, we see that x = 0 is a stationary point. Checking the signs of y′ as x → 0−

and x → 0+,

x 0− 0 0+

f ′(x) −ve 0 +ve

Thus, by the first derivative test, the stationary point at x = 0 is a minimum point.

Proposition 16.3.5 (Second Derivative Test). Suppose f(x) has a stationary point at
x = a.

• If f ′′(a) < 0, then the stationary point is a maximum.

• If f ′′(a) > 0, then the stationary point is a minimum.

• If f ′′(a) = 0, the test is inconclusive.

Proof. At x = a, the function f(x) is given by the Taylor series

f(x) =
∞∑

n=0

f (n)(a)

n!
(x− a)n = f(a) + f ′(a)(x− a) +

f ′′(a)
2

(x− a)2 + · · · .

When x is arbitrarily close to a, the terms (x− a)3, (x− a)4, . . . become negligibly small,
whence f(x) is well-approximated by

f(x) ≈ f(a) + f ′(a)(x− a) +
f ′′(a)
2

(x− a)2.

Since x = a is a stationary point, f ′(a) = 0, whence

f(x) ≈ f(a) +
f ′′(a)
2

(x− a)2.

Now observe that 1
2(x − a)2 is non-negative. Hence, the sign of f ′′(a)

2 (x − a)2 depends
solely on the sign of f ′′(a): if f ′′(a) is positive, the entire term is positive and

f(x) ≈ f(a) +
f ′′(a)
2

(x− a)2 > f(a),

whence f(a) is a minimum (since f(a) < f(x) for all x in the neighbourhood of a).
Similarly, if f ′′(a) is negative, the entire term is negative and

f(x) ≈ f(a) +
f ′′(a)
2

(x− a)2 < f(a),

whence f(a) is a maximum. If f ′′(a) is zero, we cannot say anything about f(x) around
f(a) and the test is inconclusive.



16.4 Graph of y = f ′(x) 113

Example 16.3.6 (Second Derivative Test). Let f(x) = x2. From the previous example,
we know that x = 0 is a stationary point. Since f ′′(0) = 2 > 0, by the second derivative
test, it must be a minimum point.

16.4 Graph of y = f ′(x)

The table below shows the relationships between the graphs of y = f(x) and y = f ′(x).

Graph of y = f(x) Graph of y = f ′(x)
1a vertical asymptote x = a vertical asymptote x = a

1b horizontal asymptote y = b horizontal asymptote y = 0

1c oblique asymptote y = mx+ c horizontal asymptote y = b

2 stationary point at x = a x = a is the x-intercept

3a f is strictly increasing curve above the x-axis

3b f is strictly decreasing curve below the y-axis

4a f is concave upward curve is increasing

4b f is concave downward curve is decreasing

5 point of inflexion at x = a maximum or minimum point at x = a

For most cases, we can deduce the graph of y = f ′(x) by using points (1) to (3) only.
Points (4) and (5) are usually for checking.

16.5 Tangents and Normals

Let P (k, f(k)) be a point on the graph of y = f(x).

P

O

x

y tangent
normal

Figure 16.2

The gradient of the tangent to the curve at P is f ′(k), while the gradient of the normal
to the curve at P is −1/f ′(k). This follows from the fact that the tangent and the normal
are perpendicular, hence the product of their gradients is −1.
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16.6 Optimization Problems

Many real-life situations require that some quantity be minimized (e.g. cost of manufac-
ture) or maximized (e.g. profit on sales). We can use differentiation to solve many of these
problems.

Recipe 16.6.1. Suppose we have a dependent variable y that we wish to maximize. We
first express y in terms of a single independent variable, say x. We then differentiate
y with respect to x and solve for stationary points. Lastly, we determine the nature of
the stationary points to obtain the maximum point.

Example 16.6.2. Suppose we wish to enclose the largest rectangular area with only 20
metres of fence. Let x m and y m be the length and width of the rectangular area. The
perimeter of the rectangular area is

2(x+ y) = 20 =⇒ y = 10− x.

We can hence express the area of the rectangular area A solely in terms of x:

A = xy = x(10− x) = −x2 + 10x.

Differentiating A with respect to x, we see that

dA

dx
= −2x+ 10.

There is hence a stationary point at x = 5. By the second derivative test, this is a
maximum point. Thus, x = y = 5 gives the largest rectangular area.

16.7 Connected Rates of Change

dy/dx measures the instantaneous rate of change of y with respect to x. If t represents
time, then dy/dt represents the rate of change of the variable y with respect to time t. At
the same instant, the rates of change can be connected using the chain rule:

dy

dt
=

dy

dx

dx

dt
.

Sample Problem 16.7.1. An oil spill spreads on the surface of the ocean, forming a
circular shape. The radius of the oil spill r is increasing at a rate of dr/dt = 0.5 m/min.
At what rate is the area of the oil spill increasing when the radius is 10 m?

Solution. Let A be the area of the oil spill. Note that A = πr2. Differentiating with
respect to r, we get dA/dr = 2πr. Hence, by the chain rule,

dA

dt
=

dA

dr

dr

dt
= (2πr)(0.5) = πr.

Thus, when the radius is 10 m, the area of the oil spill is increasing at a rate of 10π m/min.
□
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17 Maclaurin Series

Definition 17.0.1. A power series is an infinite series of the form

∞∑

n=0

an(x− c)n = a0 + a1(x− c) + a2(x− c)2 + . . . ,

where an is the constant coefficient of the nth term and c is the centre of the power
series.

Under certain conditions, a function f(x) can be expressed as a power series. This
makes certain operations, such as integration, easier to perform. For instance, the integral∫
xex dx is non-elementary. However, we can approximate it by replacing xex with its

power series and integrating a polynomial instead.
In this chapter, we will learn how to determine the power series of a given function

f(x) with centre c = 0 by using differentiation. This particular power series is called the
Maclaurin series.

17.1 Deriving the Maclaurin Series

Suppose we can express a function f(x) as a power series with centre c = 0. That is, we
wish to find constant coefficients such that

f(x) =
∞∑

n=0

anx
n = a0 + a1x+ a2x

2 + . . . . (1)

Notice that we can obtain a0 right away: substituting x = 0 into (1) gives

f(0) = a0 + a1(0) + a2(0)
2 + · · · = a0.

Now, observe that if we differentiate (1), we get

f ′(x) = a1 + 2a2x+ 3a3x
2 + . . . . (2)

Once again, we can obtain a1 using the same trick: substituting x = 0 into (2) yields

f ′(0) = a1 + 2a2(0) + 3a3(0)
2 + · · · = a1.

If we continue this process of differentiating and substituting x = 0 into the resulting
formula, we can obtain any coefficient we so desire. In general,

f (n)(0) =
dn

dxn
(anx

n). (3)

However, by repeatedly applying the power rule, we clearly have

dn

dxn
xn =

dn−1

dxn−1
nxn−1 =

dn−2

dxn−2
n(n− 1)xn−2 = · · · = n(n− 1)(n− 2) . . . (3)(2)(1) = n!.

Thus, a simple rearrangement of (3) gives

an =
f (n)(0)

n!
.

We thus arrive at the formula for the Maclaurin series of f(x):
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Definition 17.1.1. The Maclaurin series of f(x) is given by

f(x) =
∞∑

n=0

f (n)(0)

n!
xn = f(0) + f ′(0)x+

f ′′(0)
2!

x2 +
f (3)(0)

3!
x3 + . . . .

There are a few caveats, though:

• The Maclaurin series of f(x) can only be found if f (n)(0) exists for all values of
n. For example, f(x) = lnx cannot be expressed as a Maclaurin series because
f(0) = ln 0 is undefined.

• The Maclaurin series may converge to f(x) for only a specific range of values of x.
This range is called the validity range.

17.2 Binomial Series

Proposition 17.2.1 (Binomial Series Expansion). Let n ∈ Q \ Z+. Then

(1 + x)n =
∞∑

k=0

n(n− 1)(n− 2) . . . (n− k + 1)

k!
xk,

with validity range |x| < 1.

Proof. Consider f(x) = (1 + x)n, where n ∈ Q \ Z+. By repeatedly differentiating f(x),
it is not too hard to see that

f (k)(x) = n(n− 1)(n− 2) . . . (n− k + 1) (1 + x)n−k.

Hence,
f (k)(0) = n(n− 1)(n− 2) . . . (n− k + 1).

Substituting this into the formula for the Maclaurin series, we have

f(x) =

∞∑

k=0

n(n− 1)(n− 2) . . . (n− k + 1)

k!
xk.

We now consider the range of validity. If |x| ≥ 1, then xk diverges to ∞ as k → ∞.
Meanwhile, if |x| < 1, then xk converges to 0 as k → ∞. Hence, the range of validity is
|x| < 1.

Note that the binomial theorem is similar to the above result: taking n ∈ Z+, we see
that

n(n− 1)(n− 2) . . . (n− k + 1)

k!
=

{(
n
k

)
k ≤ n,

0 k > n,

whence

(1 + x)n =
∞∑

k=0

n(n− 1)(n− 2) . . . (n− k + 1)

k!
xk =

n∑

k=0

(
n

k

)
xn,

which is exactly the binomial theorem. The only difference between the two results is that
the range of validity is R when n is a positive integer. This is because the series is finite
(all terms k > n vanish), hence it will always converge.
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17.3 Methods to Find Maclaurin Series

17.3.1 Standard Maclaurin Series

Using repeated differentiation, we can derive the following standard Maclaurin series.

f(x) Standard series Validity range

(1 + x)n
∞∑

k=0

n(n− 1)(n− 2) . . . (n− k + 1)

k!
xk |x| < 1

ex
∞∑

k=0

xk

k!
all x

sinx
∞∑

k=0

(−1)kx2k+1

(2k + 1)!
all x (in radians)

cosx
∞∑

k=0

(−1)kx2k

(2k)!
all x (in radians)

ln(1 + x)

∞∑

k=0

(−1)k+1xk

r
−1 < x ≤ 1

We can use these standard series to find the Maclaurin series of their composite func-
tions.

Example 17.3.1 (Standard Maclaurin Series). Suppose we wish to find the first three
terms of the Maclaurin series of ex (1 + sin 2x). Using the above standard series, we see
that

ex = 1 + x+
x2

2
+ · · · , and 1 + sin 2x = 1 + 2x+ · · · .

Hence,

ex (1 + sin 2x) =

(
1 + x+

x2

2
+ · · ·

)
(1 + 2x+ · · ·)

= (1 + 2x) +
(
x+ 2x2

)
+

(
x2

2

)
+ · · · = 1 + 3x+

5

2
x2 + · · · .

17.3.2 Repeated Implicit Differentiation

For complicated functions, it is more efficient to repeatedly implicitly differentiate and
substitute x = 0 to find the values of y′(0), y′′(0), etc.

Example 17.3.2 (Repeated Implicit Differentiation). Suppose we wish to find the first
three terms of the Maclaurin series of y = ln(1 + cosx). Rewriting, we get ey = 1+cosx.
Implicitly differentiating repeatedly with respect to x,

eyy′ = − sinx =⇒ ey
[(
y′
)2

+ y′′
]
= − cosx =⇒ ey

[(
y′
)3

+ 3y′y′′ + y′′′
]
= sinx

=⇒ ey
[(
y′
)4

+ 3
(
y′′
)2

+ 6
(
y′
)2

y′′ + 4y′y′′′ + y(4)
]
= cosx.

Evaluating the above at x = 0, we get

y(0) = ln 2, y′(0) = 0, y′′(0) = −1

2
, y′′′(0) = 0, y(4)(0) = −1

4
.
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Thus,

ln(1 + cosx) = ln 2 +
−1/2

2!
x2 +

−1/4

4!
x4 + · · · = ln 2− 1

4
x2 − 1

96
x4 + · · · .

17.4 Approximations using Maclaurin series

Maclaurin series can be used to approximate a function f(x) near x = 0.

Example 17.4.1 (Approximating Integrals). Suppose we wish to approximate

∫ 0.5

0
ln(1 + cosx) dx.

Doing so analytically is very hard, so we can approximate it using the Maclaurin series
of ln(1 + cosx), which we previously found to be ln 2 − 1

4x
2 − 1

96x
4 + · · · . Integrating

this expression over the interval [0, 0.5], we get

∫ 0.5

0
ln(1 + cosx) dx ≈

∫ 0.5

0

(
ln 2− 1

4
x2 − 1

96
x4
)

dx = 0.336092,

which is close to the actual value of 0.336091.

Example 17.4.2 (Approximating Constants). For small x,

sinx ≈ x− x3

3!
.

Since sin(π/4) = 1/
√
2, the numerical value of 1/

√
2 can be approximated by substitut-

ing x = π/4 into the above equation:

1√
2
= sin

π

4
≈ π

4
− (π/4)3

3
= 0.70465.

This is close to the actual value of 1/
√
2 ≈ 0.70711.

To improve the approximation, we can

• choose an x-value closer to 0;

• use more terms of the series.

Example 17.4.3 (Improving Approximations). Continuing on from the previous example,
we note that sin(3π/4) is also equal to 1/

√
2. If we substitute x = 3π/4 into sinx ≈

x− x3/3!, we get
1√
2
= sin

3π

4
≈ 3π

4
− (3π/4)3

3
= 0.17607,

which is a worse approximation than if we had used x = π/4. This is because |π/4| <
|3π/4|.
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17.5 Small Angle Approximation

For x near zero, we can approximate trigonometric functions with just the first few terms
of their respective Maclaurin series:

sinx ≈ x, cosx ≈ 1− x2

2
, tanx ≈ x.
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18 Integration

18.1 Indefinite Integration

In the previous chapters, we learnt about differentiation, which can be thought as finding
the derivative f ′(x) from a function f(x). Reversing this, we define integration as the
process of finding the function f(x) from its derivative f ′(x). Simply put, integration
“undoes” differentiation and vice versa.

18.1.1 Notation and Terminology

Definition 18.1.1. We write the indefinite integral with respect to x of a function f(x)
as ∫

f(x) dx.

Here, f(x) is called the integrand.

Let the derivative of F (x) be f(x), and let c be an arbitrary constant. Since the
derivative of a constant is zero, the function F (x)+C will always have the same derivative:
f(x). Thus, when we integrate f(x), we don’t get back a single function F (x). Instead,
we get back a class of functions of the form F (x)+C. We call F (x) the primitive of f(x),
and c the constant of integration.
With our notation, we can write down the notion of integration “undoing” differentiation

mathematically:
∫

d

dx
[f(x)] dx = f(x) + C,

d

dx

[∫
f(x) dx

]
= f(x).

18.1.2 Basic Rules
Fact 18.1.2 (Properties of Indefinite Integrals). Let f(x) and g(x) be any two functions,
and let k be a constant.

• (linearity)
∫
[f(x) + g(x)] dx =

∫
f(x) dx+

∫
g(x) dx.

•
∫
kf(x) dx = k

∫
f(x) dx.

18.2 Definite Integration

Definition 18.2.1. Suppose f is a continuous function defined on the interval [a, b] and∫
f(x) dx = F (x) + C. Then, the definite integral of f(x) from a to b with respect to

x is denoted by ∫ b

a
f(x) dx = [F (x)]ba = F (b)− F (a).

We call a the lower limit and b the upper limit of the integral.

Note that the indefinite integral
∫
f(x) dx is a function in x, while the definite integral∫ b

a f(x) dx is a numerical value. Also note that x is a dummy variable as it does not
appear in the final expression of the definite integral; it can be replaced by any symbol.
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Fact 18.2.2 (Properties of Definite Integrals). Let f(x) and g(x) be any two functions.
Let k and c be constants.

• (linearity)
∫ b
a [f(x) + g(x)] dx =

∫ b
a f(x) dx+

∫
g(x) dx.

•
∫ b
a kf(x) dx = k

∫ b
a f(x) dx.

•
∫ b
a f(x) dx =

∫ c
a f(x) dx+

∫ b
c f(x) dx.

Note that from the last property, we can deduce the following properties:

∫ a

a
f(x) dx = 0, and

∫ b

a
f(x) dx = −

∫ a

b
f(x) dx.

18.3 Integration Techniques

18.3.1 Systematic Integration

Proposition 18.3.1 (Integrals of Standard Functions).

∫
xn dx =

xn+1

n+ 1
+ C, (n ̸= −1)

∫
1

x
dx = ln |x|+ C,

∫
ex dx = ex + C.

Proposition 18.3.2 (Integrals of Trigonometric Functions).

∫
sinx dx = − cosx+ C,

∫
cosx dx = sinx+ C,

∫
secx dx = − ln |secx− tanx|+ C,

∫
cscx dx = ln |cscx− cotx|+ C,

∫
tanx dx = − ln |cosx|+ C,

∫
cotx dx = ln |sinx|+ C.

Equivalently,
∫

secx dx = ln |secx+ tanx| and

∫
cscx dx = − ln |cscx+ cotx| .

Products of trigonometric functions can be easily integrated using the following identi-
ties:

sinP + sinQ = 2 sin
P +Q

2
cos

P −Q

2
, sinP − sinQ = 2 sin

P −Q

2
cos

P +Q

2
,

cosP + cosQ = 2 cos
P +Q

2
cos

P −Q

2
, cosP − cosQ = 2 sin

P −Q

2
sin

P +Q

2
.

Powers of trigonometric functions can also be integrated using the following identities:

sin2 x =
1− cos 2x

2
, cos2 x =

1 + cos 2x

2
,

sin3 x =
3 sinx− sin 3x

4
, cos3 x =

3 cosx+ cos 3x

4
.



122 18 Integration

Proposition 18.3.3 (Algebraic Fractions).

∫
1√

a2 − x2
dx = arcsin

x

a
+ C

∫
1

a2 + x2
dx =

1

a
arctan

x

a
+ C

∫
1

a2 − x2
dx =

1

2a
ln

∣∣∣∣
a+ x

a− x

∣∣∣∣+ C

18.3.2 Integration by Substitution

If the given integrand is not in one of the standard forms, it may be possible to reduce
it to a standard form by a change of variable. This method is called integration by
substitution, and it “undoes the chain rule”.

Proposition 18.3.4 (Integration by Substitution). Let F ′ = f . Then

∫
f(g(x))g′(x) dx = F (g(x)) + C.

Proof. Recall that by the chain rule,

d

dx
[F (g(x))] = F ′(g(x))g′(x) = f(g(x))g′(x).

Integrating both sides with respect to x,

∫
f(g(x))g′(x) dx = F (g(x)) + C.

A simpler way to interpret the above formula is as follows:

Recipe 18.3.5 (Integration by Substitution). Given an integral
∫
f(x) dx and a substitu-

tion x = g(u), convert all instances of x in terms of u. This includes replacing dx with
du, which can be found by “splitting” dx/du:

dx

du
= g′(u) =⇒ dx = g′(u) du.

If the integral is definite, the bounds should also be converted to their corresponding
u values. Once the integral has been evaluated, all instances of u should be converted
back to x.

Example 18.3.6 (Definite Integration by Substitution). Consider the definite integral

∫ 2

2/
√
3

1

x
√
x2 − 1

dx.

Under the substitution x = 1/u, we have

dx

du
= − 1

u2
=⇒ dx = − 1

u2
du.
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When x = 2/
√
3, u =

√
3/2. When x = 2, u = 1/2. Thus, the integral becomes

∫ 1/2

√
3/2

u√
u−2 − 1

1

u2
du =

∫ √
3/2

1/2

1√
1− u2

du = [arcsinu]
√
3/2

1/2 =
π

6
.

Example 18.3.7 (Indefinite Integration by Substitution). Consider the indefinite integral

∫
1

x
√
x2 − 1

dx.

Following the same substitution as above (x = 1/u), we get

∫
1

x
√
x2 − 1

dx =

∫
1√

1− u2
du = arcsinu+ C = arcsin

1

x
+ C.

18.3.3 Integration by Parts

Just like integration by substitution “undoes” the chain rule, integration by parts “un-
does” the product rule.

Proposition 18.3.8 (Integration by Parts). Let u and v be functions of x. Then

∫
uv′ dx = uv −

∫
vu′ dx.

For definite integrals, ∫ b

a
uv′ dx = [uv]ba −

∫ b

a
vu′ dx.

Proof. By the product rule,
(uv)′ = uv′ + u′v.

Integrating both sides and rearranging yields the desired result.

The statement is also sometimes written as
∫

udv = uv −
∫

v du.

As we just learnt in the previous section, the two forms are perfectly equivalent under
substitution (simply substitute x for u and v in the integrands).

Care must be exercised in the choice of the factor u. The aim is to ensure that u′v on
the RHS is easier to integrate than uv′. To choose u, we can use the following guideline:

Recipe 18.3.9 (LIATE). In decreasing order of suitability, u should be

• Logarithmic

• Inverse trigonometric

• Algebraic

• Trigonometric

• Exponential
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Example 18.3.10 (Integration by Parts). Consider the integral
∫
lnx dx. Picking u = lnx

and v′ = 1, we get

∫
lnx dx = uv −

∫
u′v dx = (lnx)(x)−

∫ (
1

x

)
(x) dx = x lnx− x+ C.

The astute reader would have noticed that we actually dropped an arbitrary constant
when integrating v in the above example. We picked v′ = 1 but only got v = x, instead
of the expected v = x+C. However, including the arbitrary constant does not matter: if
we replace v with v + C into the integration by parts formula, we get

∫
udv = u(v + C)−

∫
(v + C) du = uv + Cu−

(∫
v du+ Cu

)
= uv −

∫
v du,

which is what we would have got had we not included the arbitrary constant C.
However, this is not to say that we should always drop the arbitrary constant. In certain

situations, including it might actually prove more useful, as demonstrated in the following
example.

Example 18.3.11 (Including Arbitrary Constant). Consider the integral
∫
ln(x+ 1) dx.

Picking u = ln(x+ 1) and v′ = 1 (which implies v = x+ C), we get

∫
ln(x+ 1) dx = uv −

∫
u′v dx = (x+ C) ln(x+ 1)−

∫
x+ C

x+ 1
dx.

Here, a convenient choice for C would be 1, as the integral on the RHS would simplify
to
∫
1 dx, which we can easily integrate. Thus,

∫
ln(x+ 1) dx = (x+ 1) ln(x+ 1)− x+ C.

If evaluating an integral requires doing multiple integration by parts in succession, the
DI method is more convenient.
Recipe 18.3.12 (DI Method). Given the integral

∫
uv dx, construct the following table:

D I

+ u v

− u′ v(−1)

+ u′′ v(−2)

...
...

...

± u(n) v(−n)

In other words, keep differentiating the middle column (u) and keep integrating the right
column (v), while alternating the sign in the left column. This sign is “attached” to the
u terms.

Next, draw diagonal arrows from the middle column to the right column one row
below. For instance, u is arrowed to v(−1), while u′ is arrowed to v(−2) and so on.
Multiply the terms connected by an arrow, keeping in mind the sign of the u terms. Add
these terms up, and add the integral of the product of the last row (i.e.

∫
u(n)v(−n) dx).

Essentially, the DI method allows us to easily compute the extended integration by parts
formula, which states that

∫
uv dx = uv(−1) − u′v(−2) + u′′v(−3) − u(3)v(−4) + · · · ±

∫
u(n)v(−n) dx,

where the sign of the integral depends on the parity of n.
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Example 18.3.13 (DI Method). Consider the integral
∫
x3 sinx dx. Taking u = x3 and

v = sinx, we construct the DI table:

D I

+ x3 sinx
− 3x2 − cosx
+ 6x − sinx
− 6 cosx

Thus,

∫
x3 sinx dx = x3(− cosx)− 3x2(− sinx) + 6x(cosx)− 6

∫
cosx dx

= −x3 cosx+ 3x2 sinx+ 6x cosx− 6 sinx+ C.
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19 Applications of Integration

19.1 Area

19.1.1 The Riemann Sum and Integral

Suppose we wish to find exact area bounded by the graph of y = f(x), the x-axis and the
lines x = a and x = b, where a ≤ b and f(x) ≥ 0 for a ≤ x ≤ b.

We can approximate this area by drawing n rectangles of equal width, as shown in the
diagram below:

a b

. . .

O

x

y y = f(x)

Figure 19.1

Observe that the kth rectangle has width ∆x = (b− a)/n and height f(a+ k∆x). The
total area of the rectangles is hence

n∑

k=1

f(a+ k∆x)∆x.

This is known as the Riemann sum of f over [a, b].
As the number of rectangles approaches ∞, the width ∆x of the rectangles approaches

0, and the total area of rectangles approaches the actual area under the curve. In other
words,

Area = lim
∆x→0

n∑

k=1

f(a+ k∆x)∆x.

In the limit, the Riemann sum becomes the Riemann integral, which is conventionally
written as the definite integral ∫ b

a
f(x) dx.

Note that this is where the integral and differential sign comes from: in the limit,
∑→

∫

and ∆x → dx.
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19.1.2 Definite Integral as the Area under a Curve

Proposition 19.1.1 (Area between a Curve and the x-axis). Let A denote the area bounded
by the curve of y = f(x), the x-axis and the lines x = a and x = b. Then

AreaA =

∫ b

a
|y| dx =

∫ b

a
|f(x)| dx.

Proposition 19.1.2 (Area between Two Curves). The area A between two curves y = f(x)
and y = g(x) is given by

AreaA =

∫ b

a
|f(x)− g(x)| dx.

Similar results hold when integrating with respect to the y-axis instead.

Proposition 19.1.3 (Area between a Parametric Curve and the x-axis). Let C be the curve
with parametric equations x = f(t) and y = g(t). Then the area A bounded between C
and the x-axis is

AreaA =

∫ b

a
|y| dx =

∫ t2

t1

|g(t)| dx
dt

dt,

where t1 and t2 are the values of t when x = a and b respectively.

The formula can be applied similarly when we wish to find the area bounded between
C and the y-axis.

Proposition 19.1.4 (Area Enclosed by Polar Curve). Let r = f(θ) be a polar curve, and
let A be the area of the region bounded by a segment of the curve and two half-lines
θ = α and θ = β. Then

AreaA =
1

2

∫ β

α
r2 dθ.

Proof. Divide the enclosed region A into n sectors with the same interior angle ∆θ. Con-
sider that a typical sector of A can be approximated by a sector of a circle. Thus, the
area of that sector is approximately

∆A ≈ 1

2
r2∆θ.

Summing up these approximations, we see that

A ≈
θ=β∑

θ=α

1

2
r2∆θ.

This approximation will improve as the number of sectors increases, i.e. ∆θ → 0. Hence,

AreaA = lim
∆θ→0

θ=β∑

θ=α

1

2
r2∆θ =

1

2

∫ β

α
r2 dθ.
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19.2 Volume
Definition 19.2.1. If an enclosed region is rotated about a straight line, the three-
dimensional object formed is called a solid of revolution, and its volume is a volume of
revolution.

The line about which rotation takes place is always an axis of symmetry for the solid of
revolution, and any cross-section of the solid which is perpendicular to the axis of rotation
is circular.

19.2.1 Disc Method

Consider the solid of revolution formed when the region bounded between y = f(x), the
x-axis and the lines x = a and x = b is rotated about the x-axis.

P (x, y)

∆x

x

y

Figure 19.2

To calculate the volume of this solid, we can cut it into thin slices (or discs) of thickness
∆x. Each disc is approximately a cylinder and the approximate volume of the solid can
be found by summing the volumes of these cylinders. The smaller ∆x is, the better the
approximation.
Consider a typical disc formed by a one cut through the point P (x, y) and the other cut

distant ∆x from the first. The volume of this disc is approximately

∆V ≈ πy2∆x.

Summing over all discs,

V ≈
b∑

x=a

πy2∆x.

As more cuts are made, ∆x → 0, whence

V = lim
∆x→0

b∑

x=a

πy2∆x = π

∫ b

a
y2 dx.
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Proposition 19.2.2 (Disc Method). When the region bound by the curve y = f(x), the
x-axis and the lines x = a and x = b is rotated 2π radians about the x-axis, the volume
of the solid of revolution generated is given by

V = π

∫ b

a
y2 dx = π

∫ b

a
[f(x)]2 dx.

Proposition 19.2.3 (Disc Method: Volume Enclosed by Two Curves). When the region
enclosed by two curves y = f(x) and y = g(x) is rotated 2π radians about the x-axis,
the volume of the solid of revolution generated is given by

V = π

∫ b

a
[f(x)]2 dx− π

∫ b

a
[g(x)]2 dx = π

∫ b

a

(
[f(x)]2 − [g(x)]2

)
dx.

Similar results hold when the axis of rotation is the y-axis.

19.2.2 Shell Method

Suppose a region R is rotated about the y-axis. Consider a typical vertical strip in the
region R with height y and thickness ∆x. It will form a cylindrical shell with inner radius
x, outer radius x+∆x and height y when rotated about the y-axis. Hence, it has volume

∆V = π(x+∆x)2y − πx2y = 2πxy∆x+ π∆x2y ≈ 2πxy∆x.

Hence, the volume of revolution is approximately

V ≈
b∑

x=a

2πxy∆x.

As more strips are considered, ∆x → 0, whence

V = lim
∆x→0

= 2π

∫ b

a
xy dx.

Proposition 19.2.4 (Shell Method). When the region bound by the curve y = f(x), the
x-axis and the lines x = a and x = b is rotated 2π radians about the y-axis, the volume
of the solid of revolution is given by

V = 2π

∫ b

a
xy dx.

A similar result holds when the axis of rotation is the x-axis.

19.3 Arc Length

19.3.1 Parametric Form
Proposition 19.3.1 (Arc Length of Parametric Curve). Let A(t1) and B(t2) be points the
parametric curve with equations x = f(t), y = g(t), t ∈ [t1, t2]. Then

AB =

∫ t2

t1

√
[f ′(t)]2 + [g′(t)]2 dt =

∫ t2

t1

√(
dx

dt

)2

+

(
dy

dt

)2

dt.
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Proof. Let s = AB be the arc length of AB. Let P andQ be points on AB with parameters
t and t+∆t respectively. By the Pythagorean theorem, the straight line PQ is given by

PQ2 = [f(t+∆t)− f(t)]2 + [g(t+∆t)− g(t)] .

Dividing both sides by (∆t)2,

(
PQ

∆t

)2

=

[
f(t+∆t)− f(t)

∆t

]2
+

[
g(t+∆t)− g(t)

∆t

]2
.

As ∆t → 0, we can write the RHS in terms of f ′(t) and g′(t):

lim
∆t→0

(
PQ

∆t

)2

=
[
f ′(t)

]2
+
[
g′(t)

]2
.

Rearranging,

lim
∆t→0

PQ =

√
[f ′(t)]2 + [g′(t)]2∆t.

However, observe that as ∆t → 0, the straight line PQ approximates the arc length PQ
(i.e. ∆s) better and better. Hence,

∆s = PQ =

√
[f ′(t)]2 + [g′(t)]2∆t.

Integrating from A to B, we thus obtain

s = AB =

∫ t2

t1

√
[f ′(t)]2 + [g′(t)]2 dt =

∫ t2

t1

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

19.3.2 Cartesian Form

Taking t = x or t = y, we get the following formulas involving dy/dx and dx/dy, which is
suitable for Cartesian curves.

Proposition 19.3.2 (Arc Length of Cartesian Curve). Let A(x1, y1) and B(x2, y2) be points
on the curve y = f(x). The arc length AB is given by

AB =

∫ x2

x1

√
1 +

(
dy

dx

)2

dx =

∫ y2

y1

√(
dx

dy

)2

+ 1dy.

19.3.3 Polar Form
Proposition 19.3.3. Let A(r1, θ1) and B(r2, θ2) be points on the polar curve r = f(θ).
Then the arc length AB is given by

AB =

∫ θ2

θ1

√
r2 +

(
dr

dθ

)2

dθ.

Proof. Recall that x = r cos θ and y = r sin θ. Hence,

dx

dθ
= cos θ

dr

dθ
− r sin θ,

dy

dθ
= sin θ

dr

dt
+ r cos θ.
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It follows that

(
d(r cos θ)

dθ

)2

+

(
d(r sin θ)

dθ

)2

=
(
cos2 θ + sin2 θ

)
[
r2 +

(
dr

dθ

)2
]
= r2 +

(
dr

dθ

)2

.

Taking t = θ,

AB =

∫ θ2

θ1

√(
dx

dθ

)2

+

(
dy

dθ

)2

dθ =

∫ θ2

θ1

√
r2 +

(
dr

dθ

)2

dθ.

19.4 Surface Area of Revolution
Definition 19.4.1. The surface area of a solid of revolution is called the surface area of
revolution.

Proposition 19.4.2 (Surface Area of Revolution of Parametric Curve). Let A(t1) and B(t2)
be points the parametric curve with equations x = f(t), y = g(t), t ∈ [t1, t2]. Then the
surface area of revolution about the x-axis of arc AB is given by

A = 2π

∫ t2

t1

y

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

Similarly, the surface area of revolution about the y-axis is given by

A = 2π

∫ t2

t1

x

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

Proof. Let s = AB be the arc length of AB. Let P andQ be points on AB with parameters
t and t+∆t respectively. Recall that

∆s = PQ =

√(
dx

dt

)2

+

(
dy

dt

)2

∆t.

Now consider the surface area of revolution about the x-axis of arc PQ. For small ∆s,
the solid of revolution is approximately a disc wish radius y and width ∆s. The surface
area of this disc can be calculated as

∆A = 2πy∆s = 2πy

√(
dx

dt

)2

+

(
dy

dt

)2

∆t.

Integrating from A to B, we see that

A = 2π

∫ t2

t1

y

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

A similar argument is used when the axis of rotation is the y-axis.
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19.5 Approximating Definite Integrals

In §19.1, we saw how Riemann sums could approximate definite integrals using rectangles.
This is a blunt tool which utilizes very little information from the curve and thus will
often not give a good estimate of the definite integral for a fixed number of rectangles.
In this chapter, we will be exploring two other methods: the trapezium rule and Simp-

son’s rule, for finding the approximate value of an area under a curve. These methods
often give better approximations to the actual area as compared to using Riemann sums.
Similar to Riemann sums, these methods can be extended to estimate the value of a
definite integral.

19.5.1 Trapezium Rule

Consider the curve y = f(x) which is non-negative over the interval [a, b].

a b

. . .

y0 y1 y2 yn−1 yn

O

x

y y = f(x)

Figure 19.3

Divide the interval [a, b] into n equal intervals (strips) with each having width h =
(b− a)/n. Then the area of the n trapeziums is given by

Area =

n∑

k=0

h

2
(yk + yk+1) =

h

2
[y0 + 2(y1 + y2 + · · ·+ yn−1) + yn] .

Recipe 19.5.1 (Trapezium Rule). The trapezium rule with (n+1) ordinates (or n inter-
vals) gives the approximation

∫ b

a
f(x) dx ≈

n∑

k=0

h

2
(yk + yk+1) =

h

2
[y0 + 2(y1 + y2 + · · ·+ yn−1) + yn] ,

where h = (b− a)/n.

Sample Problem 19.5.2. Use the trapezium rule with 4 strips to find an approximation
for ∫ 2

0
ln(x+ 2) dx.

Find the percentage error of the approximation.
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Solution. Let f(x) = ln(x+ 2). By the trapezium rule,

∫ 2

0
ln(x+ 2) dx ≈ 1

2
· 2− 0

4

(
f(0) + 2 [f(0.5) + f(1) + f(1.5)] + f(2)

)

= 2.15369 (5 d.p.).

One can easily verify that the integral evaluates to 2.15888 (5 d.p.). Hence, the percentage
error is ∣∣∣∣

2.15888− 2.15369

2.15888

∣∣∣∣ = 0.240%.

□

Error in Trapezium Rule Approximation

If the curve is concave upward, the secant lines lie above the curve. Hence, the trapezium
rule will give an overestimate.

O

x

y y = f(x)

Figure 19.4

If the curve is concave downward, the secant lines lie below the curve. Hence, the
trapezium rule will give an underestimate.

O

x

y y = f(x)

Figure 19.5
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19.5.2 Simpson’s Rule

Previously, we explored how Riemann sums approximate definite integrals using horizon-
tal lines (i.e. degree 0 polynomials). We also saw how the trapezium rule improves this
approximation by using sloped lines (i.e. degree 1 polynomials). Now, we introduce Simp-
son’s rule, which takes this a step further by using quadratics (i.e. degree 2 polynomials)
to achieve even greater accuracy in approximating definite integrals.
Consider the curve y = f(x), which is non-negative over the interval [a, b]. Suppose

the area represented by
∫ b
a f(x) dx is divided by the ordinates y0, y1, y2 into two strips

each of width h as shown below. A particular parabola can be found passing through the
three points on the curve with ordinates y0, y1, y2. Simpson’s rule uses the area under the
parabola to approximate the area represented by

∫ b
a f(x) dx.

To deduce the area under the parabola, we consider the case where y = f(x) is translated
x1 units to the left, i.e. the line x = x1 is now the y-axis.

−h h

y0 y1 y2

O

x

y y = f(x+ x1)

y = Ax2 +Bx+ C

Figure 19.6

Under this translation,

∫ b

a
f(x) dx =

∫ h

−h
f(x+ x1) dx.

This area will now be approximated by a parabola y = g(x) = Ax2 + Bx + C, where A,
B and C are constants. The area under the parabola is given by

∫ h

−h

(
Ax2 +Bx+ C

)
dx =

[
A

3
x3 +

B

2
x2 + Cx

]h

−h

=
h

3

(
2Ah2 + 6C

)
.

Now, observe that the parabola y = g(x) intersects the curve at (−h, y1), (0, y2) and
(h, y3). Hence,

g(−h) = Ah2 −Bh+ C = y0, g(0) = C = y1, g(h) = Ah2 +Bh+ C = y2.

Thus,

h

3

(
2Ah2 + 6C

)
=

h

3

[(
Ah2 −Bh+ C

)
+ 4C +

(
Ah2 +Bh+ C

)]
=

h

3
(y0 + 4y1 + y2).

We hence arrive at Simpson’s rule with 2 strips:

∫ b

a
f(x) dx ≈ h

3
(y0 + 4y1 + y2).

We can extend Simpson’s rule to cover any even number of strips. In general,
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Recipe 19.5.3 (Simpson’s Rule). Simpson’s rule with 2n strips (or 2n+1 ordinates) gives
the approximation

∫ b

a
f(x) dx ≈

n∑

k=0

h

3
(y2k + 4y2k+1 + y2k+2)

=
h

3
[y0 + 4y1 + 2y2 + 4y3 + 2y4 + · · ·+ 2y2n−2 + 4y2n−1 + y2n] .

Sample Problem 19.5.4. Use Simpson’s rule with 4 strips to find an approximation for

∫ 2

0
ln(x+ 2) dx.

Find the percentage error of the approximation.

Solution. Let f(x) = ln(x+ 2). By the trapezium rule,

∫ 2

0
ln(x+ 2) dx ≈ 1

3
· 2− 0

4

[
f(0) + 4f(0.5) + 2f(1) + 4f(1.5) + f(2)

]

= 2.15881 (5 d.p.).

As previously mentioned in Sample Problem 19.5.2 the actual value of the integral is
2.15888 (5 d.p.). Hence, the percentage error is

∣∣∣∣
2.15888− 2.15881

2.15888

∣∣∣∣ = 0.00324%.

□
In the previous example, the trapezium rule gave an estimate of 2.15369 (5 d.p.), which

has an error of 0.240%. In the case of Simpson’s rule, the error is 0.00324%, vastly better
than that of the trapezium rule’s.
In general, Simpson’s rule gives a better approximation than the trapezium rule as the

quadratics used account for the concavity of the curve.
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20 Functions of Two Variables

In Chapter §3, we learnt that functions can be described as a machine that takes in an
input and produces an output according to a rule. Some examples of functions that we
have encountered thus fare are f(x) = x2, g(x) = cosx, etc. These are functions of one
variable, also called univariate functions.
However, in real life, there are functions that depend on more than one variable (i.e. the

domain is not a subset of the real numbers). For instance, the cost (output) of a taxi ride
may depend on variables (input) like time, distance travelled, traffic conditions, demand,
etc. In this case, the function is called a multivariate function. The input with many
variables can be expressed as a vector.
Similarly, the codomain of a function does not necessarily need to be a subset of the

real numbers. Consider the following function f(s, t):

f(s, t) =




s+ t
t

2s− 1


 .

Here, f(s, t) takes in two inputs (s and t), and spits out three outputs (s+ t, t and 2s−1).
For the rest of this chapter, we will only study scalar-valued functions of two variables,

of the form
z = f(x, y),

which we can visualize in 3D space. We will see how the ideas from univariate functions
can be extended to two variable functions and how concepts of vectors can be useful in
studying these functions.

20.1 Functions of Two Variables and Surfaces

20.1.1 Functions of Two Variables
Definition 20.1.1. A (scalar) function of two variables, f , is a rule that assigns each
ordered pair of real numbers (x, y) in its domain to a unique real number.

Recall that the domain of a function g(x) is a subset of the real number line, i.e. Dg ⊆ R.
Generalizing this to scalar functions of two variables, the domain of f is a subset of the
xy-plane, denoted R× R or R2. Mathematically,

Df ⊆ R2.

If the domain of f(x, y) is not well specified, then we will take its domain to be the set
of all pairs (x, y) ∈ R2 for which the given expression is a well-defined real number.

Example 20.1.2 (Domain of f(x, y)). Let f(x, y) = ln
(
y2 − x

)
. For f(x, y) to be well-

defined, the argument of the natural logarithm must be positive. That is, we require
y2 − x > 0. The domain of f is hence

Df =
{
(x, y) ∈ R2 | y2 − x > 0

}
.
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20.1.2 Surfaces

Recall that we defined the graph of a function g(x) to be the collection of all points (x, y)
in the xy-plane such that the values x and y satisfy y = g(x). We can extend this notion
to functions of two variables:

Definition 20.1.3. The graph of z = f(x, y), or surface with equation z = f(x, y), is
the collection of all points (x, y, z) in 3D Cartesian space such that the values x, y and
z satisfy z = f(x, y).

Visualizing and illustrating a 3D surface can be challenging, especially as surfaces be-
come complicated. We can study the surface by fixing or changing the variables one at a
time. This is the idea behind traces, or level curves.

Definition 20.1.4. Horizontal traces (or level curves) are the resulting curves when we
intersect the surface z = f(x, y) with horizontal planes.

This is like fixing the value of z, giving the 2D graph of the equation f(x, y) = c for
some constant c.

Definition 20.1.5. Vertical traces are the resulting curves when we intersect the surface
z = f(x, y) with vertical planes.

This is like fixing the value of x or y (or a combination of both, e.g. y = x).

Definition 20.1.6. A contour plot of z = f(x, y) is a graph of numerous horizontal
traces f(x, y) = c for representative values of c (usually spaced-out values).

We may identify a surface by examining these traces to visualize graphs of two variables.

Example 20.1.7 (Graph of z = f(x, y)). Let f(x, y) = ln
(
x2 + y2

)
. Consider the hori-

zontal traces of z = f(x, y). Setting z = c, we get

ln
(
x2 + y2

)
= c =⇒ x2 + y2 = ec.

Hence, the horizontal trace of z = f(x, y) at z = c corresponds to a circle centred at the
origin with radius ec. Thus, the graph of z = ln

(
x2 + y2

)
looks like

x

y

z

Figure 20.1

20.1.3 Cylinders and Quadric Surfaces

Exploring the traces of a surface allows us to visualize the shape of the surface. We can
now look at some of the common surfaces, such as cylinders and quadric surfaces.
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Definition 20.1.8. A surface is a cylinder if there is a plane P such that all planes
parallel to P intersect the surface in the same curve (when viewed in 2D).

Examples of cylinders include the graphs of x2 + z2 = 1 and z = y2, as shown below:

x

y

z

Figure 20.2: Graph of x2 + z2 = 1.

x

y

z

Figure 20.3: Graph of z = y2.

Observe that x2+ z2 = 1 is a special case of a function of two variables z = f(x, y) that
can be reduced to z = f(x) since z is independent of y. Similarly, z = y2 can be reduced
to z = f(y) since z is independent of x. Indeed, if a function z = f(x, y) can be reduced
to a univariate function, then its surface must be cylindrical.
Another common surface is a quadric surface, which is a 3D generalization of 2D conic

sections. Recall that a conic section in 2D has the general form

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0.

We can generalize this into 3D to get a quadric surface.

Definition 20.1.9. A quadric surface has the form

Ax2 +By2 + Cz2 +Dxy + Eyz + Fzx+Gx+Hy + Iz + J,

where A,B, . . . , J ∈ R and at least one of A, B and C is non-zero.

An example of a quadric surface is the ellipsoid, which is a generalization of an ellipse
and has equation

x2

a2
+

y2

b2
+

z2

c2
= 1.

x y

z

Figure 20.4: An ellipsoid.

When a = b = c = r, we get the equation

x2 + y2 + z2 = r2.
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This represents a sphere centred at the origin with radius r. Observe the similarity between
the equation of a circle (x2 + y2 = r2) and the equation of a sphere.

20.2 Partial Derivatives

Recall that for a function f of one variable x, we defined the derivative function as

f ′(x) = lim
∆x→0

f(x+∆x)− f(x)

∆x
.

The usual notations are dy
dx or df

dx if y = f(x).

The notation dy
dx gives some insight into how derivatives are derived. We can view

• “ dx” as a small change in x, and

• “ dy” as the change in y as a result of the small change in x.

Hence, the notation dy
dx actually represents the “rise over run”, which is a measure of

gradient at the point (x, y) on the graph.
We can extend this notion to functions of two variables z = f(x, y). There are now two

variables that will affect the change in the value of f . We can choose to vary x slightly
(∆x) or vary y slightly ∆y and see how f changes (∆f). This gives us some notion of a
derivative. However, because we are only varying one independent variable at a time, we
are only differentiating the function f(x, y) “partially”. We hence call these derivatives
the partial derivatives of f .

Definition 20.2.1. The (first-order) partial derivatives of f(x, y) are the functions fx
and fy defined by

fx(x, y) = lim
∆x→0

f(x+∆x, y)− f(x, y)

∆x
,

fy(x, y) = lim
∆y→0

f(x, y +∆y)− f(x, y)

∆y
.

In Liebniz notation,

fx(x, y) =
∂f

∂x
, fy(x, y) =

∂f

∂y
.

Recipe 20.2.2 (Partial Differentiation). To partially differentiate a function f(x, y) with
respect to x, we differentiate f(x, y) as we normally would, treating y as a constant.
Similarly, if we are partially differentiating with respect to y, we treat x as a constant.

Sample Problem 20.2.3. Given f(x, y) = cos
(
xy + y2

)
, find fx(x, y).

Solution. To partially differentiate it with respect to x, we treat y as a constant. Using
the chain rule,

fx(x, y) = − sin
(
xy + y2

) ∂

∂x

[
xy + y2

]
.

Since y is a constant,
∂

∂x
(xy) = y,

∂

∂x
y2 = 0.

Hence,
fx(x, y) = −y sin

(
xy + y2

)
.

□
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20.2.1 Geometric Interpretation

Consider a surface S given by the equation z = f(x, y). Let P (a, b, c) be a point on S.

Figure 20.5: Partial derivatives as slopes of tangent lines.1

The curve C1 is the graph of the function g(x) = f(x, b), which is the intersection
curve of the surface and the vertical plane y = b. The slope of its tangent T1 at P is
g′(x) = fx(a, b).

Similarly, the curve C2 is the graph of the function h(y) = f(a, y), which is the inter-
section curve of the surface and the vertical plane x = a. The slope of its tangent T2 at P
is h′(y) = fy(a, b).
We can hence visualize partial derivatives at the point P on S as slopes to the tangent

lines T1 and T2 at that point.

20.2.2 Gradient

To represent the “full” derivative of a function, we simply collect its partial derivatives.

Definition 20.2.4. The gradient of a function f(x, y), denoted as ∇f , is the collection
of all its partial derivatives into a vector.

∇f =

(
fx
fy

)
.

Example 20.2.5 (Gradient). Let f(x, y) = xy2 + x3. Then its gradient is

∇f =

(
fx
fy

)
=

(
y2 + 3x2

2xy

)
.

20.2.3 Second Partial Derivatives

Similar to second-order derivatives for univariate functions, we can also consider the partial
derivatives of partial derivatives:

(fx)x, (fx)y, (fy)x, (fy)y.

1Source: https://www2.victoriacollege.edu/~myosko/m2415sec143notes(7).pdf

https://www2.victoriacollege.edu/~myosko/m2415sec143notes(7).pdf
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If z = f(x, y), we use the following notation for the second partial derivatives:

(fx)x = fxx =
∂2f

∂x2
=

∂2z

∂x2
,

(fx)y = fxy =
∂2f

∂y ∂x
=

∂2z

∂y ∂x
,

(fy)x = fyx =
∂2f

∂x ∂y
=

∂2z

∂x ∂y
,

(fy)y = fyy =
∂2f

∂y2
=

∂2z

∂y2
.

Thus, the notation fxy means that we first partially differentiate with respect to x and
then with respect to y. Notice that the order the variables appear in the denominator is
reversed when using Liebniz notation, similar to the idea of composite functions:

(fx)y =
∂

∂y

(
∂f

∂x

)
=

∂2f

∂y ∂x
.

Example 20.2.6 (Second Partial Derivatives). Consider the function f(x, y) = xy2+x3+
ln y. Its partial derivatives are

fx = y2 + 3x2, fy = 2xy +
1

y
,

and its second partial derivatives are

fxx = 6x, fxy = 2y, fyx = 2y, fyy = 2x− 1

y2
.

Notice in the above example that fxy = fyx. This symmetry of second partial derivatives
is known as Clairaut’s theorem.

Theorem 20.2.7 (Clairaut’s Theorem). If fxy and fyx are both continuous, then fxy = fyx

20.2.4 Multivariate Chain Rule

Recall that for a univariate function y = f(x), where the variable x is a function of t, i.e.
x = g(t), the chain rule states

dy

dt
=

dy

dx

dx

dt
.

We can generalize this result to multivariate functions using partial derivatives:

Proposition 20.2.8 (Multivariate Chain Rule). Consider the function f(x, y), where x and
y are functions of t. Then

df

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
.

To see why this is morally true, we return to the definition of a partial derivative:

fx(x, y) = lim
∆x→0

f(x+∆x, y)− f(x, y)

∆x
,

fy(x, y) = lim
∆y→0

f(x, y +∆y)− f(x, y)

∆y
.
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Rewriting these equations, we get

f(x+∆x, y) = f(x, y) + ∆xfx(x, y), (1)

f(x, y +∆y) = f(x, y) + ∆yfy(x, y), (2)

where ∆x and ∆y should be thought of as infinitesimally small changes in x and y.
We now consider the quantity f(x+∆x, y+∆y). Applying (1) and (2) sequentially, we

get

f(x+∆x, y +∆y) = f(x, y +∆y) + ∆xfx(x, y +∆y)

= f(x, y) + ∆yfy(x, y) + ∆xfx(x, y +∆y). (3)

Observe that if we partially differentiate (2) with respect to x, we get

fx(x, y +∆y) = fx(x, y) + ∆yfyx(x, y).

Substituting this into (3) yields

f(x+∆x, y +∆y) = f(x, y) + ∆yfy(x, y) + ∆x [fx(x, y) + ∆yfyx(x, y)]

= f(x, y) + ∆yfy(x, y) + ∆xfx(x, y) + ∆x∆yfyx(x, y). (4)

Since ∆x and ∆y are both infinitesimally small, the quantity ∆x∆y is negligible and can
be disregarded. We thus have

∆f = f(x+∆x, y +∆y)− f(x, y) = ∆xfx(x, y) + ∆yfy(x, y).

Dividing throughout by ∆t and writing fx, fy in Liebniz notation, we have

∆f

∆t
=

∂f

∂x

∆x

∆t
+

∂f

∂y

∆y

∆t
.

In the limit as ∆t → 0, we have

∆f

∆t
→ dx

dt
,

∆x

∆t
→ dx

dt
,

∆y

∆t
→ dy

dt
.

Thus,
df

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
.

Observe that if we had applied (2) before (1) on f(x+∆x, y+∆y), we would have got

f(x+∆x, y +∆y) = f(x, y) + ∆yfy(x, y) + ∆xfx(x, y) + ∆x∆yfxy(x, y).

However, by Clairaut’s theorem, we know fxy = fyx, so we would still have ended up with
(4).

20.2.5 Directional Derivative

So far, we only know how to find the instantaneous rate of change of f(x, y) in two special
cases:

• The first case is when we vary x and hold y constant, in which the partial derivative
fx(x, y) represents the instantaneous rate of change of f(x, y).

• The second case is when we vary y and hold x constant, in which the partial derivative
fy(x, y) represents the instantaneous rate of change of f(x, y).
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We wish to construct a more general “derivative” which represents the instantaneous rate
of change of f(x, y) where x and y are both allowed to vary.

To simplify matters, we assume that x and y are changing at a constant rate. That is,
every time x increases by ux, y will increase by uy. We can represent this change with a
unit vector u along the xy-plane:

u =

(
ux
uy

)
.

Because we are measuring the instantaneous rate of change of f(x, y) along a direction,
we call this quantity the “directional derivative”.

Definition 20.2.9. The directional derivative of f(x, y) in the direction of the unit vector
u = (ux, uy)

T is denoted Duf(x, y) and is defined as

Duf(x, y) = lim
h→0

f(x+ hux, y + huy)− f(x, y)

h
.

We now relate the directional derivative with the gradient of f .

Proposition 20.2.10.

Duf(x, y) = ∇f · u = uxfx(x, y) + uyfy(x, y).

Proof. In §20.2.4, we derived the equation

f(x+∆x, y +∆y)− f(x, y) = ∆xfx(x, y) + ∆yfy(x, y),

where ∆x and ∆y are infinitesimally small. If we take (∆x, ∆y)T to be in the same
direction as (ux, uy)

T, i.e. (
∆x
∆y

)
= lim

h→0
h

(
ux
uy

)
,

then we have

f(x+ hux, y + huy)− f(x, y) = huxfx(x, y) + huyfy(x, y),

keeping in mind that we are taking the limit h → 0 on both sides. Dividing both sides
throughout by h,

lim
h→0

f(x+ hux, y + huy)− f(x, y)

h
= uxfx(x, y) + uyfy(x, y),

which was what we wanted.

With this relation, we can prove several neat results.

Proposition 20.2.11. Suppose f is differentiable at (x0, y0), and ∇f(x0, y0) ̸= 0. Then
∇f(x0, y0) is perpendicular to the level curve of f through (x0, y0).

Proof. Let f(x, y) = (x(t), y(t)). Note that the tangent to the level curve at (x0, y0) has
direction vector u = (dx/dt, dy/dt)T.
Let the level curve at (x0, y0) have equation f(x, y) = c. Implicitly differentiating this

with respect to t, we get

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
=

(
fx
fy

)
·
(
dx/dt
dy/dt

)
= ∇f · u = 0.

Since both ∇f and u are non-zero vectors, they must be perpendicular to each other.
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Proposition 20.2.12. The greatest rate of change of f occurs in the direction of ∇f ,
while the smallest rate of change occurs in the direction of −∇f

Proof. Since u is a unit vector,

Duf = ∇f · u = |∇f | |u| cos θ = |∇f | cos θ,
where θ is the angle between ∇f and u. Clearly, Duf is maximal when θ = 0, in which
case u is in the same direction as ∇f . Similarly, Duf is minimal when θ = π, in which
case u is in the opposite direction as ∇f .

We say that ∇f(a, b) is the direction of steepest ascent at (a, b), while −∇f(a, b) is
the direction of steepest descent.

20.2.6 Implicit Differentiation

Consider the unit circle, which has equation

x2 + y2 = r2.

Previously, we learnt that to find dy/dx, we can simply differentiate term by term, treating
y as a function of x and using the chain rule

d

dx
g(y) =

d

dy
g(y) · dy

dx
.

Using our example of the unit circle, we get

2x+ 2y
dy

dx
= 0 =⇒ dy

dx
= −y

x
.

While morally true, this approach to implicit differentiate is not entirely rigorous. For a
more formal justification, we turn to partial derivatives.
Going back to our example of the unit circle, if we move all terms to one side of the

equation, we get
x2 + y2 − r2 = 0.

Now, observe that the LHS is simply a function of x and y, i.e.

f(x, y) = x2 + y2 − r2.

Hence, we can define y implicitly as a function of x that satisfies

f(x, y) = 0.

If we differentiate the above equation with respect to x, by the multivariate chain rule, we
get

df

dx
=

∂f

∂x

dx

dx
+

∂f

∂y

dy

dx
= 0.

Clearly, dx/dx = 1. Rearranging, we get

dy

dx
= −fx(x, y)

fy(x, y)
.

Since
fx(x, y) = 2x, and fy(x, y) = 2y,

we get
dy

dx
= −2x

2y
= −x

y

as expected.
More generally,
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Proposition 20.2.13 (Implicit Differentiation for Univariate Functions). If the equation

f(x, y) = 0

implicitly defines y as a function of x, then

dy

dx
= −fx(x, y)

fy(x, y)
,

given that fy(x, y) ̸= 0.

We can extend this result to functions of two variables.

Proposition 20.2.14 (Implicit Differentiation for Functions of Two Variables). If the equa-
tion

f(x, y, z) = 0

implicitly defines z as a function of x and y, then

∂z

∂x
= −fx(x, y, z)

fz(x, y, z)
and

∂z

∂y
= − fy(x, y, z)

fz(x, y, z),

given that fz(x, y, z) ̸= 0.

To see this in action, consider the following sample problem:

Sample Problem 20.2.15. Find the value of ∂2z/∂x2 at (0, 0, c) of the ellipsoid

x2

a2
+

y2

b2
+

z2

c2
= 1.

Solution. Let

f(x, y, z) =
x2

a2
+

y2

b2
+

z2

c2
− 1.

Applying the above result, we have

∂z

∂x
= −fx(x, y, z)

fz(x, y, z)
= −2x/a2

2z/c2
= − c2

a2
x

z
.

Partially differentiating with respect to x once more,

∂2z

∂x2
=

∂z

∂x

(
− c2

a2
x

z

)
= − c2

a2z
.

Hence,
∂2z

∂x2

∣∣∣∣
(0,0,c)

= − c

a2
.

□
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20.3 Approximations

In §17, we learnt that

f(x) = f(0) + f ′(0)x+
f ′′(0)
2!

x2 +
f (3)(0)

3!
x3 + . . . .

If we want to approximate f(x) for x near 0, we can truncate the Maclaurin series of
f(x). For instance, the linear approximation to x is

f(x) ≈ f(0) + f ′(0),

which is the tangent line at x = 0. If we want better approximations, we can simply
take more terms. For instance, if we take one more term, then we get the quadratic
approximation

f(x) ≈ f(0) + f ′(0)x+
f ′′(0)
2!

x2.

In some sense, we can get a good approximation to f(x) around x = 0 if we can find a
simpler function which

• has the same value as f at x = 0, and

• has the same derivatives as f at x = 0 (up to the order of derivatives we prefer).

The same idea is extended to functions of two variables (or any multivariate functions)
at a general point. The idea of approximation f(x, y) at a point (a, b) is to find a simpler
function which

• has the same value as f at (a, b), and

• has the same nth-order partial derivatives as f at (a, b) (where n is the highest order
we prefer).

In this subsection, we look at the case where n = 1 (linear approximation) and n = 2
(quadratic approximation).

20.3.1 Tangent Plane

To find a linear approximation of f(x, y) at (a, b) is to find a simpler function which

• has the same value as f at (a, b), and

• has the same partial derivatives as f at (a, b).

Let this approximation be T (x, y). As the name suggests, T (x, y) is linear and is hence of
the form

T (x, y) = C1 + C2(x− a) + C3(y − b),

where C1, C2 and C3 are constants to be determined.
From the first condition, we require f(a, b) = T (a, b). Hence,

f(a, b) = T (a, b) = C1.

From the second condition, we require fx(a, b) = Tx(a, b) and fy(a, b) = Ty(a, b). This
gives

fx(a, b) = Tx(a, b) = C2

and
fy(a, b) = Ty(a, b) = C3.

We hence have:
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Proposition 20.3.1 (Linear Approximation). The linear approximation at (a, b) is given
by

T (x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b).

Recall that the linear approximation to a univariate function at x = a is the tangent
line at that point. Generalizing this up a dimension, the linear approximation T (x, y) is
the tangent plane to f(x, y) at (a, b).

Using 3D vector geometry, we can find the normal vector to z = f(x, y) at (a, b):

n =



fx(a, b)
fy(a, b)
−1


 .

20.3.2 Quadratic Approximation

To find a quadratic approximation of f(x, y) at (a, b) is to find a simpler function which

• has the same value as f at (a, b), and

• has the same first and second partial derivatives as f at (a, b).

Remark. In univariate functions, the word “quadratic” refers to functions with terms of
order 2, such as x2. Similarly with multivariables, “quadratic” refers to terms with order
2, but it could be x2, y2 or xy; all variables contribute to the total order of the term. For
instance, x2y3 is a term of order 2 + 3 = 5.

To get the quadratic approximation Q(x, y), we simply add terms of order 2 to the linear
approximation T (x, y):

Q(x, y) = T (x, y) + C1(x− a)2 + C2(x− a)(y − b) + C3(y − b)2,

where C1, C2 and C3 are constants. We can determine them by equating the second partial
derivatives of Q(x, y) with that of f(x, y)’s:

fxx(a, b) = Qxx(a, b) = 2C1,

fxy(a, b) = Qxx(a, b) = C2,

fyy(a, b) = Qxx(a, b) = 2C3.

We hence have:

Proposition 20.3.2 (Quadratic Approximation). The quadratic approximation at (a, b) is
given by

Q(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

+
1

2
fxx(a, b)(x− a)2 + fxy(a, b)(x− a)(y − b) +

1

2
fyy(a, b)(y − b)2.

Note that by Clairaut’s theorem, we can interchange fxy and fyx in the formula above,
so long as they are continuous.
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20.4 Maxima, Minima and Saddle Points

One important application of calculus is the optimization of functions which have many
dependent variables. For example, one may maximize the amount of profit based on
parameters such as the cost of raw materials, workers’ salaries, time needed for production,
etc.
To find stationary points of a univariate function, we equate its gradient to 0. Similarly,

for functions of two variables f(x, y), if we want to find stationary points, we look for
points where its gradient, ∇f , is the zero vector, i.e.

∇f =

(
fx
fy

)
=

(
0
0

)
.

In functions of two variables, the stationary points we often come across are maxima,
minima and saddle points (so named because it looks like a horse saddle).

z = x2 + y2

Figure 20.6: Minimum point at (0, 0).

z = −x2 − y2

Figure 20.7: Minimum point at (0, 0).

z = x2 − y2

Figure 20.8: Saddle point at (0, 0).

20.4.1 Global and Local Extrema

In optimization, we may distinguish between a local extremum (a collective term used
to refer to the maximum and minimum) from a global extremum. Basically, a global
maximum/minimum is the highest/lowest value which the function can achieve.
Local extrema are like the stationary points which we just discussed. For example,

consider the following graph of f(x, y) = xe−x2−y2 :

Figure 20.9
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The intuitive idea behind local extrema is that when we move away from the max-
ima/minima in any direction, the value of the function will decrease/increase. However,
this may not apply to global extrema. Consider the function f(x, y) = x2+y2 with domain
−2 ≤ x ≤ 2, −2 ≤ y ≤ 2.

Figure 20.10

The global maxima occur at the corners of the domain. Note that these global maxima
are also not stationary points.

Recipe 20.4.1 (Finding Global Extrema). To find the global extrema of a function, we
must

• check all local extrema (set ∇f = 0), and

• check for extrema along the boundary of the function’s domain.

20.4.2 Second Partial Derivative Test

We can determine the nature of the stationary points by the second partial derivative test:

Proposition 20.4.2 (Second Partial Derivative Test). Let (a, b) be a stationary point of
f(x, y). Let

D = fxx(a, b)fyy(a, b)− [fxy(a, b)]
2 .

• If D > 0, and

– fxx(a, b) > 0 (or fyy(a, b) > 0), then (a, b) is a minimum point.

– fxx(a, b) < 0 (or fyy(a, b) < 0), then (a, b) is a maximum point.

• If D < 0, then (a, b) is a saddle point.

• If D = 0, the test is inconclusive.

The proof is similar to the proof of the second derivative test for univariate functions (see
Proposition 16.3.5).

Proof. Consider the quadratic approximation Q(x, y) of f(x, y) at a stationary point (a, b).
We have fx(a, b) = fy(a, b) = 0, hence

Q(x, y) = f(a, b) +
1

2

[
fxx(a, b)(x− a)2 + 2fxy(a, b)(x− a)(y − b) + fyy(a, b)(y − b)2

]
.

Let
P (x, y) = fxx(a, b)(x− a)2 + 2fxy(a, b)(x− a)(y − b) + fyy(a, b)(y − b)2.

We can view P (x, y) as a quadratic in (x− a)2. Consider the discriminant ∆ of P (x, y):

∆ = [2fxy(a, b)(y − b)]2 − 4fxx(a, b)fyy(a, b)(y − b)2

= −4(y − b)2
(
fxx(a, b)fyy(a, b)− [fxy(a, b)]

2
)
.

Let D = fxx(a, b)fyy(a, b)− [fxy(a, b)]
2. We make the following observations:
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• If D > 0, then ∆ < 0.

– If fxx(a, b) > 0, then P (x, y) > 0 (since fxx(a, b) is the leading coefficient of
P (x, y)). Thus, Q(x, y) ≥ f(a, b), whence (a, b) is a minimum point.

– If fxx(a, b) < 0, then P (x, y) < 0. Thus, Q(x, y) ≤ f(a, b), whence (a, b) is a
maximum point.

• If D < 0, then ∆ > 0. This means that P (x, y) has zeroes elsewhere other than
(a, b), and it is sometimes positive and negative. Hence, (a, b) is a saddle point.

• If D = 0, then ∆ = 0. Hence, P (x, y) has zeroes elsewhere other than (a, b), and it
is either always > 0 or < 0 outside the zeroes. Thus, the stationary point could be
a maximum, a minimum or even a saddle point; the test is inconclusive.
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21 Differential Equations

21.1 Definitions

Definition 21.1.1. A differential equation (DE) is an equation which involves one or
more derivatives of a function y with respect to a variable x (i.e. y′, y′′, etc.). The order
of a DE is determined by the highest derivative in the equation. The degree of a DE is
the power of the highest derivative in the equation.

Example 21.1.2. The differential equation

x

(
d2y

dx2

)3

+ x2
(
dy

dx

)
+ y = 0

has order 2 and degree 3.

Observe that the equations y = x2 − 2, y = x2 and y = x2 + 10 all satisfy the property
y′ = 2x and are hence solutions of that DE. There are obviously many other possible
solutions are we see that any equations of the form y = x2 + C, where C is an arbitrary
constant, will be a solution to the DE y′ = 2x.

Definition 21.1.3. A general solution to a DE contains arbitrary constants, while a
particular solution does not.

Hence, y = x2 + C is the general solution to the DE y′ = 2x, while y = x2 − 2, y = x2

and y = x2 + 10 are the particular solutions.
In general, the general solution of an nth order DE has n arbitrary constants.

21.2 Solving Differential Equations

In this section, we introduce methods to solve three special types of differential equations,
namely

• separable DE,

• first-order linear DE, and

• second-order linear DE with constant coefficients.

We also demonstrate how to solve DEs using a given substitution, which is useful if the
DE to be solved is not in one of the above three forms.

21.2.1 Separable Differential Equation

Definition 21.2.1. A separable differential equation is a DE that can be written in the
form

dy

dx
= f(x)g(y).
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Recipe 21.2.2 (Solving via Separation of Variables).

1. Separate the variables.

dy

dx
= f(x)g(y) =⇒ 1

g(y)

dy

dx
= f(x).

2. Integrate both sides with respect to x.

∫
1

g(y)

dy

dx
dx =

∫
f(x) dx =⇒

∫
1

g(y)
dy =

∫
f(x) dx.

Example 21.2.3 (Solving via Separation of Variables). Consider the separable DE

2x
dy

dx
= y2 + 1.

Separating variables,
2

y2 + 1

dy

dx
=

1

x
.

Integrating both sides with respect to x, we get

∫
2

y2 + 1

dy

dx
dx =

∫
1

x
dx.

Using the chain rule, we can rewrite the LHS as

∫
2

y2 + 1
dy =

∫
1

x
dx.

Thus,
2 arctan y = ln |x|+ C.

This is the general solution to the given DE.

21.2.2 First-Order Linear Differential Equation

Definition 21.2.4. A first-order linear differential equation is a DE that can be written
in the form

dy

dx
+ p(x)y = q(x).

To solve a linear first-order DE, we first observe that the LHS looks like the product
rule has been applied. This motivates us to multiply through by a new function f(x) such
that the LHS can be written as the derivative of a product:

f(x)
dy

dx
+ f(x)p(x)y = f(x)q(x). (1)

Recall that
d

dx
[f(x)y] = f(x)

dy

dx
+ f ′(x)y.

Comparing this with (1), we want f(x) to satisfy

f(x)p(x) = f ′(x) =⇒ f ′(x)
f(x)

= p(x).

Observe that the LHS is simply the derivative of ln f(x). Integrating both sides, we get

ln f(x) =

∫
p(x) dx =⇒ f(x) = exp

∫
p(x) dx.
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Going back to (1), we get

d

dx

[
ye

∫
p(x) dx

]
= q(x)e

∫
p(x) dx.

Once again, we get a separable DE, which we can solve easily:

ye
∫
p(x) dx =

∫
q(x)e

∫
p(x) dx dx.

This is the general solution to the DE.

Definition 21.2.5. The function f(x) = e
∫
p(x) dx is called the integrating factor, some-

times denoted I.F..

Note that we do not need to derive the integrating factor like above every time we solve
a linear first-order DE. We can simply quote the result I.F. = e

∫
p(x) dx. The following list

is a summary of the steps we need to solve a linear first-order DE.

Recipe 21.2.6 (Solving via Integrating Factor).

1. Multiply the DE through by the I.F. = e
∫
p(x) dx.

e
∫
p(x) dx dy

dx
+ e

∫
p(x) dxp(x)y = e

∫
p(x) dxq(x).

2. Express the LHS as the derivative of a product.

d

dx

[
ye

∫
p(x) dx

]
= e

∫
p(x) dxq(x).

3. Integrating both sides with respect to x.

ye
∫
p(x) dx =

∫
e
∫
p(x) dxq(x) dx.

Note that when finding the integrating factor, there is no need to include the arbitrary
constant or consider |x| when integrating 1/x with respect to x, as it does not contribute
to the solution process in any way; the constants will cancel each other out.

Example 21.2.7 (Solving via Integrating Factor). Consider the DE equation

x
dy

dx
+ 3y = 5x2.

Writing this in standard form,

dy

dx
+

(
3

x

)
y = 5x.

The integrating factor is hence

I.F. = e
∫
3/xdx = e3 lnx = x3.

Multiplying the integrating factor through the DE,

x3
dy

dx
+ 3x2y =

d

dx

(
x3y
)
= 5x4.
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Integrating both sides with respect to x, we get the general solution

x3y =

∫
5x4 dx = x5 + C.

21.2.3 Second-Order Linear Differential Equations with Constant Coefficients

In this section, we look at second-order linear differential equations and constant coeffi-
cients, which has the general form

a
d2y

dx2
+ b

dy

dx
+ cy = f(x).

If f(x) ≡ 0, we call the DE homogeneous. Else, it is non-homogeneous. In general, a
second-order DE will have two solutions.
Before looking at the methods to solve second-order DEs, we introduce two important

concepts, namely the superposition principle and linear independence.

Theorem 21.2.8 (Superposition Principle). Let y1 and y2 be solutions to a linear, homo-
geneous differential equation. Then Ay1 +By2 is also a solution to the DE.

Proof. We consider the case where the DE has order 2, though the proof easily generalizes
to higher orders.
Suppose y1 and y2 are solutions to

a
d2y

dx2
+ b

dy

dx
+ cy = 0.

Substituting y = Ay1 +By2 into the DE, we get

a
(
Ay′′1 +By′′2

)
+ b

(
Ay′1 +By′2

)
+ c (Ay1 +By2)

= A
(
ay′′1 + by′1 + cy1

)
+B

(
ay′′2 + by′2 + cy2

)

= 0.

Hence, Ay1 +By2 satisfies the DE and is hence a solution.

Definition 21.2.9. Two functions y1 and y2 are linearly independent if the only solution
to

Ay1 +By2 = 0

is the trivial solution A = B = 0. If there exists non-zero solutions to A and B, then
the two functions are linearly dependent.

We are now ready to solve second-order DEs.

Homogeneous Second-Order Linear Differential Equations with Constant Coefficients

Consider a homogeneous first-order linear differential equation with constant coefficients
which has the form

a
dy

dx
+ by = 0.

Using the method of integrating factor, we can show that the general solution is of the
form

y = Ce−
b
a
x.

We can extend this to the second-order case, i.e.

a
d2y

dx2
+ b

dy

dx
+ cy = 0
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by looking for solutions of the form y = emx, where m is a constant to be determined.
Substituting y = emx into the differential equation, we get

am2emx + bmemx + cemx = 0.

Dividing by emx, we get the quadratic

am2 + bm+ c = 0.

This is known as the characteristic equation of the DE.
If we can solve for m in the characteristic equation, we can find the solution y = emx.

Since the characteristic equation is quadratic, it has, in general, two roots, say m1 and
m2. We thus have the following three scenarios to consider:

• The roots are real and distinct.

• The roots are real and equal.

• The roots are complex conjugates.

Real and Distinct Roots Ifm1 andm2 are real and distinct, y1 = em1x and y2 = em2x will
both be solutions to the DE. Hence, by the superposition principle, the general solution is

y = Aem1x +Bem2x,

where A and B are constants.

Real and Equal Roots If the two roots are equal, i.e. m1 = m2 = m, then y1 = em1x and
y2 = em2x are no longer linearly independent. Hence, we effectively only get one solution
y1 = emx. To obtain the general solution, we have to find another solution that is not
a constant multiple of emx. By intelligently guessing a solution, we see that y2 = xemx

satisfies the DE. Hence, by the superposition principle, the general solution is

y = Aemx +Bxemx = (A+Bx)emx.

Complex Roots If the two roots are complex, then they are conjugates, and we can write
them as

m1 = p+ iq, m2 = p− iq.

Hence,
y1 = e(p+iq)x = epx (cos qx+ i sin qx)

and
y2 = e(p−iq)x = epx (cos qx− i sin qx) .

By the superposition principle, we get the general solution

y = Cepx (cos qx+ i sin qx) +Depx (cos qx− i sin qx)

= epx (A cos qx+B sin qx) ,

where A = C +D and B = i(C −D) are arbitrary constants.
In summary,
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Recipe 21.2.10 (Homogeneous Second-Order Linear DE with Constant Coefficients). To
solve the second-order DE

a
d2y

dx2
+ b

dy

dx
+ cy = 0,

1. Form the characteristic equation am2 + bm+ c = 0.

2. Find the roots m1 and m2 of this characteristic equation.

3. • If m1 and m2 are real and distinct, then

y = Aem1x +Bem2x.

• If m1 and m2 are real and equal, i.e. m1 = m2 = m, then

y = (A+Bx)emx.

• If m1 and m2 are complex, i.e. m1 = p+ iq and m2 = p− iq, then

y = epx (A cos qx+B sin qx) .

Non-Homogeneous Second-Order Linear Differential Equations with Constant
Coefficients

We now consider the non-homogeneous second-order linear DE with constant coefficients,
which takes the form

a
d2y

dx2
+ b

dy

dx
+ cy = f(x).

In order to solve this DE, we apply the following result:

Theorem 21.2.11. If yc is the general solution of

a
d2y

dx2
+ b

dy

dx
+ cy = 0

and yp is a particular solution of

a
d2y

dx2
+ b

dy

dx
+ cy = f(x),

then
y = yc + yp

is the general solution to

a
d2y

dx2
+ b

dy

dx
+ cy = f(x).

Proof. We want to solve
ay′′ + by′ + cy = f(x). (1)

Let yc be the solution to ay′′ + by′ + cy = 0. Then

ay′′c + by′c + cyc = 0.

Let yp be a particular solution to (1). Then

ay′′p + by′p + cyp = f(x).
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Substituting y = yc + yp into (1), we get

a
(
y′′c + y′′p

)
+ b

(
y′c + y′p

)
+ c (yc + yp)

=
(
ay′′c + by′c + cyc

)
+
(
ay′′p + by′p + cyp

)

= 0 + f(x) = f(x).

Note that yc is called the complementary function while yp is called the particular
integral or particular solution.

We know how to solve the homogeneous DE, so getting yc is easy. The hard part
is getting a particular solution yp. However, if we make some intelligent guesses, we can
determine the general form of yp. This is called the method of undetermined coefficients.
We demonstrate this method with the following example:

Example 21.2.12 (Method of Undetermined Coefficients). Consider the differential equa-
tion

d2y

dx2
+ 3

dy

dx
− 4y = 3 + 8x2.

yc can easily be obtained:
yc = Aex +Be−4x.

Now, observe that f(x) = 3 + 8x2 is a polynomial of degree 2. Thus, we guess that
yp is also a polynomial of degree 2, i.e. yp = Cx2 + Dx + E, where C, D and E are
coefficients to be determined (hence the name “method of undetermined coefficients”).
Substituting this into the DE yields

(2C) + 3 (2Cx+D)− 4
(
Cx2 +Dx+ E

)
= 3 + 8x2.

Comparing coefficients, we get the system





−4C = 8

6C − 4D = 0

2C + 3D − 4E = 3

,

whence C = −2, D = −3 and E = −4. Thus, the particular solution is

yp = −2x2 − 3x− 4

and the general solution is

y = yc + yp = Aex +Be−4x − 2x2 − 3x− 4.

In our syllabus, we are only required to solve non-homogeneous DEs where f(x) is a
polynomial of degree n (as above), of the form pekx, or of the form p cos kx+ q sin kx. The
“guess” for yp in each of the three cases is tabulated below:

f(x) “Guess” for yp

Polynomial of degree n Polynomial of degree n

pekx Cekx

p cos kx+ q sin kx C cos kx+D sin kx

In the event where our “guess” for yp appears in the complementary function yc, we
need to make some adjustments to our “guess” (similar to the case where m1 = m2 when
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solving a homogeneous DE). Typically, we multiply the guess by powers x until the guess
no longer appears in the complementary function.

Example 21.2.13 (Adjusting yp).

• If ay′′ + by′ + cy = e2x has complementary function yc = Ae−5x + Be2x, we try
yp = Cxe2x.

• If ay′′ + by′ + cy = e2x has complementary function yc = (A + Bx)e2x, we try
yp = Cx2e2x.

21.2.4 Solving via Substitution

Sometimes, we are given a DE that is not of the forms described in this section. We
must then use the given substitution function to simplify the original DE into one of the
standard forms. Similar to integration by substitution, all instances of the dependent
variable (including its derivatives) must be substituted.

Recipe 21.2.14 (Solving via Substitution).

1. Differentiate the given substitution function.

2. Substitute into the original DE and simplify to obtain another DE that we know
how to solve.

3. Obtain the general solution of the new DE with new dependent variables.

4. Express the solution in terms of the original variables.

Sample Problem 21.2.15. By using the substitution y = ux2, find the general solution
of the differential equation

x2
dy

dx
− 2xy = y2, x > 0.

Solution. From y = ux2, we see that

dy

dx
= 2ux+ x2

du

dx
.

Substituting this into the original DE,

x2
(
2ux+ x2

du

dx

)
− 2x

(
ux2
)
=
(
ux2
)2

.

Simplifying, we get the separable DE

du

dx
= u2,

which we can easily solve:
∫

1

u2
du =

∫
1 dx =⇒ −1

u
= x+ C.

Re-substituting y back in, we have the general solution

−x2

y
= x+ C.

□
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21.3 Family of Solution Curves

Graphically, the general solution of a differential equation is represented by a family of
solution curves which contains infinitely many curves as the arbitrary constant c can take
any real number.
A particular solution of the differential equation is represented graphically by one mem-

ber of that family of solution curves (i.e. one value of the arbitrary constant).
When sketching a family of curves, we choose values of the arbitrary constant that will

result in qualitatively different curves. We also need to sketch sufficient members (usually
at least 3) of the family to show all the general features of the family.

Example 21.3.1. The following diagram shows three members of the family of solution
curves for the general solution y = Aex

2
.

O

x

y A = 1
A = 0
A = −1

Figure 21.1

21.4 Approximating Solutions

Most of the time, a first-order differential equation of the general form dy/dx = f(x, y)
cannot be solved exactly and explicitly by analytical methods like those discussed in the
earlier sections. In such cases, we can use numerical methods to approximate solutions to
differential equations.
Different methods can be used to approximate solutions to a differential equation. A

sequence of values y1, y2, . . . is generated to approximate the exact solutions at the points
x1, x2, . . . . It must be emphasized that the numerical methods do not generate a for-
mula for the solution to the differential equation. Rather, they generate a sequence of
approximations to the actual solution at the specified points.
In this section, we look at Euler’s Method, as well as the improved Euler’s Method.

21.4.1 Euler’s Method

The key principle in Euler’s method is the use of a linear approximation for the tangent
line to the actual solution curve y(t) to approximate a solution.

Derivation

Given an initial value problem

dy

dt
= f(t, y), y(t0) = y0,
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we start at (t0, y0) on the solution curve as shown in the figure below. By the point-slope
formula, the equation of the tangent line through (t0, y0) is given as

y − y0 =
dy

dt

∣∣∣∣
t=t0

(t− t0) = f(t0, y0)(t− t0). (1)

If we choose a step size of ∆t on the t-axis, then t1 = t0 +∆t. Using (1) at t = t1, we can
obtain an approximate value y1 from

y1 = y0 + (t1 − t0)f(t0, y0). (2)

t0 t1

(t1, y1)

(t0, y0)
(t1, y(t1))

O

t

y actual solution curve

Figure 21.2

The point (t1, y1) on the tangent line is an approximation to the point (t1, y(t1)) on the
actual solution curve. That is, y1 ≈ y(t1). From the above figure, it is observed that the
accuracy of the approximation depends heavily on the size of ∆t. Hence, we must choose
an increment ∆t which is “reasonably small”.

We can extend (2) further. In general, at t = tn+1, it follows that

yn+1 = yn + (tn+1 − tn)f(tn, yn).

Recipe 21.4.1 (Euler’s Method). Euler’s method, with step size ∆t, gives the approxi-
mation

y(tn) ≈ yn+1 = yn + (tn+1 − tn)f(tn, yn).

Example 21.4.2 (Euler’s Method). Consider the initial value problem

dy

dt
= 2y − 1, y(0) =

3

2
,

which can be verified to have solution y = e2t + 1/2. Suppose we wish to approximate
the value of y(0.3) (which we know to be e2(0.3) + 1/2 = 2.322). Using Euler’s method
with step size ∆t = 0.1, we get

y1 = y0 +∆t (2y0 − 1) = 1.5 + 0.1 [2(1.5)− 1] = 1.7

y2 = y1 +∆t (2y1 − 1) = 1.7 + 0.1 [2(1.7)− 1] = 1.94

y3 = y2 +∆t (2y2 − 1) = 1.94 + 0.1 [2(1.94)− 1] = 2.228

Hence, y(0.3) ≈ y3 = 2.228, which is a decent approximation (4.04% error).
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Error in Approximations

Similar to the trapezium rule, the nature of the estimates given by Euler’s method depends
on the concavity of the actual solution curve.

• If the actual solution curve is concave upwards (i.e. lies above its tangents), the
approximations are under-estimates.

• If the actual solution curve is concave downwards (i.e. lies below its tangents), the
approximations are over-estimates.

Also note that the smaller the step size ∆t, the better the approximations. However, in
doing so, more calculations must be made. This is a situation that is typically of numerical
methods: there is a trade-off between accuracy and speed.

21.4.2 Improved Euler’s Method

In the previous section, we saw how Euler’s method over- or under-estimates the actual
solution curve due to the curve’s concavity. The improved Euler’s method address this.

Derivation

Suppose the actual solution curve is concave upward. Let T0 and T1 be the tangent lines at
t = t0 and t = t1 respectively. Let the gradients of T0 and T1 be m0 and m1 respectively.
We wish to find the optimal gradient m such that the line with gradient m passing through
(t0, y(t0)) also passes through (t1, y(t1)).
Since the actual solution curve is concave upward, both T0 and T1 lie below the actual

solution curve for all t ∈ [t0, t1]. This is depicted in the diagram below.

t0 t1

(t1, y(t1))

(t0, y(t0))

T1

T0

O

t

y actual solution curve

Figure 21.3

Now, observe what happens when we translate T1 such that it passes through (t0, y(t0)):
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t0 t1

(t0, y(t0))

(t1, y(t1))

O

t

y actual solution curve

Figure 21.4

The translated T1 is now overestimating the actual solution curve at t = t1! Hence, the
optimal gradient m is somewhere between m0 and m1. This motivates us to approximate
m by taking the average of m0 and m1:

m ≈ m0 +m1

2
.

We now find m0 and m1. Note that

m0 = f(t0, y(t0)) and m1 = f(t1, y(t1)).

This poses a problem, as the value of y(t1) is not known to us. However, we can estimate
it using the Euler method:

y(t1) ≈ ỹ1 = y0 +∆tf(t0, y0).

Note that we denote this approximation as ỹ1. We thus have

m ≈ m0 +m1

2
=

f(t0, y0) + f(t1, ỹ1)

2
.

We are now ready to approximate y(t1). By the point-slope formula, the line with
gradient m passing through (t0, y0) has equation

y − y0 = m(t− t0) ≈
f(t0, y0) + f(t1, ỹ1)

2
(t− t0).

When t = t1, we get

y(t1) ≈ y1 = y0 +∆t

[
f(t0, y0) + f(t1, ỹ1)

2

]
. (1)

A similar derivation can be obtained when the actual solution curve is concave down-
wards.
Extending (1), we get the usual statement of the improved Euler’s method:

Recipe 21.4.3 (Improved Euler’s Method). The improved Euler’s method, with step size
∆t, gives the approximation

yn+1 = yn +∆t

[
f(tn, yn) + f(tn+1, ỹn+1)

2

]
,

where
ỹn+1 = yn +∆tf(tn, yn).
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Definition 21.4.4. ỹn+1 is called the predictor, while yn+1 is called the corrector.

Example 21.4.5 (Improved Euler’s Method). Consider the initial value problem

dy

dt
= 2y − 1, y(0) =

3

2
,

which we previously saw in Example 21.4.2. Suppose we wish to approximate the value
of y(0.3). Using the improved Euler’s method with step size ∆t = 0.1,

ỹ1 = y0 +∆tf(t0, y0) = 1.7

y1 = y0 +∆t

[
f(t0, y0) + f(t1, ỹ1)

2

]
= 1.72

ỹ2 = y1 +∆tf(t1, y1) = 1.964

y2 = y1 +∆t

[
f(t1, y1) + f(t2, ỹ2)

2

]
= 1.9884

ỹ3 = y2 +∆tf(t2, y2) = 2.28608

y3 = y2 +∆t

[
f(t2, y2) + f(t3, ỹ3)

2

]
= 2.35848

Hence, y(0.3) ≈ y3 = 2.35848, which gives an error of 0.270%, much better than the
4.04% achieved by Euler’s method.

21.4.3 Relationship with Approximations to Definite Integrals

Recall that solving differential equations analytically required us to integrate. It is thus no
surprise that approximating solutions to differential equations is related to approximating
the values of definite integrals. As we will see, the Euler method is akin to approximating
definite integrals using a Riemann sum, while the improved Euler method is akin to using
the trapezium rule.
Consider the differential equation dy

dt = f(t, y). By the fundamental theorem of calculus,
the area under the graph of f(t, y) from t = t0 to t = t1 is given by

∫ t1

t0

f(t, y) dt =

∫ t1

t0

dy

dt
dt = y(t1)− y(t0). (1)

Note that we know y(t0). Hence, the better the approximation of the integral, the better
the approximation of y(t1), which is what we want.
We can approximate this integral using a Riemann sum with one rectangle. Note that

this rectangle has width ∆t and height f(t0, y0). Hence,
∫ t1

t0

f(t, y) dt = y(t1)− y(t0) ≈ ∆tf(t0, y0).

Rewriting, we get the statement of the Euler method:

y(t1) ≈ y(t0) + ∆tf(t0, y0).

We now approximate the integral in (1) using the trapezium rule with 2 ordinates. Note
that the area of this trapezium is given by 1

2∆t [f(t0, y0) + f(t1, y1)]. Hence,

∫ t1

t0

f(t, y) dt = y(t1)− y(t0) ≈ ∆t

[
f(t0, y0) + f(t1, y1)

2

]
.
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Rewriting, we (almost) get the statement of the improved Euler method:

y(t1) ≈ y(t0) + ∆t

[
f(t0, y0) + f(t1, y1)

2

]
.

Recall that generally, the trapezium rule is a much better approximation than a Rie-
mann sum. Correspondingly, it follows that the improved Euler method is a much better
approximation than the Euler method.

21.5 Modelling Populations with First-Order Differential
Equations

Populations, however defined, generally change their magnitude as a function of time.
The main goal here is to provide some mathematical models as to how these populations
change, construct the corresponding solutions, analyse the properties of these solutions,
and indicate some applications.
For the case of living biological populations, we assume that all environment and/or

cultural factors operate on a timescale which is much longer than the intrinsic timescale of
the population of interest. If this holds, then the mathematical model takes the following
form of a simple population:

dP

dt
= f(P ), P (0) = p0 ≥ 0,

where P (t) is the value of the population P at time t. The function f(P ) is what distin-
guishes one model from another.
We would expect the model to have the same structure

dP

dt
= g(P )− d(P ),

where g(P ) and d(P ) are the growth and decline factors respectively. Also, we assume
g(0) = d(0) = 0, whence f(0) = 0. This is related to the axiom of parenthood, which
states the “every organism must have parents; there is no spontaneous generation of
organisms”.

In this section, we will look at two common population growth models, namely the
exponential growth model and the logistic growth model.

21.5.1 Exponential Growth Model

A biological population with plenty of food, space to grow, and no threat from predators,
tend to grow at a rate that is proportional to the population. That is, in each unit of
time, a certain percentage of the individuals produce new individuals (similar for death
too). If reproduction (and death) takes place more or less continuously, then the growth
rate is represented by

dP

dt
= kP,

where k is the proportionality constant.
We know that all solutions of this differential equation have the form

P (t) = p0e
kt.

As such, this model is known as the exponential growth model. Depending on the value
of k, the model results in either an exponential growth, decay, or constant value function
as seen in the diagram below.
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O

t

P (t) k > 0
k = 0
k < 0

Figure 21.5

While the cases where k ≤ 0 are possible to happen in real life, the case where k > 0 is
not realistically possible as most populations are constrained by limitations of resources.

21.5.2 Logistic Growth Model

The following figure shows two possible courses for growth of a population. The red curve
follows the exponential model, while the blue curve is constrained so that the population
is always less than some number N . When the population is small relative to N , the two
curves are identical. However, for the blue curve, when P gets closer to N , the growth
rate drops to 0.

N

O

t

P (t) exponential model
logistic model

Figure 21.6

We may account for the growth rate declining to 0 by including in the model a factor
1− P/N , which is close to 1 (i.e. no effect) when P is much smaller than N , and close to
0 when P is close to N . The resulting model

dP

dt
= kP

(
1− P

N

)
,

is called the logistic growth model. k is called the intrinsic growth rate, while N is called
the carrying capacity.
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Given the initial condition P (0) = p0, the solution of the logistic equation is

P (t) =
p0N

[
p0 + (N − p0)e

−kt].

Long-Term Behaviour

We now analyse the long-term behaviour of the model, which is determined by the value
of P0.

Notice that the derivative of the logistic growth model, dP/dt = kP (1 − P/N), is
0 at P = 0 and P = N . Also notice that these are also solutions to the differential
equation. These two values are the equilibrium points since they are constant solutions
to the differential equation.
Consider the case where k > 0.

N

(12N, 14kN)

O

P

dP
dt

Figure 21.7

From the above diagram, we observe that

• if 0 < P0 < N , then P will increase towards N since dP/dt > 0.

• if P0 > N , then P will decrease towards N since dP/dt < 0.

Since any population value in the neighbourhood of 0 will move away from 0, the
equilibrium point at P = 0 is known as an unstable equilibrium point. On the contrary,
since any population value in the neighbourhood ofN will move towardsN , the equilibrium
point at P = N is known as a stable equilibrium point.

Now consider the case where k < 0.

N

(12N, 14kN)

O

P

dP
dt

Figure 21.8
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From the above diagram, we observe that

• if 0 < p0 < N , then P will decrease towards N since dP/dt < 0.

• if p0 > N , then P will increase indefinitely since dP/dt > 0.

In this case, the equilibrium point at P = 0 is stable, while the equilibrium point at
P = N is unstable.
Thus, we see that what happens to the population in the long-run depends very much

on the value of the initial population, P0.

21.5.3 Harvesting

There are many single population systems for which harvesting takes place. Harvesting
is a removal of a certain number of the population during each time period that the
harvesting takes place. Below are some variants of the basic logistic model.

Constant Harvesting

The most direct way of harvesting is to use a strategy where a constant number, H ≥ 0, of
individuals are removed during each time period. For this situation, the logistic equation
gets modified to the form

dP

dt
= kP

(
1− P

N

)
−H,

where H is known as the harvesting rate.
Observe that the equilibrium solutions to this modified logistic equation are:

dP

dt
= kP

(
1− P

N

)
−H = 0 =⇒ P =

N

2
±
√

N2

4
− NH

k
.

With the equilibrium solutions, we can do the same analysis above to determine the long-
term behaviour of the model.

Variable Harvesting

The model
dP

dt
= kP

(
1− P

N

)
−HP

results by harvesting at a non-constant rate proportional to the present population P . The
effect is to decrease the natural growth rate k by a constant amount H in the standard
logistic model.

Restocking

The equation
dP

dt
= kP

(
1− P

N

)
−H sin(ωt)

models a logistic equation that is periodically harvested and restocked with maximal rate
H. For sufficiently large p0, the equation models a stable population that oscillates about
the carrying capacity N with period T = 2π/ω.
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Part VI

Combinatorics
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22 Permutations and Combinations

22.1 Counting Principles

Fact 22.1.1 (The Addition Principle). Let E1 and E2 be two mutually exclusive events.
If E1 and E2 can occur in n1 and n2 different ways respectively, then E1 or E2 can occur
in (n1 + n2) ways.

Fact 22.1.2 (The Multiplication Principle). Consider a task S that can be broken down
into two independent ordered stages S1 and S2. If S1 and S2 can occur in n1 and n2

ways respectively, then S1 and S2 can occur in succession in n1n2 ways

Note that both the Addition and Multiplication Principles can be extended to any finite
number of events.

22.2 Permutations
Definition 22.2.1. A permutation is an arrangement of a number of objects in which
the order is important.

Example 22.2.2. ABC, BAC and CBA are possible permutations of the letters ‘A’, ‘B’
and ‘C’.

Definition 22.2.3 (Factorial). The factorial of a non-negative integer n is given by the
recurrence relation

n! = n(n− 1)!, 0! = 1.

Equivalently,
n! = n(n− 1)(n− 2) . . . (3)(2)(1), 0! = 1.

Proposition 22.2.4 (Permutations of Objects Taken from Sets of Distinct Objects). The
number of permutations of n distinct objects, taken r at a time without replacement, is
given by

nP r = n(n− 1)(n− 2) . . . (n− r + 1)︸ ︷︷ ︸
r consecutive integers

=
n!

(n− r)!
,

where 0 ≤ r ≤ n.

Proof. Suppose we have n distinct objects that we want to fill up r ordered slots with.
This operation can be done in r stages

• Stage 1. The number of ways to fill in the first slot is n.

• Stage 2. After filling in the first slot, the number of ways to fill in the second slot
is n− 1.

• Stage 3. After filling in the first and second slots, the number of ways to fill in the
third slot is n− 2.

This continues until we reach the last stage:
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• Stage r. After filling all previous r − 1 slots, the number of ways to fill in the last
slot is n− (r − 1) = n− r + 1.

Thus, by the Multiplication Principle, the number of ways to fill up the r slots are

n(n− 1)(n− 2) . . . (n− r + 1) =
n!

(n− r)!
.

Corollary 22.2.5 (Permutations of Distinct Objects in a Row). The number of ways to
arrange n distinct objects in a row, taken all at a time without replacement, is given by
n!.

Proof. Take r = n.

Proposition 22.2.6 (Permutations of Non-Distinct Objects in a Row). The number of
permutations of n objects in a row, taken all at a time without replacement, of which
n1 are of the 1st type, n2 are of the 2nd type, . . . , nk are of the kth type, where
n = n1 + n2 + · · ·+ nk, is given by

n!

n1!n2! . . . nk!
.

Proof. Let Ai be the set of arrangements where objects in the first i groups are now distin-
guishable, while objects in the remaining groups remain indistinguishable. For instance,
A1 is the set of arrangements of n objects in a row, of which n2 are of the 2nd type, n3

are of the 3rd type, . . . , nk are of the kth type, while the objects previously of the 1st
type are now distinct. We prove the above result by expressing |A0| in terms of |Ak|.

Suppose we make objects of the 1st type distinct. For each arrangement in A0, the n1

objects of the 1st type can be permuted among themselves in n1! ways. Hence,

|A1| = n1! |A0| .

Next, suppose we make objects of the 2nd type distinct. For each arrangement in A1, the
n2 objects of the 2nd type can be permuted among themselves in n2! ways. Hence,

|A2| = n2! |A1| .

Continuing on, we see that

|Ak| = nk! |Ak−1| = nk!nk−1! |Ak−2| = · · · = nk!nk−1! . . . n1! |A0| .

However, by definition, Ak is the set of arrangements of n distinct objects, which we know
to be n!. Thus,

|A0| =
|Ak|

n1!n2! . . . nk!
=

n!

n1!n2! . . . nk!
.

Remark. n!
n1!n2!...nk!

is known as a multinomial coefficient, which is a generalization of the
binomial coefficient and is related to the expansion of (x1 + x2 + · · ·+ xk)

n.
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Sample Problem 22.2.7. Find the number of different permutations of the letters in the
word “BEEN”.

Solution. Note that there is 1 ‘B’, 2‘E’s and 1 ‘N’ in “BEEN”. Using the above result, the
number of different permutations is given by

4!

1!2!1!
= 12.

□

Proposition 22.2.8 (Circular Permutations). The number of permutations of n distinct
objects in a circle is given by (n− 1)!.

Proof. Fix one object as the reference point. The remaining n − 1 objects have (n − 1)!
possible ways to be arranged in the remaining n− 1 positions around the circle.

Proposition 22.2.9 (Permutations of Objects Taken from Sets of Distinct Objects with
Replacement). The number of permutations of n distinct objects, taken r at a time with
replacement, is given by nr, where 0 ≤ r ≤ n.

22.3 Combinations
Definition 22.3.1. A combination is a selection of objects from a given set where the
order of selection does not matter.

Proposition 22.3.2 (Combinations of Objects Taken from Sets of Distinct Objects). The
number of combinations of n distinct objects, taken r at a time without replacement, is
given by

nCr =

(
n

r

)
=

n!

r!(n− r)!
,

where 0 ≤ r ≤ n.

Proof. Observe the number of ways to choose r objects from n distinct objects is equivalent
to the number of permutations of n objects, where r objects are of the first type (chosen)
while n− r objects are of the second type (not chosen). Using the formula derived above,
we have

nCr =
n!

r!(n− r)!
.

Corollary 22.3.3. For integers r and n, where 0 ≤ r ≤ n,

nP r =
nCr · r!.

Proof. Rearrange the above result.

Corollary 22.3.4. For integers r and n, where 0 ≤ r ≤ n,

nCr =
nCn−r.

Proof. Observe that
n!

r!(n− r)!

is invariant under r 7→ n− r.
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22.4 Methods for Solving Combinatorics Problems

Some problems involving permutations and combinations may involve restrictions. When
dealing with such problems, one should consider the restrictions first. There are four basic
strategies that can be employed to tackle these restrictions.

Recipe 22.4.1 (Fixing Positions). When certain objects must be at certain positions,
place those objects first.

Sample Problem 22.4.2. How many ways are there to arrange the letters of the word
“SOCIETY” if the arrangements start and end with a vowel?

Solution. We first address the restriction by placing the vowels at the start and end of
the arrangement. Since there are 3 vowels in “SOCIETY”, there are 3 · 2 = 6 ways to
do so. Next, observe there are 5! ways to arrange the remaining 5 letters. Thus, by the
Multiplication Principle, there are

6 · 5! = 720

arrangements that satisfy the given restriction. □

Recipe 22.4.3 (Grouping Method). When certain objects must be placed together, group
them together as one unit.

Sample Problem 22.4.4. Find the number of ways the letters of the word “COMBINE”
can be arranged if all the consonants are to be together.

Solution. Consider the consonants ‘C’, ‘M’, ‘B’ and ‘N’ as one unit:

C M B N O I E .

• Stage 1. There are 4! ways to arrange the 4 units.

• Stage 2. There are 4! ways to arrange ‘C’, ‘M’, ‘B’ and ‘N’ within the group.

Hence, by the Multiplication Principle, the total number of arrangements is

4! · 4! = 576.

□

Recipe 22.4.5 (Slotting Method). When certain objects are to be separated, we first
arrange the other objects to form barriers before slotting in those to be separated.

Sample Problem 22.4.6. Find the number of ways the letters of the word “COMBINE”
can be arranged if all the consonants are to be separated.

Solution. We begin by arranging the vowels, of which there are 3! ways to do so.

↑ O ↑ I ↑ E ↑ .

Next, we slot the 4 consonants into the 4 gaps in between the vowels (i.e. where the arrows
are). There are 4! ways to do so. Thus, by the Multiplication Principle, the total number
of arrangements is

3! · 4! = 144.

□

Recipe 22.4.7 (Complementary Method). If the direct method is too tedious, it is more
efficient to count by taking all possibilities minus the complementary sets. This method
can also be used for “at least/at most” problems.
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Sample Problem 22.4.8. Find the number of ways the letters of the word “COMBINE”
can be arranged if all the consonants are to be separated.

Solution. Note that, without restrictions, there are a total of 7! ways to arrange the letters
in “COMBINE”. From the previous example, we saw that the number of arrangements
where all consonants are together is 576. Thus, by the complementary method, the number
of arrangement where all consonants are separated is

total− complementary = 7!− 576 = 144,

which matches the answer given in the above example. □
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23 Distribution Problems

In the previous chapter, we learnt how to count the number of ways to distribute distinct
objects into distinct boxes:

Proposition 23.0.1. The number of ways of distributing r distinct objects into n distinct
boxes such that each box can hold

• at most one object (assuming r ≤ n) is nP r;

• any number of objects is nr.

In this chapter, we focus mainly on counting the number of ways to distribute identical
objects into distinct boxes.

23.1 The Bijection Principle

Theorem 23.1.1 (Bijection Principle). Let A and B be finite sets. If there exists a
bijection f : A → B, then

|A| = |B| .

The bijection principle is particularly useful when enumerating A is hard, but enumer-
ating B is easy.

Sample Problem 23.1.2. Determine the number of positive divisors of 12600.

Solution. Observe that 12600 = 23 × 32 × 52 × 71. Let A be the set of divisors of 12600.
Let B be the set

B =
{
(p, q, r, s) ∈ Z4 : 0 ≤ p ≤ 3 and 0 ≤ q ≤ 2 and 0 ≤ r ≤ 2 and 0 ≤ s ≤ 1

}
.

Let f : B → A be such that

f(p, q, r, s) = 2p × 3q × 5r × 7s.

It is clear that f is bijective: by the Fundamental Theorem of Algebra, every divisor
d ∈ A is uniquely expressible as a product of prime powers of 2, 3, 5 and 7. Hence, by the
bijective principle, we have

|A| = |B| = (3 + 1)(2 + 1)(2 + 1)(1 + 1) = 72,

i.e. 12600 has 72 divisors. □
One can easily generalize the above result:

Proposition 23.1.3. Let

n =
k∏

i=1

peii

where pi are distinct primes and ei are non-negative integers. Then n has

k∏

i=1

(ei + 1)

positive divisors.
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23.2 Identical Objects into Distinct Boxes

We first prove a standard result:

Proposition 23.2.1 (Stars and Bars). The number of non-negative integer solutions to
the equation x1 + · · ·+ xn = r is

(
r + n− 1

n− 1

)
=

(
r + n− 1

r

)
.

Proof. Let
A = {(x1, . . . , xn) ∈ N0 : x1 + · · ·+ xn = r}

be the set of all non-negative integer solutions to the above equation. Consider a row of
r + n− 1 objects. Let B be the set of all possible ways to colour n− 1 of these r + n− 1
objects red, and the remaining r objects blue. It is easy to see that

|B| =
(
r + n− 1

n− 1

)
=

(
r + n− 1

r

)
.

Figure 23.1: An example colouring, where r = 2 + 3 + 1 = 6 and n = 4.

We now establish a bijection between A and B. Consider the following procedure,
starting with a solution (x1, . . . , xn) ∈ A:

• Colour the first x1 balls blue, and the next ball red.

• Colour the next x2 balls blue, and the next ball red.

...

• Colour the next xn balls blue.

It is easy to see that all r + n − 1 balls will be coloured, and exactly n − 1 balls will be
red. Further, each solution (x1, . . . , xn) ∈ A uniquely determines a colouring in B and
vice versa, i.e. the procedure is a bijection between A and B. By the bijection principle,

|A| = |B| =
(
r + n− 1

n− 1

)
=

(
r + n− 1

r

)
.

The method of counting is commonly known as “stars and bars”. We can think of the
blue objects as “stars” (the objects we wish to distribute), and the red objects as “bars”
(the dividers separating the objects).

Proposition 23.2.2 (Identical Objects into Distinct Boxes (Part I)). The number of ways
of distributing r identical objects into n distinct boxes is given by

(
r + n− 1

n− 1

)
=

(
r + n− 1

r

)
.

Proof. Let xi be the number of objects in the ith box. Since we have a total of r identical
objects, we require

x1 + x2 + · · ·+ xn = r.

By stars and bars, we attain our desired result.
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Proposition 23.2.3 (Identical Objects into Distinct Boxes (Part II)). The number of ways
of distributing r identical objects into n distinct boxes, such that each box has at least
k objects, is given by (

r − nk + n− 1

n− 1

)

Proof. Let xi + k be the number of objects in the ith box. Since each box has at least k
objects, we have xi ≤ 0 for all 1 ≤ i ≤ n. Since we have a total of r identical objects, we
require

(x1 + k) + (x2 + k) + · · ·+ (xn + k) = r.

This equation simplifies to

x1 + x2 + · · ·+ xn = r − nk.

We hence seek the number of non-negative integer solutions to the above equation, which
we know to be (

r − nk + n− 1

n− 1

)

by stars and bars.

Corollary 23.2.4. In the case where we require each box to be non-empty (k = 1), the
number of distributions is given by

(
r − 1

n− 1

)
=

(
r − 1

r − n

)
.

23.3 Distinct Objects into Identical Boxes

Definition 23.3.1. A Stirling number of the second kind is defined to be the number of
ways of distributing r distinct objects into n identical boxes such that no box is empty.
It is denoted S(r, n).

Proposition 23.3.2. For 0 < n < r, we have the recurrence relation

S(r + 1, n) = S(r, n− 1) + nS(r, n),

with initial conditions S(r, r) = 1 for r ≥ 0 and S(r, 0) = S(0, r) = 0 for r > 0.

Proof. Let A be an arbitrary object.
Case 1 : A is alone in a box. There remains r distinct objects to be distributed into

n− 1 identical boxes with no empty boxes. The number of ways to do so is S(r, n− 1).
Case 2 : A is not alone in a box. We first distribute the other r distinct objects into n

identical boxes such that no box is empty. This can be done in S(r, n) ways. Then, we
place A into one box. There are n boxes, thus by the multiplicative principle, the total
number of ways in this case is nS(r, n).

Altogether, the total number of ways to distribute r+1 distinct objects into n identical
boxes such that no box is empty is given by

S(r + 1, n) = S(r, n− 1) + nS(r, n).

The initial conditions can easily be verified.
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Sample Problem 23.3.3. Find the number of ways to express 2730 as a product ab of
two integers a and b, where 2 ≥ a ≥ b.

Solution. Note that 2730 = 2 × 3 × 5 × 7 × 13. The number of ways to express 2730 as
a product ab is hence given by S(5, 2) = 15, as we have 5 distinct prime factors and 2
identical boxes (a and b). □

Proposition 23.3.4. The number of ways to distribute r distinct objects into n identical
boxes with empty boxes allowed is given by

n∑

k=1

S(r, k).

Proof. Suppose only k boxes are filled. There are S(r, k) ways to distribute the objects
into these k boxes. Enumerating over all possible cases, we see that the total possible
distributions number

n∑

k=1

S(r, k).

23.4 Identical Objects into Identical Boxes

Definition 23.4.1. The partition of a positive integer r into n parts is a set of n positive
integers whose sum is r. We denote the number of different partitions of r into n parts
with P (r, n).

Proposition 23.4.2. We have the recurrence relation

P (r, n) = P (r − 1, n− 1) + P (r − n, n),

with conditions P (r, 1) = 1 for all r ≥ 1, and P (r, n) = 0 if n > r.

Proof. Case 1 : At least one box has exactly one object. We place one object in one box.
We then distribute the remaining r − 1 objects into the remaining n− 1 boxes such that
no boxes are empty. The number of ways this can be done is P (r − 1, n− 1).

Case 2 : All the boxes have more than one object. We place one object into each of the
n boxes. We then distribute the remaining r−n objects into the n boxes so that no boxes
are empty. The number of ways this can be done is P (r − n, n).

Altogether, we have

P (r, n) = P (r − 1, n− 1) + P (r − n, n)

as desired.
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24 Principle of Inclusion and Exclusion

Theorem 24.0.1 (Principle of Inclusion and Exclusion). Let A1, A2, . . . , An be finite sets.
Then ∣∣∣∣∣

n⋃

k=1

Ak

∣∣∣∣∣ =
∑

I⊆[n]
I ̸=∅

(−1)|I|+1

∣∣∣∣∣
⋂

i∈I
Ai

∣∣∣∣∣ .

Proof. Let A =
⋃n

k=1Ak be the union of all n sets. Define the indicator function of a set
Ai to be 1i : A → {0, 1} such that

1i(x) =

{
1, x ∈ Ai,

0, x /∈ Ai.

Consider now the function

F (x) =
n∏

i=1

[1− 1i(x)] .

Observe that for all x ∈ A, we must have x ∈ Ai for some 1 ≤ i ≤ n, thus F (x) is
identically zero. We now expand F (x):

F (x) = 1 +
∑

I⊆[n]
I ̸=∅

(−1)|I|
∏

i∈I
1i(x).

It is not too hard to see that
∏

i∈I 1i(x) is the indicator function of
⋂

i∈I Ai. Summing
over all x ∈ A, we hence obtain

∑

x∈A
F (x) =

∑

x∈A


1 +

∑

I⊆[n]
I ̸=∅

(−1)|I|
∏

i∈I
1i(x)




= |A|+
∑

I⊆[n]
I ̸=∅

(−1)|I|
(∑

x∈A

∏

i∈I
1i(x)

)

=

∣∣∣∣∣
n⋃

k=1

Ak

∣∣∣∣∣+
∑

I⊆[n]

(−1)|I|
∣∣∣∣∣
⋂

i∈I
Ai

∣∣∣∣∣ .

Since F (x) is identically zero, we immediately obtain the desired result:

∣∣∣∣∣
n⋃

k=1

Ak

∣∣∣∣∣ =
∑

I⊆[n]
I ̸=∅

(−1)|I|+1

∣∣∣∣∣
⋂

i∈I
Ai

∣∣∣∣∣ .

A classic application of the Principle of Inclusion and Exclusion is counting the number
of surjections between two finite sets.
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Proposition 24.0.2. Let X and Y be finite sets with cardinality |X| = m and |Y | = n,
where m ≥ n. Then the number of surjections from X to Y is given by

n−1∑

k=0

(−1)k
(
n

k

)
(n− k)m.

Proof. For convenience, we number the elements of X and Y such that X = [m] and
Y = [n]. Let S be the set of mappings from X to Y , and Ai be the set of mappings from
X to Y \ {i}, where 1 ≤ i ≤ n. We see that for an arbitrary non-empty set of indices
I ⊆ [n] of size k,

∣∣∣∣∣
⋂

i∈I
Ai

∣∣∣∣∣ = # (mappings from m elements to n− k elements) = (n− k)m.

Since there are
(
n
k

)
possible sets of indices of size k, by the Principle of Inclusion and

Exclusion,
∣∣∣∣∣

n⋃

k=1

Ak

∣∣∣∣∣ =
∑

I⊆[n]
I ̸=∅

(−1)|I|+1

∣∣∣∣∣
⋂

i∈I
Ai

∣∣∣∣∣ .

=

n∑

k=1

(−1)k+1

(
n

k

)
(n− k)m.

This counts the number of mappings that are not surjective. For the number of mappings
that are surjective, we simply take

|S| −
∣∣∣∣∣

n⋃

k=1

Ak

∣∣∣∣∣ = nm −
n∑

k=1

(−1)k+1

(
n

k

)
(n− k)m

=

n−1∑

k=0

(−1)k
(
n

k

)
(n− k)m.

Corollary 24.0.3. The Stirling numbers of the second kind are given by

S(m,n) =
1

n!

n−1∑

k=0

(−1)k
(
n

k

)
(n− k)m.

Proof. There are S(m,n) ways to partition [m] into n non-empty subsets. The number of
ways to assign these n parts to a distinct value in [n] is n!. Thus, the number of surjective
functions from [m] to [n] is n!S(m,n). Using the above result, we obtain

S(m,n) =
1

n!

n−1∑

k=0

(−1)k
(
n

k

)
(n− k)m.

Yet another famous application of the Principle of Inclusion and Exclusion is counting
the number of derangements.

Definition 24.0.4. A derangement is a permutation π : [n] → [n] with no fixes point,
i.e. for all 1 ≤ i ≤ n, we have π(i) ̸= i.
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Proposition 24.0.5. The number of derangements π : [n] → [n] is given by

n∑

k=0

(−1)k
n!

k!
.

Proof. Let S be the set of all permutations of [n], and let Ai be the set of all permutations
that fix i. Note that |S| = n!, and for an arbitrary non-empty set of indices I ⊆ [n] of size
k, ∣∣∣∣∣

⋂

i∈I
Ai

∣∣∣∣∣ = #(permutations of n− k elements) = (n− k)!.

Since there are
(
n
k

)
possible sets of indices of size k, by the Principle of Inclusion and

Exclusion,

∣∣∣∣∣
n⋃

k=1

Ak

∣∣∣∣∣ =
∑

I⊆[n]
I ̸=∅

(−1)|I|+1

∣∣∣∣∣
⋂

i∈I
Ai

∣∣∣∣∣

=
n∑

k=1

(−1)k+1

(
n

k

)
(n− k)!

=
n∑

k=1

(−1)k+1n!

k!
.

This counts the number of permutations with fixed points. For the number of derange-
ments, we simply take

|S| −
∣∣∣∣∣

n⋃

k=1

Ak

∣∣∣∣∣ = n!−
n∑

k=1

(−1)k+1n!

k!

=

n∑

k=0

(−1)k
n!

k!
.
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25 Probability

25.1 Basic Terminology

Definition 25.1.1. A statistical or random experiment (or trial) refers to a process that
generates a set of observable outcomes, and can be repeated under the same set of
conditions.

Definition 25.1.2. The sample space (or possibility space) S of an experiment is the
set of all possible outcomes of the experiment.

Definition 25.1.3. An event E is a subset of S. The complement of E, denoted by E′,
is the event that E does not occur, i.e. E′ = S \ E.

Definition 25.1.4. Given a subset G ⊆ S, the function n(G) returns the number of
possible outcomes in G.

25.2 Probability

Definition 25.2.1 (Classical Probability). If the sample space S consists of a finite number
of equally likely outcomes, then the probability of an event E occurring (a measure of
the likelihood that E occurs) is denoted P[E] and is defined as

P[E] =
n(E)

n(S)
.

Proposition 25.2.2 (Range of Probabilities). For any event E,

P[E] ∈ [0, 1].

Proof. Let the sample space be S. Since E ⊆ S, we have

0 ≤ n(E) ≤ n(S) =⇒ 0 ≤ n(E)

n(S)
≤ n(S)

n(S)
=⇒ 0 ≤ P[E] ≤ 1.

Corollary 25.2.3. Let A and B be any two events. If A ⊆ B, then P[A] ≤ P[B].

Proof. Identical as above.

Definition 25.2.4. When P[E] = 0, we say that E is an impossible event. When P[E] =
1, we say that P is a sure event.
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Proposition 25.2.5 (Probability of Complement). For any event E,

P[E] + P
[
E′] = 1.

Proof. Let the sample space be S. By definition, E′ = S \ E. Hence,

n(E′) = n(S)− n(E) =⇒ n(E)

n(S)
+

n(E′)
n(S)

=
n(S)

n(S)
=⇒ P[E] + P

[
E′] = 1.

Definition 25.2.6. Let S be the sample space of a random experiment and A, B be any
two events.

• The intersection of A and B, denoted by A ∩B, is the event that both A and B
occur.

• The union of A and B, denoted by A ∪B, is the event that at least one occurs.

Proposition 25.2.7 (Inclusion-Exclusion Principle). Let A and B be any two events in a
sample space S. Then

P[A ∪B] = P[A] + P[B]− P[A ∩B] .

Proof. When we take the sum of the number of outcomes in events A and B, i.e. n(A) +
n(B), we will count the ‘overlap’, i.e. n(A ∩B), twice. Hence,

n(A ∪B) = n(A) + n(B)− n(A ∩B).

Dividing throughout by n(S) yields the desired result.

Proposition 25.2.8 (Intersection of Complements). Let A and B be any two events. Then

P[A] = P[A ∩B] + P
[
A ∩B′] .

Proof. By definition, B′ = S \B. Taking the intersection with A on both sides,

P
[
A ∩B′] = P[A ∩ S]− P[A ∩B] =⇒ P[A ∩B] + P

[
A ∩B′] = P[A] .

Proposition 25.2.9 (“Neither Nor”). Let A and B be any two events. Then

P
[
A′ ∩B′] = 1− P[A ∪B] .

Proof. In layman terms, the above statement translates to

P[neither A nor B] = 1− P[A or B] ,

which is clearly true.
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25.3 Mutually Exclusive Events

Definition 25.3.1. Two events A and B are said to be mutually exclusive if they cannot
occur at the same time. Mathematically,

P[A ∩B] = 0.

An equivalent criterion for mutual exclusivity is

P[A ∪B] = P[A] + P[B] ,

which can easily be derived from P[A ∩B] = 0 via the inclusion-exclusion principle.

25.4 Conditional Probability and Independent Events

Proposition 25.4.1 (Conditional Probability). The probability of an event A occurring,
given that another event B has already occurred, is given by

P[A | B] =
P[A ∩B]

P[B]
.

Proof. Since B has already occurred, the sample space is reduced to B. Hence,

P[A | B] =
n(A ∩B)

n(B)
.

Dividing the numerator and denominator by n(S) completes the proof.

Corollary 25.4.2. The event (A, given B) is the complement of the event (not A, given
B), i.e.

P[A | B] + P
[
A′ | B

]
= 1.

Proof.

P[A | B] + P
[
A′ | B

]
=

P[A ∩B]

P[B]
+

P[A′ ∩B]

P[B]
=

P[B]

P[B]
= 1.

Definition 25.4.3 (Independent Events). Let A and B be any two events. If either of the
two occur without being affected by the other, then A and B are said to be independent.
Mathematically,

P[A | B] = P[A] , P[B | A] = P[B] .

Proposition 25.4.4 (Multiplication Law). A and B are independent events if and only if

P[A ∩B] = P[A]P[B] .

Proof. Since P[A] = P[A ∩B] /P[B] and P[A | B] = P[A],

P[A ∩B]

P[B]
= P[A] ⇐⇒ P[A ∩B] = P[A]P[B] .
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Proposition 25.4.5. If events A and B are independent, then so are the following pairs
of events:

• A and B′,

• A′ and B,

• A′ and B′.

Proof. We only prove that A′ and B are independent. The proofs for the other pairs are
almost identical.
Since A and B are independent events, we have P[A ∩B] = P[A]P[B]. Now consider

P[A′ ∩B].

P
[
A′ ∩B

]
= P[B]− P[A ∩B] = P[B]− P[A]P[B] = P[B] [1− P[A]] = P[B]P

[
A′] .

Hence, A′ and B are independent.

25.5 Common Heuristics used in Solving Probability Problems

Recipe 25.5.1 (Table of Outcomes). Table of outcomes are useful as they serve as a
systematic way of listing all the possible outcomes.

Sample Problem 25.5.2. Two fair dices are thrown. Find the probability that the sum
of the two scores is odd and at least one of the two scores is greater than 4.

Solution. Consider the following table of outcomes.

1 2 3 4 5 6

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 9 10

5 6 7 8 9 10 11

6 7 8 9 10 11 12

From the table of outcomes, the required probability is clearly 10
36 . □

Recipe 25.5.3 (Venn Diagrams). Venn diagrams are useful when we need to visualize
how the events are interacting with each other.

Sample Problem 25.5.4. Let A and B be independent events. If P[A′ ∩B′] = 0.4, find
the range of P[A ∩B].

Solution. Consider the following Venn diagram.

A B

0.4

a cb

Figure 25.1
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We see that
a+ b+ c = 0.6. (∗)

Further, since A and B are independent, we know

P[A ∩B] = P[A]P[B] =⇒ b = (a+ b)(c+ b) = (a+ b)(0.6− a).

Expanding, we get a quadratic in a:

a2 + (b− 0.6)a+ 0.4b = 0.

Since we want a to be real, the discriminant ∆ is non-negative. Hence,

(b− 0.6)2 − 4(1)(0.4b) ≥ 0 =⇒ b ≤ 0.135 or b ≥ 2.66.

Since 0 ≤ b ≤ 1, we reject the latter. Thus, the range of P[A ∩B] = b is [0, 0.135]. □

Recipe 25.5.5 (Probability Trees). A probability tree is a useful tool for sequential events,
or events that appear in stages. The number indicated on each branch represents the
conditional probability of the event at the end node given that all the events at the
previous nodes have occurred.

Sample Problem 25.5.6. Peter has a bag containing 6 black marbles and 3 white mar-
bles. He takes out two marbles at random from the bag. Find the probability that he
has taken out a black marble and a white marble.

Solution. Consider the following probability tree.

B

W

B

W

B

W

6
9

3
9

5
8

3
8

6
8

2
8

Figure 25.2

The required probability is thus
(
6

9

)(
3

8

)
+

(
3

9

)(
6

8

)
=

1

2
.

□
Recipe 25.5.7 (Permutations and Combinations). Using combinatorial methods is useful
when the most direct way to calculate P[E] is to find n(E) and n(S).

Sample Problem 25.5.8. A choir has 7 sopranos, 6 altos, 3 tenors and 4 basses. At
a particular rehearsal, three members of the choir are chosen at random. Find the
probability that exactly one bass is chosen.

Solution. Note that there are a total of 20 people in the choir. Hence, the number of ways
to choose three members of the choir, without restriction, is given by 20C3. Meanwhile,
the number of ways to choose exactly one bass is given by 4C1 · 16C2: first choose one
bass out of the four, then choose 2 members out of the remaining 16. Thus, the required
probability is

4C1 · 16C2
20C3

=
8

19
.

□
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Part VII

Statistics
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26 Introduction to Statistics

Statistics is the art of learning from data. It is concerned with the collection of data, its
subsequent description, and its analysis, which often leads to the drawing of conclusions.
Unlike other real-life problems that can be modelled with maths, the “answers” provided

by statistics are never exact; there is always error. However, statistics allows us to control
this error. Indeed, it is this precise control of statistical error that is at the heart of every
statistical technique.

26.1 Samples and Populations

Definition 26.1.1. A population (or universe) is all possible subjects that meet certain
criteria. It is the entire group of subjects that we are interested in studying.

We want to know something about a population, but there is a good chance that we
can never get a very accurate picture of the population simply because it is constantly
changing. Not only are populations often in a constant state of flux, practically speaking,
we cannot always have access to an entire population for study. Time and cost often get
in the way. As a result, we turn to a sample as a substitute of the entire population.

Definition 26.1.2. A sample is a subset of the population. A random sample is a sample
that is representative of the population.

Example 26.1.3. If we were interested in the weight of all 12-year-old kids on Earth,
then all the kids who meet the criteria (i.e. 12-year-old kids on Earth) would constitute
the population.

However, realistically speaking, there is no way we can accurately weigh all 12-year-
old kids on Earth. Instead, we could weigh a sample of 500 12-year-old kids from all
around the globe, which would be representative of the population.

26.2 Two Categories of Statistics

Broadly speaking, the usage of statistics can be split into two categories: descriptive and
inferential.

26.2.1 Descriptive Statistics

Descriptive statistics are used to summarize or describe data from samples and popula-
tions.
Suppose we are interested in the test results of a class of students. We could create a

data distribution by listing the test scores of all students in the class and looking at it
with the idea of getting some intuitive picture of how they are doing. Alternatively, we
could simply calculate the mean of the students’ test scores. The calculation of the mean
represents the use of descriptive statistics, allowing us to summarize or describe our data.
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26.2.2 Inferential Statistics

Using descriptive statistics, we can calculate the characteristics of a data set, e.g. mean,
mode, etc. If this data set was collected from the entire population, we call such a
characteristic a parameter of the population. This could be “mean test score of a cohort
of students”. However, if the data set was collected from a sample (i.e. not the entire
population), we call the characteristic a statistic. This could be “mean test score of a
class”.
Because we are often not directly able to obtain a population parameter, we have to

rely on sample data to make inferences about the population. This branch of statistics is
known as inferential statistics – using sample statistics to make inferences about population
parameters.

26.3 Measures of Central Tendency

A central tendency can be thought of as the “typical” value of a data set. There are three
main measures of central tendency, namely the mean, median and mode.

26.3.1 Mean
Definition 26.3.1. The mean is the sum of all observations, divided by the total number
of observations.

Mathematically, given n observations x1, x2, x3, . . . , xn,

Mean =
x1 + x2 + x3 + · · ·+ xn

n
=

1

n

n∑

i=1

xi.

Here, a lower-case ‘n‘ represents the sample size. We use the uppercase ‘N ’ to represent
the population size. It is essential to make it clear when we are referring to the mean of a
sample or when we are referring to the mean of a population. To do so, statisticians use
different symbols (x̄ and µ):

Sample mean = x̄ =
1

n

∑
x, Population mean = µ =

1

N

∑
x.

We can also calculate the mean of a data set from its frequency table:

Mean =

∑
xf∑
f
,

where f represents the frequency of a value x.

Example 26.3.2. Suppose the test scores of students in a particular class has the follow-
ing frequency table:

Test score, x Frequency, f

12 2

13 3

15 6

16 5

17 4
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Then, the mean test score can be calculated as

x̄ =

∑
xf∑
f

=
(12)(2) + (13)(3) + (15)(6) + (16)(5) + (17)(4)

2 + 3 + 6 + 5 + 4
= 15.05.

Since the mean takes into account the entire sample data, it is very sensitive to outliers.
Hence, the mean may be insufficient for data sets with outliers.

Example 26.3.3. Suppose now that another student in the class obtained a ‘1’ on the
test. The new mean can be calculated as

x̄ =

∑
xf∑
f

=
(1)(1) + (12)(2) + (13)(3) + (15)(6) + (16)(5) + (17)(4)

1 + 2 + 3 + 6 + 5 + 4
= 14.14,

which is much less than the previous mean of 15.05.

26.3.2 Median
Definition 26.3.4. Themedian is the point in a distribution that divides the distribution
into halves, i.e. the midpoint of a distribution.

Generally, for n values x1, x2, . . . , xn arranged in ascending order,

Median =

{
x(n+1)/2, n odd,
1
2

(
xn/2 + xn/2+1

)
, n even

Example 26.3.5. For the original data of 20 students, the set of data in ascending order
is

12, 12, 13, 13, 13, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17.

The median is hence the average of the two middle values, i.e. 1
2(15 + 15) = 15.

Unlike the mean, the median is not sensitive to outliers.

Example 26.3.6. For the data of 21 students (original 20 + one outlier), the set of data
in ascending order is

1, 12, 12, 13, 13, 13, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17.

The median is hence the 11th value, 15.

26.3.3 Mode
Definition 26.3.7. The mode is the value that occurs the most frequently in a distribu-
tion.

In the previous examples, the mode for the original sample of 20 and the new sample
of 21 are both 15.
A distribution containing the values 2, 3, 6, 1, 3, 7 and 7 would be referred to as a

bimodal distribution because it has two modes – 3 and 7. A distribution with a single
mode is called unimodal. If each value appears the same number of times, the distribution
has no mode.

The mode, unlike the mean, is not affected by outliers. It is easy to state as it does not
require any calculation. However, it is a crude measure of central tendency as it ignores a
substantial part of the data and is thus usually not very representative and useful.
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26.3.4 Bonus: Relationship with Lp-norms

So far, we have motivated the introduction and use of the mean, median and mode to
counter the shortcomings of the other measures. While this is sufficient for understanding
why (and when) we should care about certain measures of central tendency, there is a
more fundamental property that these three measures have in common.
Recall that we introduced a central tendency as the “typical” value of a data set. In-

tuitively, a measure of central tendency minimizes the total “distance” between any data
point and itself. One method to measure this “distance” is the Lp-norm.

Definition 26.3.8. Let p ≥ 1. The Lp-norm of a vector x = (x1, x2, . . . , xn), denoted
∥x∥p, is defined as

∥x∥p =
(

n∑

i=1

|xi|p
)1/p

.

Example 26.3.9. When p = 2, we recover the Euclidean norm:

∥x∥2 =
(

n∑

i=1

x2i

)1/2

=
√

x21 + x22 + · · ·+ x2n.

In our case, we can take xi to be the values of our data set. Now, consider an n-
dimensional vector c = (c, c, . . . , c). Then ∥x− c∥p measures the total “distance” between
c and any data point. Thus, the value of c that minimizes ∥x− c∥p will be a measure of
central tendency.
We now show that the mean, median and mode correspond to the cases where p = 2, 1

and 0 respectively.

Proposition 26.3.10. The mean minimizes ∥x− c∥2.

Proof. By definition,

∥x− c∥2 =
(

n∑

i=1

(xi − c)2

)1/2

.

Differentiating this with respect to c,

d

dc
∥x− c∥2 = −

(
n∑

i=1

(xi − c)2

)−1/2 n∑

i=1

(xi − c).

For stationary points, we want d
dc ∥x− c∥2 = 0. Hence,

n∑

i=1

(xi − c) = 0 =⇒
n∑

i=1

xi − cn = 0 =⇒ c =
1

n

n∑

i=1

xi,

which is exactly the definition of the mean. It is an exercise for the reader to show that
this stationary point is a minimum.

Proposition 26.3.11. The median minimizes ∥x− c∥1.

Proof. By definition,

∥x− c∥1 =
n∑

i=1

|xi − c| .
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Without loss of generality, suppose x1 ≤ x2 ≤ · · · ≤ xn. For ∥x− c∥1 to be minimized,
there must exist a k ≥ 1 such that xk ≤ c for all i ≤ k and xk ≥ c for all i > k. Then

∥x− c∥1 =
k∑

i=1

(c− xi) +
n∑

i=k+1

(xi − c).

Differentiating this with respect to c,

d

dc
∥x− c∥1 = 2k − n.

Setting this equal to 0 yields k = n/2. That is, half of the data values are less than c,
while the other half are greater than c. Thus, c is the median.

Proposition 26.3.12. The mode minimizes ∥x− c∥0.

Proof. While the Lp norm is not defined for p = 0, we can take the appropriate limit to
get

∥x− c∥0 = lim
p→0

(
n∑

i=1

|xi − c|p
)1/p

=

n∑

i=1

|xi − c|0 ,

where we take 00 = 0. Clearly, to minimize ∥x− c∥0, we must have c = xi for as many i
possible. It follows that c must be the mode.

26.4 Measures of Spread

Suppose that the original 20 test scores come from students from a particular class, and
that there is another class of 20 whose test score has the following frequency distribution
table:

Test score, x Frequency, f

9 2

10 2

13 4

15 2

16 2

17 3

18 2

20 1

21 2

The mean test score of both classes are the same (15.05). However, the second class
clearly has a wider spread of test scores.
Measures of central tendencies do not give any indication of these differences in spread,

so it is necessary to devise some other measures to summarize the spread of data.

26.4.1 Range and Interquartile Range

Definition 26.4.1. The range is the difference between the maximum and minimum
values in the set of data.
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Example 26.4.2. The first class has a range of 17 − 12 = 5, while the second class has
a range of 21 − 9 = 12. Hence, the test scores for the second class are more diverse as
compared to that for the first class.

Note, however, that the range is usually not a good measure of dispersion as it only
considers the extreme values which may be atypical of the rest of the distribution and does
not give any information about the distribution of the values in between. For instance, if
we include the outlier in the first class, the range becomes 17− 1 = 16.

For this reason, we typically consider the interquartile range instead.

Definition 26.4.3. The interquartile range is the difference between the first and third
quartiles, i.e. Q3 −Q1.

Recall that the nth percentile of a distribution is the value such that n% of the data is
less than or equal to that number. The first and third quartiles are hence the 25th and
75th percentile respectively. Note that the second quartile (50th percentile) is simply the
median.

Example 26.4.4. The first class has interquartile range 16 − 14 = 2, while the second
class has interquartile range 17.5− 13 = 4.5.
If we include the outlier in the first class, then the interquartile range becomes 16−

13 = 3, which is a much smaller change compared to that of the range.

Again, the interquartile range may not be a good measure of dispersion as it only takes
into account the two specific percentiles.

26.4.2 Variance and Standard Deviation

One of the main reasons for using the interquartile range in preference to the range as
a measure of spread is that it takes some account of how the interior values are spread
rather than concentrating on the spread of the extreme values. The interquartile range,
however, does not take into account of the spread of all the data values and so, in some
sense, it is still an inadequate measure. An alternative measure of spread, which takes
into account of all the values, can be devised by finding how far each data value is from
the mean.
This can be represented mathematically with the formula

Mean distance =
1

n

∑
|x− x̄| .

Unfortunately, a formula involving the modulus sign is awkward to handle algebraically.
This can be avoided by squaring each of the quantities x− x̄, leading to the expression

1

n

∑
(x− x̄)2

as a measure of spread. We call this quantity the variance of the distribution.
If the data values x1, . . . , xn have units associated with them, then the variance will be

measured in units2. This can be avoided by taking the positive square root of the variance.
The positive square root of the variance is known as the standard deviation, and it always
has the same units as the original data values, i.e.

Standard deviation =

√
1

n

∑
(x− x̄)2.

When referring to the standard deviation of the population, we use the symbol σ. Hence,
the population variance is denoted by σ2.
In its given form, the variance of a data set is tedious to calculate. Fortunately, an

alternative formula is easier to use is available:
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Proposition 26.4.5.

Variance =
1

n

∑
x2 − x̄2.

Proof. We have

Variance =
1

n

∑
(x− x̄)2 =

1

n

∑(
x2 − 2xx̄+ x̄2

)
=

1

n

∑
x2 − 2x̄

∑
x

n
+

x̄2
∑

1

n
.

Observe that 1
n

∑
x = x̄ and

∑
1 = n. Thus,

Variance =
1

n

∑
x2 − 2x̄2 + x̄2 =

1

n

∑
x2 − x̄2.
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27 Discrete Random Variables

27.1 Random Variables
Definition 27.1.1. A random variable is a variable whose possible values are numerical
outcomes of a random experiment.

Random variables are typically denoted by capital letters such as X or Y .
There are two types of random variables: discrete and continuous.

Definition 27.1.2. A discrete random variable is a random variable that assumes count-
able values x1, x2, . . . , xn (can be infinite).

Examples of discrete random variables include the number that shows on the toss of
a fair die (X = 1, 2, . . . , 6), and the number of times a fair die is thrown until a ‘6’ is
obtained (Y = 1, 2, . . . , to infinity).

In this chapter, we will only discuss discrete random variables. We will deal more with
continuous random variables in §28.

27.2 Properties

27.2.1 Probability Distribution

Since the values of a random variable are determined by chance, there is a distribution
associated with them. We call this a probability distribution.

Definition 27.2.1. A probability distribution describes all possible values of the random
variable and their corresponding probabilities. It assigns a probability value to each
possible outcome in the sample space.

A probability distribution of a discrete random variable can be given in the form of a
table, a graph or a mathematical formula.
Note that the particular values of a random variable are denoted by lower-case letters.

For instance, the particular values of a random variable X are denoted by x.

Example 27.2.2. A single fair 6-sided die is thrown. Let X be the random variable
representing the number of dots showing on the die. Note that the possible values of X
are x = 1, 2, 3, 4, 5, 6.

The probability distribution associated with X can be given in table form:

x 1 2 3 4 5 6

P[X = x] 1
6

1
6

1
6

1
6

1
6

1
6

or expressed as a formula:

P[X = x] =
1

6
, x ∈ {1, 2, 3, 4, 5, 6} ,

or expressed as a graph:
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P(X = x)

x

1
6

1 2 3 4 5 6

From the above example, the discrete random variable X takes on only countable values,
and that if we sum all probabilities, we get a total of 1. In fact, these are conditions that
all discrete random variables must satisfy.

Condition 27.2.3 (Discrete Random Variable). For X to be a discrete random variable,

• X can take only countable values (finite or infinitely many), and

• X has a probability distribution such that 0 ≤ P[X = x] ≤ 1 for all x and

∑

x

P[X = x] = 1.

27.2.2 Expectation

Recall that in descriptive statistics, the mean of a sample can be calculated as

Mean =

∑
xf

n
,

where x is a data value and f is its frequency. In the case of a discrete random variable
X, we can think of x as a particular value of X, and f/n as the probability that x occurs
(i.e. how “frequently” x occurs). Thus,

Mean =
∑

x

xP[X = x] .

We call this “mean” the expectation of X.

Definition 27.2.4. The expectation, or expected value, of X, denoted as E[X] or µ, is
given by

E[X] =
∑

x

xP[X = x] .

Example 27.2.5. A single fair 6-sided die is thrown. Let X be the random variable
representing the number of dots showing on the die. Note that the possible values of X
are x = 1, 2, 3, 4, 5, 6. Since P[X = x] = 1

6 for all possible values of x, the expectation of
X is given by

E[X] =

6∑

x=1

xP[X = x] =
1

6

6∑

x=1

x = 3.5.

Note that the phrase “expected value of X” refers to the long-term weighted average
value of a random variable X and is not a typical value that X can take. In fact, a random
variable might never be equal to its “expected value”. For instance, in the above example,
a 6-sided dice will clearly never roll a value of 3.5.
We can generalize the notion of expectation to other functions involving X.
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Definition 27.2.6. Let f(X) be any function of the discrete random variable X. Then

E[f(X)] =
∑

x

f(x)P[X = x] .

For instance, E[10X] =
∑

10xP[X = x], and E
[
X2 − 4

]
=
∑

(x2 − 4)P[X = x].
From the definition of E[f(X)], one can easily prove the following results:

Proposition 27.2.7 (Properties of Expectation). For a real constant a,

• E[a] = a,

• E[aX] = aE[x],

• E[f1(X) + f2(X)] = E[f1(X)] + E[f2(X)], where f1 and f2 are functions of X.

In fact, the last property is a direct consequence of the linearity of the expectation with
respect to multiple random variables:

Proposition 27.2.8 (Linearity of Expectation). Let X and Y be random variables (de-
pendent or independent), and let a and b be real constants. Then

E[aX ± bY ] = aE[X]± bE[Y ] .

27.2.3 Variance

Recall that in descriptive statistics, the variance of a sample can be calculated as

Variance =
1

n

∑
f (x− x̄)2 ,

where f is the frequency of a data value x and x̄ is the mean of the sample. In the
context of discrete random variables, P[X = x] corresponds to f/n, while µ corresponds
to x̄. Thus,

Variance =
∑

(x− µ)2 P[X = x] = E
[
(x− µ)2

]
.

Definition 27.2.9. The variance of a random variable X, denoted by Var[X] or σ2, is
defined as the expectation of the squared deviation of X from the mean µ. Mathemati-
cally,

Var[X] = E
[
(X − µ)2

]
.

As motivated above, we can rewrite Var[X] solely in terms of expectations:

Proposition 27.2.10.
Var[X] = E

[
X2
]
− E[X]2 .

Proof.

Var[X] = E
[
(X − µ)2

]

= E
[
X2 − 2µX + µ2

]

= E
[
X2
]
− 2µE[X] + µ2

= E
[
X2
]
− 2E[X]2 + E[X]2

= E
[
X2
]
− E[X]2 .
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Compare this with the alternative expression for the variance used in descriptive statis-
tics:

Variance =
1

n

∑
fx2 −

(
1

n

∑
fx

)2

.

A small value for the variance indicates that most of the values that X can take are
clustered about the mean. Conversely, a higher value for the variance indicates that the
values that X can take are spread over a larger range about the mean.

Correspondingly, the standard deviation, which is the positive square root of the vari-
ance, is denoted by σ, i.e.

σ =
√
Var[X].

From the definition of variance, one can easily prove the following properties:

Proposition 27.2.11 (Properties of Variance). Given that a and b are real constants,

• Var[a] = 0,

• Var[aX] = a2Var[X],

• Var[aX + b] = a2Var[X].

Proof. It suffices to prove the last statement. Applying the formula Var[X] = E
[
X2
]
−

E[X]2, we have

Var[aX + b] = E
[
(aX + b)2

]
− E[aX + b]2

= E
[
a2X2 + 2abX + b2

]
− (aE[X] + b)2

= a2 E
[
X2
]
+ 2abE[X] + b2 − a2 E[X]2 − 2abE[X]− b2

= a2
[
E
[
X2
]
− E[X]2

]

= a2Var[X] .

Another important property is the variance of more than one random variable. In fact,
the property Var[aX + b] = a2Var[X] is a direct consequence of the statement below:

Proposition 27.2.12 (Variance of More Than One Random Variable). If X and Y are two
independent variables, then

Var[aX ± bY ] = a2Var[X] + b2Var[Y ] .

Notice that the sign on the RHS is always a ‘+’ regardless of the sign on the LHS.
Intuitively, we expect deviations to increase when combining more observations together,
not reduce it.

27.3 Binomial Distribution

Consider an experiment which has two possible outcomes, one we term “success” and the
other “failure”. A binomial situation arises when n independent trials of such experiments
are performed.
Examples of such experiments are:

• Tossing a fair coin 6 times (consider obtaining a head on a single toss as “success”
and obtaining a tail as “failure”).

• Shooting a target 5 times (consider hitting the bull’s eye in each shot as “success”
and not hitting the bull’s eye as “failure”).
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Condition 27.3.1 (Binomial Model). The conditions for a binomial model are:

• a finite number, n, trials are carried out,

• the trials are independent,

• the outcome of each trial is either a “success” or a “failure”, and

• the probability of success, p, is the same for each trial.

Definition 27.3.2. Let the random variable X be the number of trials, out of n trials,
that are successful. If the above conditions are met, then X is said to follow a binomial
distribution with n number of trials and probability of success p, written as

X ∼ B(n, p).

Example 27.3.3. Recall the example of tossing a fair coin 6 times. This experiment
clearly fits a binomial model:

• There are 6 tosses – i.e. a finite number of trials.

• Given that the tosses likely take place one after another, the outcome of one toss
will not affect the outcome of another toss – i.e. the trials are independent.

• Each toss only results in a head or tail – i.e. only two possible outcomes, a
“success” or “failure”.

• The probability of obtaining heads remains the same at 0.5 for each toss – i.e. the
probability of success remains unchanged.

27.3.1 Probability Distribution

Proposition 27.3.4 (Probability Distribution of Binomial Distribution). Let the random
variable X ∼ B(n, p). Then

P[X = x] =

(
n

x

)
px (1− p)n−x .

Proof. The event X = x represents obtaining x successes (and n − x failures) out of n
total trials. The probability of x successes is simply px, while the probability of n − x
failures is (1 − p)n−x. Since there are nCx ways to choose the x successes from n total
trials, the probability of having exactly x successes, i.e. P[X = x], is

P[X = x] =

(
n

x

)
px (1− p)n−x .

27.3.2 Expectation and Variance

Proposition 27.3.5 (Expectation of Binomial Distribution). For X ∼ B(n, p),

E[X] = np.

Proof. Since probabilities sum to 1, we have

n∑

r=0

P[X = r] =

n∑

r=0

(
n

r

)
pr(1− p)n−r = 1.
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Differentiating this with respect to p, we have

n∑

r=0

(
n

r

)[
rpr−1(1− p)n−r − (n− r)pr(1− p)n−r−1

]
= 0.

We can expand the LHS as

1

p

n∑

r=0

r

(
n

r

)
pr(1− p)r − n

1− p

n∑

r=0

(
n

r

)
pr(1− p)n−r +

1

1− p

n∑

r=0

r

(
n

r

)
pr(1− p)n−r = 0.

Rewriting this in terms of P[X = r] yields

1

p

n∑

r=0

r P[X = r]

︸ ︷︷ ︸
E[X]

− n

1− p

n∑

r=0

P[X = r]

︸ ︷︷ ︸
1

+
1

1− p

n∑

r=0

r P[X = r]

︸ ︷︷ ︸
E[X]

= 0.

Thus,
1

p
E[X]− n

1− p
+

1

1− p
E[X] = 0 =⇒ E[X] = np.

Proposition 27.3.6 (Variance of Binomial Distribution). For X ∼ B(n, p),

Var[X] = np(1− p).

Proof. One can use a similar trick (differentiating E[X] = np) to obtain

E
[
X2
]
= np(1− p+ np).

Thus,
Var[X] = E

[
X2
]
− E[X]2 = np(1− p+ np)− (np)2 = np(1− p).

27.3.3 Graphs of Probability Distribution

Given that X ∼ B(n, p), the graphs of the probability distribution of X for various values
of n and p are shown below.
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Notice that

• when p is low, the graph is skewed to the left, i.e. probabilities are larger for lower
values of X,

• when p is high, the graph is skewed to the right, i.e. probabilities are larger for
higher values of X, and

• when p = 0.5, we get a symmetrical distribution.

Also note that a binomial distribution can only have 1 or 2 modes. In addition, if there
are 2 modes, they must be adjacent to each other, i.e. they differ by 1.

27.4 Poisson Distribution
Definition 27.4.1. Let X be the number of occurrences of a particular event over an
interval of time (or space) t. Let λ be the mean rate of occurrence per unit time. Then
X is said to follow a Poisson distribution with parameter λt, written as

X ∼ Po(λt).

Remark. Typically, we assume t to be the unit time interval, in which case we simply write
X ∼ Po(λ).

For X to follow the Poisson distribution, the following conditions must also be fulfilled:

Condition 27.4.2 (Poisson Model).

• Events must be independent.

• Events occur singly (i.e. the chances of 2 or more occurrences at precisely the
same point in time (or space) is negligible) and randomly.

• Events occur at a constant average rate, i.e. for a given interval of time (or space),
the mean number of occurrences is proportional to the length of the interval.

Such a model is also called a Poisson process.
Situations where a Poisson model could be used include:

• the number of car accidents on a stretch of road on a random day, and

• the number of raisins per 10 cm3 of a chocolate bar.
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27.4.1 Probability Distribution

Proposition 27.4.3 (Probability Distribution of Poisson Distribution). Let X ∼ Po(λt).
Then

P[X = x] = e−λt (λt)
x

x!
, x ∈ N0.

We will present two proofs/derivations for the probability distribution of the Poisson
distribution. The first proof (adapted from a note by Cowan) involves infinitesimals and
differential equations, while the second proof (adapted from a blog post) uses a measure-
theoretic argument.

Proof 1 (Differential Equations). Suppose X is the number of occurrences of an event over
some time interval t. We can divide this interval into infinitely short subintervals ∆t. For
convenience, let P[x; t] be the probability that exactly x events happen in the time interval
t.

Since λ is the mean rate of occurrence, we have

P[1;∆t] = λ∆t.

Additionally, since ∆t is infinitely short, we can assume that either one event occurs, or
no event occurs, i.e.

P[0;∆t] = 1− P[1;∆t] = 1− λ∆t.

We now wish to find an expression for P[x; t]. To do so, we first consider P[0; t]. Suppose
we extend the time interval t by ∆t. Since events occur independently and randomly, we
must have

P[0; t+∆t] = P[0; t]P[0;∆t] = P[0; t] (1− λ∆t) .

We can rearrange this to get

−λP[0; t] =
P[0; t+∆t]− P[0; t]

∆t
=

d

dt
P[0; t] .

P[0; t] thus satisfies the differential equation

d

dt
P[0; t] = −λP[0; t] ,

which has solution
P[0; t] = Ce−λt.

Since no event can happen in a time interval of 0 seconds, we have

P[0; 0] = 1 =⇒ C = 1.

Thus,
P[0; t] = e−λt. (1)

We now consider P[x; t+∆t], where x ̸= 0. If x events have occurred in a time interval
of t+∆t, one of two things must have occurred:

• There were x events in the first t seconds, but none in the last ∆t.

• There were x− 1 events in the first t seconds, and one in the last ∆t.

https://www.pp.rhul.ac.uk/~cowan/stat/notes/PoissonNote.pdf
https://blog.kalculate.ai/2024/03/27/poisson-distribution/


206 27 Discrete Random Variables

We hence have

P[x; t+∆t] = P[x; t]P[0;∆t] + P[x− 1; t]P[1;∆t]

= P[x; t] (1− λ∆t) + P[x− 1; t]λ∆t.

Rearranging, we get a differential equation involving P[x; t]:

d

dt
P[x; t] + λP[x; t] = λP[x− 1; t] .

Multiplying through by the integrating factor eλt, we get

d

dt

[
eλt P[x; t]

]
= λeλt P[x− 1; t] . (2)

We now induct on (2) to get an expression for P[x; t]. We claim that

P[x; t] =
(λt)x

x!
e−λt.

We have already shown that this holds for the x = 0 case. Now, substituting x + 1 into
(2), we get

d

dt

[
eλt P[x+ 1; t]

]
= λeλt P[x; t] = λeλt

[
(λt)x

x!
e−λt

]
=

λx+1tx

x!
.

Integrating and simplifying, we get

P[x+ 1; t] = e−λt

∫
λx+1tx

x!
dt =

(λt)x+1

(x+ 1)!
e−λt + Ce−λt.

Since P[x+ 1; 0] = 0, we have C = 0, whence

P[x+ 1; t] =
(λt)x+1

(x+ 1)!
e−λt.

This closes the induction, and we conclude that

P[X = x] = P[x; t] =
(λt)x

x!
e−λt.

Proof 2 (Measure Theory). Suppose x events occur in the time interval [0, t), and let their
times be given by the unordered x-tuple (t1, t2, . . . , tx). Without loss of generality, we take
0 ≤ t1 < t2 < · · · < tx < t. Let Sx be the set of all such x-tuples. Since λ is the mean rate
of events per unit time, we define the measure µ such that µ([0, 1)) = λ.
Consider the set T = [0, t)x of all ordered x-tuples. Its measure is given by

µ(T ) = µ([0, t)x) = (tµ([0, 1))x = (λt)x.

Define the equivalence relation ∼ on T such that any two x-tuples u = (u1, u2, . . . , ux)
and v = (v1, v2, . . . , vx) in T ,

u ∼ v ⇐⇒ {u1, u2, . . . , ux} = {v1, v2, . . . , vx} .

Then the quotient set T/ ∼ is exactly Sx. Furthermore, since ∼ partitions T into equiva-
lence classes of size x!, it follows that

µ(Sx) =
µ(T )

x!
=

(λt)x

x!
.
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Now consider the sample space S, which is given by

S =

∞⋃

x=0

Sx.

Since all Sx are disjoint, the measure of S is simply

µ(S) =
∞∑

x=0

µ(Sx) =
∞∑

x=0

(λt)x

x!
= eλt.

Thus, the probability that exactly x events occur in time t is given by the ratio

µ(Sx)

µ(S)
=

(λt)x/x!

eλt
= e−λt (λt)

x

x!
.

Let X and Y measure the number of events E and F over some time interval. Then
X+Y counts the event G = X+Y over the same time interval. Intuitively, X+Y should
follow a Poisson distribution since it satisfies the three conditions (27.4.2):

• G is independent: Since X and Y both follow a Poisson distribution, E and F must
both occur independently. Since X and Y are independent of each other, E and F
are also independent of each other. Thus, G occurs independently.

• G occurs singly and randomly.

• G occurs at a constant average rate: Since E occurs with constant random rate λ1,
and F occurs with constant random rate λ2, we expect G to also occur with constant
random rate λ1 + λ2.

We can prove this statement more rigorously using the probability distribution of a
Poisson random variable:

Proposition 27.4.4 (Sum of Independent Poisson Random Variables is a Poisson Random
Variable). LetX ∼ Po(λ1), Y ∼ Po(λ2) be independent random variables. ThenX+Y ∼
Po(λ1 + λ2)

Proof. Consider the event X + Y = n. This can only happen if X = m and Y = n −m.
Thus,

P[X + Y = n] =
n∑

m=0

P[X = m and Y = n−m] .

Since X and Y are independent, we can split the summands into products:

P[X + Y = n] =

n∑

m=0

P[X = m]P[Y = n−m] .

Using the probability distribution we derived earlier,

P[X + Y = n] =
n∑

m=0

[
e−λ1

λm
1

m!

] [
e−λ2

λn−m
2

(n−m)!

]
=

e−(λ1+λ2)

n!

n∑

m=0

n!

m!(n−m)!
λm
1 λn−m

2 .

Observe that the sum is simply the binomial expansion of (λ1 + λ2)
n. Thus,

P[X + Y = n] = e−(λ1+λ2) =
(λ1 + λ2)

n

n!
,

which is exactly the probability distribution of a Poisson random variable with parameter
λ1 + λ2.
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27.4.2 Expectation and Variance

Proposition 27.4.5 (Expectation of Poisson Distribution). Let X ∼ Po(λt). Then E[X] =
λt.

Recall that we defined λ as the mean rate of occurrence per unit time. Since we measure
X over a time interval of length t, the mean number of events, E[X], is simply λt. We can
verify this with the following calculation:

Proof.

E[X] =
∞∑

x=0

xP[X = x] =
∞∑

x=1

xP[X = x] =
∞∑

x=1

xe−λt (λt)
x

x!

= λte−λt
∞∑

x=1

(λt)x−1

(x− 1)!
= λte−λt

∞∑

x=0

(λt)x

x!
= λte−λteλt = λt.

Proposition 27.4.6 (Variance of Poisson Distribution). Let X ∼ Po(λt). Then Var[X] =
λt.

Proof 1. Consider E
[
X2 −X

]
= E[X(X − 1)].

E[X(X − 1)] =
∞∑

x=0

x(x− 1)P[X = x] =
∞∑

x=2

x(x− 1)P[X = x]

= (λt)2e−λt
∞∑

x=2

(λt)x−2

(x− 2)!
= (λt)2e−λteλt = (λt)2.

Thus, E
[
X2
]
= E

[
X2 −X

]
+ E[X] = (λt)2 + λt, from which it follows

Var[X] = E
[
X2
]
− E[X]2 = λt.

Proof 2. Partition the time interval on which we measure X into n equal subdivisions.
Let Yi measure the number of events that occur in the ith subdivision. As n → ∞, each
Yi approaches a point, in which case Yi follows a Bernoulli distribution with probability
of success p = E[Yi] = λt/n. Thus,

Var[Yi] = p(1− p) =
λt

n

(
1− λt

n

)
.

Since the events occur independently, the variance of X is simply the sum of the variances
of Yi. We thus obtain

Var[X] = lim
n→∞

n∑

i=1

Var[Yi] = lim
n→∞

n∑

i=0

λt

n

(
1− λt

n

)
= lim

n→∞
n

(
λt

n

)(
1− λt

n

)
= λt.
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27.4.3 Graphs of Probability Distributions

Given that X ∼ Po(λ), the graphs of the probability distribution of X for various values
of λ are shown below:
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27.4.4 Poisson Distribution as an Approximation to the Binomial Distribution

Proposition 27.4.7. If X ∼ B(n, p) and n is large (n > 50) and p is small (p < 0.1),
then X can be approximated by Po(λ), where λ = np.

Proof. We know that

P[X = k] =

(
n

k

)
pk(1− p)n−k. (1)

Since n is large relative to k, we have

(
n

k

)
=

n(n− 1)(n− 2) . . . (n− k + 1)

k!
≈ nk

k!
. (2)

Note also that
(1− p)n−k = e(n−k) ln(1−p).

Since p is small, we have ln(1− p) ≈ −p. Since n is large relative to k, we have n−k ≈ n.
Thus,

(1− p)n−k ≈ e−pn. (3)
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Substituting (2), (3) and λ = pn into (1), we get the approximation

P[X = k] ≈ nk

k!
pke−pn = e−λn

k

k!

(
λ

n

)k

= e−λλ
k

k!
.

Thus, X is approximately a Poisson distribution where X ∼ Po(λ), where λ = np.

The approximation gets better as n gets larger and p gets smaller, as the following
diagrams illustrate.
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This relationship between the binomial and Poisson distributions is particularly useful
when we wish to find the sum of two binomial distributions. Consider two random variables
X1 ∼ B(n1, p1) and X2 ∼ B(n2, p2), and let Y = X1 + X2. If we stick with binomial
distributions, finding P[Y = k] would be a nightmare, as we would have to enumerate
through all possible cases and calculate many terms:

P[Y = k] =
k∑

i=0

P[X1 = i]P[X2 = k − i] .

However, if we use approximateX1 andX2 using the Poisson distribution, i.e. X1 ∼ Po(λ1)
and X2 ∼ Po(λ2), we immediately have Y ∼ Po(λ1 + λ2), and we can easily approximate
P[Y = k]:

P[Y = k] ≈ e−(λ1+λ2) (λ1 + λ2)
k

k!
.

27.5 Geometric Distribution
Definition 27.5.1. Let X be the number of trials up to and including the first success.
Then X follows a geometric distribution with probability of success p, denoted X ∼
Geo(p).

Condition 27.5.2 (Conditions for Geometric Distribution). The conditions for a geometric
model are:

• The trials are independent.

• There are only two possible outcomes to each trial, which we will call “success”
and “failure”.

• The probability of “success”, p, is the same for each trial.
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Note that the geometric model requires the same conditions as the binomial model,
with the exception that the number of trials need not be finite. Intuitively, one could be
extremely unlucky and keep on failing.
Situations where the geometric model could be applied to include:

• The number of cards drawn from a pack (with replacement) before an ace is drawn.

• The number of times a fisherman casts a line into a river before he catches a fish.

27.5.1 Probability Distribution

Proposition 27.5.3 (Probability Distribution of Geometric Distribution). Let X ∼ Geo(p).
Then

P[X = x] = (1− p)x−1p, x ∈ Z+.

Proof. By definition, the event X = x can only occur if the previous x − 1 trials are
failures (which occur with probability 1 − p), and the xth trial is a success (which occur
with probability p). Thus,

P[X = x] = (1− p)x−1 p.

The geometric distribution has the following useful property:

Proposition 27.5.4. Let X ∼ Geo(p). Then

P[X > x] = (1− p)x.

Proof 1. The event X > x is equivalent to the event that the first x trials were all failures.
Thus, P[X = x] = (1− p)x.

Proof 2 (Probability Distribution). We have

P[X > x] =
∞∑

k=x+1

P[X = k] =
∞∑

k=x+1

(1− p)k−1p.

This is simply an infinite geometric series with common ratio 1−p and first term (1−p)xp.
Thus,

P[X > x] =
(1− p)xp

1− (1− p)
= (1− p)x.

This actually implies a much stronger property about the geometric distribution:

Definition 27.5.5. A random variable X is said to be memoryless if

P[X > s+ t | X > t] = P[X > s]

for all non-negative s, t.

Proposition 27.5.6 (Geometric Distribution is Memoryless). Let X ∼ Geo(p). Then X is
memoryless.
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Proof.

P[X > s+ t | X > t] =
P[X > s+ t and X > t]

P[X > t]
=

P[X > s+ t]

P[X > t]

=
(1− p)s+t

(1− p)t
= (1− p)s = P[X > s] .

Intuitively, this means that having s more observations before a success does not depend
on there already being t observations of failure. In other words, the “waiting time” for a
success does not depend on how much “time” has already passed.

27.5.2 Expectation and Variance

Proposition 27.5.7 (Expectation of Geometric Distribution). Let X ∼ Geo(p). Then

E[X] =
1

p
.

Proof 1. Intuitively, since each trial has probability of success p, we expect p successes for
every 1 trial. This is equivalent to 1 success every 1/p trials. Hence, E[X] = 1/p.

Of course, we can prove this fact more rigorously:

Proof 2 (Probability Distribution).

E[X] =
∞∑

k=1

k P[X = k] = p
∞∑

k=1

k(1− p)k−1.

Recall that the Maclaurin series of (1− x)−2 is

1

(1− x)2
=

∞∑

k=1

kxk−1.

Substituting 1− p for x, we get

E[X] =
p

p2
=

1

p
.

Proof 3 (Memoryless Property). The first trial can result in one of two outcomes:

• The first trial is a success (occurs with probability p). If this happens, the process
stops, and X = 1.

• The first trial is a failure (occurs with probability 1−p). If this happens, the process
effectively “restarts” (memoryless property). The expected number of trials in this
case becomes E[1 +X] = 1 + E[X].

The expectation of X can thus be calculated as:

E[X] = P[success] (# trials if success) + P[failure] (# trials if failure)

= (p)(1) + (1− p)E[1 +X]

Simplifying, we have E[X] = 1/p.
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Proposition 27.5.8 (Variance of Geometric Distribution). Let X ∼ Geo(p). Then

Var[X] =
1− p

p2
.

Proof 1 (Probability Distribution). Recall that

∞∑

k=1

xk =
1

1− x
.

Differentiating this twice with respect to x, we get

∞∑

k=1

k(k − 1)xk−2 =
2

(1− x)3
=⇒

∞∑

k=1

(
k2 − k

)
xk−1 =

2x

(1− x)3
. (1)

Now consider E
[
X2
]
− E[X]:

E
[
X2
]
− E[X] =

∞∑

k=1

(
k2 − k

)
P[X = k] = p

∞∑

k=1

(
k2 − k

)
(1− p)k−1.

Using (1) with x = 1− p,

E
[
X2
]
− E[X] = p

[
2(1− p)

p3

]
=

2− 2p

p2
.

Thus,

E
[
X2
]
=

2− 2p

p2
+

1

p
=

2− p

p2
=⇒ Var[X] = E

[
X2
]
− E[X]2 =

1− p

p2
.

Proof 2 (Memoryless Property). Following the memoryless property proof above, we have

E
[
X2
]
= P[success] (# trials if success)2 + P[failure] (# trials if failure)2

= (p)(1)2 + (1− p)E
[
(1 +X)2

]

= p+ (1− p)

[
1 +

2

p
+ E

[
X2
]]

Simplifying, we have

E
[
X2
]
=

2− p

p2
=⇒ Var[X] = E

[
X2
]
− E[X]2 =

1− p

p2
.

27.5.3 Graphs of Probability Distribution

Given that X ∼ Geo(p), the graphs of the probability distribution of X for various values
of p are shown below:
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All geometric distributions show this type of skewness (extreme positive skewness).
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28 Continuous Random Variables

In the previous chapter, we saw how a discrete random variable assumes countable values.
If we want a random variable to take on uncountably many values, then we must turn to
continuous random variables instead.

Definition 28.0.1. A continuous random variable is a random variable that can take
on any value in a given interval.

Since the value of a continuous random variable is uncountable, it can only take on an
interval of values, not a specific value.
An example of continuous random variables is the volume of beverage (in ml) in a 500

ml bottle (100 ≤ X ≤ 200, 200 ≤ X ≤ 300, etc.)

28.1 Discrete to Continuous

In the previous chapter, we saw how we could represent the probability distribution of a
discrete random variable using a table. For instance, the probability distribution of the
outcome of a single throw of a 6-sided dice is given by the following table:

x 1 2 3 4 5 6

P[X = x] 1
6

1
6

1
6

1
6

1
6

1
6

We can try to specify the distribution of a continuous random variable in the same way.
Consider the lengths, in millimetres, of 50 leaves that have fallen from a particular tree.
We can illustrate the distribution of the lengths using a histogram:

0 5 10 15

0.00

0.05

0.10

0.15

0.20

Figure 28.1: A histogram of the lengths of leaves.

Here, the vertical axis represents the frequency density of lengths in a particular interval,
hence the total area of the histogram is 1. This property also allows us to find the
probability that a length is in a given interval: simply sum up the area of the rectangles
in the given interval.
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Notice that if we want the probability of a certain length, e.g. L = 6.3 cm, the an-
swer would be zero. Though it is theoretically possible for L to be 6.3 cm exactly (i.e.
6.30000 . . . ), the probability is actually zero. This means that

P[6 < L < 7] = P[6 ≤ L < 7] = P[6 < L ≤ 7] = P[6 ≤ L ≤ 7] .

That is, whether we include the bounds of the interval does not affect the probability that
L falls within the interval.

The probabilities calculated from the histogram could be used to model the length of
a tree leaf. However, the model is crude, because of the limited amount of data, and the
small number of classes in which the leaves are grouped into, resulting in the “steps” in
the histogram.

The model could be further refined by repeating the process of collecting more data and
reducing the class width. If this process were to be continued indefinitely, then the outline
of the histogram would become a smooth curve:

a b

L

Figure 28.2: Smooth curve after repeating process infinitely.

The probability of the length of a leaf lying between a and b is given by the area under
the curve between a and b.



28.2 Properties 217

28.2 Properties

28.2.1 Probability Density Function

We have seen how the outline of a histogram may approach a smooth curve when we allow
the sample size to increase with correspondingly narrower class widths.

Definition 28.2.1. The curve is the graph of the probability density function (pdf in
short), and the function is usually denoted by the small letter f . It describes mathe-
matically how the unit of probability is distributed over the range of x-values.

Note that f(x) does not represent the probability. It is the area under f(x) that repre-
sents probability.
The probability density function f(x) of a continuous random X has the following

properties:

Fact 28.2.2 (Properties of pdf).

• f(x) is non-negative (since we cannot have negative probabilities):

∀x : f(x) ≥ 0.

• The total area under the graph is 1 (since the probability must sum to 1):

∫ ∞

−∞
f(x) = 1.

• Probability is given by the area under f(x):

P[a < X < b] =

∫ b

a
f(x) dx.

• The boundary of an interval does not affect probability:

P[a < X < b] = P[a ≤ X < b] = P[a < X ≤ b] = P[a ≤ X ≤ b] .

• If f has a maximum when x = M , then M is the mode.

• If P[X ≤ m] =
∫m
−∞ f(x) dx = 1/2, then m is the median. If f is symmetric about

the line x = x0, then m is simply x0.

Note that f(x) need not be continuous; it only needs to be non-negative and have a
total area of 1. For instance, the piecewise function

f(x) =





x, 0 ≤ x ≤ 1,

2− x, 1 < x ≤ 2,

0, otherwise

is a valid probability density function.

28.2.2 Cumulative Distribution Function
Definition 28.2.3. The cumulative distribution function F (x) is often referred to as the
distribution function, or as the cdf. The function is defined by

F (x) = P[X ≤ x] =

∫ x

−∞
f(t) dt.
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Example 28.2.4. Let the continuous random variable X have pdf f(x) given by

f(x) =

{
e−x, x > 0,

0, otherwise.

Let the cdf of X be F (x). For x ≤ 0, we clearly have F (x) = 0. For x > 0, we have

F (x) = F (0) +

∫ x

0
f(t) dt = 0 +

∫ x

0
e−t dt =

[
−e−t

]x
0
= 1− e−x.

Thus,

F (x) =

{
0, x ≤ 0,

1− e−x, x > 0.

The cdf of a continuous random variable X has the following properties:

Fact 28.2.5 (Properties of cdf).

• By the fundamental theorem of calculus, we have

d

dx
F (x) = f(x).

• The lower and upper limits of F (x) are 0 and 1 respectively:

lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1.

• F is a non-decreasing function, i.e. a ≤ b implies F (a) ≤ F (b).

• F is a continuous function, even if f is discontinuous.

• P[a < X < b] = F (b)− F (a).

• The median m satisfies F (m) = 1/2.

28.2.3 Expectation and Variance

Definition 28.2.6. For a continuous random variable X with pdf f , the expectation of
X is given by

µ = E[X] =

∫ ∞

−∞
xf(x) dx.

For a general function g, we calculate E[g(X)] as

E[g(X)] =

∫ ∞

−∞
g(x)f(x) dx.

Note that if f is symmetric about the line x = c, then E[X] = c.
Using the above definitions, we can easily calculate the variance of X:

Definition 28.2.7. The variance of X, denoted Var[X], is given by

Var[X] = E
[
(X − µ)2

]
=

∫ ∞

−∞
(x− µ)2f(x) dx.

However, it is usually easier to calculate Var[X] using

Var[X] = E
[
X2
]
− E[X]2 .
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Note that all results of expectation and variance algebra (see §27.2.2 and §27.2.3) con-
tinue to hold:

Fact 28.2.8 (Properties of Expectation and Variance). For a continuous random variable
X and constants a and b,

E[X + Y ] = E[X] + E[Y ] ,

where Y is any continuous random variable. If Y is also independent with X, then

Var[aX + bY ] = a2Var[X] + b2Var[Y ] .

The proofs of the two facts are similar to the discrete case.

28.2.4 Distribution of a Function of a Random Variable

Suppose we have a continuous random variable Y that is given as a function of another
continuous random variable X, i.e. Y = g(X). If we know that cdf of X, we can easily
find the pdf and cdf of Y using the following method:

Recipe 28.2.9 (Finding pdf and cdf of Y ). Let X be a continuous random variable with
pdf fX . If Y = g(X) (i.e. Y depends on X), then

FY (y) = P[Y ≤ y] = P[g(X) ≤ y] .

Then, to obtain the pdf of Y , we differentiate FY (y) with respect to y.

Sample Problem 28.2.10. Let X have pdf

fX(x) =

{
2
π , 0 ≤ x ≤ π

2 ,

0, otherwise.

Find the pdf of Y , where Y = sinX.

Solution. Integrating fX , we obtain the cdf of X:

FX(x) =





0, x < 0,
2
πx, 0 ≤ x ≤ π

2 ,

1, x > π
2 .

Now consider FY (y):

FY (y) = P[Y ≤ y] = P[sinX ≤ y] = P[X ≤ arcsin y]

=





0, arcsin y < 0,
2
π arcsin y, 0 ≤ arcsin y ≤ π

2 ,

1, arcsin y > π
2

=





0, y < 0,
2
π arcsin y, 0 ≤ y ≤ 1,

1, y > 1.

Differentiating, we obtain the pdf of Y :

fY (y) =





2

π
√

1−y2
, 0 ≤ y < 1,

0, otherwise.

□
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28.3 Uniform Distribution
Definition 28.3.1. If the continuous random variable X is equally likely to lie anywhere
in the interval [a, b], where a and b are constants, then X follows a uniform distribution,
denoted X ∼ U(a, b).

28.3.1 Density and Distribution Functions

Proposition 28.3.2. The probability density function of X ∼ U(a, b) is

f(x) =

{
1

b−a , a ≤ x ≤ b,

0, otherwise.

Proof. Since X is equally likely to lie anywhere in the interval [a, b], we know its pdf has
the form

f(x) =

{
c, a ≤ x ≤ b,

0, otherwise,

where c is a constant. Since the sum of probabilities is 1,

1 =

∫ ∞

−∞
f(x) dx =

∫ b

a
cdx = c(b− a).

Thus, c = 1/(b− a), as desired.

a b

1
b−a

O

x

f(x)

Figure 28.3: The probability density function f(x).

Proposition 28.3.3. The cumulative density function of X ∼ U(a, b) is

F (x) =





0, x < a,
x−a
b−a , a ≤ x ≤ b,

1, x > b.

Proof. Clearly, F (x) = 0 for all x < a. For a ≤ x ≤ b, we have

F (x) = F (0) +

∫ x

a
f(t) dt = 0 +

∫ x

a

1

b− a
dt =

x− a

b− a
.

For x > b, we clearly have F (x) = 1. Thus,

F (x) =





0, x < a,
x−a
b−a , a ≤ x ≤ b,

1, x > b.
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a b

1

O

x

F (x)

Figure 28.4: The cumulative distribution function F (x).

28.3.2 Expectation and Variance

Proposition 28.3.4. If X ∼ U(a, b), then E[X] = (a+ b)/2.

Proof. The pdf of X is symmetric about x = (a+ b)/2. Thus, (a+ b)/2 is the mean.

Proposition 28.3.5. If X ∼ U(a, b), then Var[X] = (b− a)2/12.

Proof. Consider E
[
X2
]
:

E
[
X2
]
=

∫ ∞

−∞

x2

b− a
dx =

1

b− a

[
x3

3

]b

a

=
(b− a)2

3
.

Thus,

Var[X] = E
[
X2
]
− E[X]2 =

(b− a)2

3
−
(
b− a

2

)2

=
(b− a)2

12
.

28.4 Exponential Distribution

Definition 28.4.1. Let the continuous random variableX be the “waiting times” between
successive events in a Poisson process with mean rate λ. Then X follows an exponential
distribution with parameter λ, written X ∼ Exp(λ).

As its definition suggests, the exponential distribution is often used to model waiting
times. Some situations where the exponential model is applicable include:

• time between telephone calls or accidents,

• the length of time until an electronic device fails,

• the time required to wait for the first emission of a particle from a radioactive source.
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28.4.1 Density and Distribution Functions

Proposition 28.4.2. The probability density function of X ∼ Exp(λ) is given by

f(x) =

{
λe−λx, x ≥ 0,

0, otherwise,

and the cumulative distribution function of X is given by

F (x) =

{
0, x < 0,

1− e−λx, x ≥ 0.

Proof. Consider a Poisson process with mean rate λ. Let Y be the number of events
occurring in a time interval of length x, i.e. Y ∼ Po(λx). Let X be the random variable
denoting the “waiting time” between successive such random events.
Since X is the amount of time until the next event occurs, the event X > x is equivalent

to no events happening in a time interval of x. In other words, X > x is equivalent to
Y = 0. Hence,

P[X > x] = P[Y = 0] =
(λx)0

0!
e−λx = e−λx

Hence, for x ≥ 0, the cdf of X is given by

F (x) = P[X ≤ x] = 1− P[X > x] = 1− e−λx.

Also, since the “waiting time” cannot be negative, we have

F (x) =

{
0, x < 0,

1− e−λx, x ≥ 0.

Differentiating, we obtain the pdf of X:

f(x) =

{
λe−λx, x ≥ 0,

0, otherwise,

λ

O

x

f(x)

Figure 28.5: The probability density function f(x).
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Proposition 28.4.3. The exponential distribution is memoryless.

Proof. Let X ∼ Exp(λ). We have

P[X > a+ b | X > a] =
P[X > a+ b and X > a]

P[X > a]
=

P[X > a+ b]

P[X > a]

=
eλ(a+b)

eλa
= e−λb = P[X > b] .

Thus, the probability that one has to “wait” another b units of time does not depend on
the time already spent “waiting”, i.e. X is memoryless.

28.4.2 Expectation, Variance and Median

Proposition 28.4.4. If X ∼ Exp(λ), then E[X] = 1/λ.

Proof. We have

E[X] =

∫ ∞

−∞
xf(x) dx =

∫ ∞

0
λxe−λx dx.

Integrating by parts, we get

E[X] =

[
−xe−λx − e−λx

λ

]∞

0

=
1

λ
.

Proposition 28.4.5. If X ∼ Exp(λ), then Var[X] = 1/λ2.

Proof. We have

E
[
X2
]
=

∫ ∞

−∞
x2f(x) dx =

∫ ∞

0
λx2e−λx dx.

Integrating by parts, we get

E
[
X2
]
=
[
−x2e−λx

]∞
0

+ 2

∫ ∞

0
xe−λx dx = 0 +

2

λ
E[X] =

2

λ2
.

Thus,

Var[X] = E
[
X2
]
− E[X]2 =

2

λ2
−
(
1

λ

)
=

1

λ2
.

Proposition 28.4.6. The median of X ∼ Exp(λ) is ln 2/λ.

Proof. Let m be the median. Then F (m) = 1/2. Hence,

1

2
= F (m) = 1− e−λm =⇒ eλm = 2 =⇒ m =

ln 2

λ
.



224 28 Continuous Random Variables

28.5 Normal Distribution
Definition 28.5.1. The probability density function of a continuous random variable
X that follows a normal distribution with mean µ and standard deviation σ, written
X ∼ N

(
µ, σ2

)
, is given by

f(x) =
1

σ
√
2π

e−
1
2(

x−µ
σ )

2

.

The normal distribution arises in many different situations. For instance, the normal
distribution can be used to model various characteristics of a model, e.g. heights, weights,
and even test scores. The reason why the normal distribution is such a good fit for
modelling population-sized data sets is due to a very important theorem called the Central
Limit Theorem, which we will learn in a later chapter.

28.5.1 Properties

µO

x

f(x)

Figure 28.6: The pdf of a normal distribution.

As exemplified by the figure above, a normal curve has the following properties:

• It is bell-shaped.

• The mean, median and mode are all equal (symmetric about x = µ, maximum at
x = µ).

• It approaches the x-axis as x → ±∞.

Note also that the shape of the normal curve is completely determined by two param-
eters, namely the mean µ and the standard deviation σ. The following figures show how
the mean and the standard deviation affect the shape of the normal curve:

µ1 µ2

x

Figure 28.7: Varying µ.

µ

x

Figure 28.8: Varying σ.
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Increasing µ has the same effect as translating the normal distribution curve in the
positive x-direction. Meanwhile, increasing σ has the effect of flattening the normal dis-
tribution curve, i.e. the area under the curve about µ becomes less concentrated, or more
dispersed.
In a normal distribution, about 68.3%, 95.4% and 99.7% of the values of x are expected

to lie within ±1, ±2 and ±3 standard deviations from the mean of X respectively.
Perhaps the most important property of the normal distribution is that the sum or

difference of normal distributions is also a normal distribution.

Proposition 28.5.2. If X and Y are two independent random variables such that X ∼
N
(
µ1, σ

2
1

)
and Y ∼ N

(
µ2, σ

2
2

)
, then their sum and differences also follow a normal

distribution:
aX + bY ∼ N

(
aµ1 ± bµ2, a

2σ2
1 + b2σ2

2

)
.

28.5.2 Standard Normal Distribution
Definition 28.5.3. A random variable Z is said to follow a standard normal distribution
if Z ∼ N(0, 1), i.e. Z has mean 0 and variance 1.

Suppose X ∼ N
(
µ, σ2

)
. Then the random variable defined by Z = (X − µ)/σ follows a

standard normal distribution. The process of converting X ∼ N
(
µ, σ2

)
into Z ∼ N(0, 1)

is known as standardization and can be viewed as a transformation on the normal curve
of X.
Standardization is typically used to compare different random variables that follow

normal distributions, such as test scores for different subjects.

Definition 28.5.4. Let X ∼ N
(
µ, σ2

)
, and let x be an observation of X. Then the

normalized score of x, called a z-score, measures the position of a score from the mean
where its distance from the mean is measured in standard deviations. Mathematically,

z =
x− µ

σ
.

As the definition suggests, the higher the z-score, the better x is relative to its distri-
bution. For instance, if z = 1, then x is 1 standard deviation above the mean, while if
z = −2, then x is 2 standard deviations below the mean.

Sample Problem 28.5.5. In the final year examination, a student obtains a score of
70 for Chemistry and 65 for Mathematics. If the cohort’s scores for Chemistry and
Mathematics follows N

(
60, 102

)
and N

(
57, 42

)
respectively, which subject did the student

do better in?

Solution. Normalizing the student’s Chemistry score, we get a z-score of

z1 =
X − µ

σ
=

70− 60

10
= 1.

Normalizing the student’s Mathematics score, we get a z-score of

z2 =
X − µ

σ
=

65− 57

4
= 2.

We see that the student has a higher z-score for Mathematics than for Chemistry. Thus,
even though the student obtained a higher score for Chemistry, he did better in Mathe-
matics when compared against his peers. □
The standard normal distribution is also used for various scoring systems, such as PSLE

T-scores, IQ scores and SAT scores.
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28.5.3 Normal Distribution as an Approximation

Previously, we saw how the binomial distribution, under certain conditions, could be
approximated to the Poisson distribution. Similarly, the normal distribution can be used
to approximate both the binomial and Poisson distributions when certain conditions are
satisfied.1

However, unlike the case of binomial to Poisson, which is a discrete-to-discrete ap-
proximation, approximately either the binomial or Poisson distribution to the normal
distribution is a discrete-to-continuous change. We hence introduce the idea of a “conti-
nuity correction”. Intuitively, what this means is that P[X = k] (in the discrete case) is
taken to be P[k − 0.5 < X < k + 0.5] (in the continuous case). For instance, P[X = 16] =
P[15.5 < X < 16.5], and P[2 < X ≤ 20] = P[2.5 < X < 20.5].

Approximating the Binomial Distribution

Proposition 28.5.6. If X ∼ B(n, p) and n is sufficiently large such that µ = np > 5 and
n(1− p) > 5, then X can be approximated by N(np, np(1− p)), taking into account the
continuity correction.

If p is close to 0.5, the binomial distribution is almost symmetrical. Thus, the approx-
imation by a normal distribution (which is symmetrical) gets better as p gets closer to
0.5.

Consider the following figure, where X ∼ B(15, 0.5). We can approximate the distribu-
tion X with a normal distribution with mean np = 7.5 and variance np(1− p) = 3.75.

x

f(x) N (7.5, 3.75)

B (50, 0.5)

Figure 28.9: Approximating the binomial distribution.

Approximating the Poisson Distribution

Proposition 28.5.7. If X ∼ Po(λ) such that λ > 10, then X can be approximated by
N(λ, λ), taking into account the continuity correction.

1This is a consequence of the Central Limit Theorem, which we introduced earlier in the section.
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x

f(x) N (15, 15)

Po (15)

Figure 28.10: Approximating the Poisson distribution.
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29 Sampling

29.1 Random Sampling

In §26, we saw how we cannot always have access to an entire population for study. Hence,
we often turn to a sample to make inferences about the characteristics of the population.
A central notion about samples is the idea of them being representative of the popula-

tion. We use the phrase random sample to denote such samples. We can think of random
samples as a “fair” or “unbiased” sample; every member of the population has an equal,
non-zero probabilities of getting sampled. On the other hand, a non-random sample is
biased and are not representative of the sample; every member of the population does not
have an equal chance of getting sampled.

29.1.1 Simple Random Sampling

Simple random sampling is a method of selecting n members from a population of size
N such that each possible sample of that size has the same chance of being chosen.

One procedure for obtaining a simple random sample is the following:

Recipe 29.1.1 (Simple Random Sampling).

1. Make a list of all N members of the population. This is called the sampling frame.

2. Assign each member of the population a different number.

3. For each member of the population, place a corresponding numbered ball in a bag.

4. Draw n balls from the bag, without replacement. The balls should be chosen at
random.

5. The numbers on the ball identify the chosen members of the population.

29.2 Sample Mean

We now look at the first objective of obtaining a random sample: calculating probabilities
relating to the sample mean.

Definition 29.2.1. If X1, X2, . . . , Xn is a random sample of n independent observations
from a population, then the sample mean X is defined as

X =
X1 +X2 + · · ·+Xn

n
.

Note that the sample mean X is also a random variable since it varies depending on the
samples taken.

Proposition 29.2.2. Let the population mean be µ and the population variance be σ2.
Then the sample mean X has expectation µ and variance σ2/n.
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Proof. We have

E
[
X
]
= E

[
X1 +X2 + · · ·+Xn

n

]
=

E[X1 +X2 + · · ·+Xn]

n

=
E[X1] + E[X2] + · · ·+ E[Xn]

n
=

nE[X]

n
= E[X] = µ

and

Var
[
X
]
= Var

[
X1 +X2 + · · ·+Xn

n

]
=

1

n2
Var[X1 +X2 + · · ·+Xn]

=
Var[X1] + Var[X2] + · · ·+Var[Xn]

n2
=

nVar[X]

n2
=

σ2

n
.

Definition 29.2.3. The standard deviation of X, σ/
√
n, is known as the standard error

of the mean.

Observe that as n increases, the standard error of the sample mean decreases. This
aligns with our intuition: as n increases, we are effectively sampling a larger proportion
of the population, so our statistic (the sample mean) should tend towards the parameter
(the population mean).

29.2.1 The Central Limit Theorem

If sampling is done from a normal population, then the sample mean will also follow a
normal distribution.

Proposition 29.2.4. If X ∼ N
(
µ, σ2

)
, then

X ∼ N

(
µ,

σ2

n

)
exactly.

However, if the population does not follow a normal distribution, then the sample mean
also does not follow a normal distribution. However, if the sample size is large, then the
distribution of the sample mean will be approximately normal. This result is known as
the Central Limit Theorem.

Theorem 29.2.5 (Central Limit Theorem). If X does not follow a normal distribution,
with E[X] = µ and Var[X] = σ2, and n is large (typically n ≥ 30), then

X ∼ N

(
µ,

σ2

n

)
approximately.

Here, we are assuming that the samples X1, X2, . . . , Xn are independent and identically
distributed. Further, the variance σ2 must be finite.
Note that the condition n ≥ 30 is only a guideline. Depending on the context, the

distribution of the sample mean can still be approximated using a normal distribution
with a smaller sample size.
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29.3 Estimation

In many cases, we are concerned with two population parameters, namely, the population
mean (µ) and population variance (σ2). So far, we have studied the distribution of the
sample mean assuming complete knowledge of these parameters. In most situations, how-
ever, it is difficult to compute these parameters. Hence, we will often need to use sample
statistics to help us estimate the population parameters.

29.3.1 Estimators and Estimates
Definition 29.3.1. An estimator is a method for estimating the quantity of interest. An
estimate is a numerical estimate of the quantity of interest that results from the use of
a particular estimator.

Example 29.3.2. Suppose our quantity of interest is the mean height µ of all male adults
in Singapore. Suppose we take a random sample of 100 adult mean in Singapore and
measure their heights.
Using this data, we can compute the sample average, x of the heights. That is, the

sample mean random variable, X = 1
100 (X1 + · · ·+X100), is an estimator that provides

an estimate of our quantity of interest. For instance, if x = 170 cm, then 170 cm is the
estimate of µ provided by the “sample average” estimator.

Another strategy could be to use the “sample median” of the heights as an estimator.
Suppose the sample median is 169 cm. Then 169 cm is the estimate of µ provided by
the “sample median” estimator.

29.3.2 Unbiased Estimators

As illustrated by the above example, there are many estimators we can use to estimate
µ. However, we would want to choose the estimator that performs the best. Logically, a
good estimator should be unbiased. That is, the expected value of the estimator should
be equal to the true value of the quantity it estimates.

Definition 29.3.3. If a population has an unknown parameter θ and T is a statistic de-
rived from a random sample taken from the population, then T is an unbiased estimator
for θ if and only if E[T ] = θ.

Population Mean

Proposition 29.3.4. The sample mean X = 1
n

∑
x is an unbiased estimator for the

population mean µ.

Proof. Previously, we showed that E
[
X
]
= µ. Hence, by definition, X is an unbiased

estimator for µ.

Population Variance

Proposition 29.3.5. Let x be the sample mean. Then

s2 =
1

n− 1

∑
(x− x)2 =

1

n− 1

[∑
x2 − 1

n

(∑
x
)2]

is an unbiased estimator for the population variance σ2.
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Proof. We first show that the two forms of s2 are equivalent:
∑

(x− x)2 =
∑(

x2 − 2xx+ x2
)
=
∑

x2 − 2x
∑

x+ nx2

=
∑

x2 − 2

(
1

n

∑
x

)(∑
x
)
+ n

(
1

n

∑
x

)2

=
∑

x2 − 1

n

(∑
x
)2

.

Dividing throughout by n − 1 gives us the desired equality. In fact, we can go one step
further and write s2 as

s2 =
1

n− 1

(∑
x2 − nx2

)
.

This is the form of σ2 we will work with.
Before we process, we note that

Var[X] = E
[
X2
]
− E[X]2 =⇒ E

[
X2
]
= µ2 + σ2.

Similarly,

Var
[
X
]
= E

[
X

2
]
− E

[
X
]2

=⇒ E
[
X

2
]
= µ2 +

σ2

n
.

Now consider E
[
S2
]
:

E
[
S2
]
= E

[
1

n− 1

(∑
X2 − nX

2
)]

=
1

n− 1

(∑
E
[
X2
]
− nE

[
X

2
])

=
1

n− 1

[
n
(
µ2 + σ2

)
− n

(
µ2 +

σ2

n

)]
= σ2.

Hence, s2 is an unbiased estimator for the population variance σ2.

Note that the presence of n − 1 in the denominator reflects the degrees of freedom we
have when calculating s2. We will elaborate more on this in the next chapter.

Corollary 29.3.6. If c is a constant, then

s2 =
1

n− 1

[∑
(x− c)2 − 1

n

(∑
(x− c)

)2]
.

This is particularly useful when the sample data is given in summarized form.

Population Proportion

Definition 29.3.7. A population proportion p is a parameter that describes the per-
centage of individuals in a population that exhibit a certain property that we wish to
investigate. Mathematically,

p =
X

N
,

where X is the number of “successes” in the population (individuals who exhibit the
property), and N is the population size. The sample proportion PS is defined similarly:

PS =
XS

n
,

where XS is the number of “successes” in the sample.

Example 29.3.8. Suppose we wish to investigate the number of Singaporean citizens
aged 35 years or older. The associated population parameter P is then calculated as

P =
number of Singaporean citizens aged 35 years or older

total number of Singaporean citizens
.
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If we obtain a sample of 1000 Singapore citizens, of whom 750 are aged 35 years or older,
then the observed sample proportion, which we denote p̂, is simply p̂ = 750/1000.

Proposition 29.3.9. The sample proportion PS is an unbiased estimator for the popu-
lation proportion p.

Proof. Consider a population in which the proportion of “success” is p. If a random
variable of size n is taken from this population, and XS is the random variable denoting
the number of “successes” in this sample, then

XS ∼ B(n, p).

The expected value of PS is thus

E[PS ] = E
[
XS

n

]
=

E[XS ]

n
=

np

n
= p.

Thus, PS is an unbiased estimator for p.

We can use the same idea to calculate Var[PS ]:

Var[PS ] = Var

[
XS

n

]
=

Var[XS ]

n2
=

np(1− p)

n2
=

p(1− p)

n
.

Hence, for large n, by the Central Limit Theorem, we have the following approximation:

PS ∼ N

(
p,

p(1− p)

n

)
approximately.

The distribution of PS is known as the sampling distribution of the sample proportion
and its standard deviation,

√
p(1− p)/n, is known as the standard error of proportion.
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30 Confidence Intervals

30.1 Definition

So far, we have seen how we can estimate an unknown population parameter from a
random sample. For instance, if the parameter we seek to estimate is the mean µ, we
can employ an unbiased estimator, i.e. the sample mean x, to get a rough value for µ.
This is what we call a point estimate. However, a point estimate does not provide any
information about the uncertainty present. To this end, it is more desirable to obtain an
interval estimate.

Definition 30.1.1. An interval estimate of an unknown population parameter is a ran-
dom interval constructed so that it has a given probability of including the parameter.

This leads us to the notion of a confidence interval.

Definition 30.1.2. Given a fixed value α ∈ [0, 1] (known as the level of significance), a
100(1−α)% confidence interval for an unknown population parameter θ is any interval
(a, b) such that

P[a < θ < b] = 1− α.

As an example, let us take α = 0.05. If we can find a method of calculating the limits a
and b, this means that in the long run, if we repeatedly take samples, then the calculated
interval (a, b) will contain the population parameter θ for 95% of the samples taken.
Equivalently, the probability of obtaining a random sample for which the corresponding
interval contains θ is 0.95.

Note however, that for a particular sample, we do not know whether this is one of the
samples for which θ is in the sample. Our “confidence” in the interval comes from the fact
that we are using a formula which gives a correct result most of the time.

We can express the above notions diagrammatically:

Figure 30.1: One hundred 95% confidence intervals for µ (= 30) computed from 100 dif-
ferent samples. Confidence intervals coloured red do not contain µ.1

1Source: https://amsi.org.au/ESA_Senior_Years/SeniorTopic4/4h/4h_2content_10.html

https://amsi.org.au/ESA_Senior_Years/SeniorTopic4/4h/4h_2content_10.html


234 30 Confidence Intervals

30.2 Population Mean

In this section, we explore interval estimates for the population mean µ.
Recall that for a significance level of α, we wish to find an interval (a, b) such that

P[a < µ < b] = 1− α.

To make our lives easier, we impose the restriction that the confidence interval be sym-
metric about µ, that is, the interval should be of the form (µ−E,µ+E), where E is the
margin of error. However, we obviously do not know µ, so we make use of the next best
thing available: x, to get something of the form

(x− E, x+ E) .

We thus wish to find the value of E such that

P[x− E < µ < x+ E] = 1− α. (30.1)

Depending on the situation, µ will be distributed differently, so E will differ accordingly.
There are four cases we will consider, with their respectively subsection numbers labelled

in the table below:

σ2 n
Population Distribution
Normal Unknown

Known
Large §30.2.1 §30.2.2
Small

Unknown
Large §30.2.3
Small §30.2.4

30.2.1 Normally Distributed Population with Known Variance

Suppose our population is normally distributed with unknown mean µ and known variance
σ2, so X ∼ N

(
µ, σ2

)
. In the previous chapter, we learnt that

X ∼ N

(
µ,

σ2

n

)
,

where n is the sample size. If we standardize this, we get

Z =
X − µ

σ/
√
n
,

where Z is the standard normal distribution N(0, 1). Manipulating (30.1), we get

P[x− E < µ < x+ E] = P
[
− E

σ/
√
n
<

x− µ

σ/
√
n
<

E

σ/
√
n

]
= 1− α.

But we recognize the middle expression as Z, so we really have

P
[
− E

σ/
√
n
< Z <

E

σ/
√
n

]
= 1− α.

Because Z is symmetric about 0, we can finally isolate E:

P
[
0 < Z <

E

σ/
√
n

]
=

1− α

2
=⇒ P

[
Z <

E

σ/
√
n

]
= 1− α

2
.

We now introduce some notation regarding z-values.
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Definition 30.2.1. Given a probability c ∈ [0, 1], the critical value zc is defined as

P[Z < zc] = c,

i.e. it acts as an “inverse” to the standard normal distribution.

With this notation, we can isolate our margin of error E:

E

σ/
√
n
= z1−α

2
=⇒ E = z1−α

2

σ√
n
.

We thus obtain the following result:

Proposition 30.2.2. If X is normally distributed and has known variance σ2, then the
symmetric 100(1− α)% confidence interval for µ is given by

(
x− z1−α

2

σ√
n
, x+ z1−α

2

σ√
n

)
.

The two limiting values that define the interval are known as the 100(1 − α)% lower
and upper confidence limits, sometimes writen as

x± z1−α
2

σ√
n
.

Graphically, the area under N
(
x, σ2

)
over the confidence interval is 1− α:

22− z0.975
3√
50

2 + z0.975
3√
50

Figure 30.2: An illustration of a 95% confidence interval for x = 2, σ = 3 and n = 50.

Sample Problem 30.2.3. After a rainy night, 12 worms surfaced on the lawn. Their
lengths, measured in cm, were:

9.5, 9.5, 11.2, 10.6, 9.9, 11.1, 10.9, 9.8, 10.1, 10.2, 10.9, 11.0.

Assuming that this sample came from a normal population with variance 4, calculate a
99% confidence interval for the mean length of all worms in the garden.

Solution. Let X cm be the length of a worm. We have σ = 2 and n = 12. From the
sample, we calculate x = 10.392. Feeding this into the above expression, we see that a
99% confidence interval for the mean length of all worms in the garden is

(
10.392− z0.995

2√
12

, 10.392 + z0.995
2√
12

)
= (8.90, 11.9).

□
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30.2.2 Large Sample Size from Any Population with Known Variance

In the case where the sample size is large (n ≥ 30), we can invoke the Central Limit
Theorem, regardless of the distribution of the population. If X has variance σ2, then we
know from the previous chapter that

X ∼ N

(
µ,

σ2

n

)
approximately.

By a similar argument as in §30.2.1, we obtain the following (more general) result:

Proposition 30.2.4. If X has known variance σ2 and the sample size is large (n ≥ 30),
then the symmetric 100(1− α)% confidence interval for µ is given by

(
x− z1−α

2

σ√
n
, x+ z1−α

2

σ√
n

)
.

30.2.3 Large Sample Size from Any Population with Unknown Variance

In most practical situations, it is likely that both the mean and variance are unknown.
Provided that the sample size is large (n ≥ 30), by the Central Limit Theorem, we
can say that the distribution of X is approximately normal. In place of the unknown
population variance σ2, we use s2, the unbiased estimate of the population variance as an
approximation. Hence,

X ∼ N

(
µ,

s2

n

)
approximately.

Just like before, we get the following result:

Proposition 30.2.5. If X has unknown variance but the sample size is large (n ≥ 30),
then the symmetric 100(1− α)% confidence interval for µ is given by

(
x− z1−α

2

s√
n
, x+ z1−α

2

s√
n

)
.

30.2.4 Normally Distributed Population with Unknown Variance and Small
Sample Size

Before looking at confidence intervals of µ when the sample size is small, we first need to
consider the Student’s t-distribution.

The t-distribution

The crucial statistic in the construction of a confidence interval for the mean of a normal
distribution is Z, given by

Z =
X − µ

σ/
√
n
.

In §30.2.3, when σ was unknown, we were able to σ by s by virtue of the large sample
size, which allowed us to approximate X with a normal distribution.

In the present case, however, we do not have such a luxury. Now, when σ is replaced
by S, the random variable

T =
X − µ

S/
√
n

can no longer be apporixmated by a normal distribution. Here, T depends on two random
variables: namely X and S, the random variable corresponding to s. Note that the value
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of T varies from sample to sample not only because of the variation in X as in the case of
Z, but also because of the variation in S.

For samples of size n, it can be shown that

T =
X − µ

S/
√
n

∼ t(n− 1).

Note that this requires X1, . . . , Xn to have independent and identical normal distributions.

0

t(2)

t(10)

N(0, 1)

Figure 30.3: The t-distribution when ν = 2 and ν = 10. Observe that as ν increases, t(ν)
approaches N(0, 1) in distribution.

The distribution of T is a member of a family of distributions known as t-distributions.
All t-distributions are symmetric about 0 and have a single parameter, ν, which is a
positive integer known as the degrees of freedom of the distribution. We notate this as
t(ν). As ν → ∞, the corresponding t(ν) distribution approaches the standard normal
distribution Z. In fact, when ν ≥ 30, the difference between the two is negligible, which
explains why the normal distribution could continue to be used for cases where n was large
in §30.2.3.

Why does T have n− 1 degrees of freedom? Let us begin by introducing an informal
definition of a degree of freedom.

Definition 30.2.6 (Informal). The degrees of freedom of a statistic is the number of
independent bits of information that are used in estimating the statistic.

In the present case, we initially have a total of n bits of information, namely our n
observations (X1, . . . , Xn). In order to estimate the value of our T statistic, we must first
determine the value of the sample mean X and variance S. In an ideal world, both X
and S would be allowed to vary independently. Unfortunately, S depends on the observed
value of X:2

s2 =
1

n− 1

∑
(x− x)2 .

That is to say, we must estimate X in order to estimate S. We hence treat x as a constant,
which we calculate as

x =
x1 + · · ·+ xn

n
.

But this effectively imposes a constraint on x1, . . . , xn; if we somehow forgot our initial n
observations after calculating x, we would only need to remember n− 1 observations. We
thus have n− 1 independent bits of information, so our degrees of freedom is n− 1.

2Of course, we could have used the calculated value of s2 to estimate x. After working through the
algebra, one will find that we still end up with n− 1 degrees of freedom.
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Confidence Interval using t-distribution

Suppose X is normally distributed with mean µ and unknown variance. Then

T =
X − µ

S/
√
n

∼ t(ν − 1),

where S is estimated by s. Once again, employing a similar argument as in §30.2.1, we
obtain the following result:

Proposition 30.2.7. If X is normally distributed with unknown variance, then the sym-
metric 100(1− α)% confidence interval for µ is given by

(
x− t1−α

2

s√
n
, x+ t1−α

2

s√
n

)
.

Here tc is the critical value for the t-distribution and is given by PT < tc = c.

30.2.5 Summary

The following table shows the appropriate margin of error to be used in different scenarios
when finding confidence intervals for the population mean. For conciseness, we use c =
1− α

2 . Cells with gray backgrounds indicate an approximation.

σ2 n
Population Distribution

Normal Unknown

Known
Large

zc
σ√
n

zc
σ√
n

Small

Unknown
Large zc

s√
n

Small tc
s√
n

30.3 Population Parameter

Suppose we wish to find p, the proportion of “successes” in a population. For a large
sample size n,

PS ∼ N

(
p,

p(1− p)

n

)
approximately,

where PS is the sample proportion. Standardizing, we see that

Z =
PS − p√
p(1− p)/n

.

Notice the parallels with what we obtained in §30.2.1! Indeed, we can once again repeat
our argument to obtain the following result:

Proposition 30.3.1. Given a sample proportion ŝ, the symmetric 100(1−α)% confidence
interval for p is given by

(
p̂− z1−α

2

√
p̂ (1− p̂)

n
, p̂+ z1−α

2

√
p̂ (1− p̂)

n

)
.
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Sample Problem 30.3.2. In a random sample of 400 carpet shops, it was discovered
that 136 of them sold carpets at below the list prices recommended by the manufacturer.
Calculate a 90% confidence interest for the proportion of shops that sell below list price.

Solution. Let p be the population proportion, and let the sample proportion be PS ∼
N(p, p(1− p)/n). We have p̂ = 136/400, so a 90% confidence interval for p is


136

400
− z0.95

√
136
400

(
1− 136

400

)

400
,
136

400
+ z0.95

√
136
400

(
1− 136

400

)

400


 = (0.30104, 0.37896) .

□
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31 Hypothesis Testing (Parametric)

Hypothesis testing is a statistical procedure used to determine if the data supports a par-
ticular assumption (hypothesis) about the population. In this chapter, we will examine
various statistical tests employed in parametric hypothesis testing. Here, “parametric”
means that we are given (or assuming) that the observed data have well-known distribu-
tions, such as the normal distribution. If we cannot make such assumptions, we will use a
non-parametric test, which is covered in the next chapter.

31.1 An Introductory Example

Let us look at a simple example. The manufacturer of a beverage claims that each bottle
they produce contains 500 ml of beverage on average. However, a consumer believes that
the mean volume is actually smaller than claimed. To investigate this, the consumer takes
a random sample of 30 bottles and finds that the mean volume of beverage in these 30
bottles is 498 ml.

The sample mean is certainly lower than the manufacturer’s claim, but how low is too
low? To answer this, we perform a hypothesis test.
Let X ml the volume of beverage in each bottle, and let the mean of X be µ, where µ

is unknown. Assume that the standard deviation σ = 5, so that X ∼ N(µ, 25).
First, a hypothesis is made that µ = 500 ml. This is known as the null hypothesis, H0,

and is written
H0 : µ = 500.

Since it is suspected that the mean volume is lower than the claimed 500 ml, we establish
the alternative hypothesis, H1, which is that the mean is lesser than 500 ml. This is
written

H1 : µ < 500.

To carry out the test, the focus moves from X, the volume of liquid in each can, to the
distribution of X, the mean volume of a sample of 30 cans. In this test, X is known as
the test statistic and its distribution is needed. Luckily for us, because we assumed that
X ∼ N(µ, 25), we know from previous chapters that X ∼ N(µ, 25/30).

The hypothesis test starts by assuming the null hypothesis is true, so µ = 500. Under
H0,

X ∼ N

(
500,

25

30

)
.

The result of the test depends on the whereabouts in the sampling distribution of the
observed sample mean of x = 498. We need to find out whether x is close to 500 or far
away from 500. If x is close to 500, then it is likely that x comes from a distribution
with mean 500, so there would not be enough evidence to say that the mean volume has
decreased. On the other hand, if the x is far away from 500, than it is unlikely that x
comes from a distribution with mean 500, so the mean µ is then likely to be lower than
500.
To quantify this “closeness”, we can look at the probability value (also called p-value)

associated with the test statistic X. In our case, the p-value is P
[
X ≤ 498

]
. A large

p-value will indicate that if H0: µ = 500 is true, then obtaining a value of x = 498 is likely
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and hence a reasonable variation we should allow. However, a small p-value will indicate
that obtaining a value of x = 498 is a rare event if H0 is true, and hence, perhaps µ isn’t
500, but something else (in this case, less than 500).

500498

Figure 31.1: The p-value P
[
X ≤ 489

]
is given by the shaded area.

Note that whenever we use the test-statistic or p-value in this example, both are asso-
ciated with the left tail of the distribution. This is because we began with the suspicion
that µ was lower than claimed. This type of test is called a 1-tail (left tail) test.
To determine if the p-value is small enough, we introduce a cut-off point, c, known as

the critical value, which indicates the boundary of the region where values of x would be
considered too far away from 500 ml and therefore would be unlikely to occur. This region
is known as the critical/rejection region. The probability corresponding to this critical
region will then become the upper probability limit of what we will consider to imply that
an unlikely or rare event has occurred. This probability, α, is called the significance level
of the test. In general for a left tail test at the α level, the critical value c is fixed so that
P
[
X ≤ c

]
= α and the critical region is x ≤ c. In practice, to avoid being influenced by

sample readings, it is important that α is decided before any samples values are taken.

500c

Figure 31.2: The critical region for α = 0.25.

The hypothesis test then involves finding whether the sample value x lies in the critical
region, or whether the p-value is smaller than the significance level α. If x lies in the
critical region or if the p-value ≤ α, then a decision is taken that x is too far away from
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the mean associated with H0 to have come from a distribution with this mean, hence we
reject H0 in favour of H1. Else, if x lies outside the critical region or if the p-value > α, we
do not reject H0. For a significance level of α, if the null hypotheses H0is rejected, then
the result is said to be significant at the α level.

To complete our example, suppose that a significance level of 1% is chosen. Since
X ∼ N(500, 25/30), we can work out the critical value or the p-value.

Critical Value Approach Using G.C.,

P
[
X ≤ c

]
= 0.01 =⇒ c = 497.88

Since x = 498 lies outside the critical region (x = 498 > 497.88 = c), we do not reject
H0 and conclude there is insufficient evidence at the 1% significance level than the mean
volume of beverage in each bottle is lesser than 500 ml.

p-Value Approach The p-value of our sample is

P
[
X ≤ 498

]
= 0.14230.

Since the p-value is greater than our significance level (0.14230 > 0.01 = α), we do not
reject H0 and conclude there is insufficient evidence at the 1% significance level than the
mean volume of beverage in each bottle is lesser than 500 ml.

31.2 Terminology

31.2.1 Formal Definitions of Statistical Terms
Definition 31.2.1. The level of significance of a hypothesis test, denoted by α, is defined
as the probability of rejecting H0 when H0 is true.

Definition 31.2.2. The p-value is the probability of getting a test statistic as extreme
or more extreme than the observed value. Equivalently, it is the lowest significance level
at which H0 is rejected.

31.2.2 Types of Tests

Suppose that the null hypothesis is H0: µ = µ0.
1

There are three types of tests we can use, depending on what our alternative hypothesis
looking for:

• If H1 is looking for an increase in µ, we employ a 1-tail (right tail) test.

• If H1 is looking for a decrease in µ, we employ a 1-tail (left tail) test.

• If H1 is looking for a change (either increase or decrease) in µ, we employ a 2-tail
test.

1In the introductory example, we saw how H0 was defined to be the “status quo”. However, this is not
always the case. Given two hypotheses P and ¬P , the null hypothesis is the one that contains the
equality case. For instance, if P : µ > 500, then we take ¬P : µ ≤ 500 to be our null hypothesis, in
which case we write H0: µ = 500 and H1: µ > 500.
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1-Tail (Right Tail) Test

In a 1-tail (right tail) test, H1: µ > µ0. Both the critical region and p-value are in the
right tail, with α = P

[
X ≥ c

]
and the p-value = P

[
X ≥ x

]
.

µ0 c

Figure 31.3: The critical region for a right tail test.

1-Tail (Left Tail) Test

In a 1-tail (left tail) test, H1: µ < µ0. Both the critical region and p-value are in the left
tail, with α = P

[
X ≤ c

]
and the p-value = P

[
X ≤ x

]
.

µ0c

Figure 31.4: The critical region for a left tail test.

2-Tail Test

In a 2-tail test, H1: µ ̸= µ0. The critical region and the p-value are in two parts. The
critical value is given by any one of the following expressions

α = P
[
X ≤ c1

]
+ P[x ≥ c2] = 2P

[
X ≤ c1

]
= 2P

[
X ≥ c2

]
,

while the p-value is given by

p-value =

{
2P
[
X ≤ x

]
, if x < µ0,

2P
[
X ≥ x

]
, if x > µ0.

.
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µ0c1 c2

Figure 31.5: The critical region for a two-tail test.

31.2.3 Procedure

Below is a general framework for performing a hypothesis test.

Recipe 31.2.3 (Hypothesis Testing).

(a) State the null hypothesis, H0, and the alternative hypothesis, H1.

(b) State the level of significance, α.

(c) Consider the distribution of the test statistic, assuming that H0 is true.

(d) Critical Value Approach. Calculate the critical value based on α, and the test
statistic value based on the sample data. Reject H0 if the value of the test statistic
falls in the critical region. Otherwise, do not reject H0.

p-Value Approach. Calculate the p-value based on the sample data. Reject H0 if
the p-value ≤ α. Otherwise, do not reject H0.

(e) Write down the conclusion in the context of the question.

Apart from step 3, the other steps are purely procedural. Hence, the most crucial step
is to decide the test statistic. This is what we will focus on in the next few sections.
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31.3 Population Mean

For hypothesis tests on the population mean, the test statistic is the sample mean X.
Similar to what we saw in §30.2, the following table shows the appropriate distribution to
consider for different scenarios. Cells with gray backgrounds indicate an approximation.

σ2 n
Population Distribution

Normal Unknown

Known
Large

X ∼ N

(
µ0,

σ2

n

) X ∼ N

(
µ0,

σ2

n

)

Small

Unknown
Large X ∼ N

(
µ0,

s2

n

)

Small
X − µ0

S/
√
n

∼ t(n− 1)

When our test statistic follows a normal distribution, we say that we perform a z-test.
If instead our test statistic follows a t-distribution, we say that we perform a t-test.

Sample Problem 31.3.1. The lengths of metal bars produced by a particular machine are
normally distributed with mean 420 cm and standard deviation 15 cm. After changing
the machine specifications, a sample of 20 metal bars is taken and the length of each bar
is measured. The result shows that the sample mean is 413 cm. Is there evidence, at
the 5% significance level, that there is a change in the mean length of the metal bars?

Solution. Let X cm be the length of a metal bar after the machine specifications were
changed. Our hypotheses are H0: µ = 420 and H1: µ ̸= 420. We perform a 2-tail z-test at
the 5% significance level. Under H0, our test statistic is X ∼ N

(
420, 152/20

)
. From the

sample, x = 413. Using G.C., the p-value is 0.0309, which is less than our significance level
of 5%. Thus, we reject H0 and conclude there is sufficient evidence at the 5% significance
level that there is a change in the mean length of the metal bars. □

31.3.1 Connection With Confidence Intervals

The testing of H0: µ = µ0 against H1: µ ̸= µ0 at a significance level 100α% is equivalent
to computing a symmetric 100(1 − α)% confidence interval for µ. If µ0 is outside the
confidence interval, H0 is rejected. If µ0 is within the confidence interval, H0 is not
rejected.

Sample Problem 31.3.2. In a study on the mathematical competencies of 15-year-old
Singaporean students, the following PISA test results for a sample of 17 students is
such that its sample mean is 565 with a sample standard deviation of 50. Find a 95%
confidence interval for the population mean of the results of students for the PISA test.
Hence, state the conclusion of a hypothesis test, at the 5% significance level, that tests
if the mean of the test results for the Singaporean students differs from 600.

Solution. Let X be the random variable denoting the PISA test results of a 15-year-old
Singaporean student. Our test statistic is

X − 565

S/
√
17

∼ t(16).
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From the sample, s = 50, so a symmetric 95% confidence interval for µ is (539.29, 590.71).
Since 600 is outside the confidence interval, we reject the null hypothesis that µ = 600
and conclude there is sufficient evidence at a 5% significance level that the mean of the
test results differ from 600. □

31.4 Difference of Population Means

In this section, we explore the distributions of the differences of population means. This
is typically used when we are interested in comparing the population means from two
populations. There is a major distinction we must make when we encounter such bivariate
data:

Definition 31.4.1. If the data occurs in pairs, we say they are paired. Else, we say they
are unpaired.

Example 31.4.2. Suppose we measure the blood pressure of a number of hospital patients
before and after some treatment aimed at reducing blood pressure. Two values will be
recorded from each patient, hence the data is paired.

However, if we measure the blood pressure of two groups of patients, one receiving
treatment in Hospital A and the other in Hospital B, the data is unpaired.

There are some guidelines we can use to distinguish between paired and unpaired data:

• If the two samples are of unequal size, then they are unpaired.

• For data to be paired, there must be a reason to associate a particular measurement
in one sample with a measurement in the other sample. If there is no reason to pair
measurements in this way, the data is treated as unpaired.

31.4.1 Unpaired Samples

Let X1 and X2 be two random variables with random sample sizes n1 and n2, mean µ1

and µ2. In comparing the two populations, we typically set up our null hypothesis as H0:
µ1 − µ2 = µ0 with a one- or two-sided alternative hypothesis, similar to the single-value
case discussed in the previous section.
When comparing unpaired data, one key assumption we typically make is that X1 and

X2 are independent, as this allows us to formulate our test statistics nicely.

Known Population Variance

Suppose X1 and X2 have known variances σ2
1 and σ2

2 respectively. If X1 and X2 are
normally distributed, then

X1 ∼ N

(
µ1,

σ2
1

n1

)
and X2 ∼ N

(
µ2,

σ2
2

n2

)
.

If X1 and X2 are not normally distributed, then for large samples (n1, n2 ≥ 30), by the
Central Limit Theorem, we can approximate X1 and X2 using a normal distribution:

X1 ∼ N

(
µ1,

σ2
1

n1

)
and X2 ∼ N

(
µ2,

σ2
2

n2

)
approximately.

Our test statistic is thus

X1 −X2 ∼ N

(
µ1 − µ2,

σ2
1

n1
+

σ2
2

n2

)
,

and we proceed with the two-sample z-test.
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Sample Problem 31.4.3. A random sample of size 100 is taken from a population with
variance σ2

1 = 40. Its sample mean x1 is 38.3. Another random sample of size 80 is taken
from a population with variance σ2

2 = 30. Its sample mean x2 is 40.1. Assuming that
the two populations are independent, test, at the 5% level, whether there is a difference
in the population means µ1 and µ2.

Solution. Our hypotheses are H0: µ1 − µ2 = 0 and H1: µ1 − µ2 ̸= 0. Under H0, our test
statistic is

X1 −X2 ∼ N

(
0,

40

100
+

30

80

)
.

From the sample, x1 = 38.3 and x2 = 40.1. Using G.C., the p-value is 0.040888, which is
less than our significance level of 5%. Thus, we reject H0 and conclude there is sufficient
evidence at the 5% level that there is a difference in the two population means. □

Unknown Population Variance with Large Sample Size

If we do not know the population variances of X1 and X2, we instead use the unbiased
estimates s21 and s22. For large samples (n1, n2 ≥ 30), we have, by the Central Limit
Theorem, the following test-statistic:

X1 −X2 ∼ N

(
µ1 − µ2,

σ2
1

n1
+

σ2
2

n2

)
approximately.

If we know further that the two populations have common variance2, i.e. σ2
1 = σ2

2, the
pooled variance

s2p =
(n− 1) s21 + (n2 − 1) s22
(n1 − 1) + (n2 − 2)

=

∑
(x1 − x1)

2 +
∑

(x2 − x2)
2

(n1 − 1) + (n2 − 1)

would provide a more precise estimate of the population variance. Our test statistic is
hence

X1 −X2 ∼ N

(
µ1 − µ2, s

2
p

(
1

n1
+

1

n2

))
approximately.

Either way, we proceed with the two-sample z-test.

Sample Problem 31.4.4. Two statistics teachers, Mr Tan and Mr Wee, argue about
their abilities at golf. Mr Tan claims that with a number 7 ion he can hit the ball, on
average, at least 10 m further than Mr Wee. Denoting the distance Mr Tan hits the ball
by (100 + c) m, the following results were obtained:

n1 = 40,
∑

c = 80,
∑

(c− c)2 = 1132.

Denoting the distance Mr Wee hits the ball by (100 + t) m, the following results were
obtained:

n2 = 35,
∑

t = −175,
∑(

t− t
)2

= 1197.

If the distances for both teachers have a common variance, test whether there is any
evidence at the 1% level, to support Mr Tan’s claim.

Solution. Let X1 and X2 be the random variable denoting the distance, in m, for Mr Tan
and Mr Wee, with population mean µ1 and µ2 respectively. From the data, we have

x1 = 100 +
80

40
= 102 and x2 = 100 +

−175

35
= 95,

2As a rule of thumb, the assumption σ1 = σ2 is considered reasonable if 1/2 ≤ s1/s2 ≤ 2.
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so the pooled variance is

s2p =

∑
(x1 − x1)

2 +
∑

(x2 − x2)
2

(n1 − 1) + (n2 − 1)
=

1132 + 1197

(30− 1) + (35− 1)
= 31.90.

We now perform a two-sample z-test at the 1% level. Our hypotheses are H0: µ1−µ2 = 10
and µ1 − µ2 < 10. Under H0, our test statistic is

X1 −X2 ∼ N

(
µ1 − µ2, s

2
p

(
1

n1
+

1

n2

))
= N(10, 1.70915).

Using G.C., the p-value is 0.0109, which is greater than our significance level of 1%. Thus,
we do not reject H0 and conclude there is insufficient evidence to suppose Mr Tan’s claim.
□

Unknown Population Variance with Small Sample Size

If the random sample sizes are not large, then the normal distribution is no longer a
reasonable approximation to the distribution of the test statistic. In order to progress, we
must have the following assumptions:

• X1 and X2 have independent, normal distributions.

• X1 and X2 have a common variance.

With these assumptions, it can be shown that the test statistic T given by

T =

(
X1 −X2

)
− (µ1 − µ2)

Sp

√
1
n1

+ 1
n1

∼ t((n1 − 1) + (n2 − 1)),

where

S2
p =

(n− 1)S2
1 + (n2 − 1)S2

2

(n1 − 1) + (n2 − 2)

is the pooled variance (unbiased estimate of the common variance). Note that there we
lose 2 degrees of freedom since we use both x1 and x2 to estimate s21 and s22.

Sample Problem 31.4.5. The heights (measured to the nearest cm) of a random sample
of six policemen from country A were found to be

176, 180, 179, 181, 183, 179.

The heights (measured to the nearest cm) of a random sample of eleven policemen from
country B have the following data:

∑
y = 1991,

∑
(y − y)2 = 54.

Test, at the 5% level, the hypothesis that policemen from country A are shorter than
policemen from country B. State any assumptions that are needed for this test.

Solution. Let XA and XB be the height in cm of a policeman from country A and
B, with population mean µA and µB respectively. We assume that XA and XB have
independent, normal distributions, and they share a common variance. Our hypotheses
are H0: µA − µB = 0 and H1: µA − µB < 0. Under H0, our test statistic is

T =
XA −XB

Sp

√
1
6 + 1

11

∼ t(15).
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From the sample,

xA = 179.67 and xB =
1991

11
= 81.

The unbiased estimates of each sample variance is

s2A = 5.4667 and s2B =
1

10

∑
(y − y)2 = 5.4.

Thus, the pooled variance is

s2p =
(6− 1)(5.4667) + (11− 1)(5.4)

(6− 1) + (11− 1)
= 5.4222.

Using G.C., the p-value is 0.139, which is greater than our significance level of 5%. Thus,
we do not reject H0 and conclude there is insufficient evidence to claim that policemen
from country A are shorter than policemen from country B. □

31.4.2 Paired Samples

If the given data is paired, then the two populations are no longer independent, hence
we cannot use any of the tests previously discussed. Instead, we will now consider the
difference D = X1 − X2, which is calculated for each matched pair. Writing µD for the
mean of the distribution of differences between the paired values, our null hypothesis is
H0: µD = µ0 with a one-sided or two-sided H1 as appropriate.
Notice that by working with the differences, we have effectively reduced our problem

into a single sample situation, so the usual hypothesis test considerations for a single
sample mean applies. For instance, if D can be presumed to be normally distributed, or
if n is sufficiently large that the Central Limit Theorem can be applied to approximate D
to have a normal distribution, then

D ∼ N

(
µD,

s2D
n

)
,

and we proceed with a paired-sample z-test. Alternatively, if D can be presumed to have
a normal distribution, but n is small, then the test statistic

T =
D − µD

SD/
√
n

∼ t(n− 1)

can be used. In this case, we proceed with a paired-sample t-test.
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31.5 χ2 Tests

31.5.1 The χ2 Distribution

The χ2 distribution is a continuous distribution with a positive integer parameter ν.

Definition 31.5.1. The sum of the squares of ν independent standard normal random
variables Z1, . . . , Zν is distributed according to a χ2 distribution ν degrees of freedom,
denoted χ2

ν .
Z2
1 + · · ·+ Z2

ν ∼ χ2
ν .

ν = 1
ν = 2
ν = 5
ν = 10

Figure 31.6: The χ2
ν distribution for varying values of ν.

The χ2 distribution has a reverse “J”-shape for ν = 1, 2, and is positively skewed
for ν > 2. As ν increase, the distribution becomes more symmetric. For large ν, the
distribution is approximately normal.

Fact 31.5.2 (Properties of the χ2 Distribution).

• A χ2
ν distribution has mean ν and variance 2ν.

• A χ2
ν distribution has mode ν − 2 for ν ≥ 2.

• If U and V are independent random variables such that U ∼ χ2
u and V ∼ χ2

v, then
U + V ∼ χ2

u+v.

31.5.2 χ2 Goodness-of-Fit Test

Previously, we have always assumed that a particular type of distribution is appropriate
for the data given and have focused on estimating and testing hypotheses about the
parameter of the distribution. In this section, the focus changes to the distribution itself,
and we ask “Does the data support the assumption that a particular type of distribution
is appropriate?”
As a motivating example, suppose we roll a six-sided die 60 times and obtain the fol-

lowing observed frequencies:

Outcome 1 2 3 4 5 6

Observed frequency, O 4 7 16 8 8 17

In this sample, there seems to be a rather large number of 3’s and 6’s. Is this die fair,
or is it biased? With a fair die, the expected frequencies would each be 60/6 = 10.
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Outcome 1 2 3 4 5 6

Expected frequency, E 10 10 10 10 10 10

The question is thus whether the observed frequencies O and the expected frequencies
E are reasonably close or unreasonably different. An obvious comparison would be the
differences (O − E):

Outcome 1 2 3 4 5 6

Observed frequency, O 4 7 16 8 8 17

Expected frequency, E 10 10 10 10 10 10

Difference, O − E −6 −3 6 −2 −2 7

The larger the magnitude of the differences, the more the observed data differs from the
model that the die was fair.
Suppose we now roll a second die 660 times and obtain the following results:

Outcome 1 2 3 4 5 6

Observed frequency, O 104 107 116 108 108 117

Expected frequency, E 110 110 110 110 110 110

Difference, O − E −6 −3 6 −2 −2 7

This time, the observed and expected frequencies seem close, yet the differences O −E
are the same as before. We see that it is not just the size of O−E that matters, but also
its relative size to the expected frequency (O − E)/E.

Combining the ideas, the goodness-of-fit for an outcome i is measured using

(Oi − Ei) ·
Oi − Ei

Ei
=

(Oi − Ei)
2

Ei
.

The smaller this quantity is, the better the fit. An aggregate measure of goodness-of-fit
of the model is thus given by the χ2 statistic:

χ2 =
∑ (Oi − Ei)

2

Ei
.

As the name suggests, this test statistic follows a χ2 distribution.
Observe that if χ2 = 0, there is exact agreement between Oi and Ei, so the model is a

perfect fit. If χ2 > 0, then Oi and Ei do not agree exactly. The larger the value of χ2, the
greater the discrepancy.
For the test, we define H0 as our sample having the expected probabilities of the various

categories. The alternative hypothesis H1 will be that H0 is incorrect, i.e. the sample does
not have the expected probabilities of the various categories. We use the χ2 test statistic,
which generally follows a χ2

m−1−k distribution, where m is the number of categories being
compared, and k is the number of parameters estimated from the data.

Example 31.5.3. Suppose we wish to test if a given set of data fits a Poisson model. If
we are not given the mean rate λ, we can estimate it using x ≈ λ. In doing so, we lose
one degree of freedom, so the resulting χ2 test statistic will follow a χ2

m−2 distribution.

Example 31.5.4. To formalize our motivating example, we define H0: the die is fair, and
H1: the die is not fair. We take a 2.5% level of significance. Our test statistic is

χ2 =
∑ (Oi − Ei)

2

Ei
∼ χ2

6−1 = χ2
5.
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From the sample, the individual contributions are given by

Outcome 1 2 3 4 5 6

Oi 4 7 16 8 8 17

Ei 10 10 10 10 10 10

(Oi − Ei)
2/Ei 3.6 0.9 3.6 0.4 0.4 4.9

The test statistic value is thus

3.6 + 0.9 + 3.6 + 0.4 + 0.4 + 0.9 = 13.8.

Using G.C., the p-value is
P
[
χ2 ≥ 13.8

]
= 0.016931.

Since the p-value is less than our significance level of 2.5%, we reject H0 and conclude
there is sufficient evidence at the 2.5% significance level that the die is not fair.

Small Expected Frequencies

The distribution of
∑

(Oi−Ei)
2/Ei is discrete. The continuous χ

2 distribution is simply a
convenient approximation which becomes less accurate as the expected frequencies become
smaller. Generally, the approximation may be used only when all expected frequencies are
less than 5. If a category has an expected frequency less than 5, we must combine it with
other categories. This combination may be done in any sensible grounds, but should be
done without reference to the observed frequencies to avoid bias.

Sample Problem 31.5.5. A random sample of 40 observations on the discrete random
variable X is summarized below:

x 0 1 2 3 4 ≥ 5

Frequency 4 14 9 7 6 0

Test, at the 5% significance level, whether X has a Poisson distribution with mean
equal to 2.

Solution. Our hypotheses are H0: the data is consistent with a Po(2) model, and H1: the
data is inconsistent with a Po(2) model. From the given data, the observed and expected
frequencies are

x 0 1 2 3 4 ≥ 5

Oi 4 14 9 7 6 0

Ei 5.4143 10.821 10.827 7.2179 3.6089 2.1061

The last two categories have expected frequencies less than 5, so we combine them into
a single category:

x 0 1 2 3 ≥ 4

Oi 4 14 9 7 6

Ei 5.4143 10.821 10.827 7.2179 5.7151

Our test statistic is ∑ (Oi − Ei)
2

Ei
∼ χ2

5−1.
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Using G.C., the p-value is 0.80373, which is larger than our 5% significance level, thus we
do not reject H0 and conclude there is insufficient evidence that the data is inconsistent
with a Po(2) model. □
In general, we have the following procedure:

Recipe 31.5.6 (χ2 Goodness-of-Fit Test).

1. State hypotheses and significance level.

2. Compute expected frequencies under H0.

3. Combine any categories if there are expected frequencies under 5.

4. Determine the degrees of freedom and state the test statistic.

5. Calculate the p-value.

6. State the conclusion of the test in context.

31.5.3 χ2 Test for Independence

Suppose we record data concerning two categorical variables for a sample of individuals
chosen randomly from a population. It is convenient to display the data in the form of a
contingency table. Here is an example which shows information on voting:

Party A Party B Party C Total

Male 313 124 391 828

Female 344 158 388 890

Total 657 282 779 1718

Sample data of this type are collected in order to answer interesting questions about the
behaviour of the population, such as “Are there differences in the way males and females
vote?” If there are differences, then the variables “vote” and “gender” are said to be
associated, else they are independent.
To test for independence between variables, we employ a χ2 test for independence. Our

null hypothesis is that the variables are independent, while our alternative hypothesis is
that the variables are associated.
Under the null hypothesis, the best estimate of the population proportion voting for

Party A is 657/1718. The expected number of males voting for Party A would thus be
828× 657/1718 = 316.64, and the number of females would be 890× 657/1718 = 340.36.
These expected frequencies, Ei, are calculated using the formula

E =
row total× column total

grand total
.

Doing this for all combination of party and gender, we get the following table of expected
frequencies:

Expected Frequencies
Party A Party B Party C

Male 316.64 135.91 375.44

Female 340.36 146.09 403.56

The test statistic
∑

(Oi − Ei)
2/Ei is computed and compared with the relevant χ2

distribution. For a contingency table with r rows and c columns, the degrees of freedom
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ν is given by
ν = (r − 1)(c− 1),

since we only need (r− 1)(c− 1) values to completely determine the entire table (try it!).
In our case, ν = (2− 1)(3− 1) = 2.
In general, we have the following procedure:

Recipe 31.5.7 (χ2 Test for Independence).

1. State hypotheses and significance level.

2. Compute expected frequencies under H0 and tabulate them.

3. Combine any rows/columns if there are expected frequencies under 5.

4. Determine the degrees of freedom and state the test statistic.

5. Calculate the p-value.

6. State the conclusion of the test in context.
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32 Hypothesis Testing (Non-Parametric)

Previously, we examined tests that require certain assumptions about the underlying dis-
tribution from which the data arises. Tests which do not require such assumptions are
called non-parametric. Note that non-parametric tests are generally less powerful than
the equivalent parametric tests, especially if the assumptions required by the parametric
tests can be justified.

32.1 Sign Test

32.1.1 Single Sample

Consider a random sample of size n from a population which has a continuous distribution
with median m. We are interested in whether the median m takes on a particular value
m0. That is, we are interested in testing the null hypothesis

H0 : m = m0

against any of the possible alternative hypotheses:

H1 : m > m0 H1 : m < m0 H1 : m ̸= m0.

Define K+ to be the number of data values greater than m0, and K− to be the number
of data values smaller than m0. Under H0, we expect about the same number of data
values that are greater than m0 and less than m0.

m = m0

× × × × × × × × × ×

Hence, our test statistic is either

K+ ∼ B

(
n,

1

2

)
or K− ∼ B

(
n,

1

2

)
,

depending on which is more convenient. For now, we take K+ to be our test statistic.
If we test H0 against H1: m > m0, then we reject H0 if the observed number of data

values greater than m0 is too large, i.e. k+ ≥ c+ for some critical value c+. Alternatively,
we can consider the p-value, which is given by P[K+ ≥ k+]. If this p-value is smaller than
our significance level α, we reject H0.

mm0

× × × × × × × × × ×

If we test H0 against H1: m < m0, then we reject H0 if the observed k+ is too small.
Alternatively, if the p-value P[K+ ≤ k+] is smaller than our significance level α, we reject
H0.

m m0

× × × × × × × × × ×
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Lastly, if we test H0 against H1: m ̸= m0, then we reject H0 if the observed k+ is too
small or too large. In this case, the p-value is given by

2min{P[K+ ≥ k+] ,P[K+ ≤ k+]} .

Note that we choose the shorter tail since we want the more “extreme” end.
To summarize,

H0 m = m0

H1 m > m0 m < m0 m ̸= m0

p-value (K+) P[K+ ≥ k+] P[K+ ≤ k+] 2min{P[K+ ≥ k+] ,P[K+ ≤ k+]}
p-value (K−) P[K− ≤ k−] P[K− ≥ k−] 2min{P[K− ≥ k−] ,P[K− ≤ k−]}

In the case where there are zeroes, we discard them and reduce the sample size accord-
ingly.

Sample Problem 32.1.1. The lifetimes of a random sample of candles, measured in
minutes are

354, 358, 348, 342, 352, 335, 364, 345, 360, 341.

The manufacturer claims that the median lifetime is at least 360 minutes. Use a sign
test, at the 5% significance level, to test whether the manufacturer’s claim is justified.

Solution. Let m be the population median. Our hypotheses are H0: m = 360 and H1:
m < 360. We take a 5% level of significance. Subtracting the observed data values by the
postulated median m = 360 and writing down the signs, we obtain

−, −, −, −, −, −, +, −, 0, −.

LetK+ be the number of data values greater than 360. Discarding the zero, we have, under
H0, K+ ∼ B(9, 1/2). From the sample, k+ = 1. The p-value is hence P[K+ ≤ 1] = 0.0195.
Since the p-value is smaller than our 5% significance level, we reject H0 and conclude there
is sufficient evidence at the 5% level that the manufacturer’s claim is not justified. □

32.1.2 Paired Sample

By considering the difference in population medians, the sign test can be used for paired
samples, as demonstrated in the example below.

Sample Problem 32.1.2. Students in a school take a mock examination before taking
the actual A-level examination. The marks for a particular subject, in both the mock
and actual examinations, by a random sample of 13 students are shown below.

Candidate Number 1 2 3 4 5 6 7 8 9 10 11 12 13

Mock Exam Mark 40 65 53 79 87 42 80 63 51 82 27 71 29

Actual Exam Mark 45 68 47 75 88 60 77 69 60 88 30 73 35

Test, at the 5% level, whether the candidates did better in the actual A-level than in
the mock examination for this subject.

Solution. Let m be the population median mark difference of (Actual − Mock). Our
hypotheses are H0: m = 0 and H1: m > 0. We take a 5% level of significance. Subtracting
matched pairs of (Actual − Mock) and writing down the signs, we obtain

+, +, −, −, +, +, −, +, +, +, +, +, +.



32.2 Wilcoxon Matched-Pair Signed Rank Test 257

Let K+ be the number of data values greater than 0. Under H0, K+ ∼ B(13, 1/2). From
the sample, k+ = 10. The p-value is hence P[K+ ≥ 10] = 0.0461, which is greater than
our 5% significance level. Hence, we reject H0 and conclude there is sufficient evidence at
the 5% level that the students did better in the actual A-level examination. □

32.1.3 Large Sample

LetX ∼ B(n, 1/2). For large n (n ≥ 30), we can approximateX with a normal distribution
via the Central Limit Theorem:

X ∼ N
(n
2
,
n

4

)
approximately.

This is useful when conducting a sign test with a large sample.

32.2 Wilcoxon Matched-Pair Signed Rank Test

When testing paired samples, one drawback of using the sign test is that it only takes
into account the sign of the differences between paired values. To see how this might be
problematic, consider the following set of differences:

Magnitude of Difference 7 2 6 4 22 15 5 1 12 16

Sign of Difference + − + + + + + − + +

We see that negative differences are very small (e.g. −1, −2) as compared to some of
the positive differences (e.g. 22, 16).
The Wilcoxon matched-pair signed rank test improves on the sign test by considering

the magnitude of the differences. This is done by ranking the magnitudes of the differences
in ascending order, starting with rank 1. For instance, the ranks for the above example
are given by

Magnitude of Difference 7 2 6 4 22 15 5 1 12 16

Sign of Difference + − + + + + + − + +

Rank 6 2 5 3 10 8 4 1 7 9

Let P be the sum of the ranks corresponding to the positive differences and let Q be
the sum of the ranks corresponding to the negative differences. Let m be the population
median. Our null hypothesis is H0: m = 0. From here, the main idea is

• If we test H1: m > 0, we reject H0 if Q is too small, i.e. q ≤ c− for some critical
value c−.

• If we test H1: m < 0, we reject H0 if P is too small, i.e. p ≤ c+ for some critical
value c+.

• If we test H1: m ̸= 0, we reject H0 when either P or Q is too small.

In all cases above, we can either choose our test statistic T to be either P orQ. Typically,
we take T to be the smaller of two, as demonstrated above.
For small n, the critical value can be found in the provided formula list.

Sample Problem 32.2.1. Eight strands of wires were tested for their breaking points
and then were retested after they were rusted. The breaking points were recorded as
follows:
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Non-Rusted 9.4 8.1 6.6 9.9 8.7 8.3 7.0 7.5

Rusted 7.2 5.4 7.1 8.1 7.0 7.9 8.5 6.2

Carry out a Wilcoxon matched-pair signed rank test at the 5% level of significance to
determine whether, on average, the rusted wires have lower breaking points.

Solution. Let m be the population median difference of (Non-Rusted − Rusted). Our
hypotheses are H0: m = 0 and H1: m > 0. We take a 5% significance level.

Non-Rusted 9.4 8.1 6.6 9.9 8.7 8.3 7.0 7.5

Rusted 7.2 5.4 7.1 8.1 7.0 7.9 8.5 6.2

NR − R 2.2 2.7 −0.5 1.8 1.7 0.4 −1.5 1.3

Rank 8 7 2 6 5 1 4 3

Let P be the sum of ranks corresponding to positive differences, and let Q be the sum
of ranks corresponding to negative differences. Let T be the smaller of the two. From the
above table, we see that p = 6 and q = 30, so t = 6. From the formula list, we reject H0

if t ≤ 5. Since t = 6 > 5, we do not reject H0 and conclude there is insufficient evidence
at the 5% level that the rusted wires have lower breaking points. □

32.2.1 Large Sample

For large n (n > 20), the test statistic T can be approximated with a normal distribution
via the Central Limit Theorem:

T ∼ N

(
n(n+ 1)

4
,
n(n+ 1)(2n+ 1)

24

)
approximately.

With this approximation, we can calculate the appropriate p-value. Note that T can either
be P or Q.

32.3 Comparison of the Tests

The sign test and the Wilcoxon matched-pair signed rank test do not always produce the
same results.
The advantage of the Wilcoxon matched-pair signed rank test compared to the sign test

is that it takes into account the magnitude of the differences of the matched observations
as well as the signs of the difference. Thus, it is a more powerful test than the sign test.
However, one disadvantage of the Wilcoxon matched-pair signed rank test compared

to the sign test is that it requires an additional assumption that the distribution of the
differences must be symmetric about the median zero.
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33 Correlation and Regression

Correlation and regression are statistical methods that examine the relationship between
two quantitative variables.
Correlation is concerned with quantifying the (linear) relationship between two variables.

Informally, it allows us to tell how strongly two variables move with each other. For
instance, suppose we measure the heights and weights of a group of people. Intuitively,
we would expect taller people to be heavier, hence there is a positive correlation between
height and weight.
Regression, on the other hand, is concerned with quantifying how a change in one

variable will affect the other variable. That is, regression predicts the value of a variable
based on the value of the other variable. Reusing our previous example, regression allows
us to predict the height of a person that weighs 70 kg.

33.1 Independent and Dependent Variables

When performing correlation and regression analysis, we need two sets of data, one for
each variable. The resulting data is called bivariate data. A set of n bivariate data can
be expressed using ordered pairs (xi, yi), where x and y are the two variables.

Definition 33.1.1. In a bivariate relationship, the independent variable is the one that
does not rely on changes in another variable, while the dependent variable is the one
that depends on or changes in response to the independent variable.

Informally, the independent variable is the variable we can “control” in an experiment,
allowing us to vary its value to observe the resulting change in the value of the dependent
variable.

Recipe 33.1.2. To determine if there exists an independent/dependent relationship be-
tween two variables x and y, we look at

• The context of the question – Does one variable depend on the other?

• Key phrases in the question, e.g. “investigate how A depends on B” means that
B is likely the independent variable and A the dependent variable.

• Fixed or controlled variable in an experiment – If a variable is manipulated in
fixed increments, it is likely to be independent variable.

Note however, that not all bivariate relationships have an independent and dependent
variable. For instance, consider the following example:

Example 33.1.3. Six newly-born babies were randomly selected. Their head circumfer-
ence x cm, and body length, y cm were measured by the paediatrician and tabulated.

x 31 32 33.5 34 35.5 36

y 45 49 47 50 53 51

All three heuristics for determining the independent/dependent relationship between
x and y are not applicable. Hence, we say there is no clear independent and dependent
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variables, and we assume that no such relationship exists between the two variables.

33.2 Scatter Diagram

A scatter diagram is obtained when each pair of data value (xi, yi) from a set of bivariate
sample {(x1, y1), . . . , (xn, yn)} is plotted as a point on an x-y graph.

Recipe 33.2.1 (Drawing a Scatter Diagram). When drawing a scatter diagram, note that

• data points should be marked with a cross (×);

• axes need not start from 0;

• axes need to be labelled according to context;

• the range of data values and the relative scale of the axes need to be indicated;

• the relative position of the points should be accurate.

Example 33.2.2. The number of employees, y, who stay back and continue in the office
t minutes after 5 pm on a particular day in a company is recorded. The results are
shown in the table.

t 15 30 45 60 75 90 105

y 30 19 15 13 12 11 10

Plotting the above points, we get our scatter diagram:

15 105

30

10

t

y

Figure 33.1

33.2.1 Interpreting Scatter Diagrams

There are four main relationships we can observe on a scatter diagram:

• Positive linear relationship – As x increases, y increases.

• Negative linear relationship – As x increases, y decreases.

• Curvilinear relationship – The points seem to lie on a curve.

• No clear relationship – The points seem to be randomly scattered.
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Figure 33.2: Positive linear relationship.
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Figure 33.3: Negative linear relationship.
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Figure 33.4: Curvilinear linear relationship.
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Figure 33.5: No clear relationship.

33.3 Product Moment Correlation Coefficient

As mentioned in the introduction, correlation refers to the relationship between two vari-
ables. We can quantify this relationship by the product moment correlation coefficient.

Definition 33.3.1. The product moment correlation coefficient, denoted r, for a sample
of bivariate data, is given by

r =

∑
(x− x) (y − y)√∑

(x− x)2
√∑

(y − y)2
.

We can manipulate r to get rid of x and y:

r =

∑
xy − 1

n

∑
x
∑

y√∑
x2 − 1

n (
∑

x)2
√∑

y2 − 1
n (
∑

y)2
,

where n is the number of ordered pairs in the sample.

33.3.1 Characteristic of r

r can only take on values between −1 and 1. A summary of the value(s) of r and the
associated linear correlation is given below.
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Value of r Linear Correlation Observation on Scatter
Diagram

r = 1 Perfect positive linear correlation The points all lie on a straight line
with positive gradient

r ≈ 1 Strong positive linear correlation The points lie close to a straight
line with positive gradient

0 < r < 1 Positive linear correlation Most points lie in a band with
positive gradient

r = 0 No linear correlation No pattern or non-linear pattern

−1 < r < 0 Negative linear correlation Most points lie in a band with
negative gradient

r ≈ −1 Strong negative linear correlation The points lie close to a straight
line with negative gradient

r = −1 Perfect negative linear correlation The points all lie on a straight line
with negative gradient

To understand why this is the case, consider the sign of r. Looking at the definition of
r, it is clear that

r > 0 ⇐⇒
∑

(x− x) (y − y) > 0.

Likewise,

r < 0 ⇐⇒
∑

(x− x) (y − y) < 0.

Consider now the following figure:

(x, y)

AB

C D

Figure 33.6

Consider quadrant A. Any data point (x, y) within this quadrant will satisfy x > x and
y > y, so (x− x) (y − y) > 0. Similar analysis reveals that

(x− x) (y − y) =

{
> 0 for quadrants A and C,

< 0 for quadrants B and D.

Thus, if the overall sum is positive, the points must have been largely scattered within
quadrants A and C, which we visually interpret as a “positive gradient”. Likewise, if the
overall sum is negative, the points must have been largely scattered within quadrants B
and D, which we interpret as a “negative gradient”. Lastly, if the overall sum is near 0,
the points must have been scattered randomly throughout all four quadrants, so there is
no linear relationship between the variables.

33.3.2 Importance of Scatter Diagram

The value of r should always be interpreted together with a scatter diagram where possible.
The value of r can be affected by outliers and can give a misleading conclusion on the linear
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correlation of two variables. For instance, the following two sets of bivariate data differ
only by one data point, yet they have drastically different product moment correlation
coefficients:

1 10

1

x

y

Figure 33.7: r = 0.975.

1 10

1

x

y

Figure 33.8: r = 0.821.

Thus, the scatter diagram should always be used in the interpretation of correlation, as
it not only shows the pattern trend between the variables, but it also reveals the existence
of any outliers which may have affected the value of r.

33.3.3 Correlation and Causation

A strong or perfect linear correlation between two variables does not necessarily imply one
directly causes the other; correlation does not imply causation.

33.4 Predicting or Estimating Using Regression Line

In statistical studies, when it is observed that a significant linear correlation exists between
two variables of study, best-fit lines or regression lines are often obtained in order to make
predictions or estimations relating to x and/or y. For bivariate data, there are two possible
regression lines that we can draw:

• regression line of y on x, or

• regression line of x on y.

33.4.1 Regression Line of y on x

Let (xi, yi) for i = 1, . . . , n be a set of n observed data points.

Definition 33.4.1. The vertical residual, denoted vi, is the deviation between the actual
and predicted y-values.

vi = yi − (a+ bxi)

for some constants a and b.

We can think of a vertical residual as the (signed) vertical distance between an observed
data point (xi, yi) and the line y = a+ bx.
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y y = a+ bx

Figure 33.9: The vertical residuals as vertical distances between actual and observed val-
ues.

Definition 33.4.2. The least-squares regression line of y on x is obtained by finding
the values of a and b in y = a+ bx that minimizes the sum of the squares of the vertical
residuals, S:

S =
n∑

i=1

v2i =
n∑

i=1

[yi − (a+ bxi)]
2 .

The values of a and b that minimize S is called the least-squares estimates of a and b.
b is also sometimes called the regression coefficient.
The following result can be shown using functions of two variables (see Assignment B11

Problem 3):

Proposition 33.4.3. The regression line of y on x is given by y − y = b (x− x) where

b =

∑
(x− x) (y − y)∑

(x− x)2
=

∑
xy − n (x) (y)∑
x2 − n (x)2

.

Observe that the regression line of y on x passes through the mean point (x, y).

33.4.2 Regression Line of x on y

The regression line of x on y is similar. In this case, however, we are concerned with
horizontal deviations instead.

Definition 33.4.4. The horizontal residual, denoted hi, is the deviation between the
actual and predicted x-values.

hi = yi − (c+ dxi)

for some constants c and d.

Analogous to vi, we can think of a horizontal residual as the (signed) horizontal distance
between an observed data point (xi, yi) and the line x = c+ dy.
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Figure 33.10: The horizontal residuals as horizontal distances between actual and observed
values.

Definition 33.4.5. The least-squares regression line of x on y is obtained by finding the
values of c and d in x = c+ dy that minimizes the sum of the squares of the horizontal
residuals, S:

S =
n∑

i=1

h2i =
n∑

i=1

[xi − (c+ dyi)]
2 .

Problem 1. The regression line of x on y is given by x− x = d (y − y), where

d =

∑
(x− x) (y − y)∑

(y − y)2
=

∑
xy − n (x) (y)∑
y2 − n (y)2

.

As in the y on x case, we call d the regression coefficient. Note that 1/d, and not d, is
the gradient of the regression line. Observe that the regression line of x on y also passes
through the mean point (x, y).

33.4.3 Determining Which Regression to Use

If there is an independent variable x, we use the regression line y on x regardless of whether
we are predicting or estimating y or x, and vice versa when y is the independent variable.
However, if there is no clear dependent-independent relationship, we determine the

independent variable based on the given value. For example, if we are given the value of
x, we use the regression line y on x.

33.4.4 Interpolation and Extrapolation

Definition 33.4.6. An estimate is said to be an interpolation if it is within the given
range of values of data. Else, it is an extrapolation.

Extrapolation of the sample should be used with caution as the relationship between x
and y may not be linear beyond a certain point.

33.4.5 Reliability of an Estimate

There are three criteria we typically use when commenting on the reliability of an estimate:

• Appropriateness of the regression line used – The correct regression line should be
used for the estimate to be reliable.
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• Strength of linear correlation – |r| should be close to 1 for the estimate to be reliable.

• Interpolation or extrapolation – Interpolation is likely to give a more reliable estimate
than extrapolation.

For an estimate to be reliable, all three criteria should be satisfied. If at least one of
the criteria is not satisfied, we deem the estimate to be unreliable.

33.5 Transformations to Linearize Bivariate Data

The relationship between two variables involved, x and y, may not always be linear.
Thus, it would be inappropriate to use the regression lines relating to x and y to make
estimations. However, non-linear relationships can be transformed into a linear form by a
process usually called transformation to linearity. The table below shows some examples:

Original Equations Transformed Equations Linearly-related Expressions

y = a+ bx2 - y vs x2

y = abx ln y = ln a+ x ln b ln y vs x

y = axb ln y = ln a+ b lnx ln y vs lnx

Sometimes, we are given a scatter diagram and are tasked with comparing two or more
proposed models and determine which model is a better fit. In such a scenario, we simply
state which equation fits the shape of the scatter plot better. If there is more than one
possibility, we can compute the product moment correlation coefficient for each model and
“break the tie” by choosing the model with |r| closest to 1.

33.6 Bonus: A Probabilistic Approach to Linear Regression

In an ideal world, our variables will be exactly related by the model y = a+ bx. However,
in the real world, whenever we observe a data point, our readings will contain some error
ϵ, so our observations are actually modelled by y = a + bx + ϵ. In real life, these errors
are caused by thousands of different factors. We can hence think of ϵ as the sum of many
independent random variables. But by the Central Limit Theorem, it follows that ϵ is
distributed normally, so

ϵ ∼ N
(
0, σ2

)
.

Suppose now that we obtain an observation, (xi, yi). Since ϵi = yi − (a+ bxi), the
probability of observing this data point is given by

P[(xi, yi)] = P[ϵ = ϵi] = P[ϵ = yi − (a+ bxi)] =
1√
2πσ

exp

(
−(yi − (a+ bxi))

2

2σ2

)
.

If we make n independent observations, then the overall probability of observing all n data
points is simply the product of each individual probability:

P[data] =
n∏

i=1

1√
2πσ

exp

(
−(yi − (a+ bxi))

2

2σ2

)
.

It is now natural to define the “best” model (y = a+ bx) as the one that maximizes the
probability of observing our data. That is, we wish to find a and b that maximizes

n∏

i=1

1√
2πσ

exp

(
−(yi − (a+ bxi))

2

2σ2

)
.
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Since the logarithm is monotonic, we can convert our objective function from a product
into a sum:

argmax
a,b

ln

n∏

i=1

1√
2πσ

exp

(
−(yi − (a+ bxi))

2

2σ2

)
= argmax

a,b

n∑

i=1

(
−(yi − (a+ bxi))

2

2σ2

)
,

where we ignored the constant terms contributed by 1/
√
2πσ since they do not affect the

location of the maxima. We can further ignore the 1/σ2 term since it is a constant factor.
Lastly, flipping the sign changes our objective into a minimization problem, so we get

argmin
a,b

n∑

i=1

(yi − (a+ bxi))
2 .

But this is exactly the objective of the least-squares regression line of x on y we introduced
earlier!

33.7 Bonus: r and Vectors

Suppose we have two sets of data, say x1, . . . , xn and y1, . . . , yn. Let x and y denote their
respective means. Recall that the product moment correlation coefficient r between these
two samples is given by

r =

∑
(x− x) (y − y)√∑

(x− x)2
∑

(y − y)2
.

Observe that the definition of r resembles the definition of the cosine of an angle between
two vectors! Indeed, if we define

x =



x1 − x

...
xn − x


 and y =



y1 − y

...
yn − y


 ,

then we can simply express r as

r =
x · y

|x|2 |y|2
= cos θ,

where θ is the angle between the two vectors x and y.1 Similarly, we can rewrite the
regression coefficients b and d vectorially:

b =
x · y
|x|2

and d =
x · y
|y|2

.

If we manipulate the above two expressions, we see that

b =
x̂ · y
|x| and d =

x · ŷ
|y| .

1We can think of these two vectors as the “deviation” between the sample data and their respectively
means. Indeed, it is not too hard to see that the sample variances are given by s2X = 1

n−1
|x|2 and s2Y =

1
n−1

|y|2. The scaled dot product 1
n−1

(x · y) also has a special name, called the “sample covariance”,

typically denoted s2XY , so the product moment correlation coefficient can be expressed more succinctly
as

r =
s2XY

sXsY
.



268 33 Correlation and Regression

Now observe that the numerator of b is exactly the length of projection of y onto x.
Similarly, the numerator of d is exactly the length of projection of x on y.

That is to say, b measures the ratio between the vector projection of y onto x, and
similarly for d:

b =
length of projection of y onto x

length of x
and d =

length of projection of x onto y

length of y
.

This aligns with our intuition of b and d: If the two samples share a strong linear corre-
lation, we would expect the regression lines of y on x and x on y to be roughly the same.
Indeed, x and y are roughly multiples of each other, say x ≈ λy for some λ, so

b ≈ |λy|
|y| = |λ| and d ≈ |x|

|λx| =
1

|λ| =⇒ b ≈ 1

d
.

But b and 1/d represent the gradients of the regression lines of y on x and of x on y
respectively, so the two lines have roughly equivalent gradients, i.e. the two lines are
roughly the same.
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Part VIII

Mathematical Proofs and Reasoning
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34 Propositional Logic

Mathematics is a deductive science, where from a set of basic axioms, we prove more
complex results. To do so, we often restate a sentence into statements, which are math-
ematical expressions. One important axiom that all statements obey is the law of the
excluded middle.

Axiom 34.0.1 (Law of the Excluded Middle). The law of the excluded middle states that
either a statement or its negation is true. Equivalently, a statement cannot be both true
and false, nor can it be neither true nor false.

34.1 Statements

34.1.1 Forming Statements

We call a sentence such as “x is even” that depends on the value of x a “statement about
x”. We can denote this statement more compactly as P (x). For instance, P (5) is the
statement “5 is even”, while P (72) is the statement “72 is even”, and so forth. We can
also write P (x) more compactly as P .
We now introduce some operations of statements, namely the negation, conjunction and

disjunction operations.

Definition 34.1.1. The negation of a statement P , denoted ¬P , is false when P is true,
and true when P is false. In a truth table,

P ¬P
T F

F T

Example 34.1.2. If P (x) is the statement “x is even”, then ¬P (x) is the statement “x
is odd”.

Definition 34.1.3. The conjunction of two statements P and Q, denoted P ∧ Q, has
truth table

P Q P ∧Q

T T T

T F F

F T F

F F F

Example 34.1.4. If P is the statement “I like cats”, and Q is the statement “I like dogs”,
then P ∧Q is the statement “I like cats and dogs”.
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Definition 34.1.5. The disjunction of two statements P and Q, denoted P ∨ Q, has
truth table

P Q P ∨Q

T T T

T F T

F T T

F F F

Example 34.1.6. If P is the statement “I like cats”, and Q is the statement “I like dogs”,
then P ∨Q is the statement “I like cats or dogs or both”.

Proposition 34.1.7 (De Morgan’s Law). Let P and Q be statements. Then

¬ (P ∧Q) ⇐⇒ (¬P ) ∨ (¬Q)

and
¬ (P ∨Q) ⇐⇒ (¬P ) ∧ (¬Q).

Proof. Consider the following truth tables:

P Q P ∧Q P ∨Q ¬(P ∧Q) ¬(P ∨Q) ¬P ¬Q (¬P ) ∧ (¬Q) (¬P ) ∨ (¬Q)

T T T T F F F F F F

T F F T T F F T F T

F T F T T F T F F T

F F F F T T T T T T

We see that the truth table of ¬ (P ∧Q) is equivalent to that of (¬P ) ∨ (¬Q), thus the
statements are equivalent.
Similarly, the truth table of ¬ (P ∨Q) is equivalent to that of (¬P ) ∧ (¬Q), thus the

statements are equivalent.

Example 34.1.8. Let P be the statement “I like cats”, and Q be the statement “I like
dogs”. Then ¬(P ∧ Q) is “It is not the case that I like both cats and dogs”, while
(¬P )∨ (¬Q) is “I do not like cats, or I do not like dogs, or I do not like both”. Clearly,
the two statements are equivalent.

34.1.2 Conditional and Biconditional Statements

In this section, we examine how statements are linked together to form more complicated
statements. The first type of statement we will examine is the conditional statement.
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Definition 34.1.9. A conditional statement has the form “if P then Q”. Here, P is the
hypothesis and Q is the conclusion, denoted by P =⇒ Q. This statement is defined
to have the truth table

P Q P =⇒ Q

T T T

T F F

F T T

F F T

In words, the statement P =⇒ Q also reads:

• P implies Q.

• P is a sufficient condition for Q.

• Q is a necessary condition for P .

• P only if Q.

To justify the truth table of P =⇒ Q, consider the following example:

Example 34.1.10 (Conditional Statement). Suppose I say

“If it is raining, then the floor is wet.”

We can write this as P =⇒ Q, where P is the statement “it is raining” and Q is the
statement “the floor is wet”.

• Suppose both P and Q are true, i.e. it is raining, and the floor is wet. It is
reasonable to say that I am telling the truth, whence P =⇒ Q is true.

• Suppose P is true but Q is false, i.e. it is raining, and the floor is not wet. Clearly,
I am not telling the truth; the floor would be wet if I was. Hence, P =⇒ Q is
false.

• Suppose P is false, i.e. it is not raining. Notice that the hypothesis of my claim is
not fulfilled; I did not say anything about the floor when it is not raining. Hence,
I am not lying, so P =⇒ Q is true whenever P is false.

Examples of conditional statements in mathematics include

• If |x− 1| < 4, then −3 < x < 5.

• If a function f is differentiable, then f is continuous.

We now look at biconditional statements. As the name suggests, a biconditional state-
ment comprises two conditional statements: P =⇒ Q and Q =⇒ P . The conditional
statement is much stronger than the conditional statement.
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Definition 34.1.11. A biconditional statement has the form “P if and only if”, denoted
P ⇐⇒ Q. This statement is defined to have the truth table

P Q P ⇐⇒ Q

T T T

T F F

F T F

F F T

When P ⇐⇒ Q is true, we say that P and Q are equivalent, i.e. P ≡ Q.

An equivalent definition of P ⇐⇒ Q is the statement

(P =⇒ Q) and (Q =⇒ P ).

This allows us to easily justify the truth table of P ⇐⇒ Q:

P Q P =⇒ Q Q =⇒ P P ⇐⇒ Q

T T T T T

T F F T F

F T T F F

F F T T T

Examples of conditional statements in mathematics include

• A triangle ABC is equilateral if and only if its three angles are congruent.

• a is a rational number if and only if 2a+ 4 is rational.

34.1.3 Quantifiers

We now introduce two important symbols, namely the universal quantifier (∀) and the
existential quantifier (∃)
Definition 34.1.12. Let P (x) be a statement about x, where x is a member of some set
S (i.e. S is the domain of x). Then the notation

∀x ∈ S, P (x)

means that P (x) is true for every x in the set S. The notation

∃x ∈ S, P (x)

means that there exists at least one element of x of S for which P (x) is true.

Example 34.1.13. Let P (x) be the statement “x is even”. Clearly, the statement

∀x ∈ Z, P (x)

is not true; not all integers are even. However, the statement

∃x ∈ Z, P (x)

is true, because we can find an integer that is even (e.g. x = 8).
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Note that a statement P (x) does not necessarily have to mention x. For instance, we
could define P (x) as the statement “5 is even”. Compare this with how a function f(x)
does not necessarily have to “mention” x, e.g. we could have f(x) = 5.

Proposition 34.1.14. The negation of a universal statement is an existential statement,
and vice versa.

¬ (∀x ∈ D, P (x)) ⇐⇒ ∃x ∈ D, ¬P (x).

Proof. We prove that the negation a universal statement is an existential statement. Ob-
serve that a universal statement is equivalent to a conjunction of many statements:

∀x ∈ D, P (x) ⇐⇒ P (x1) ∧ P (x2) ∧ . . . ,

where D = {x1, x2, . . .}. Using De Morgan’s laws, we can easily negate the above state-
ments:

¬ (∀x ∈ D, P (x)) ⇐⇒ ¬P (x1) ∨ ¬P (x2) ∨ . . . .

However, the last statement is equivalent to the existential statement

∃x ∈ D, ¬P (x).

Thus,
¬ (∀x ∈ D, P (x)) ⇐⇒ ∃x ∈ D, ¬P (x).

Using a similar argument, one can prove that the negation of an existential statement
is a universal statement, i.e.

¬ (∃x ∈ D, P (x)) ⇐⇒ ∀x ∈ D, ¬P (x).

Example 34.1.15. Let D be the set of all students in a class, and let P (x) be “x likes
durian”. Then the statement ∀x ∈ D, P (x) reads as “everyone in the class likes durian”.
Intuitively, its negation would be “someone in the class does not like durian”, which we
can write as ∃x ∈ D, ¬P (x).

34.1.4 Types of Statements

Most of the statements we will encounter can be grouped into three classes, namely axioms,
definitions and theorems.

Definition 34.1.16.

• An axiom is a mathematical statement that does not require proof.

• A definition is a true mathematical statement that gives the precise meaning of a
word or phrase that represents some object, property or other concepts.

• A theorem is a true mathematical statement that can be proven mathematically.

34.2 Proofs

Mathematical proofs are convincing arguments expressed in mathematical language, i.e. a
sequence of statements leading logically to the conclusion, where each statement is either
an accepted truth, or an assumption, or a statement derived from previous statements.
Occasionally there will be the clarifying remark, but this is just for the reader and has no
logical bearing on the structure of the proof.
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Definition 34.2.1. A proof is a deductive argument for a mathematical statement, show-
ing that the stated assumptions logically guarantee the conclusion.

There are three main types of proofs: direct proof, proof by contrapositive and proof
by contradiction.

34.2.1 Direct Proof

A direct proof is an approach to prove a conditional statement P =⇒ Q. It is a series
of valid arguments that starts with the hypothesis P , and ends with the conclusion Q.
As an example, we will prove the following statement:

Statement 34.2.2. For all n ∈ Z+, both n and n2 have the same parity.

Proof. Since n can only be either odd or even, we just need to consider the following cases:
Case 1 . Suppose n is even. By definition, there exists some k ∈ Z such that n = 2k.

Then
n2 = (2k)2 = 4k2 = 2

(
2k2
)
= 2a,

where a = 2k2. Since a is an integer, it follows from our definition that n2 is even. Hence,
n and n2 have the same parity.

Case 2 . Suppose n is odd. By definition, there exists some h ∈ Z such that n = 2h+1.
Then

n2 = (2h+ 1)2 = 4h2 + 4h+ 1 = 2
(
2h2 + 2h

)
+ 1 = 2b+ 1,

where b = 2h2 + 2h. Since b is an integer, it follows from our definition that n2 is odd.
Hence, n and n2 have the same parity.

34.2.2 Proof by Contrapositive

Suppose we wish to prove P =⇒ Q. Occasionally, the hypothesis P is more complicated
than the conclusion Q, which is not desirable. In such a scenario, we can choose to
prove the statement via the contrapositive, i.e. prove that ¬Q =⇒ ¬P . This typically
simplifies the proof, since our hypothesis ¬Q is now simpler.

We now show the equivalence between P =⇒ Q and ¬Q =⇒ ¬P .

Proposition 34.2.3. Let P and Q be statements. Then

P =⇒ Q ⇐⇒ ¬Q =⇒ ¬P.
Proof. Consider the following truth table:

P Q P =⇒ Q ¬Q ¬P ¬Q =⇒ ¬P
T T T F F T

T F F T F F

F T T F T T

F F T T T T

Since P =⇒ Q and ¬Q =⇒ ¬P have the same truth table, they are equivalent.

As an example, we will prove the following statement using the contrapositive.

Statement 34.2.4. For any real numbers x and y, if x2y + xy2 < 30, then x < 2 or
y < 3.

Proof. Since the hypothesis is much more complicated than the conclusion, we are moti-
vated to use the contrapositive.
Suppose x > 2 and y > 3 (this is the negation of x < 2 or y < 3). Then x2y > (2)2(3) =

12 and xy2 > (2)(3)2 = 18. Thus, x2y + xy2 > 12 + 18 = 30. (this is the negation of
x2y + xy2 < 30). Thus, by the contrapositive, the statement is true.
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34.2.3 Proof by Contradiction

A proof by contradiction is a proving technique where we want to prove that a statement
is true by assuming that it is false, and arrive at a contradiction. That is, to prove a
statement P , we can

1. Assume ¬P .

2. Derive a contradiction, or absurdity.

3. Conclude that ¬P is false, which implies P is true.

A classic example of a proof by contradiction is the irrationality of
√
2.

Statement 34.2.5.
√
2 is irrational.

Proof. Seeking a contradiction, suppose
√
2 is rational. Write

√
2 = a/b, where a and b

are coprime integers with b ̸= 0. Squaring, we get

2 =
a2

b2
=⇒ a2 = 2b2. (1)

Thus, a2 is even, which implies a is even. Hence, a = 2k for some integer k. Substituting
this back into (1), we get

(2k)2 = 2b2 =⇒ b2 = 2k2,

whence b2 is even, which implies b is also even. Thus, both a and b have a factor of 2,
contradicting our assumption that a and b are coprime. Thus, our assumption that

√
2 is

rational is false, whence
√
2 is irrational.

34.2.4 Induction

Induction is typically used to prove statements of the form “P (n) is true for all n ∈ Z+”.
There are several variants of induction.

Principle of Mathematical Induction

The basic form of mathematical induction requires two steps:

• Showing that P (0) is true, and

• Proving that P (k) =⇒ P (k + 1) for some k ∈ Z+.

With these two statements, we see that

P (0) =⇒ P (1) =⇒ P (2) =⇒ P (3) =⇒ . . . ,

i.e. P (n) is true for all n ∈ Z+.
Of course, the base case need not always be n = 0. If we wish to prove that P (n) holds

for n = m,m+1,m+2, . . . for some integer m, our base case becomes n = m, so we have
to verify that P (m) holds.

Intuitively, we can think of induction as a ladder. The base case acts as the first rung,
while the statement P (k) =⇒ P (k + 1) enables us to climb the ladder rung by rung.
A classic example of an inductive proof is to verify that the first n natural numbers sum

to n(n+ 1)/2.
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Statement 34.2.6. For n a natural number, 1 + 2 + · · ·+ n = n(n+ 1)/2.

Proof. Let P (n) be the statement 1 + 2 + · · ·+ n = n(n+ 1)/2. We induct on n.
The base case P (1) is trivial, since 1 = (1)(2)/2. Suppose that P (k) holds for some

natural number k. Consider the sum of the first k+1 natural numbers. By our induction
hypothesis, we see that

1 + 2 + · · ·+ k + (k + 1) =
k(k + 1)

2
+ (k + 1) =

(k + 1)((k + 1) + 1)

2
,

so P (k + 1) also holds. By the principle of mathematical induction, it follows that P (n)
holds for all natural numbers n.

Principle of Strong Induction

Another common variant of induction is strong induction. Like before, it involves showing
two steps:

• Showing that P (0) is true, and

• If P (0), P (1), . . . , P (k) are true, then so is P (k + 1).

Here, the inductive step is replaced with a stronger hypothesis that requires all the
terms before P (k + 1) to be true, as demonstrated in the following example:

Statement 34.2.7. All integers greater than 1 are either a prime or a product of primes.

Proof. Let P (n) be the statement “n is either a prime or a product of primes”. We induct
on n. The base case n = 2 is trivial (2 itself is a prime). Now suppose P (2) to P (k)
are true for some integer k ≥ 2. If k + 1 is prime, then P (k + 1) is trivially true. Else,
k + 1 must be composite, so we can write k + 1 = ab, for some 2 ≤ a, b ≤ k. But by
our induction hypothesis, both a and b are either primes or a product of primes, hence ab
itself is a product of primes, so P (k + 1) is true. This closes the induction.

We can also use multiple base cases for strong induction:

• Showing that the base cases P (0), P (1), . . . , P (m) are true, and

• Proving that if P (k), P (k + 1), . . . , P (k +m) are true, then P (k +m+ 1) is true.

All Horses are the Same Colour

Caution must be exercised when proving a statement inductively. Consider now the fol-
lowing “proof” that purports to show that all horses share the same colour.

Statement 34.2.8. All horses are the same colour.

Proof. Let P (n) be the statement “A group of n horses have the same colour”. We induct
on n. P (1) is trivial. Suppose that P (k) is true for some integer k ≥ 1. Consider now a
group of k + 1 horses.

• First, exclude horse k+1. Horses 1 to k are a group of k horses, so by our induction
hypothesis, they must all be of the same colour.

• Next, exclude horse 1. Horses 2 to k + 1 form another group of k horses, so they
must also all be of the same colour.
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Hence, horse k+1 must have been the same colour as the non-excluded horses, i.e. all k+1
horses share the same colour, so P (k + 1) holds. Thus, by the principle of mathematical
induction, P (n) is true for all integers n ≥ 1, so all horses are the same colour.

Of course, we know that the claim is wrong, so we must have made an error somewhere
in the proof. As an exercise, find the flaw in the proof. (Hint: consider the inductive step
P (1) =⇒ P (2).)

34.2.5 Counter-Example

In the case where we wish to prove a statement false, we can find a counter-example. In
providing a counter-example, it must fulfil the hypothesis, but not the conclusion. That
is, to show that P =⇒ Q is false, we must show that P is true but Q is false.

Example 34.2.9 (Counter-Example). Consider the statement c | ab, then c | a or c | b,
where a, b, c ∈ Z+. We can easily find a counter-example to this statement, e.g. a =
3× 37, b = 7× 37, c = 3× 7.
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35 Number Theory

35.1 Congruence

Definition 35.1.1. Let two integers a and b (with b ̸= 0). If there exists some integer n
such that a = bn, we say

• b divides a, and

• a is divisible by b.

We write this as b | a.

Proposition 35.1.2. For a, b, c ∈ Z, if a | b and a | c, then a | (b± c).

Proof. From our definition, we there exists integers x and y such that b = ax and c = ay.
Hence,

b± c = ax± ay = a (x± y) .

Since x± y is an integer, a | (b± c).

Definition 35.1.3 (Congruence Modulo). Let a, b, n ∈ Z with n > 0. We say that a is
congruent to b modulo n, denoted as

a ≡ b (mod n),

iff n divides a− b. Equivalently, a = b+ nk for some k ∈ ZZ.

Example 35.1.4. 25 ≡ 7 modulo 3 since 25− 7 = 18 is a multiple of 3.

Proposition 35.1.5 (Congruence is an Equivalence Relation). Let a, b, n ∈ Z.

• Congruence is reflexive, i.e. a ≡ a modulo n.

• Congruence is symmetric, i.e. if a ≡ b then b ≡ a (modulo n).

• Congruence is transitive, i.e. if a ≡ b and b ≡ c, then a ≡ c (all modulo n).

Proof. Trivial.

Proposition 35.1.6. For all integers a, b, c, d, k, n, with n > 1, suppose a ≡ b (mod n)
and c ≡ d (mod n). Then

• a± c ≡ b± d (mod n).

• a · c ≡ b · d (mod n).

• a+ k ≡ b+ k (mod n).

• ka ≡ kb (mod n).

• am ≡ bm (mod n) for all m ∈ Z+.
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In other words, congruence modulo preserves addition, subtraction, multiplication, and
exponentiation. Take not that congruence modulo does NOT always preserve division.
That is, if c | a and d | b, it is not always true that

a

c
≡ b

d
(mod n).

We now state an important result that formalizes our notion of remainders when dividing
integers.

Lemma 35.1.7 (Euclid’s Division Lemma). Let n ∈ Z+. Then for any m ∈ Z, there exists
a unique integer r with 0 ≤ r < n such that

m ≡ r (mod n).

Equivalently, there exists an integer q such that

m = qn+ r.

We will prove this statement for m,n > 0. We can take m > n since if 0 < m < n, we can
simply take q = 0 and r = m.

Proof. We prove that such an r exists, and show that it must be unique.

Existence. Let q be the largest number such that m ≥ nq and let r = m − nq ≥ 0.
Seeking a contradiction, suppose r ≥ n, i.e. r = n+ d for d ≥ 0. Then

m = nq + r = nq + (n+ d) = n(q + 1) + d ≥ n(q + 1),

contradicting the maximality of q. Hence, 0 ≤ r < n, i.e. r exists.

Uniqueness. Suppose there exist r1, r2, with 0 ≤ r1, r2 < n such that

m = q1n+ r1 = q2n+ r2.

Then r1 = (q2 − q1)n+ r2. Since 0 ≤ r1, r2 < n, we must have r1 = r2. Hence, r must be
unique. This concludes the proof.

Lemma 35.1.8 (Euclid’s Lemma). Let p be prime. If p divides ab, then p divides a or p
divides b.

Proof. Let

a =

k∏

i=1

pni
i , b =

l∏

j=1

q
mj

j ,

where pi and qj are primes, while ni and mj are positive integers. Then

p | ab =
k∏

i=1

pni
i

l∏

j=1

q
mj

j .

By the uniqueness of prime decomposition, either p = pi for some i = 1, . . . , k (in which
case p | a), or p = qj for some j = 1, . . . , l (in which case p | b). Hence, either p | a or
p | b.
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Theorem 35.1.9. There are infinitely many primes.

Proof. Seeking a contradiction, suppose there are finitely many primes p1, p2, . . . , pn. Con-
sider

a = p1p2 . . . pn + 1.

Since a > p1, p2, . . . pn, by our hypothesis, a cannot be a prime, i.e. a is composite. Hence,
it must have a prime factorization. Without loss of generality, suppose p1 be a prime
factor of a. Then p1 | a. However,

p1 | a− 1 = p1p2 . . . pn

too. Hence, by divisibility rules, p1 must divide the difference between a and a− 1, i.e.

p1 | [a− (a− 1)] = 1,

which implies that p1 = 1. This is a contradiction, since 1 is not a prime. Thus, there
must be infinitely many primes.
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A1 Equations and Inequalities

Tutorial A1

Problem 1. Determine whether each of the following systems of equations has a unique
solution, infinitely many solutions, or no solutions. Find the solutions, where appropriate.

(a)





a+ 2b− 3c = −5

−2a− 4b− 6c = 10

3a+ 7b− 2c = −13

(b)





x− y + 3z = 3

4x− 8y + 32z = 24

2x− 3y + 11z = 4

(c)





x1 + x2 = 5

2x1 + x2 + x3 = 13

4x1 + 3x2 + x3 = 23

(d)





1/p+ 1/q + 1/r = 5

2/p− 3/q − 4/r = −11

3/p+ 2/q − 1/r = −6

(e)





2 sinα− cosβ + 3 tan γ = 3

4 sinα+ 2 cosβ − 2 tan γ = 2

6 sinα− 3 cosβ + tan γ = 9

, where 0 ≤ α ≤ 2π, 0 ≤ β ≤ 2π, and 0 ≤ γ < π.

Solution.

Part (a). Unique solution: a = −9, b = 2, c = 0.

Part (b). No solution.

Part (c). Infinitely many solutions: x1 = 8− t, x2 = t− 3, x3 = t.

Part (d). Solving, we obtain

1

p
= 2,

1

q
= −3,

1

r
= 6.

There is hence a unique solution: p = 1/2, q = −1/3, r = 1/6.

Part (e). Solving, we obtain

sinα = 1, cosβ = −1, tan γ = 0.

There is hence a unique solution: α = π/2, β = π, γ = 0.
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Problem 2. The following figure shows the circular cross-section of a uniform log floating
in a canal.

x

y

A B

With respect to the axes shown, the circular outline of the log can be modelled by the
equation

x2 + y2 + ax+ by + c = 0.

A and B are points on the outline that lie on the water surface. Given that the highest
point of the log is 10 cm above the water surface when AB is 40 cm apart horizontally,
determine the values of a, b and c by forming a system of linear equations.

Solution. Since AB = 40, we have A(−20, 0) and B(20, 0). We also know (0, 10) lies on
the circle. Substituting these points into the given equation, we have the following system
of equations: 




−20a + c = −400

20a + c = −400

10b+ c = −100

Solving, we obtain a = 0, b = 30, c = −400.

∗ ∗ ∗ ∗ ∗

Problem 3. Find the exact solution set of the following inequalities.

(a) x2 − 2 ≥ 0

(b) 4x2 − 12x+ 10 > 0

(c) x2 + 4x+ 13 < 0

(d) x3 < 6x− x2

(e) x2(x− 1)(x+ 3) ≥ 0

Solution.

Part (a). Note that x2 − 2 ≥ 0 =⇒ x ≤ −
√
2 or x ≥

√
2. The solution set is thus{

x ∈ R : x ≤ −
√
2 or x ≥

√
2
}
.

Part (b). Completing the square, we see that 4x2 − 12x+ 10 > 0 =⇒ (x− 3
2)

2 + 1
4 > 0.

Since (x− 3
2)

2 ≥ 0, all x ∈ R satisfy the inequality, whence the solution set is R.
Part (c). Completing the square, we have x2 + 4x+ 13 < 0 =⇒ (x+ 2)2 + 9 < 0. Since
(x+ 2)2 ≥ 0, there is no solution to the inequality, whence the solution set is ∅.

Part (d). Note that x3 < 6x− x2 =⇒ x(x+ 3)(x− 2) < 0.

x
−3 0 2

− + − +
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The solution set is thus {x ∈ R : x < −3 or 0 < x < 2}.
Part (e).

x
−3 0 1

+ − − +

The solution set is thus {x ∈ R : x ≤ −3 or x = 0 or x ≥ 1}.
∗ ∗ ∗ ∗ ∗

Problem 4. Find the exact solution set of the following inequalities.

(a) |3x+ 5| < 4

(b) |x− 2| < 2x

Solution.

Part (a). If 3x + 5 < 4, then x < −1
3 . If −(3x + 5) < 4, then x > −3. Combining both

inequalities, we have −3 < x < −1
3 . Thus, the solution set is

{
x ∈ R : − 3 < x < −1

3

}
.

Part (b). If x − 2 < 2x, then x > −2. If −(x − 2) < 2x, then x > 2
3 . Combining both

inequalities, we have x > 2
3 . Thus, the solution set is

{
x ∈ R : x > 2

3

}
.

∗ ∗ ∗ ∗ ∗

Problem 5. It is given that p(x) = x4 + ax3 + bx2 + cx + d, where a, b, c and d are
constants. Given that the curve with equation y = p(x) is symmetrical about the y-axis,
and that it passes through the points with coordinates (1, 2) and (2, 11), find the values
of a, b, c and d.

Solution. We know that (1, 2) and (2, 11) lie on the curve. Since y = p(x) is symmetrical
about the y-axis, we have that (−1, 2) and (−2, 11) also lie on the curve. Substituting
these points into y = p(x), we obtain the following system of equations:





a+ b+ c+ d = 1

a− b+ c− d = −1

8a+ 4b+ 2c+ d = −5

8a− 4b+ 2c− d = 5

Solving, we obtain a = 0, b = −2, c = 0, d = 3.

∗ ∗ ∗ ∗ ∗

Problem 6. Mr Mok invested $50,000 in three funds A, B and C. Each fund has a
different risk level and offers a different rate of return.
In 2016, the rates of return for funds A, B and C were 6%, 8%, and 10% respectively

and Mr Mok attained a total return of $3,700. He invested twice as much money in Fund
A as in Fund C. How much did he invest in each of the funds in 2016?

Solution. Let a, b and c be the amount of money Mr Mok invested in Funds A, B and C
respectively, in dollars. We thus have the following system of equations.





a+ b+ c = 50000
6

100a+ 8
100b+

10
100c = 3700

a = 2c



290 A1 Equations and Inequalities

Solving, we have a = 30000, b = 5000 and c = 15000. Thus, Mr Mok invested $30,000,
$5,000 and $15,000 in Funds A, B and C respectively.

∗ ∗ ∗ ∗ ∗

Problem 7. Solve the following inequalities with exact answers.

(a) 2x− 1 ≥ 6
x

(b) x− 1
x < 1

(c) −1 < 2x+3
x−1 < 1

Solution.

Part (a). Note that x ̸= 0.

2x− 1 ≥ 6

x
=⇒ x2(2x− 1) ≥ 6x =⇒ x

(
2x2 − x− 6

)
≥ 0 =⇒ x(2x+ 3)(x− 2) ≥ 0.

x
−1.5 0 2

− + − +

Thus, −3
2 ≤ x < 0 or x ≥ 2.

Part (b). Note that x ̸= 0.

x− 1

x
< 1 =⇒ x3 − x < x2 =⇒ x

(
x2 − x− 1

)
< 0 =⇒ x(x− φ)(x− φ) < 0.

x
φ 0 φ

− + − +

Thus, x ≤ φ̄ or 0 < x ≤ φ.

Part (c).

−1 <
2x+ 3

x− 1
< 1 =⇒ −3 <

5

x− 1
< −1 =⇒ −3

5
<

1

x− 1
< −1

5
=⇒ −4 < x < −2

3
.

∗ ∗ ∗ ∗ ∗

Problem 8. Without using a calculator, solve the inequality x2+x+1
x2+x−2

< 0.

Solution. Observe that x2 + x + 1 =
(
x+ 1

2

)2
+ 3

4 > 0. The inequality thus reduces to
1

x2+x−2
< 0.

1

x2 + x− 2
< 0 =⇒ x2 + x− 2 < 0 =⇒ (x− 1)(x+ 2) < 0.

x
−2 1

+ − +

Hence, −2 < x < 1.
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Problem 9. Solve the following inequalities using a graphical method.

(a) |3x+ 1| < (4x+ 3)2

(b) |3x+ 1| ≥ |2x+ 7|

(c) |x− 2| ≥ x+ |x|

(d) 5x2 + 4x− 3 > ln(x+ 1)

Solution.

Part (a).

−3
4

1

9

(−1.14, 2.42)

(−0.549, 0.647)

O

x

y y = |3x+ 1|
y = (4x+ 3)2

Thus, x < −1.14 or x > −0.549.

Part (b).

−7
2 −1

3

1

7

(−1.6, 3.8)

(6, 19)

O

x

y y = |3x+ 1|
y = |2x+ 7|

Thus, x ≤ −1.6 or x ≥ 6.
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Part (c).

2

2

(0.667, 1.33)

O

x

y y = |x− 2|
y = x+ |x|

Thus, x ≤ 0.667.

Part (d).

−1.27 0.47

−3

(−0.916,−2.47)

(0.518, 0.418)

x = −1

O x

y y = 5x2 + 4x− 3

y = ln(x+ 1)

Thus, −1 < x < −0.916 or x > 0.518.

∗ ∗ ∗ ∗ ∗

Problem 10. Sketch the graphs of y = |x− 20| and y = 1
x on the same diagram. Hence

or otherwise, solve the inequality |x− 20| < 1
x , leaving your answers correct to 2 decimal

places.

Solution.

20

20

(0.05, 19.95)

(19.05, 0.05) (20.05, 0.05)

O

x

y y = |x− 20|
y = x−1
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Thus, 0 < x < 0.05 or 19.95 < x < 20.05.

∗ ∗ ∗ ∗ ∗

Problem 11. Solve the inequality x−9
x2−9

≤ 1. Hence, solve the inequalities

(a) |x|−9
x2−9

≤ 1

(b) x+9
x2−9

≥ −1

Solution. Note that x2 − 9 ̸= 0 =⇒ x ̸= ±3.

x− 9

x2 − 9
≤ 1 =⇒ (x− 9)

(
x2 − 9

)
≤
(
x2 − 9

)2
.

Expanding and factoring, we get

x4 − x3 − 9x2 + 9x = x(x+ 3)(x− 1)(x− 3) ≥ 0.

x
−3 0 1 3

+ − + −

Thus, x < −3 or 0 ≤ x ≤ 1 or x > 3.

Part (a). Consider the substitution x 7→ |x|. Then

|x| < −3 or 0 ≤ |x| ≤ 1 or |x| > 3.

This immediately gives us x < −3 or − 1 ≤ x ≤ 1 or x > 3.

Part (b). Consider the substitution x 7→ −x. Then

−x < −3 or 0 ≤ −x ≤ 1 or − x > 3.

This immediately gives us x < −3 or − 1 ≤ x ≤ 0 or x > 3.

∗ ∗ ∗ ∗ ∗

Problem 12. Solve the inequality x−5
1−x ≥ 1. Hence, solve 0 < 1−lnx

lnx−5 ≤ 1.

Solution. Note that x ̸= 1.

x− 5

1− x
≥ 1 =⇒ (x− 5)(1−x) ≥ (1− x)2 =⇒ 2x2− 8x+6 ≤ 0 =⇒ 2(x− 1)(x− 3) ≤ 0.

x
1 3

+ − +

Thus, 1 < x ≤ 3.
Consider the substitution x 7→ lnx. Taking reciprocals, we have our desired inequality

0 < 1−lnx
lnx−5 ≤ 1. Hence,

1 < lnx ≤ 3 =⇒ e < x ≤ e3.

∗ ∗ ∗ ∗ ∗

Problem 13. A small rocket is launched from a height of 72 m from the ground. The
height of the rocket in metres, h, is represented by the equation h = −16t2 + 64t + 72,
where t is the time in seconds after the launch.
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(a) Sketch the graph of h against t.

(b) Determine the number of seconds that the rocket will remain at or above 100 m from
the ground.

Solution.

Part (a).

4.92

136
(2, 136)

O

t

h h = −16t2 + 64t+ 72

Part (b). Note that −16t2 + 64t+ 72 ≥ 100 =⇒ −4(2t− 1)(2t− 7) ≥ 0.

x
0.5 3.5

− + −

Thus, the rocket will remain at or above 100 m from the ground for 3 seconds.

∗ ∗ ∗ ∗ ∗

Problem 14. Xinxin, a new graduate, starts work at a company with an initial monthly
pay of $2,000. For every subsequent quarter that she works, she will get a pay increase
of 5%, leading to a new monthly pay of 2000(1.05)n−1 dollars in the nth quarter, where
n is a positive integer. She also gives a regular donation of $300n in the nth quarter that
she works. However, she will stop the donation when her monthly pay falls below the
donation amount. At which quarter will this first happen?

Solution. Consider the curves y = 2000(1.05)x−1 and y = 300x.

(10.7, 3210)

O

x

y y = 2000(1.05)x−1

y = 300x

Hence, Xinxin will stop donating in the 11th quarter.
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Self-Practice A1

Problem 1. On joining ABC International School, each of the 200 students is placed in
exactly one of the four performing arts groups: Choir, Chinese Orchestra, Concert Band
and Dance. The following table shows some information about each of the performing arts
groups:

Performing Arts
Group

Choir Chinese Orchestra Concert Band Dance

Membership Fee (per
student per month)

$15 $20 $20 $18

Instructor Fee (per
student per month)

$50 $60 $75 $40

Costume Fee (one-time
payment per student)

$45 ? $40 $60

No. of Training Hours 5 6 8 7

In a typical month, the school collects a total of $3,721 for membership fee from the
students, and pays the instructors a total sum of $11,830 (assuming that this sum of
money is fully paid by the students). As for the training in a typical week, students from
Chinese Orchestra and Concert Band spend in total 431 hours more than their peers in
Choir and Dance. Find the enrolment in each of the performing arts groups.
Hence, find the costume fee paid by each student from Chinese Orchestra if a vendor

charges a total of $9,440 for all the costumes for the four performing arts groups.

Solution. Let a, b, c, d be the number of students in Choir, Chinese Orchestra, Concert
Band and Dance respectively. From the given information, we have the following equations:





a+ b+ c+ d = 200

15a+ 20b+ 20c+ 18d = 3721

50a+ 60b+ 75c+ 40d = 11830

−5a+ 6b+ 8c− 7d = 431

Using G.C., we obtain the unique solution

a = 43, b = 65, c = 60, d = 32.

Let the Chinese Orchestra’s custom fee (per student) be x. From the given information,
we have the following equation:

45a+ xb+ 40c+ 60d = 9440.

Hence,

x =
9440− 45a− 40c− 60d

b
= 49.

Thus, the costume fee paid by each student from Chinese Orchestra is $49.

∗ ∗ ∗ ∗ ∗

Problem 2. Solve the inequality (x+ 2)2
(
x2 + 2x− 8

)
≥ 0.

Solution. Since (x+2)2 ≥ 0, we can remove it from the inequality, keeping in mind that
x = −2 is a solution. We are hence left with

x2 + 2x− 8 = (x+ 4)(x− 2) ≥ 0.
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Since this quadratic is concave up, we clearly have x ≤ −4 or x ≥ 2. Altogether, we have

x ≤ −4 or x = −2 or x ≥ 2.

∗ ∗ ∗ ∗ ∗

Problem 3. By using a graphical method, solve the inequality
∣∣x2 − x− 2

∣∣ ≥ x−1
x+2 .

Solution.

O

x

y ∣∣x2 − x− 2
∣∣

(x− 1)/(x− 2)

From the graph, the x-coordinates of the intersection points are −2.51, 1.92 and 2.09.
Hence,

x ≤ −2.51 and − 2 ≤ x ≤ 1.92 and x ≥ 2.09.

∗ ∗ ∗ ∗ ∗

Problem 4. Show that x2+2x+3 is always positive for all real values of x. Hence, solve

the inequality x2+2x+3
3+2x−x2 ≤ 0. Deduce the solution set of the inequality x2+2|x|+3

3+2|x|−x2 ≤ 0.

Solution. Note that the discriminant of x2 + 2x + 3 = 0 is ∆ = 22 − 4(1)(3) = −8 < 0.
Since the y-intercept is positive (3 > 0), it follows that x2 + 2x+ 3 is always positive for
real x.
Consider the inequality x2+2x+3

3+2x−x2 ≤ 0. Since x2 + 2x+ 3 is always positive, it suffices to

solve 3 + 2x − x2 ≤ 0. Observe that the roots of 3 + 2x − x2 = 0 are x = 3 and x = −1.
Since 3 + 2x− x2 is concave down, we have

x ≤ −1 or x ≥ 3.

Replacing x with |x|, we get |x| ≤ −1 (no solutions) and |x| ≥ 3, whence x ≤ −3 or
x ≥ 3. The solution set is thus

{x ∈ R : x ≤ −3 or x ≥ 3} .
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Problem 5. Without use of a graphing calculator, solve the inequality 2x2−7x+6
x2−x−2

≥ 1.
Deduce the range of values of x such that

(a) 2(lnx)2−7 lnx+6
(lnx)2−lnx−2

> 1

(b) 2−7x+6x2

1−x−2x2 ≥ 1

Solution. Moving all terms to one side, we get

2x2 − 7x+ 6

x2 − x− 2
≥ 1 =⇒ x2 − 6x+ 8

x2 − x− 2
≥ 0.

Note that x2 − 6x+ 8 factors as (x− 2)(x− 4) while x2 − x− 2 factors as (x− 2)(x+ 1).
Hence,

x− 4

x+ 1
≥ 0 =⇒ (x− 4)(x+ 1) ≥ 0.

Thus, we clearly have
x < −1 or x ≥ 4.

Note that x ̸= −1 since x2 − x− 2 ̸= 0.

Part (a). Replacing x with lnx, we get

lnx < −1 or lnx ≥ 4,

whence
0 ≤ x < e−1 or x ≥ e4.

Part (b). Replacing x with 1/x, we get

1

x
< −1 or

1

x
≥ 4.

Hence,

−1 < x < 0 or 0 < x ≤ 1

4
.

Note that x = 0 also satisfies the inequality (2 ≥ 1). Hence,

−1 < x ≤ 1

4
.

∗ ∗ ∗ ∗ ∗

Problem 6. It is given that y = x2+x+1
x−1 , x ∈ R, x ̸= 1. Without using a calculator, find

the set of values that y can take.

Solution. Clearing denominators, we have

y(x− 1) = x2 + x+ 1 =⇒ x2 + (1− y)x+ (1 + y) = 0.

Since we are interested in the set of values that y can take, we want this quadratic to have
roots. Hence, the discriminant ∆ should be non-negative:

∆ = (1− y)2 − 4(1 + y) = y2 − 6y − 3 ≥ 0.

Completing the square,

(y − 3)2 ≥ 12 =⇒ |y − 3| ≥
√
12 = 2

√
3.
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Hence,
y ≤ 3− 2

√
3 or y ≥ 3 + 2

√
3,

whence the solution set is
{
y ∈ R : y ≤ 3− 2

√
3 or y ≥ 3 + 2

√
3
}
.

∗ ∗ ∗ ∗ ∗

Problem 7 ( ). Solve for x, in terms of a, the inequality

∣∣x2 − 3ax+ 2a2
∣∣ <

∣∣x2 + 3ax− a2
∣∣ ,

where x ∈ R, a ̸= 0.

Solution. Squaring both sides, we get

(
x2 − 3ax+ 2a2

)2
<
(
x2 + 3ax− a2

)2
.

Collecting terms on one side,

(
x2 + 3ax− a2

)2 −
(
x2 − 3ax+ 2a2

)2
= 3a (2x− a)

(
2x2 + a2

)
> 0.

Clearly, 2x2 + a2 > 0 for all x. We are hence left with a(2x− a) > 0.
Case 1 . If a > 0, then 2x− a > 0, whence x > a/2.
Case 2 . If a < 0, then 2x− a < 0, whence x < a/2.

∗ ∗ ∗ ∗ ∗

Problem 8 ( ). Find constants a, b, c and d such that 1 + 23 + 33 + · · · + n3 =
an4 + bn3 + cn2 + dn.

Solution 1. Substituting n = 1, 2, 3, 4 into the equation, we get the system





a+ b+ c+ d = 1

16a+ 8b+ 4c+ 2d = 9

81a+ 27b+ 9c+ 3d = 36

256a+ 64b+ 16c+ 4d = 100

.

Solving, we have

a =
1

4
, b =

1

2
, c =

1

4
, d = 0.

Solution 2. Recall that
n∑

k=1

k =
n(n+ 1)

2
.

Now observe that

(k + 1)3 − 1 =

n∑

k=1

[
(k + 1)3 − k3

]
=

n∑

k=1

(
3k2 + 3k + 1

)
.

Rearranging, we obtain
n∑

k=1

k2 =
n(n+ 1)(2n+ 1)

6
.
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Similarly, we have

(k + 1)4 − 1 =

n∑

k=1

[
(k + 1)4 − k4

]
=

n∑

k=1

(
4k3 + 6k2 + 4k + 1

)
,

whence we obtain, upon rearranging,

n∑

k=1

k3 =
n4 + 2n3 + n2

4
.

Comparing coefficients, we have

a =
1

4
, b =

1

2
, c =

1

4
, d = 0.

∗ ∗ ∗ ∗ ∗

Problem 9 ( ).

(a) By means of a sketch, or otherwise, state the range of values of a for which the
equation |x+ 2| = ax+ 4 has two distinct real roots.

(b) Solve the inequality |x+ 2| < ax+ 4.

Solution.

Part (a).

−2

4

O

x

y |x+ 2|

Consider the figure above. Clearly, for 2 distinct roots (i.e. 2 distinct intersection
points), we need −1 < a < 1.

Part (b). Note that the x-coordinate of the point of intersection between y = ax+ 4 and
y = x+ 2 is:

x+ 2 = ax+ 4 =⇒ x =
−2

a− 1
.

Similarly, the x-coordinate of the point of intersection between y = ax+4 and y = −(x+2)
is:

x+ 2 = ax+ 4 =⇒ x =
−6

a+ 1
.

Now consider the inequality |x+ 2| < ax+ 4.
Case 1 : a > 2. y = ax+ 4 only intersects the line y = x+ 2. Hence,

x >
−2

a− 1
.
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−2

4

O

x

y |x+ 2|

Case 2 : 1 ≤ a ≤ 2. y = ax+ 4 only intersects the line y = −(x+ 2). Hence,

x ≥ −6

a− 1
.

−2

4

O

x

y |x+ 2|

Case 3 : −1 < a < 1. y = ax+ 4 intersects both y = x+ 2 and y = −(x+ 2). Hence,

−6

a− 1
< x <

−2

a− 1
.

−2

4

O

x

y |x+ 2|

Case 4 : a ≤ −1. y = ax+ 4 only intersects the line y = x+ 2. Hence,

x ≤ −2

a− 1
.
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−2

4

O

x

y |x+ 2|
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Assignment A1

Problem 1. A traveller just returned from Germany, France and Spain. The amount (in
dollars) that he spent each day on housing, food and incidental expenses in each country
are shown in the table below.

Country Housing Food Incidental Expenses

Germany 28 30 14

France 23 25 8

Spain 19 22 12

The traveller’s records of the trip indicate a total of $391 spent for housing, $430 for
food and $180 for incidental expenses. Calculate the number of days the traveller spent
in each country.

He did his account again and the amount spent on food is $337. Is this record correct?
Why?

Solution. Let g, f and s represent the number of days the traveller spent in Germany,
France and Spain respectively. From the table, we obtain the following system of equations:





23f + 28g + 19s = 391

25f + 30g + 22s = 430

8f + 14g + 12s = 180

This gives the unique solution g = 4, f = 8 and s = 5. The traveller thus spent 4 days in
Germany, 8 days in France and 5 days in Spain.
Consider the scenario where the amount spent on food is $337.





23f + 28g + 19s = 391

25f + 30g + 22s = 337

8f + 14g + 12s = 180

This gives the unique solution g = 66, f = −27 and s = −44. The record is hence incorrect
as f and s must be positive.

∗ ∗ ∗ ∗ ∗

Problem 2.

(a) Solve algebraically x2 − 9 ≥ (x+ 3)
(
x2 − 3x+ 1

)
.

(b) Solve algebraically 7−2x
3−x2 ≤ 1.

Solution.

Part (a).

x2 − 9 ≥ (x+ 3)
(
x2 − 3x+ 1

)

=⇒ (x+ 3)(x− 3) ≥ (x+ 3)
(
x2 − 3x+ 1

)

=⇒ (x+ 3)
(
x2 − 4x+ 4

)
≤ 0

=⇒ (x+ 3)(x− 2)2 ≤ 0

x
2−3

− + +
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Thus, x ≤ −3 or x = 2.

Part (b). Note that 3− x2 ̸= 0 =⇒ x ̸= ±
√
3.

7− 2x

3− x2
≤ 1

=⇒ 7− 2x

3− x2
− 3− x2

3− x2
≤ 0

=⇒ x2 − 2x+ 4

3− x2
≤ 0

Observe that x2 − 2x+ 4 = (x− 1)2 + 3 > 0. Dividing through by x2 − 2x+ 4, we obtain

1

3− x2
≤ 0

=⇒ 3− x2 ≤ 0

x√
3−

√
3

− + −

Thus, x < −
√
3 or x >

√
3.

∗ ∗ ∗ ∗ ∗

Problem 3.

(a) Without using a calculator, solve the inequality 3x+4
x2+3x+2

≥ 1
x+2 .

(b) Hence, deduce the set of values of x that satisfies 3|x|+4
x2+3|x|+2

≥ 1
|x|+2 .

Solution.

Part (a). Note that x2 + 3x+ 2 ̸= 0 and x+ 2 ̸= 0, whence x ̸= −1,−2.

3x+ 4

x2 + 3x+ 2
≥ 1

x+ 2

=⇒ 3x+ 4

(x+ 2)(x+ 1)
≥ 1

x+ 2

=⇒ (3x+ 4)(x+ 2)(x+ 1) ≥ (x+ 2)(x+ 1)2

=⇒ (x+ 2)(x+ 1)(2x+ 3) ≥ 0

x
−1.5−2 −1

− + − +

Thus, −2 < x ≤ −3
2 or x > −1.

Part (b). Observe that |x|2 = x2. Hence, with the map x 7→ |x|, we obtain

−2 < |x| ≤ −3

2
or |x| > −1.

Since |x| ≥ 0, we have that |x| > −1 is satisfied for all real x. Hence, the solution set is
R.
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Problem 4. On the same diagram, sketch the graphs of y = 4 |x| and y = x2 − 2x + 3.
Hence or otherwise, solve the inequality 4 |x| ≥ x2 − 2x+ 3.

Solution.

3
(0.551, 2.20)

(5.45, 21.8)

O

x

y y = 4 |x|
y = x2 − 2x+ 3

From the graph, we see that 0.551 ≤ x ≤ 5.45.
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A2 Numerical Methods of Finding Roots

Tutorial A2

Problem 1. Without using a graphing calculator, show that the equation x3+2x2−2 = 0
has exactly one positive root.
This root is denoted by α and is to be found using two different iterative methods,

starting with the same initial approximation in each case.

(a) Show that α is a root of the equation x =
√

2
x+2 , and use the iterative formula

xn+1 =
√

2
xn+2 , with x1 = 1, to find α correct to 2 significant figures.

(b) Use the Newton-Raphson method, with x1 = 1, to find α correct to 3 significant
figures.

Solution. Let f(x) = x3+2x2−2. Observe that for all x > 0, we have f ′(x) = 3x2+4x >
0. Hence, f(x) is strictly increasing on (0,∞). Since f(0)f(1) = (−2)(1) < 0, it follows
that f(x) has exactly one positive root.

Part (a). We know f(α) = 0. Hence,

α3 + 2α2 − 2 = 0 =⇒ α2(α+ 2) = 2 =⇒ α2 =
2

α+ 2
=⇒ α =

√
2

α+ 2
.

Note that we reject the negative branch since α > 0. We hence see that α is a root of the

equation x =
√

2
x+2 . Using the iterative formula xn+1 =

√
2

xn+2 with x1 = 1, we have

n xn
1 1

2 0.81650

3 0.84268

4 0.83879

Hence, α = 0.84 (2 s.f.).

Part (b). Using the Newton-Raphson method (xn+1 = xn − f(xn)
f ′(xn)

) with x1 = 1, we have

n xn
1 1

2 0.857143

3 0.839545

4 0.839287

5 0.839287

Hence, α = 0.839 (3 s.f.).
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Problem 2.

(a) Show that the tangent at the point (e, 1) to the graph y = lnx passes through the
origin, and deduce that the line y = mx cuts the graph y = lnx in two points
provided that 0 < m < 1/e.

(b) For each root of the equation lnx = x/3, find an integer n such that the interval
n < x < n + 1 contains the root. Using linear interpolation, based on x = n and
x = n + 1, find a first approximation to the smaller root, giving your answer to
1 decimal place. Using your first approximation, obtain, by the Newton-Raphson
method, a second approximation to the smaller root, giving your answer to 2 decimal
places.

Solution.

Part (a). Note that the derivative of y = lnx at x = e is 1/e. Using the point slope
formula, we see that the equation of the tangent at the point (e, 1) is given by

y − 1 =
x− e

e
=⇒ y =

x

e
.

Since x = 0, y = 0 is clearly a solution, the tangent passes through the origin. From
the graph below, it is clear that for y = mx to intersect y = lnx twice, we must have
0 < m < 1/e.

1

(e, 1)

O x

y y = lnx

y = x/e

Part (b). Consider f(x) = x/3−lnx. Let α and β be the smaller and larger root to f(x) =
0 respectively. Observe that f(1)f(2) = (1)(−0.03) < 0 and f(4)f(5) = (−0.05)(0.06) < 0.
Thus, for the smaller root α, n = 1, while for the larger root β, n = 4.

Let x1 be the first approximation to α. Using linear interpolation, we have

x1 =
f(2)− 2f(1)

f(2)− f(1)
= 1.9 (1 d.p.)

Note that f ′(x) = 1/3− 1/x. Using the Newton-Raphson method (xn+1 = xn − f(xn)
f ′(xn)

),
we have

n xn
1 1.9

2 1.85585

3 1.85718

Hence, α = 1.86 (2 d.p.).
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Problem 3. Find the exact coordinates of the turning points on the graph of y = f(x)
where f(x) = x3 − x2 − x − 1. Deduce that the equation f(x) = 0 has only one real
root α, and prove that α lies between 1 and 2. Use the Newton-Raphson method applied
to the equation f(x) = 0 to find a second approximation x2 to α, taking x1, the first
approximation, to be 2. With reference to a graph of y = f(x), explain why all further
approximations to α by this process are always larger than α.

Solution. For turning points, f ′(x) = 0.

f ′(x) = 0 =⇒ 3x2 − 2x− 1 = 0 =⇒ (3x+ 1)(x− 1) = 0.

Hence, x = −1/3 or x = 1. When x = −1/3, we have y = −0.815, giving the coordinate
(−1/3,−0.815). When x = 1, we have y = −2, giving the coordinate (1,−2).
Observe that f(x) is strictly increasing for all x > 1. Further, since both turning points

have a negative y-coordinate, it follows that y < 0 for all x ≤ 1. Since f(1)f(2) =
(−2)(1) < 0, the equation f(x) = 0 has only one real root.
Using the Newton-Raphson method with x1 = 2, we have x2 = x1−f(x1)/f

′(x1) = 13/7.

α x2 2
O

x

y y = x3 − x2 − x− 1

Since x2 lies on the right of α, the Newton-Raphson method gives an over-estimation given
an initial approximation of 2. Thus, all further approximations to α will also be larger
than α.

∗ ∗ ∗ ∗ ∗

Problem 4. A curve C has equation y = x5 + 50x. Find the least value of dy/dx and
hence give a reason why the equation x5 + 50x = 105 has exactly one real root. Use the
Newton-Raphson method, with a suitable first approximation, to find, correct to 4 decimal
places, the root of the equation x5+50x = 105. You should demonstrate that your answer
has the required accuracy.

Solution. Since y = x5 +50x, we have dy/dx = 5x4 +50. Since x4 ≥ 0 for all real x, the
minimum value of dy/dx is 50.

Let f(x) = x5 + 50x. Since min df/dx = 50 > 0, it follows that f(x) is strictly
increasing. Hence, f(x) will intersect only once with the line y = 105, whence the equation
x5 + 50x = 105 has exactly one real root.

Observe that f(9)f(10) = (−40901)(50) < 0. Thus, there must be a root in the interval

(9, 10). We now use the Newton-Raphson method (xn+1 = xn− f(xn)
f ′(xn)

) with x1 = 9 as the
first approximation.
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n xn
1 9

2 10.2178921

3 10.0017491

4 9.9901221

5 9.9899912

6 9.9899900

Thus, the root is 9.9900 (4 d.p.).
Observe that f(9.98995)f(9.99005) = (−2.00)(3.00) < 0. Hence, the root lies in the

interval (9.98995, 9.99005) whence the calculated root has the required accuracy.

∗ ∗ ∗ ∗ ∗

Problem 5.

(a) A function f is such that f(4) = 1.158 and f(5) = −3.381, correct to 3 decimal
places in each case. Assuming that there is a value of x between 4 and 5 for which
f(x) = 0, use linear interpolation to estimate this value.

For the case when f(x) = tanx, and x is measured in radians, the value of f(4) and
f(5) are as given above. Explain, with the aid of a sketch, why linear interpolation
using these values does not give an approximation to a solution of the equation
tanx = 0.

(b) Show, by means of a graphical argument or otherwise, that the equation ln(x− 1) =
−2x has exactly one real root, and show that this root lies between 1 and 2.

The equation may be written in the form ln(x− 1) + 2x = 0. Show that neither
x = 1 nor x = 2 is a suitable initial value for the Newton-Raphson method in this
case.

The equation may also be written in the form x− 1− e−2x = 0. For this form, use
two applications of the Newton-Raphson method, starting with x = 1, to obtain an
approximation to the root, giving 3 decimal places in your answer.

Solution.

Part (a). Let the root of f(x) = 0 be α. Using linear interpolation on the interval [4, 5],
we have

α =
4f(5)− 5f(4)

f(5)− f(4)
= 4.255 (3 d.p.).

4 5

x = 3
2π

O
x

y y = tanx
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Since tanx has a vertical asymptote at x = 3π/2, it is not continuous on [4, 5]. Thus,
linear interpolation diverges when applied to the equation tanx = 0.

Part (b).

2

(1.109,−2.218)

x = 1

O
x

y y = ln(x− 1)
y = −2x

Since there is only one intersection between the graphs y = ln(x− 1) and y = −2x,
there is only one real root to the equation ln(x− 1) = −2x. Furthermore, since y = −2x
is negative for all x > 0 and y = ln(x− 1) is negative only when 1 < x < 2, it follows that
the root must lie between 1 and 2.
Let f(x) = ln(x− 1) + 2x. Then f ′(x) = 1

x−1 + 2. Note that the Newton-Raphson

method is given by xn+1 = xn − f(xn)
f ′(xn)

.

Since f ′(1) is undefined, an initial approximation of x1 = 1 cannot be used for the
Newton-Raphson method, which requires a division by f ′(1).

Using the Newton-Raphson method with the initial approximation x2 = 2, we see that
x2 = 1. Once again, because f ′(1) is undefined, x1 = 2 is also not a suitable initial value.
Let g(x) = x− 1− e−2x. Then g′(x) = 1 + 2e−2x. Using the Newton-Raphson method

with the initial approximation x1 = 1, we have

n xn
1 1

2 1.106507

3 1.108857

Hence, x = 1.109 (3 d.p.).

∗ ∗ ∗ ∗ ∗

Problem 6. The equation x = 3 lnx has two roots α and β, where 1 < α < 2 and
4 < β < 5. Using the iterative formula xn+1 = F (xn), where F (x) = 3 lnx, and starting
with x0 = 4.5, find the value of β correct to 3 significant figures. Find a suitable F (x) for
computing α.

Solution. Using the iterative formula xn+1 = F (xn), we have

n xn n xn
0 4.5 5 4.53175

1 4.51223 6 4.53333

2 4.52038 7 4.53437

3 4.52579 8 4.53506

4 4.52937 9 4.53551
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Hence, β = 4.54 (3 s.f.).
Note that x = 3 lnx =⇒ x = ex/3. Observe that d(ex/3)/dx = 1

3e
x/3, which is between

−1 and 1 for all 1 < x < 2. Thus, the iterative formula xn+1 = F (xn) will converge,
whence F (x) = ex/3 is suitable for computing α.

∗ ∗ ∗ ∗ ∗

Problem 7. Show that the cubic equation x3 + 3x− 15 = 0 has only one real root. This
root is near x = 2. The cubic equation can be written in any one of the forms below:

(a) x = 1
3(15− x3)

(b) x = 15
x2+3

(c) x = (15− 3x)1/3

Determine which of these forms would be suitable for the use of the iterative formula
xr+1 = F (xr), where r = 1, 2, 3, . . ..

Hence, find the root correct to 3 decimal places.

Solution. Let f(x) = x3 + 3x− 15. Then f ′(x) = 3x2 + 3 > 0 for all real x. Hence, f is
strictly increasing. Since f is continuous, f(x) = 0 has only one real root.

Part (a). Let g1(x) =
1
3(15− x3). Then g′1(x) = −x2. For values of x near 2, |g′1(x)| > 1.

Hence, the iterative formula xn+1 = g1(xn) will diverge and g1(x) is unsuitable.

Part (b). Let g2(x) =
15

x2+3
. Then g′2(x) =

−30x
(x2+3)2

. For values of x near 2, |g′2(x)| > 1.

Hence, the iterative formula xn+1 = g2(xn) will diverge and g2(x) is unsuitable.

Part (c). Let g3(x) = (15− 3x)1/3. Then g′3(x) = −(15− 3x)−2/3. For values of x near 2,
|g′3(x)| < 1. Hence, the iterative formula xn+1 = g3(xn) will converge and g3(x) is suitable.

Using the iterative formula xr+1 = g3(xr), we get

r xr
1 2

2 2.080084

3 2.061408

4 2.065793

5 2.064765

Hence, x = 2.065 (3 d.p.).

∗ ∗ ∗ ∗ ∗

Problem 8. The equation of a curve is y = f(x). The curve passes through the points
(a, f(a)) and (b, f(b)), where 0 < a < b, f(a) > 0 and f(b) < 0. The equation f(x) = 0
has precisely one root α such that a < α < b. Derive an expression, in terms of a, b, f(a)
and f(b), for the estimated value of α based on linear interpolation.
Let f(x) = 3e−x − x. Show that f(x) = 0 has a root α such that 1 < α < 2, and that

for all x, f ′(x) < 0 and f ′′(x) > 0. Obtain an estimate of α using linear interpolation
to 2 decimal places, and explain by means of a sketch whether the value obtained is an
over-estimate or an under-estimate.
Use one application of the Newton-Raphson method to obtain a better estimate of α,

giving your answer to 2 decimal places.

Solution. Using the point-slope formula, the equation of the line that passes through
both (a, f(a)) and (b, f(b)) is

y − f(a) =
f(a)− f(b)

a− b
(x− a).
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Note that (α, 0) is approximately the solution to the above equation. Thus,

0− f(a) ≈ f(a)− f(b)

a− b
(α− a) =⇒ α ≈ bf(a)− af(b)

f(a)− f(b)
.

Since f(x) is continuous, and f(1)f(2) = (0.10)(−1.6) < 0, there exists a root α ∈ (1, 2).
Note that f ′(x) = −3e−x − 1 and f ′′(x) = 3e−x. Since e−x > 0 for all x, we have that

f ′(x) < 0 and f ′′(x) > 0 for all x.
Using linear interpolation on the interval (1, 2), we have

α =
2f(1)− f(2)

f(1)− f(2)
= 1.06 (2 d.p.).

Since f ′(x) < 0 and f ′′(x) > 0, we know that f(x) is strictly decreasing and is concave
upwards. f(x) hence has the following shape:

1 2α

3

O
x

y y = 3e−x − x

From the graph, we see that the value obtained is an over-estimate.
Using the Newton-Raphson method with the initial approximation x1 = 1.06, we get

α = x1 −
f(x1)

f ′(x1)
= 1.05 (2 d.p.).

∗ ∗ ∗ ∗ ∗

Problem 9.

α

M

O

x

y y = 1
5x− ln(x+ 2)

The diagram shows a sketch of the graph y = x/3− ln(x+ 2). Find the x-coordinate of
the minimum point M on the graph, and verify that y is positive when x = 20.
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Show that the gradient of the curve is always less than 1/5. Hence, by considering
the line through M having gradient 1/5, show that the positive root of the equation
x/3− ln(x+ 2) = 0 is greater than 8.
Use linear interpolation, once only, on the interval [8, 20], to find an approximate value

a for this positive root, giving your answer to 1 decimal place.
Using a as an initial value, carry out one application of the Newton-Raphson method

to obtain another approximation to the positive root, giving your answer to 2 decimal
places.

Solution. For stationary points, y′ = 0.

y′ = 0 =⇒ 1

5
− 1

x+ 2
=⇒ x = 3.

By the second derivative test, we see that y′′(x) = 1
(x+2)2

> 0. Hence, the x-coordinate of

M is 3. Substituting x = 20 into the equation of the curve gives y = 4− ln 22 = 0.909 > 0.
We know that y′ = 1/5− 1/(x+ 2), hence y′ < 1/5 for all x > −2. Since the domain of

the curve is x > −2, y′ is always less than 1/5.
Let (α, 0) be the coordinates of the root of the line through M having gradient 1

5 . We
know that the coordinates of M are (3, 3/5− ln 5). Taking the gradient of the line segment
joining M and (α, 0), we get

(3/5− ln 5)− 0

3− α
=

1

5
=⇒ α = 5 ln 5 = 8.05 > 8.

Since the gradient of the curve is always less than 1/5, α represents the lowest possible value
of the positive root of the curve. Hence, the positive root of the equation x/5− ln(x+ 2) =
0 is greater than 8.
Let f(x) = x/5− ln(x+ 2). Using linear interpolation on the interval [8, 20], we have

α =
8f(20)− 20f(8)

f(20)− f(8)
= 13.2 (1 d.p.).

Using the Newton-Raphson method with the initial approximation x1 = 13.2, we have

α = x1 −
f(x1)

f ′(x1)
= 13.81 (2 d.p.).

∗ ∗ ∗ ∗ ∗

Problem 10.

(a) The function f is such that f(a)f(b) < 0, where a < b. A student concludes that
the equation f(x) = 0 has exactly one root in the interval (a, b). Draw sketches to
illustrate two distinct ways in which the student could be wrong.

(b) The equation sec2 x − e2 = 0 has a root α in the interval [1.5, 2.5]. A student uses
linear interpolation once on this interval to find an approximation to α. Find the
approximation to α given by this method and comment on the suitability of the
method in this case.

(c) The equation sec2 x − ex = 0 also has a root β in the interval (0.1, 0.9). Use the
Newton-Raphson method, with f(x) = sec2 x− ex and initial approximation 0.5, to
find a sequence of approximations {x1, x2, x3, . . .} to β. Describe what is happening
to xn for large n, and use a graph of the function to explain why the sequence is not
converging to β.
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Solution.

Part (a).

a bO

x

y

a bO

x

y

Part (b). Let f(x) = sec2 x− ex. Using linear interpolation on the interval [1.5, 2.5],

a =
1.5f(2.5)− 2.5f(1.5)

f(2.5)− f(1.5)
= 1.06 (2 d.p.).

sec2 x is not continuous on the interval [1.5, 2.5] due to the presence of an asymptote at
x = π/2. Hence, linear interpolation is not suitable in this case.

Part (c). We know f ′(x) = 2 sec2 x tanx − ex. Using the Newton-Raphson method with
the initial approximation x1 = 0.5,

r xr
1 0.5

2 -1.02272

3 -0.75526

4 -0.40306

5 -0.09667

6 -0.00466

7 -0.00000

As n → ∞, xn → 0−.

βx1x2 O

x

y y = sec2 x− ex

From the above graph, we see that the initial approximation of x1 = 0.5 is past the
turning point. Hence, all subsequent approximations will converge to the root at 0 instead
of the root at β. Thus, the sequence does not converge to β.
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Problem 11. The function f is given by f(x) =
√
1− x2 + cosx− 1 for 0 ≤ x ≤ 1. It is

known, from graphical work, that the equation f(x) = 0 has a single root x = α.

(a) Express g(x) in terms of x, where g(x) = x− f(x)
f ′(x) .

A student attempts to use the Newton-Raphson method, based on the form xn+1 =
g(xn), to calculate the value of α correct to 3 decimal places.

(b) (i) The student first uses an initial approximation to α of x1 = 0. Explain why
this will be unsuccessful in finding a value for α.

(ii) The student next uses an initial approximation to α of x1 = 1. Explain why
this will also be unsuccessful in finding a value for α.

(iii) The student then uses an initial approximate to α of x1 = 0.5. Investigate what
happens in this case.

(iv) By choosing a suitable value for x1, use the Newton-Raphson method, based
on the form xn+1 = g(xn), to determine α correct to 3 decimal places.

Solution.

Part (a). We know f ′(x) = −x√
1−x2

− sinx. Hence,

g(x) = x−
√
1− x2 + cosx− 1

−x√
1−x2

− sinx
.

Part (b).

Part (b)(i). Observe that f ′(0) = 0. Hence, g(0) is undefined. Thus, starting with an
initial approximation of x1 = 0 will be unsuccessful in finding a value for α.

Part (b)(ii). Observe that
√
1− x2 is 0 when x = 1. Hence, f ′(0) is undefined. Thus, g(0)

is also undefined. Hence, starting with an initial approximation of x1 = 1 will also be
unsuccessful in finding a value for α.

Part (b)(iii). When x1 = 0.5, we have x2 = g(x1) = 1.20. Since g(x) is only defined for
0 ≤ x ≤ 1, x3 = g(x2) is undefined. Hence, an initial approximation of x1 = 0.5 will also
be unsuccessful in finding a value for α.

Part (b)(iv). Using the Newton-Raphson method with x1 = 0.9, we have

r xr
1 0.9

2 0.92019

3 0.91928

4 0.91928

Thus, α = 0.919 (3 d.p.).
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Self-Practice A2

Problem 1.

(a) Sketch on the same diagram the graphs of y = x − 1 and y = ke−3x, where −1 <
k < 0. State the number of real roots of the equation ke−3x − (x− 1) = 0.

For the case k = 1, sketch appropriate graphs to show that the equation e−3x− (x−
1) = 0 has exactly one real root. Denoting this real root by α, find the integer n such
that the interval [n − 1, n] contains α. Use linear interpolation, once only, on this
interval to find an estimate for α, giving your answer correct to 2 decimal places.

(b) Let f(x) = e−3x − (x − 1). By considering the signs of f ′(x) and f ′′(x) for all real
values of x, explain with the aid of a simple diagram whether the value of α obtained
in (a) is an over-estimate or an under-estimate.

(c) Taking the value of α obtained in (a) as the initial value, apply the Newton-Raphson
method to find the value of α correct to 3 decimal places.

Solution.

Part (a).

1

-1

k

O x

y y = x− 1

y = ke−3x

There are 2 real roots to ke−3x − (x− 1) = 0 when −1 < k < 0.
Note that e−3x − (x− 1) = 0 is equivalent to e−3x = x− 1. We hence plot y = e−3x and

y = x− 1.

1

−1

1

O

x

y y = x− 1

y = e−3x

Since the two curves only intersect at one point, there is only one root to the equation
e−3x − (x− 1) = 0.
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From the graph, α ∈ (1, 2), so n = 2. Let f(x) = e−3x − (x − 1). Using linear
interpolation on the interval (1, 2), we obtain

α1 =
2f(1)− 1f(2)

f(1)− f(2)
= 1.05 (2 d.p.).

Part (b). For all x ∈ R, we have

f ′(x) = −3e−3x − 1 < 0 and f ′′(x) = 9e−3x > 0.

Thus, the graph of y = f(x) is decreasing and convex.

α1α1 2

x

y = f(x)

From the above figure, we see that the estimate given by linear interpolation is an
overestimate.

Part (c). The recursive formula given by the Newton-Raphson method is

αn+1 = αn − f(αn)

f ′(αn)
= αn − e−3αn − (αn − 1)

−3e−3αn − 1
.

Using the initial estimate α1 = 1.05, we have α2 = 1.044 (3 d.p.). Indeed, since f is
continuous on (1.0435, 1.0444), and

f(1.0435)f(1.0444) = −1.6× 10−7 < 0,

by the Intermediate Value Theorem, we conclude that α ∈ (1.0435, 1.0444), thus α =
1.044 (3 d.p.).

∗ ∗ ∗ ∗ ∗

Problem 2. The equation f(x) = 0 where f(x) = 1
x − 2 + lnx has exactly two real roots

α and β.
Verify that the larger root β lies between 6 and 7 and use one application of linear

interpolation on the interval [6, 7] to estimate this root, giving your answer correct to 2
decimal places.

Sketch the graph of y = f(x), stating clearly the coordinates of the turning point. Using
the graph of y = f(x), deduce the integer N such that the interval [N −1, N ] contains the
smaller root α.

An attempt to calculate the smaller root α is made. Explain why neither x = 0 nor
x = 1 is a suitable initial value for the Newton-Raphson method in this case.
Taking x = 0.3 as the initial value, use the Newton-Raphson method to find a second

approximation to the root α, giving your answer correct to three decimal places.



Self-Practice A2 317

Solution. Since f is continuous over (6, 7) and

f(6)f(7) = −0.00369 < 0,

by the Intermediate Value Theorem, there exists a root β within (6, 7). Further,

f ′(x) = − 1

x2
+

1

x

is positive for x > 6, so f(x) > f(β) = 0 for all x > β, whence β is the only root greater
than 6, i.e. β is the largest root. Using linear interpolation on the interval [6, 7], we have
the estimate

β0 =
6f(7)− 7f(6)

f(7)− f(6)
= 6.32 (2 d.p.).

(1,−1)

α βO

x

y y = f(x)

From the graph, α ∈ (0, 1), hence N = 1.
The Newton-Raphson method gives the following recursion:

αn+1 = αn − f(αn)

f ′(αn)
= αn −

1
αn

− 2 + lnαn

− 1
α2 + 1

α

.

For α0 = 0, both f(α0) and f ′(α0) are undefined. For α0 = 1, the denominator f ′(α0) = 0,
so α1 is undefined.

Using the Newton-Raphson method will initial value α0 = 0.3, we obtain

α1 = 0.31663 = 0.317 (3 d.p.) and α2 = 0.31784 = 0.318 (3 d.p.).

Checking, we see that f is continuous of (0.3175, 0.3184) and

f(0.3175)f(0.3184) = −8.7× 10−6 < 0,

hence by the Intermediate Value Theorem, α = (0.3175, 0.3184), thus α = 0.318 (3 d.p.).

∗ ∗ ∗ ∗ ∗

Problem 3. Sketch the graph of y = (1 + x)e−x, indicating clearly the turning points
and asymptotes (if any). State the transformation by which the graph of y = xe1−x may
be obtained from the graph of y = (1 + x)e−x.

By means of a suitable sketch, deduce that x
(
1 + e1−x

)
= 1 has exactly one real root

α. Show that α lies between 0.3 and 0.4.
Use linear interpolation once to obtain an approximation value, c, for α, giving your

answer correct to 4 decimal places.
Using the Newton-Raphson method once with c as the first approximation, obtain a

second approximation for α correct to 3 significant figures.
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Solution.

−1

1

O

x

y y = (1 + x) e−x

y = −x

The graph of y = xe1−x can be obtained by translating the graph of y = (1+x)e−x one
unit in the negative x-direction.
Note that

x
(
1 + e1−x

)
= 1 ≡ (1 + x) e−x = −x.

Plotting the graph of y = −x, we see that the two graphs intersect at only one point.
Thus, x

(
1 + e1−x

)
= 1 has only one real root.

Let f(x) = x
(
1 + e1−x

)
− 1. Observe that f is continuous on (0.3, 0.4) and

f(0.3)f(0.4) = −0.01 < 0,

thus by the Intermediate Value Theorem, α ∈ (0.3, 0.4). Using linear interpolating on
(0.3, 0.4),

c =
0.3f(0.4)− 0.4f(0.3)

f(0.4)− f(0.3)
= 0.3427 (4 d.p.).

Note that f ′(x) = 1+e1−x (1− x). The Newton-Raphson method employs the recursion

αn+1 = αn − f(αn)

f ′(αn)
= αn − αn

(
1 + e1−αn

)
− 1

1 + e1−αn (1− αn)
.

Using the initial condition α0 = 0.3427, we see that α1 = 0.3409 = 0.341 (3 s.f.). Checking,
we see that

f(0.3405)f(0.3414) = −1.0× 10−6,

thus α ∈ (0.3405, 0.3414), i.e. α = 0.341 (3 s.f.).

∗ ∗ ∗ ∗ ∗

Problem 4. In this question, give all your final answers correct to 3 decimal
places.

(a) Find, stating your reason, the value of the positive integer n such that

n− 1 ≤ 3
√
100 ≤ n.

Hence, use linear interpolation once only, to find an approximation, α, to the root
of the equation x3 = 100. Explain, with the aid of a suitable diagram, whether α is
an overestimate or underestimate.

(b) Using the Newton-Raphson method with α as a first approximation, find 3
√
100.

Explain, using the same diagram as in (a), whether this method yields a series of
overestimates or underestimates.
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Solution.

Part (a). Note that
43 = 64 < 100 < 125 = 53.

It follows that 4 < 3
√
100 < 5, so n = 5.

Let f(x) = x3 − 100. Using linear interpolation on (4, 5), we see that

α =
4f(5)− 5f(4)

f(5)− f(4)
= 4.590 (3 d.p.).

Note that over (4, 5),

f ′(x) = 3x2 > 0 and f ′′(x) = 6x > 0,

so f(x) is increasing and convex.

α 54

x

y = f(x)

From the above figure, we see that the estimate given by linear interpolation is an
underestimate.

Part (b). The Newton-Raphson method uses the recursion

αn+1 = αn − f(αn)

f ′(an)
= αn − α3

n − 100

3α2
n

.

With the initial value α1 = 4.590, we have α2 = 4.64217 = 4.642 (3 d.p.). Checking, we
see that f is continuous on (4.6415, 4.6424) and

f(4.6415)f(4.6424) = −3.0× 10−4,

thus α ∈ (4.6415, 4.6424) and α = 3
√
100 = 4.642 (3 d.p.).

Since the graph of y = f(x) is convex, it is always above its tangents. Thus, the
Newton-Raphson method gives an underestimate.

∗ ∗ ∗ ∗ ∗

Problem 5. The roots of the quadratic equation x2 − 7x+ 1 = 0 are to be calculated by
the use of the recurrence relation xr+1 = 1

7−xr
. Sketch the graphs of y = x and y = 1

7−x
and hence show

(a) that the equation has 2 roots, which lie between 0 and 7.

(b) if x1 has a value lying between these roots, then the recurrence relation will always
yield an approximation to the smaller root.

Taking x1 = 1, find the smaller root correct to 3 decimal places. Obtain the value of
the larger root to the same degree of accuracy.
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Solution.

x1 7O

x

y y = 1/(7− x)
y = x

(a) and (b) are obvious from the graph.
Using the given recurrence relation, with initial value x1 = 1, we have

x2 = 0.14394 and x3 = 0.14586 = 0.146 (3 d.p.).

Checking, we see that f(x) = x2 − 7x+ 1 is continuous and

f(0.1455)f(0.1464) = −9.0× 10−6 < 0,

thus α ∈ (0.1455, 0.1464) and α = 0.146 (3 d.p.).
Let β be the other root. By Vieta’s formula, α + β = 7, so β = 7 − 0.14586 =

6.854 (3 d.p.).
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Assignment A2

Problem 1. By considering the graphs of y = cosx and y = −1
4x, or otherwise, show

that the equation x+ 4 cosx = 0 has one negative root and two positive roots.
Use linear interpolation, once only, on the interval [−1.5, 1] to find an approximation to

the negative root of the equation x+ 4 cosx = 0 correct to 2 decimal places.

α
O

x

y y = x+ 4 cosx

The diagram shows part of the graph of y = x+4 cosx near the larger positive root, α,
of the equation x+4 cosx = 0. Explain why, when using the Newton-Raphson method to
find α, an initial approximation which is smaller than α may not be satisfactory.

Use the Newton-Raphson method to find α correct to 2 significant figures. You should
demonstrate that your answer has the required accuracy.

Solution.

O

x

y y = cosx

y = −1
4x

Note that x + 4 cosx = 0 =⇒ cosx = −1
4x. Plotting the graphs of y = cosx and

y = −1
4x, we see that there is one negative root and two positive roots. Hence, the

equation x+ 4 cosx = 0 has one negative root and two positive roots.
Let f(x) = x + 4 cosx. Let β be the negative root of the equation f(x) = 0. Using

linear interpolation on the interval [−1.5.− 1],

β =
−1.5f(−1)− (−1)f(−1.5)

f(−1)− f(1.5)
= −1.24 (2 d.p.).

There is a minimum at x = m such that m is between the two positive roots. Hence,
when using the Newton-Raphson method, an initial approximation which is smaller than
m would result in subsequent approximations being further away from the desired root α.
Hence, an initial approximation that is smaller than α may not be satisfactory.
We know from the above graph that α ∈ (π, 3π/2). We hence pick 3π/2 as our initial

approximation. Using the Newton-Raphson method xn+1 = xn − f(xn)
f ′(xn)

with x1 = 3π/2,
we have
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r xr
1 3

2π

2 3.7699

3 3.6106

4 3.5955

5 3.5953

Since f(3.55)f(3.65) = (−0.1)(0.2) < 0, we have α ∈ (3.55, 3.65). Hence, α = 3.6 (2 s.f.).

∗ ∗ ∗ ∗ ∗

Problem 2. Find the coordinates of the stationary points on the graph y = x3 + x2.
Sketch the graph and hence write down the set of values of the constant k for which the
equation x3 + x2 = k has three distinct real roots.

The positive root of the equation x3 + x2 = 0.1 is denoted by α.

(a) Find a first approximation to α by linear interpolation on the interval 0 ≤ x ≤ 1.

(b) With the aid of a suitable figure, indicate why, in this case, linear interpolation does
not give a good approximation to α.

(c) Find an alternative first approximation to α by using the fact that if x is small then
x3 is negligible when compared to x2.

Solution. For stationary points, y′ = 0.

y′ = 0 =⇒ 3x2 + 2x = 0 =⇒ x(3x+ 2) = 0.

Hence, x = 0 or x = −2.3. When x = 0, y = 0. When x = −2/3, y = 4/27. Thus, the
coordinates of the stationary points of y = x3 + x2 are (0, 0) and (−2/3, 4/27).

−1

(−2/3, 4/27)

O

x

y y = x3 + x2

Therefore, k ∈ (0, 4/27). The solution set of k is thus {k ∈ R : 0 < k < 4/27}.
Part (a). Let f(x) = x2 + x2 − 0.1. Using linear interpolation on the interval [0, 1],

α =
−f(0)

f(1)− f(0)
=

1

20
.



Assignment A2 323

Part (b).

α−0.1

(
−2

3 ,
4
27

)

O x

y y = x3 + x2 − 0.1

On the interval [0, 1], the gradient of y = x3 + x2 − 0.1 changes considerably. Hence,
linear interpolation gives an approximation much less than the actual value.

Part (c). For small x, x3 is negligible when compared to x2. Consider g(x) = x2 − 0.1.
Then the positive root of g(x) = 0 is approximately α. Hence, an alternative approxima-
tion to α is

√
0.1 = 0.316 (3 s.f.).

∗ ∗ ∗ ∗ ∗

Problem 3. The equation 2 cosx−x = 0 has a root α in the interval [1, 1.2]. Iterations of
the form xn+1 = F (xn) are based on each of the following rearrangements of the equation:

(a) x = 2 cosx

(b) x = cosx+ 1
2x

(c) x = 2
3(cosx+ x)

Determine which iteration will converge to α and illustrate your answer by a ‘staircase’
or ‘cobweb’ diagram. Use the most appropriate iteration with x1 = 1, to find α to 4
significant figures. You should demonstrate that your answer has the required accuracy.

Solution.

Part (a). Consider f(x) = 2 cosx. Then f ′(x) = −2 sinx. Observe that sinx is increasing
on [1, 1.2]. Since sin 1 > 1

2 , |f ′(x)| > 1 for all x ∈ [1, 1.2]. Thus, fixed-point iteration fails
and will not converge to α.

1.2
O

x

y y = 2 cosx
y = x

Part (b). Consider f(x) = cosx + 1
2x. Then f ′(x) = − sinx + 1

2 −
(
sinx− 1

2

)
. Since

0 ≤ sinx ≤ 1 for x ∈
[
0, π2

]
, and [1, 1.2] ⊂

[
0, π2

]
, we know −1

2 ≤ sinx − 1
2 ≤ 1

2 for
x ∈ [1, 1.2]. Thus, 0 ≤

∣∣sinx− 1
2

∣∣ ≤ 1
2 for x ∈ [1, 1.2]. Hence, fixed-point iteration will

work and converge to α.
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1.2
O

x

y y = cosx+ 1
2x

y = x

Part (c). Consider f(x) = 2
3(cosx + x). Then f ′(x) = 2

3(− sinx + 1). For fixed-point
iteration to converge to α, we need |f ′(x)| < 1 for x near α. It thus suffices to show that
|− sinx+ 1| < 3

2 for all x ∈ [1, 1.2]. Observe that 1−sinx is strictly decreasing and positive
for x ∈

[
0, π2

]
. Since 1− sin 1 < 3

2 , and [1, 1.2] ⊂
[
0, π2

]
, we have that |− sinx+ 1| < 3

2 for
all x ∈ [1, 1.2]. Thus, |f ′(x)| < 1 for x near α. Hence, fixed-point iteration will work and
converge to α.

1.2
O

x

y y = 2
3(cosx+ x)

y = x

For x ∈ [1, 1.2],
∣∣2
3(− sinx+ 1)

∣∣ <
∣∣− sinx+ 1

2

∣∣ < 1. Thus, xn+1 =
2
3(cosxn + xn) is the

most suitable iteration as it will converge to α the quickest. Using F (xn+1) =
2
3(cosxn+xn)

with x1 = 1,

r xr
1 1

2 1.02687

3 1.02958

4 1.02984

5 1.02986

Since F (1.0295) > 1.0295 and F (1.0305) < 1.0305, we have α ∈ (1.0295, 1.0305). Hence,
α = 1.030 (4 s.f.).
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A3 Sequences and Series I

Tutorial A3

Problem 1. Determine the behaviour of the following sequences.

(a) un = 3
(
1
2

)n−1

(b) vn = 2− n

(c) tn = (−1)n

(d) wn = 4

Solution.

Part (a). Decreasing, converges to 0.

Part (b). Decreasing, diverges.

Part (c). Alternating, diverges.

Part (d). Constant, converges to 4.

∗ ∗ ∗ ∗ ∗

Problem 2. Find the sum of all even numbers from 20 to 100 inclusive.

Solution. The even numbers from 20 to 100 inclusive form an AP with common difference
2, first term 20 and last term 100. Since we are adding a total of 100−20

2 + 1 = 41 terms,
we get a sum of 41

(
20+100

2

)
= 2460.

∗ ∗ ∗ ∗ ∗

Problem 3. A geometric series has first term 3, last term 384 and sum 765. Find the
common ratio.

Solution. Let the nth term of the geometric series be arn−1, where 1 ≤ n ≤ k. We hence
have 3rk−1 = 384, which gives rk = 128r. Thus,

3(1− rk)

1− r
= 765 =⇒ 3(1− 128r)

1− r
= 765 =⇒ r = 2.

∗ ∗ ∗ ∗ ∗

Problem 4.

(a) Find the first four terms of the following sequence un+1 =
un+1
un+2 , u1 = 0, n ≥ 1.

(b) Write down the recurrence relation between the terms of these sequences.

(i) −1, 2,−4, 8,−16, . . .

(ii) 1, 3, 7, 15, 31, . . .

Solution.

Part (a). Using G.C., the first four terms of un are 0, 1
2 ,

3
5 and 8

13 .
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Part (b).

Part (b)(i). un+1 = −2un, u1 = −1, n ≥ 1.

Part (b)(ii). un+1 = 2un + 1, u1 = 1, n ≥ 1.

∗ ∗ ∗ ∗ ∗

Problem 5. The sum of the first n terms of a series, Sn, is given by Sn = 2n(n + 5).
Find the nth term and show that the terms are in arithmetic progression.

Solution. We have

un = Sn − Sn−1 = 2n(n+ 5)− 2(n− 1)(n+ 4) = 4n+ 8.

Observe that un −un−1 = [4n+ 8]− [4(n− 1) + 8] = 8 is a constant. Hence, un is in AP.

∗ ∗ ∗ ∗ ∗

Problem 6. The sum of the first n terms, Sn, is given by

Sn =
1

2
−
(
1

2

)n+1

.

(a) Find an expression for the nth term of the series.

(b) Hence or otherwise, show that it is a geometric series.

(c) State the values of the first term and the common ratio.

(d) Give a reason why the sum of the series converges as n approaches infinity and write
down its value.

Solution.

Part (a). Note that

un = Sn − Sn−1 =

[
1

2
−
(
1

2

)n+1
]
−
[
1

2
−
(
1

2

)n]
=

(
1

2

)n+1

.

Part (b). Since un+1

un
= (1/2)n+2

(1/2)n+1 = 1
2 is constant, un is in GP.

Part (c). The first term is 1
4 and the common ratio is 1

2 .

Part (d). As n → ∞, we clearly have
(
1
2

)n+1 → 0. Hence, S∞ = 1
2 .

∗ ∗ ∗ ∗ ∗

Problem 7. The first term of an arithmetic series is lnx and the rth term is ln
(
xkr−1

)
,

where k is a real constant. Show that the sum of the first n terms of the series is Sn =
n
2 ln
(
x2kn−1

)
. If k = 1 and x ̸= 1, find the sum of the series eS1 + eS2 + eS3 + . . .+ eSn .

Solution. Let un be the nth term in the arithmetic series. Then

un = ln
(
xkr−1

)
= lnx+ (r − 1) ln k.

We thus see that the arithmetic series has first term lnx and common difference of ln k.
Thus,

Sn = n

(
lnx+ (lnx+ (r − 1) ln k)

2

)
=

n

2
ln
(
x2kr−1

)
.
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When k = 1, we have Sn = ln(xn), whence eSn = xn. Thus,

eS1 + eS2 + eS3 + . . .+ eSn = x+ x2 + x3 + . . . xn =
x(1− xn+1)

1− x
.

∗ ∗ ∗ ∗ ∗

Problem 8. A baker wants to bake a 1-metre tall birthday cake. It comprises 10 cylin-
drical cakes each of equal height 10 cm. The diameter of the cake at the lowest layer is
30 cm. The diameter of each subsequent layer is 4% less than the diameter of the cake
below. Find the volume of this cake in cm3, giving your answer to the nearest integer.

Solution. Let the diameter of the nth layer be dn cm. We have dn+1 = 0.96dn and
d1 = 30, whence dn = 30 · 0.96n−1. Let the nth layer have volume vn cm3. Then

vn = 10π

(
dn
2

)2

= 10π

(
900 · 0.9216n−1

4

)
= 2250π · 0.9216n−1.

The volume of the cake in cm3 is thus given by

2250π

(
1− 0.921610

1− 0.9216

)
= 50309.

∗ ∗ ∗ ∗ ∗

Problem 9. The sum to infinity of a geometric progression is 5 and the sum to infinity
of another series is formed by taking the first, fourth, seventh, tenth, . . . terms is 4. Find
the exact common ratio of the series.

Solution. Let the nth term of the geometric progression be given by arn−1. Then, we
have

a

1− r
= 5 =⇒ a = 5(1− r). (1)

Note that the first, fourth, seventh, tenth, . . . terms forms a new geometric series with
common ratio r3: a, ar3, ar6, ar9, . . .. Thus,

a

1− r3
= 4 =⇒ a = 4(1− r3). (2)

Equating (1) and (2), we have

5(1− r) = 4(1− r3) =⇒ 4r3 + 5r + 1 = 0 =⇒ (r − 1)(4r2 + 4r − 1) = 0.

Since |r| < 1, we only have 4r2+4r−1 = 0, which has solutions r = −1+
√
2

2 or r = −1−
√
2

2 .

Once again, since |r| < 1, we reject r = −1−
√
2

2 . Hence, r = −1+
√
2

2 .

∗ ∗ ∗ ∗ ∗

Problem 10. A geometric series has common ratio r, and an arithmetic series has first
term a and common difference d, where a and d are non-zero. The first three terms of the
geometric series are equal to the first, fourth and sixth terms respectively of the arithmetic
series.

(a) Show that 3r2 − 5r + 2 = 0

(b) Deduce that the geometric series is convergent and find, in terms of a, the sum of
infinity.
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(c) The sum of the first n terms of the arithmetic series is denoted by S. Given that
a > 0, find the set of possible values of n for which S exceeds 4a.

Solution.

Part (a). Let the nth term of the geometric series be Gn = G1r
n−1. Let the nth term of

the arithmetic series be An = a+ (n− 1)d.
Since G1 = A1, we have G1 = a. We can thus write Gn = arn−1. From G2 = A4, we

have ar = a+ 3d, which gives a = 3d
r−1 . From G3 = A6, we have ar2 = a+ 5d. Thus,

3d

r − 1
· r2 = 3d

r − 1
+ 5d =⇒ 3r2

r − 1
=

3

r − 1
+ 5 =⇒ 3r2 − 5r + 2 = 0.

Part (b). Note that the roots to 3r2 − 5r + 2 = 0 are r = 1 and r = 2/3. Clearly, r ̸= 1
since a = 3d/(r − 1) would be undefined. Hence, r = 2/3, whence the geometric series is
convergent.
Let S∞ be the sum to infinity of Gn. Then S∞ = a/(1− r) = 3a.

Part (c). Note that d = a(r − 1)/3 = −a
9 . Hence,

S = n

(
a+ [a+ (n− 1)d]

2

)
= n

(
2a+ (n− 1)

(
−a

9

)

2

)
=

an

18
(19− n).

Consider S > 4a.

S > 4a =⇒ n

18
(19− n) > 4 =⇒ −n2 + 19n− 72 > 0.

Using G.C., we see that 5.23 < n < 13.8. Since n is an integer, the set of values that n
can take on is {n ∈ Z : 6 ≤ n ≤ 13}.

∗ ∗ ∗ ∗ ∗

Problem 11. Two musical instruments, A and B, consist of metal bars of decreasing
lengths.

(a) The first bar of instrument A has length 20 cm and the lengths of the bars form a
geometric progression. The 25th bar has length 5 cm. Show that the total length of
all the bars must be less than 357 cm, no matter how many bars there are.

Instrument B consists of only 25 bars which are identical to the first 25 bars of instru-
ment A.

(b) Find the total length, L cm, of all the bars of instrument B and the length of the
13th bar.

(c) Unfortunately, the manufacturer misunderstands the instructions and constructs
instrument B wrongly, so that the lengths of the bars are in arithmetic progression
with a common difference d cm. If the total length of the 25 bars is still L cm and
the length of the 25th bar is still 5 cm, find the value of d and the length of the
longest bar.

Solution.

Part (a). Let un = u1r
n−1 be the length of the nth bar. Since u1 = 20, we have

un = 20rn−1. Since u25 = 5, we have r = 4−
1
24 . Hence, un = 20 · 4−

n−1
24 . Now, consider

the sum to infinity of un:

S∞ =
u1

1− r
=

20

1− 4−1/24
= 356.3 < 357.

Hence, no matter how many bars there are, the total length of the bars will never exceed
357 cm.
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Part (b). We have

L = u1

(
1− r25

1− r

)
= 20

(
1− 4−25/24

1− 4−1/24

)
= 272.26 = 272 (3 s.f.).

Note that

u13 = 20 ·
(
4−1/24

)13−1
= 10.

The 13th bar is hence 10 cm long.

Part (c). Let vn = a + (n − 1)d be the length of the wrongly-manufactured bars. Since
the length of the 25th bar is still 5 cm, we know v25 = a + 24d = 5. Now, consider the
total lengths of the bars, which is still L cm.

L = 25

(
a+ 5

2

)
= 272.26.

Solving, we see that a = 16.781. Hence, d = 5−a
24 = −0.491, and the longest bar is 16.8 =

cm long.

∗ ∗ ∗ ∗ ∗

Problem 12. A bank has an account for investors. Interest is added to the account at
the end of each year at a fixed rate of 5% of the amount in the account at the beginning
of that year. A man a woman both invest money.

(a) The man decides to invest $x at the beginning of one year and then a further $x at
the beginning of the second and each subsequent year. He also decides that he will
not draw any money out of the account, but just leave it, and any interest, to build
up.

(i) How much will there be in the account at the end of 1 year, including the
interest?

(ii) Show that, at the end of n years, when the interest for the last year has been
added, he will have a total of $21(1.05n − 1)x in his account.

(iii) After how many complete years will he have, for the first time, at least $12x in
his account?

(b) The woman decides that, to assist her in her everyday expenses, she will withdraw
the interest as soon as it has been added. She invests $y at the beginning of each
year. Show that, at the end of n years, she will have received a total of $ 1

40n(n+1)y
in interest.

Solution.

Part (a).

Part (a)(i). There will be $1.05x in the account at the end of 1 year.

Part (a)(ii). Let $unx be the amount of money in the account at the end of n years. Then,
un satisfies the recurrence relation un+1 = 1.05(1 + un), with u1 = 1.05. Observe that

u1 = 1.05 =⇒ u2 = 1.05 + 1.052 =⇒ u3 = 1.05 + 1.052 + 1.053 =⇒ · · · .

We thus have

un = 1.05 + 1.052 + · · ·+ 1.05n = 1.05

(
1− 1.05n

1− 1.05

)
= 21 (1.05n − 1) .

Hence, there will be $21(1.05n − 1)x in the account after n years.
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Part (a)(iii). Consider the inequality un ≥ 12x.

un ≥ 12x =⇒ 21(1.05n − 1) ≥ 12 =⇒ n ≥ 9.26.

Since n is an integer, the smallest value of n is 10. Hence, after 10 years, he will have at
least $12x in his account for the first time.

Part (b). After n years, the woman will have $ny in her account. Hence, the interest she
gains at the end of the nth year is 1

20ny. Thus, the total interest she will gain after n
years is

y

20
+

2y

20
+ · · ·+ ny

20
=

y

20
(1 + 2 + · · ·+ n) =

y

20
· n(n+ 1)

2
=

n(n+ 1)y

40
.

∗ ∗ ∗ ∗ ∗

Problem 13. The sum, Sn, of the first n terms of a sequence U1, U2, U3, . . . is given by

Sn =
n

2
(c− 7n),

where c is a constant.

(a) Find Un in terms of c and n.

(b) Find a recurrence relation of the form Un+1 = f(Un).

Solution.

Part (a). Observe that

Un = Sn − Sn−1 =
n

2
(c− 7n)− n− 1

2
(c− 7(n− 1)) = −7n+

7 + c

2
.

Part (b). Observe that Un+1 − Un = −7. Thus,

Un+1 = Un − 7, U1 =
7 + c

2
, n ≥ 1.

∗ ∗ ∗ ∗ ∗

Problem 14. The positive numbers xn satisfy the relation

xn+1 =

√
9

2
+

1

xn

for n = 1, 2, 3, . . ..

(a) Given that n → ∞, xn → θ, find the exact value of θ.

(b) By considering x2n+1 − θ2, or otherwise, show that if xn > θ, then 0 < xn+1 < θ.

Solution.

Part (a). Observe that

θ = lim
n→∞

√
9

2
+

1

xn
=

√
9

2
+

1

θ
=⇒ 2θ3 − 9θ − 2 = 0 =⇒ (θ + 2)

(
2θ2 − 4θ − 1

)
= 0.

We reject θ = −2 since θ > 0. We thus consider 2θ2 − 4θ − 1 = 0, which has roots

θ = 1 +
√

3
2 and θ = 1 −

√
3
2 . Once again, we reject θ = 1 −

√
3
2 since θ > 0. Thus,

θ = 1 +
√

3
2 .
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Part (b). Suppose xn > θ. Then

x2n+1 =
9

2
+

1

xn
<

9

2
+

1

θ
= θ2 =⇒ 0 < xn+1 < θ.
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Self-Practice A3

Problem 1. The sum of the first n terms of a sequence {un} is given by the formula
Sn = 2n(n− 3), where n ∈ Z+.

(a) Express un in terms of n, and show that the sequence {un} follows an arithmetic
progression.

(b) Three terms u3, uk and u38 of this sequence are consecutive terms in a geometric
sequence. Find the value of k.

(c) Explain why the infinite series e−u1 + e−u2 + e−u3 + . . . exists, and determine the
value of the infinite sum, leaving your answer in exact form.

Solution.

Part (a). Note that

un = Sn − Sn−1 = 2n(n− 3)− 2(n− 1)(n− 1− 3) = 4n− 8.

Thus,
un − un−1 = [4n− 8]− [4(n− 1)− 8] = 4.

Since un − un−1 is a constant, the sequence {un} follows an arithmetic progression with
common difference 4.

Part (b). Note that u3 = 4 and u38 = 144. Let the common ratio be r. Then

u38 = r2u3 =⇒ r2 =
u38
u3

= 36 =⇒ r = ±6.

Since uk > u3 > 0, the common ratio r must be positive. Hence, r = 6. Thus,

4k − 8 = uk = ru3 = 6(4) = 24,

whence k = 8.

Part (c). Observe that
e−un

e−un−1
= eun−1−un = e−4.

Hence, {e−un} is in geometric progression with common ratio e−4. Since
∣∣e−4

∣∣ < 1, the
sum to infinity exists, and is given by

∞∑

n=1

e−un = e−u1

(
1

1− e−4

)
=

e4

1− e−4
.

∗ ∗ ∗ ∗ ∗

Problem 2. At the end of December 2010, the amount of water in a large tank was 43
000 litres. The tank was filled with 7000 litres of water at the start of every month. It
was observed that 25% of the amount at the start of any month was lost by the end of
that month.

(a) Show that at the end of February 2011, the amount of water in the tank was 33 375
litres.

(b) Find the amount of water in the tank, measured in litres, at the end of the nth month
after the end of December 2010, expressing your answer in the form A

(
3
4

)n
+B, where

A and B are positive integers to be determined.
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Solution.

Part (a). Let the amount of water in the tank, measured in litres, at the start of the nth
month after the end of December 2010 be un. Clearly, u0 = 43000 and

un =
3

4
(un−1 + 7000) .

Note that

u1 =
3

4
(u0 + 7000) = 37500, u2 =

3

4
(u1 + 7000) = 33375.

Hence, at the end of February 2011, the amount of water in the tank was 33 375 litres.

Part (b). Let k be the constant such that

un − k =
3

4
(un−1 − k) .

It quickly follows that k = 21000. Then

un − 21000 =
3

4
(un−1 − 21000) =

(
3

4

)n

(u0 − 21000) .

Thus,

un = 22000

(
3

4

)n

+ 21000,

whence A = 22000 and B = 21000.

∗ ∗ ∗ ∗ ∗

Problem 3.

(a) A runner wants to train for the marathon. He runs 8 km during the first day, and
increases the distance he runs each subsequent day by 400 m. Find the minimum
number of days, n, that he needs to take to complete at least 2000 km.

(b) A sequence of real numbers {u1, u2, u3, . . .}, where u1 ̸= 0, is defined such that the
(n+1)th term of the sequence is equal to the sum of the first n terms, where n ∈ Z+.
Prove that the sequence {u2, u3, u4, . . .} follows a geometric progression. Hence, find
u1 + u2 + · · ·+ uN+1 in terms of u1 and N .

Solution.

Part (a). Let un be the distance ran on the nth day, measured in km. Clearly, {un} is in
arithmetic progression with common difference 0.4, and u1 = 8. Thus,

un = 0.4(n− 1) + 8 = 0.4n+ 7.6.

Let Sn be the total distance ran in n days. We have

Sn =
n∑

k=1

uk =
n∑

k=1

(0.4k + 7.6) = 0.4

(
n(n+ 1)

2

)
+ 7.6n.

Consider

Sn = 0.4

(
n(n+ 1)

2

)
+ 7.6n ≥ 2000.

Using G.C., we have n ≥ 82.4 or n ≤ −121.4. Since n is a positive integer, the least n is
83. Thus, he needs at least 83 days to complete at least 2000 km.
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Part (b). Note that u2 = u1. Observe that

Sn − Sn−1 = un = Sn−1 =⇒ Sn = 2Sn−1.

Hence,
un+1

un
=

Sn

Sn−1
= 2,

whence {u2, u3, u4, . . .} is geometric progression with common ratio 2. Thus,

u1 + u2 + · · ·+ uN+1 = u1 + u2

(
1− 2N

1− 2

)
= u1 + u1

(
2N − 1

)
= u12

N .

∗ ∗ ∗ ∗ ∗

Problem 4.

(a) If the sum of the first n terms of a series is Sn, where Sn = n− 3n2, write down an
expression for Sn−1. Hence, prove that the series is in an arithmetic series.

(b) Each time a ball falls vertically onto a horizontal surface, it rebounds to two-thirds
of the height from which it fell. The ball is initially dropped from a point 12 m
above the surface.

Show that the distance the ball has travelled just before it touches the surface for
the nth time is 60− 72

(
2
3

)n
.

Hence, find the least number of times the ball has bounced to travel a total distance
of more than 52 m.

Solution.

Part (a). Clearly,

Sn−1 = (n− 1)− 3(n− 1)2 = −3n2 + 7n− 4.

Hence,
un = Sn − Sn−1 =

(
n− 3n2

)
−
(
−3n2 + 7n− 4

)
= −6n+ 4.

Observe that
un − un−1 = [−6n+ 4]− [−6(n− 1)− 4] = −6.

Hence, {un} is in arithmetic progression with common ratio −6.

Part (b). Let un be the height of the nth “drop” of the ball. We have u1 = 12, and the
recurrence relation un+1 =

2
3un. Quite clearly,

un =

(
2

3

)n−1

u1 = 18

(
2

3

)n

.

Let Dn be the total distance travelled by the ball just before it touches the surface for
the nth time. Observe that the after the initial 12 m, the ball travels up and down before
touching the surface again. Hence,

Dn = u1 + 2u2 + 2u3 + · · ·+ 2un = u1 +

n∑

k=2

2un.

This evaluates as

Dn = u1 + 2

n∑

k=2

18

(
2

3

)n

= 12 + 36 ·
(
2

3

)2(1− (2/3)n−1

1− 2/3

)
= 60− 72

(
2

3

)n

.



Self-Practice A3 335

Consider Dn ≥ 52. Using G.C., we have n ≥ 5.4. Thus, the ball must bounce at least 6
times.

∗ ∗ ∗ ∗ ∗

Problem 5. The sequence {2n, n = 0, 1, 2, . . .} is grouped into sets such that the rth
bracket contains r terms: {1},

{
2, 22

}
,
{
23, 24, 25

}
,
{
26, 27, 28, 29

}
, . . . . Find the total

number of terms in the first n brackets. Hence, find the sum of numbers in the first n
brackets. Deduce (in any order), in terms of n, the first and the last number in the nth
bracket.

Solution. Clearly, the number of terms in the first n brackets is

1 + 2 + 3 + · · ·+ n =
n(n− 1)

2
.

Note that the kth number is given by 2k−1. The sum of number in the first n brackets
is hence given by

n(n+1)/2−1∑

k=0

2k =
1− 2n(n+1)/2

1− 2
= 2n(n+1)/2 − 1.

The last number in the nth bracket is clearly

2n(n+1)/2−1.

Note that there are n(n−1)/2 terms in the first (n−1) brackets. Thus, the first number
in the nth bracket is

2n(n−1)/2.
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Assignment A3

Problem 1. A university student has a goal of saving at least $1 000 000 (in Singapore
dollars). He begins working at the start of the year 2019. In order to achieve his goal, he
saves 40% of his annual salary at the end of each year. If his annual salary in the year
2019 is $40800, and it increases by 5% (of his previous year’s salary) every year, find

(a) his annual savings in 2027 (to the nearest dollar),

(b) his total savings at the end of n years.

What is the minimum number of complete years for which he has to work in order to
achieve his goal?

Solution. Let $un be his annual salary in the nth year after 2019, with n ∈ N. Then
un+1 = 1.05 · un, with u0 = 40800. Hence, un = 40800 · 1.05n. Let $vn be the amount
saved in the nth year after 2019. Then vn = 0.40 · un = 16320 · 1.05n.
Part (a). In 2027, n = 8. Hence, his annual savings in 2027, in dollars, is given by

v8 = 16320 · 1.058 = 24112 (to the nearest integer).

Part (b). His total savings at the end of n years, in dollars, is given by

16320
(
1.050 + 1.051 + · · ·+ 1.05n

)
= 16320

(
1− 1.05n

1− 1.05

)
= 326400 (1.05n − 1) .

Consider 326400 (1.05n − 1) ≥ 1000000. Using G.C., we see that n ≥ 28.7. Thus, he
needs to work for a minimum of 29 complete years to reach his goal.

∗ ∗ ∗ ∗ ∗

Problem 2.

(a) A rope of length 200π cm is cut into pieces to form as many circles as possible, whose
radii follow an arithmetic progression with common difference 0.25 cm. Given that
the smallest circle has an area of π cm2, find the area of the largest circle in terms
of π.

(b) The sum of the first n terms of a sequence is given by Sn = α−n − 1, where α is a
non-zero constant, α ̸= 1.

(i) Show that the sequence is a geometric progression and state its common ratio
in terms of α.

(ii) Find the set of values of α for which the sum to infinity of the sequence exists.

(iii) Find the value of the sum to infinity.

Solution.

Part (a). Let the sequence rn be the radius of the nth smallest circle, in centimetres.
Hence, rn = 1

4 + rn−1. Since the smallest circle has area π cm2, r1 = 1. Thus, rn =
1 + 1

4(n− 1).
Consider the nth partial sum of the circumferences:

2πr1 + 2πr2 + · · ·+ 2πrn = 2π · n
(
1 +

[
1 + 1

4(n− 1)
]

2

)
=

π(n2 + 7n)

4
.
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Since the rope has length 200π cm, we have the inequality

π(n2 + 7n)

4
≤ 200π =⇒ n2 − 7n− 800 ≤ 0 =⇒ (n+ 32)(n− 25) ≤ 0.

Hence, n ≤ 25. Since the rope is cut to form as many circles as possible, n = 25. Thus,
the largest circle has area π · r225 = 49π cm2.

Part (b). Let the sequence being summed by u1, u2, . . .. Observe that

un = Sn − Sn−1 =
(
α−n − 1

)
−
(
α−(n−1) − 1

)
= α−n(1− α).

Part (b)(i). Observe that

un+1

un
=

α−(n+1)(1− α)

α−n(1− α)
= α−1,

which is a constant. Thus, un is in GP with common ratio α−1.

Part (b)(ii). Consider S∞ = limn→∞ Sn = limn→∞(α−n − 1). For S∞ to exist, we need
limn→∞ α−n to exist. Hence,

∣∣α−1
∣∣ < 1, whence |α| > 1. Thus, α < −1 or α > 1. The

solution set of α is thus {x ∈ R : x < −1 or x > 1}.
Part (b)(iii). Since

∣∣α−1
∣∣ < 1, we know limn→∞ α−n = 0. Hence, S∞ = −1.

∗ ∗ ∗ ∗ ∗

Problem 3. A sequence u1, u2, u3, . . . is such that un+1 = 2un+An, where A is a constant
and n ≥ 1.

(a) Given that u1 = 5 and u2 = 15, find A and u3.

It is known that the nth term of this sequence is given by

un = a(2n) + bn+ c,

where a, b and c are constants.

(b) Find a, b and c.

Solution.

Part (a). Substituting n = 1 into the recurrence relation yields u2 = 2u1 +A. Thus, A =
u2 − 2u1 = 5. Substituting n = 2 into the recurrence relation yields u3 = 2u2 +2A = 40.

Part (b). Since u1 = 5, u2 = 15 and u3 = 40, we have the following system





2a+ b+ c = 5

4a+ 2b+ c = 15

8a+ 3b+ c = 40

which has the unique solution a = 15
2 , b = −5 and c = −5
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Problem 4. The graphs of y = 2x/3 and y = x intersect at x = α and x = β where
α < β. A sequence of real numbers x1, x2, x3, . . . satisfies the recurrence relation

xn+1 =
1

3
· 2xn , n ≥ 1.

(a) Prove algebraically that, if the sequence converges, then it converges to either α or
β.

(b) By using the graphs of y = 1
3 · 2x and y = x, prove that

• if α < xn < β, then α < xn+1 < xn

• if xn < α, then xn < xn+1 < α

• if xn > β, then xn < xn+1

Describe the behaviour of the sequence for the three cases.

Solution.

Part (a). Let L = lim
n→∞

xn. Then L = 1
3 · 2L. Since y = x and y = 1

3 · 2x intersect only at

x = α and x = β, then α and β are the only roots of x = 1
3 · 2x. Since L is also a root of

x = 1
3 · 2x, L must be either α or β.

Part (b).

α β

xn

xn+1

xn

xn+1

xn

xn+1

O

x

y y = 1
3 · 2x

y = x

If α < xn < β, then xn is decreasing and converges to α. If xn < α, then xn is increasing
and converges to α. If xn > β, then xn is increasing and diverges.
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A4 Sequences and Series II

Tutorial A4

Problem 1. True or False? Explain your answers briefly.

(a)
∑n

r=1(2r + 3) =
∑n

k=1(2k + 3)

(b)
∑n

r=1

(
1
r + 5

)
=
∑n

r=1
1
r + 5

(c)
∑n

r=1
1
r = 1/

∑n
r=1 r

(d)
∑n

r=1 c =
∑n−1

r=0 (c+ 1)

Solution.

Part (a). True: A change in index does not affect the sum.

Part (b). False: In general,
∑n

r=1 5 is not equal to 5.

Part (c). False: In general,
∑ a

b ̸=∑ a/
∑

b.

Part (d). False: Since c is a constant,
∑n

r=1 c = nc ̸= n(c+ 1) =
∑n−1

r=0 (c+ 1).

∗ ∗ ∗ ∗ ∗

Problem 2. Write the following series in sigma notation twice, with r = 1 as the lower
limit in the first and r = 0 as the lower limit in the second.

(a) −2 + 1 + 4 + . . .+ 40

(b) a2 + a4 + a6 + . . .+ a50

(c) 1
3 + 1

5 + 1
7 + . . .+ nth term

(d) 1− 1
2 + 1

4 − 1
8 + . . . to n terms

(e) 1
2·4 + 1

3·5 + 1
4·6 + . . .+ 1

28·30

Solution.

Part (a).

−2 + 1 + 4 + . . .+ 40 =
15∑

r=1

(3r − 5) =
14∑

r=0

(3r − 2).

Part (b).

a2 + a4 + a6 + . . .+ a50 =
25∑

r=1

a2r =
24∑

r=0

a2r+2.

Part (c).

1

3
+

1

5
+

1

7
+ . . .+ nth term =

n∑

r=1

1

2r + 1
=

n−1∑

r=0

1

2r + 3
.
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Part (d).

1− 1

2
+

1

4
− 1

8
+ . . . to n terms =

n∑

r=1

(
−1

2

)r−1

=
n−1∑

r=0

(
−1

2

)r

.

Part (e).

1

2 · 4 +
1

3 · 5 +
1

4 · 6 + . . .+
1

28 · 30 =
27∑

r=1

1

(r + 1)(r + 3)
=

26∑

r=0

1

(r + 2)(r + 4)
.

∗ ∗ ∗ ∗ ∗

Problem 3. Without using the G.C., evaluate the following sums.

(a)
∑50

r=1(2r − 7)

(b)
∑a

r=1(1− a− r)

(c)
∑n

r=2 (ln r + 3r)

(d)
∑∞

r=1

(
2r−1
3r

)

Solution.

Part (a).
50∑

r=1

(2r − 7) = 2
50∑

r=1

r − 7
50∑

r=1

1 = 2

(
50 · 51

2

)
− 7(50) = 2200.

Part (b).

a∑

r=1

(1− a− r) = (1− a)
a∑

r=1

1−
a∑

r=1

r = (1− a)a− a(a+ 1)

2
=

a

2
(1− 3a).

Part (c).

n∑

r=2

(ln r + 3r) =
n∑

r=2

ln r +
n∑

r=2

3r = lnn! + 32
(
1− 3n−2+1

1− 3

)
= lnn! +

9

2

(
3n−1 − 1

)
.

Part (d).

∞∑

r=1

(
2r − 1

3r

)
=

∞∑

r=1

(
2

3

)r

−
∞∑

r=1

(
1

3

)r

=
2/3

1− 2/3
− 1/3

1− 1/3
=

3

2
.

∗ ∗ ∗ ∗ ∗

Problem 4. The nth term of a series is 2n−2 + 3n. Find the sum of the first N terms.

Solution.

N∑

n=1

(
2n−2 + 3r

)
=

N∑

n=1

2n−2 + 3
N∑

n=1

n

= 21−2

((
2N − 1

)

2− 1

)
+ 3

(
N(N + 1)

2

)

=
1

2

(
2N + 3N2 + 3N − 1

)
.
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Problem 5. The rth term, ur, of a series is given by ur =
(
1
3

)3r−2
+
(
1
3

)3r−1
. Express∑n

r=1 ur in the form A
(
1− B

27n

)
, where A and B are constants. Deduce the sum to infinity

of the series.

Solution. Observe that

ur =

(
1

3

)3r−2

+

(
1

3

)3r−1

= 12

(
1

3

)3r

= 12

(
1

27

)r

.

Hence,
n∑

r=1

= 12 · 1

27

(
1− 1/27n

1− 1/27

)
=

6

13

(
1− 1

27n

)
,

whence A = 6
13 and B = 1. In the limit as n → ∞, 1

27n → 0. Hence, the sum to infinity
is 6

13 .

∗ ∗ ∗ ∗ ∗

Problem 6. The rth term, ur, of a series is given by ur = ln r
r+1 . Find

∑n
r=1 ur in terms

of n. Comment on whether the series converges.

Solution. Observe that ur = ln r
r+1 = ln r − ln(r + 1). Hence,

n∑

r=1

ur =

n∑

r=1

(ln r − ln(r + 1))

= [ln 1− ln 2] + [ln 2− ln 3] + · · ·+ [lnn− ln(n+ 1)]

= ln 1− ln(n+ 1) = ln
1

n+ 1
.

As n → ∞, ln 1
n+1 → ln 0. Hence, the series diverges to negative infinity.

∗ ∗ ∗ ∗ ∗

Problem 7. Given that
∑n

r=1 r
2 = n

6 (n + 1)(2n + 1), without using the G.C., find the
following sums.

(a)
∑n

r=0[r(r + 4) + n]

(b)
∑2n

r=n+1(2r − 1)2

(c)
∑20

r=−15 r(r − 2)

Solution.

Part (a).

n∑

r=0

[r(r + 4) + n] =
n∑

r=0

(
r2 + 4r + n

)

=
n

6
(n+ 1)(2n+ 1) + 4

[
n(n+ 1)

2

]
+ n(n+ 1)

=
n

6
(n+ 1)(2n+ 19).
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Part (b).

2n∑

r=n+1

(2r − 1)2 =
n∑

r=1

(2(r + n)− 1)2 =
n∑

r=1

(
4r2 + 4(2n− 1)r + (2n− 1)2

)

= 4
[n
6
(n+ 1)(2n+ 1)

]
+ 4(2n− 1)

[
n(n+ 1)

2

]
+ (2n− 1)2n

=
1

3
n
(
28n2 − 1

)

Part (c).

20∑

r=−15

r(r − 2) =

36∑

r=1

(r − 16)[(r − 16)− 2] =

36∑

r=1

(
r2 − 34r + 288

)

=
36

6
[(36 + 1)(2 · 36 + 1)]− 34

[
36 · 37

2

]
+ 288(36)

= 3930

∗ ∗ ∗ ∗ ∗

Problem 8. Let S =
∑∞

r=0
(x−2)r

3r where x ̸= 2. Find the range of values of x such that
the series S converges. Given that x = 1, find

(a) the value of S

(b) Sn, in terms of n, where Sn =
∑n−1

r=0
(x−2)r

3r

(c) the least value of n for which |Sn − S| is less than 0.001% of S

Solution. Note that

S =

∞∑

r=0

(x− 2)r

3r
=

∞∑

r=0

(
x− 2

3

)r

.

Hence, for S to converge, we must have
∣∣x−2

3

∣∣ < 1, which gives −1 < x < 5, x ̸= 2.

Part (a). When x = 1, we get

S =
∞∑

r=0

(
−1

3

)r

=
1

1− (−1
3)

=
3

4
.

Part (b). We have

Sn =

n−1∑

r=0

(
−1

3

)r

=
1− (−1

3)
n

1− (−1
3)

=
3

4

[
1−

(
−1

3

)n]
.

Part (c). Observe that

|Sn − S| < 0.001%S =⇒
∣∣∣∣
Sn − S

S

∣∣∣∣ <
1

100000
=⇒

∣∣∣∣∣
3
4(1− (−1

3)
n)

3
4

− 1

∣∣∣∣∣ <
1

100000
.

Using G.C., the least value of n that satisfies the above inequality is 11.



Tutorial A4 343

Problem 9. Given that
∑n

r=1 r
2 = n

6 (n+ 1)(2n+ 1),

(a) write down
∑2k

r=1 r
2 in terms of k

(b) find 22 + 42 + 62 + . . .+ (2k)2.

Hence, show that
∑k

r=1(2r − 1)2 = k
3 (2k + 1)(2k − 1).

Solution.

Part (a).
2k∑

r=1

r2 =
2k

6
(2k + 1)(2(2k) + 1) =

k

3
(2k + 1)(4k + 1).

Part (b).

22 + 42 + 62 + . . .+ (2k)2 =

k∑

r=1

(2r)2 =

k∑

r=1

4r2 =
2k

3
(k + 1)(2k + 1).

From parts (a) and (b), we clearly have

k∑

r=1

(2r−1)2 =
2k∑

r=1

r2−
k∑

r=1

(2r)2 =
k

3
(2k+1)(4k+1)− 2k

3
(k+1)(2k+1) =

k

3
(2k+1)(2k−1).

∗ ∗ ∗ ∗ ∗

Problem 10. Given that un = enx − e(n+1)x, find
∑N

n=1 un in terms of N and x. Hence,
determine the set of values of x for which the infinite series u1+u2+u3+ . . . is convergent
and give the sum to infinity for cases where this exists.

Solution.
N∑

n=1

un =
(
ex − e2x

)
+
(
e2x − e3x

)
+ · · ·+

(
eNx + e(N+1)x

)
= ex − e(N+1)x.

For the infinite series to converge, we require |ex| < 1. Hence, x ∈ R−
0 .

We now consider the sum to infinity.
Case 1 . Suppose x = 0. Then ex = 1, whence the sum to infinity is clearly 0.
Case 2 . Suppose x < 0. Then limN→∞ e(N+1)x → 0. Thus, the sum to infinity is ex.

∗ ∗ ∗ ∗ ∗

Problem 11. Given that r is a positive integer and f(r) = 1
r2
, express f(r) − f(r + 1)

as a single fraction. Hence, prove that
∑4n

r=1

(
2r+1

r2(r+1)2

)
= 1− 1

(4n+1)2
. Give a reason why

the series is convergent and state the sum to infinity. Find
∑4n

r=2

(
2r−1

r2(r−1)2

)
.

Solution.

f(r)− f(r + 1) =
1

r2
− 1

(r + 1)2
=

(r + 1)2 − r2

r2(r + 1)2
=

2r + 1

r2(r + 1)2
.

4n∑

r=1

(
2r + 1

r2(r + 1)2

)
=

4n∑

r=1

[f(r)− f(r + 1)]

= [f(1)− f(2)] + [f(2)− f(3)] + · · ·+ [f(4n)− f(4n− 1)]

= f(1)− f(4n+ 1) = 1− 1

(4n+ 1)2
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As n → ∞, 1
(4n+1)2

→ 0. Hence, the series converges to 1.

4n∑

r=2

(
2r − 1

r2(r − 1)2

)
=

4n−1∑

r=1

(
2r + 1

r2(r + 1)2

)
=

4n−1∑

r=1

[f(r)− f(r + 1)]

= [f(1)− f(2)] + [f(2)− f(3)] + · · ·+ [f(4n− 1)− f(4n)]

= 1− f(4n) = 1− 1

16n2

∗ ∗ ∗ ∗ ∗

Problem 12.

(a) Express 1
(2x+1)(2x+3)(2x+5) in partial fractions.

(b) Hence, show that
∑n

r=1
1

(2r+1)(2r+3)(2r+5) =
1
60 − 1

4(2n+3)(2n+5) .

(c) Deduce the sum of 1
1·3·5 + 1

3·5·7 + 1
3·5·7·9 + . . .+ 1

41·43·45 .

Solution.

Part (a). Using the cover-up rule, we obtain

1

(2x+ 1)(2x+ 3)(2x+ 5)
=

1

8(2x+ 1)
− 1

4(2x+ 3)
+

1

8(2x+ 5)
.

Part (b).

n∑

r=1

1

(2r + 1)(2r + 3)(2r + 5)
=

n∑

r=1

(
1

8(2r + 1)
− 1

4(2r + 3)
+

1

8(2r + 5)

)

=
1

8

[(
n∑

r=1

1

2r + 1
−

n∑

r=1

1

2r + 3

)
−
(

n∑

r=1

1

2r + 3
−

n∑

r=1

1

2r + 5

)]

Observe that the two terms in brackets clearly telescope, leaving us with

n∑

r=1

1

(2r + 1)(2r + 3)(2r + 5)
=

1

8

[(
1

3
− 1

2n+ 3

)
−
(
1

5
− 1

2n+ 5

)]
,

which simplifies to

n∑

r=1

1

(2r + 1)(2r + 3)(2r + 5)
=

1

60
− 1

4(2n+ 3)(2n+ 5)

as desired.

Part (c).

1

1 · 3 · 5 +
1

3 · 5 · 7 +
1

3 · 5 · 7 · 9 + . . .+
1

41 · 43 · 45

=
1

1 · 3 · 5 +

20∑

r=1

1

(2r + 1)(2r + 3)(2r + 5)

=
1

15
+

(
1

60
− 1

4(2 · 20 + 3)(2 · 20 + 5)

)

=
161

1935
.
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Self-Practice A4

Problem 1. Evaluate
∑n

r=2

(
2−r + 2nr + n2

)
, giving your answer in terms of n.

Solution. Splitting the sum, we get

n∑

r=2

(
2−r + 2nr + n2

)
=

n∑

r=2

(
1

2

)r

+ 2n

n∑

r=2

r + n2
n∑

r=2

1.

Hence,

n∑

r=2

(
2−r + 2nr + n2

)
=

(
1

2

)2(1− (1/2)n−1

1− 1/2

)
+ 2n

(
n(n+ 1)

2
− 1

)
+ n2 (n− 1)

=

[
1

2
−
(
1

2

)n]
+ n2 (n+ 1)− 2n+ n2 (n− 1)

=
1

2
−
(
1

2

)n

+ 2n
(
n2 − 1

)
.

∗ ∗ ∗ ∗ ∗

Problem 2. A geometric sequence {an} has first term a and common ratio r. The
sequence of numbers {bn} satisfy the relation bn = ln(an) for n ∈ Z+.

(a) Show that {bn} is an arithmetic sequence and determine the value of the common
difference in terms of r.

(b) Find an expression for
∑N+1

n=1 bn in terms of a, aN+1 and N .

(c) Hence, obtain an expression for a1 × a2 × · · · × aN+1 in terms of a, aN+1 and N .

Solution.

Part (a). Note that an = arn−1. Hence,

bn = ln an = ln
(
arn−1

)
= ln a+ (n− 1) ln r.

Hence,
bn − bn−1 = [ln a+ n ln r]− [ln a+ (n− 1) ln r] = ln r.

Thus, {bn} is an arithmetic progression with common difference ln r.

Part (b). Since {bn} is in arithmetic progression, we have

N+1∑

n=1

bn =
N + 1

2
(b1 + bN+1) =

N + 1

2
(ln a1 + ln aN+1) =

N + 1

2
ln(aaN+1) .

Part (c). Since bn = ln an, we can write the sum as

N+1∑

n=1

bn =
N+1∑

n=1

ln an = ln
N+1∏

n=1

an.

Equating this with the above result yields

N+1∏

n=1

an = (aaN+1)
(N+1)/2 .
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Problem 3. It is given that
∑n

r=1 r
2 = 1

6n(n+ 1)(2n+ 1).

(a) Show that
∑n

r=1(2r − 7)(r + 1) = 1
6n
(
4n2 − 9n− 55

)
.

(b) Find
∑n

r=1 3
−r in terms of n, and find the least value of n such that

n∑

r=1

(2r − 7)(r + 1) >

n∑

r=1

3−r.

(c) Express
∑2n

r=n+1(2r − 7)(r + 1) in terms of n.

(d) Hence, or otherwise, find the value of

43× 26 + 45× 27 + 47× 28 + · · ·+ 87× 48 + 89× 49.

Solution.

Part (a). Note that (2r − 7)(r + 1) = 2r2 − 5r − 7. Hence,

n∑

r=1

(2r − 7)(r + 1) =
n∑

r=1

(
2r2 − 5r − 7

)

= 2

(
n(n+ 1)(2n+ 1)

6

)
− 5

(
n(n+ 1)

2

)
− 7n

=
n
(
4n2 − 9n− 55

)

6
.

Part (b).
n∑

r=1

3−r =
n∑

r=1

(
1

3

)r

=

(
1

3

)(
1− (1/3)n−1

1− 1/3

)
=

1

2

(
1− 1

3n

)
.

The inequality hence becomes

n
(
4n2 − 9n− 55

)

6
>

1

2

(
1− 1

3n

)
.

Using G.C., n ≥ 5.019. Since n is an integer, the least n that satisfies the inequality is 6.

Part (c). We have

2n∑

r=n+1

(2r − 7)(r + 1) =

2n∑

r=1

(2r − 7)(r + 1)−
n∑

r=1

(2r − 7)(r + 1)

=
2n
[
4(2n)2 − 9(2n)− 55

]

6
− n

(
4n2 − 9n− 55

)

6

=
n
(
28n2 − 27n− 55

)

6
.

Part (d). We have

43× 26 + 45× 27 + 47× 28 + · · ·+ 87× 48 + 89× 49 =

2(24)∑

r=24+1

(2r − 7)(r + 1)

=
(24)

[
28(24)2 − 27(24)− 55

]

6
= 61700.
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Problem 4. It is given that
∑n

r=1
2r+1

r(r+1)(r+2) =
n(5n+7)

4(n+1)(n+2) .

(a) Show that the series
∑∞

r=1
2r+1

r(r+1)(r+2) converges and write down its sum to infinity.

(b) Find
∑n−2

r=0
2r+5

(r+2)(r+3)(r+4) .

Solution.

Part (a). Clearly,

∞∑

r=1

2r + 1

r(r + 1)(r + 2)
= lim

n→∞
n(5n+ 7)

4(n+ 1)(n+ 2)
= lim

n→∞
5 + 7

n

4
(
1 + 1

n

) (
1 + 2

n

) =
5

4
.

Thus, the series converges and its sum to infinity is 5/4.

Part (b). Reindexing r 7→ r − 2,

n−2∑

r=0

2r + 5

(r + 2)(r + 3)(r + 4)
=

n∑

r=2

2r + 1

r(r + 1)(r + 2)

=

n∑

r=1

2r + 1

r(r + 1)(r + 2)
− 2(1) + 1

1(1 + 1)(1 + 2)
=

n(5n+ 7)

4(n+ 1)(n+ 2)
− 1

2
.
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Assignment A4

Problem 1. Find
∑n

r=0

(
n2 + 1− 3r

)
in terms of n, giving your answer in factorized

form.

Solution.

n∑

r=0

(
n2 + 1− 3r

)
= (n+ 1)(n2 + 1)− 3

[
n(n+ 1)

2

]
=

1

2
(n+ 1)

(
2n2 − 3n+ 2

)
.

∗ ∗ ∗ ∗ ∗

Problem 2. Given that
∑n

k=1 k!
(
k2 + 1

)
= (n+ 1)!n, find

∑n−1
k=1(k + 1)!

(
k2 + 2k + 2

)
.

Solution. Reindexing k + 1 7→ k,

n−1∑

k=1

(k + 1)!
(
k2 + 2k + 2

)
=

n∑

k=2

k!
(
k2 + 1

)
.

Using the given result,

n∑

k=2

k!
(
k2 + 1

)
=

n∑

k=1

k!
(
k2 + 1

)
− 1!

(
12 + 1

)
= (n+ 1)!n− 2.

∗ ∗ ∗ ∗ ∗

Problem 3. Given that
∑n

r=1 = 1
6n(n + 1)(2n + 1), find

∑2N
r=N+1

(
7r+1 + 3r2

)
in terms

of N , simplifying your answer.

Solution. Note that

2N∑

r=N+1

7r+1 =
7(N+1)+1(7N − 1)

7− 1
=

7N+2(7N − 1)

6
.

Next, we split the sum of squares:

2N∑

r=N+1

3r2 = 3

(
2N∑

r=1

r2 −
N∑

r=1

r2

)
.

Using the given result,

2N∑

r=N+1

3r2 = 3

(
(2N)(2N + 1)(4N + 1)

6
− N(N + 1)(2N + 1)

6

)
=

N(2N + 1)(7N + 1)

2
.

Thus,
2N∑

r=N+1

(
7r+1 + 3r2

)
=

7N+2(7N − 1)

6
+

N(2N + 1)(7N + 1)

2
.
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Problem 4. Let f(r) = 3
r−1 .

(a) Show that f(r + 1)− f(r) = − 3
r(r−1) .

(b) Hence, find in terms of N , the sum of the series SN =
∑N

r=2
1

r(r−1) .

(c) Explain why
∑∞

r=2
1

r(r−1) is a convergent series, and find the value of the sum to
infinity.

(d) Using the result from part (b), find
∑N

r=2
1

r(r+1) .

Solution.

Part (a).

f(r + 1)− f(r) =
3

(r + 1)− 1
− 3

r − 1
=

3(r − 1)− 3r

r(r − 1)
= − 3

r(r − 1)
.

Part (b). Observe that

SN =

N∑

r=2

1

r(r − 1)
= −1

3

N∑

r=2

− 3

r(r − 1)
= −1

3

[
N∑

r=2

f(r + 1)−
N∑

r=2

f(r)

]
,

which clearly telescopes. Thus,

SN = −f(N + 1)− f(2)

3
= −1

3

(
3

N + 1− 1
− 3

2− 1

)
= 1− 1

N
.

Part (c).

lim
N→∞

SN = lim
N→∞

(
1− 1

N

)
= 1− 0 = 1.

Since 1 is a constant,
∑∞

r=2
1

r(r−1) is a convergent series.

Part (d). Reindexing r 7→ r − 1,

N∑

r=2

1

r(r + 1)
=

N+1∑

r=3

1

(r − 1)r
=

N∑

r=2

1

r(r − 1)
− 1

2(2− 1)
+

1

(N + 1)N
.

Using the result from part (b),

N∑

r=2

1

r(r + 1)
=

(
1− 1

N

)
− 1

2(2− 1)
+

1

(N + 1)N
=

1

2
− 1

N + 1
.
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A5 Recurrence Relations

Tutorial A5

Problem 1. Solve these recurrence relations together with the initial conditions.

(a) un = 2un−1, for n ≥ 1, u0 = 3

(b) un = 3un−1 + 7, for n ≥ 1, u0 = 5

Solution.

Part (a). un = 2n · u0 = 3 · 2n.
Part (b). Let k be a constant such that un + k = 3(un−1 + k). Then k = 7

2 . Hence,

un +
7

2
= 3

(
un−1 +

7

2

)
=⇒ un +

7

2
= 3n

(
u0 +

7

2

)
=⇒ un =

17

2
· 3n − 7

2
.

∗ ∗ ∗ ∗ ∗

Problem 2. Solve these recurrence relations together with the initial conditions.

(a) un = 5un−1 − 6un−2, for n ≥ 2, u0 = 1, u1 = 0

(b) un = 4un−2, for n ≥ 2, u0 = 0, u1 = 4

(c) un = 4un−1 − 4un−2, for n ≥ 2, u0 = 6, u1 = 8

(d) un = −6un−1 − 9un−2, for n ≥ 2, u0 = 3, u1 = −3

(e) un = 2un−1 − 2un−2, for n ≥ 2, u0 = 2, u1 = 6

Solution.

Part (a). Note that the characteristic equation of un, x
2 − 5x+ 6 = 0, has roots 2 and 3.

Thus,
un = A · 2n +B · 3n.

From u0 = 1 and u1 = 0, we have the equations A+B = 1 and 2A+3B = 0. Solving, we
see that A = 3 and B = 2, whence

un = 3 · 2n + 2 · 3n.

Part (b). Note that the characteristic equation of un, x
2 − 4 = 0, has roots −2 and 2.

Thus,
un = A(−2)n +B · 2n.

From u0 = 0 and u1 = 4, we get A + B = 0 and −2A + 2B = 4. Solving, we see that
A = −1 and B = 1, whence

un = −(−2)n + 2n.
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Part (c). Note that the characteristic equation of un, x
2 − 4x+ 4 = 0, has only one root,

2. Thus,
un = (A+Bn)2n.

From u0 = 6 and u1 = 8, we obtain A = 6 and A+B = 4, whence B = −2. Thus,

un = (6− 2n)2n.

Part (d). Note that the characteristic equation of un, x
2 + 6x+ 9 = 0, has only one root,

−3. Thus,
un = (A+Bn)(−3)n.

From u0 = 3 and u1 = −3, we get A = 3 and A+B = 1, whence B = −2. Thus,

un = (3− 2n)2n.

Part (e). Consider the characteristic equation of un, x
2 − 2x + 2 = 0. By the quadratic

formula, this has roots x = 1± i =
√
2 exp

(
± iπ

4

)
. Hence,

un = A · 2 1
2
n cos

(nπ
4
n
)
+B · 2 1

2
n sin

(nπ
4

)
.

From u0 = 2, we obtain A = 2. From u0 = 6, we obtain A+B = 6, whence B = 4. Thus,

un = 2
1
2
n+1 cos

(nπ
4

)
+ 2

1
2
n+2 sin

(nπ
4

)
.

∗ ∗ ∗ ∗ ∗

Problem 3.

(a) A sequence is defined by the formula bn = n!n!
(2n)! · 2n, where n ∈ Z+. Show that the

sequence satisfies the recurrence relation bn+1 =
n+1
2n+1bn.

(b) A sequence is defined recursively by the formula

un+1 = 2un + 3, n ∈ Z+
0 , u0 = a

Show that un = 2na+ 3 (2n − 1).

Solution.

Part (a).

bn+1 =
(n+ 1)!(n+ 1)!

(2n+ 2)!
· 2n+1 =

2(n+ 1)2

(2n+ 1)(2n+ 2)

[
n!n!

(2n)!
· 2n
]
=

n+ 1

2n+ 1
bn.

Part (b). Let k be a constant such that un+1 + k = 2(un + k). Then k = 3. Hence,

un+1+3 = 2(un+3) =⇒ un+3 = 2n(u0+3) =⇒ un = 2n(a+3)−3 = 2na+3 (2n − 1) .
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Problem 4. The volume of water, in litres, in a storage tank decreases by 10% by the
end of each day. However, 90 litres of water is also pumped into the tank at the end of
each day. The volume of water in the tank at the end of n days is denoted by xn and x0
is the initial volume of water in the tank.

(a) Write down a recurrence relation to represent the above situation.

(b) Show that xn = 0.9n(x0 − 900) + 900.

(c) Deduce the amount of water in the tank when n becomes very large.

Solution.

Part (a). xn+1 = 0.9xn + 90, n ∈ N
Part (b). Let k be a constant such that xn+1 + k = 0.9(xn + k). Then k = −900. Hence,

xn+1−900 = 0.9(xn−900) =⇒ xn−900 = 0.9n(x0−900) =⇒ xn = 0.9n(x0−900)+900.

Part (c). As n → ∞, 0.9n → 0. Hence, the amount of water in the tank will converge to
900 litres.

∗ ∗ ∗ ∗ ∗

Problem 5. A deposit of $100,000 is made to an investment fund at the beginning of
a year. On the last day of each year, two dividends are awarded and reinvested into the
fund. The first dividend is 20% of the amount in the account during that year. The second
dividend is 45% of the amount in the account in the previous year.

(a) Find a recurrence relation {Pn} where Pn is the amount at the start of the nth year
if no money is ever withdrawn.

(b) How much is in the account after n years if no money is ever withdrawn?

Solution.

Part (a).
Pn+2 = Pn+1 + 0.2Pn+1 + 0.45Pn = 1.2Pn+1 + 0.45Pn.

Part (b). Note that the characteristic equation of Pn, x
2− 1.2x− 0.45 = 0, has roots − 3

10
and 3

2 . Thus,

Pn = A

(
− 3

10

)n

+B

(
3

2

)n

.

From P0 = 0 and P1 = 100000, we have A + B = 0 and − 3
10A + 3

2B = 100000. Solving,
we have A = −500000

9 and B = 500000
9 . Thus,

Pn =
500000

9

[(
3

2

)n

−
(
− 3

10

)n]
.

Hence, there will be $
{
500000

9

[(
3
2

)n −
(
− 3

10

)n]}
in the account after n years if no money

is ever withdrawn
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Problem 6. A pair of rabbits does not breed until they are two months old. After they
are two months old, each pair of rabbit produces another pair each month.

(a) Find a recurrence relation {fn} where fn is the total number of pairs of rabbits,
assuming that no rabbits ever die.

(b) What is the number of pairs of rabbits at the end of the nth month, assuming that
no rabbits ever die?

Solution.

Part (a). fn+2 = fn+1 + fn, n ≥ 2, f0 = 0, f1 = 1

Part (b). Consider the characteristic equation of fn, x
2 − x − 1 = 0. By the quadratic

formula, the roots of the characteristic equation are 1+
√
5

2 and 1−
√
5

2 . Hence,

fn = A

(
1 +

√
5

2

)n

+B

(
1−

√
5

2

)n

.

From f0 = 0, we get A+B = 0. From f1 = 1, we get A
(
1+

√
5

2

)
+B

(
1−

√
5

2

)
= 1. Solving,

we get A = 1√
5
and B = − 1√

5
. Hence,

fn =
1√
5

(
1 +

√
5

2

)n

− 1√
5

(
1−

√
5

2

)n

.

∗ ∗ ∗ ∗ ∗

Problem 7. For n ∈
{
2j : j ∈ Z, j ≥ 1

}
, it is given that Tn = 3Tn/2 + 17, where T1 = 4.

By considering the substitution n = 2i and another suitable substitution, show that the
recurrence relation can be expressed in the form

ti = 3ti−1 + 17, i ∈ Z+

Hence, find an expression for Tn in terms of n.

Solution. Let n = 2i ⇐⇒ i = log2 n. The given recurrence relation transforms to

T2i = 3T2i−1 + 17, T20 = 4.

Let ti = T2i. Then
ti = 3ti−1 + 17, t0 = 4.

Let k be a constant such that ti+k = 3(ti−1+k). Then k = 17
2 . We thus obtain a formula

for ti:

ti +
17

2
= 3

(
ti−1 +

17

2

)
=⇒ ti +

17

2
= 3i

(
t0 +

17

2

)
=⇒ ti =

25

2
· 3i − 17

2
.

Thus,

T2i =
25

2
· 3i − 17

2
=⇒ Tn =

25

2
· 3log2 n − 17

2
.
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Problem 8. Consider the sequence {an} given by the recurrence relation

an+1 = 2an + 5n, n ≥ 1.

(a) Given that an = k (5n) satisfies the recurrent relation, find the value of the constant
k.

(b) Hence, by considering the sequence {bn} where bn = an − k(5n), find the particular
solution to the recurrence relation for which a1 = 2.

Solution.

Part (a).

an+1 = 2an + 5n =⇒ k
(
5n+1

)
= 2 · k (5n) + 5n =⇒ 5k = 2k + 1 =⇒ k =

1

3
.

Part (b).

bn = an − 5n

3
=
(
2an−1 − 5n−1

)
− 5n

3
= 2an−1 −

2

3
· 5n−1 = 2

(
an−1 −

5n−1

3

)
= 2bn−1.

Hence, bn = b1 · 2n−1. Note that b1 = a1 − 5
3 = 1

3 . Thus, bn = 2n−1

3 , which gives

bn = an − 5n

3
=

2n−1

3
=⇒ an =

2n + 2 · 5n
6

.

∗ ∗ ∗ ∗ ∗

Problem 9. The sequence {Xn} is given by

√
Xn+2 =

Xn+1

X2
n

, n ≥ 1.

By applying the natural logarithm to the recurrence relation, use a suitable substitution to
find the general solution of the sequence, expressing your answer in trigonometric form.

Solution. Taking the natural logarithm of the recurrence relation and simplifying, we get

lnXn+2 = 2 lnXn+1 − 4 lnXn.

Let Ln = lnXn ⇐⇒ Xn = exp(Ln). Then,

Ln+2 = 2Ln+1 − 4Ln.

Consider the characteristic equation of Ln, x
2 − 2x + 4 = 0. By the quadratic formula,

this has roots 1±
√
3i = 2 exp

(
± iπ

3

)
. Thus, we can express Ln as

Ln = A · 2n cos nπ
3

+B · 2n sin nπ

3
= 2n

(
A cos

nπ

3
+B sin

nπ

3

)
.

Thus, Xn has the general solution

Xn = exp
(
2n
(
A cos

nπ

3
+B sin

nπ

3

))
.
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Problem 10. The sequence {Xn} is given by X1 = 2, X2 = 15 and

Xn+2 = 5

(
1 +

1

n+ 2

)
Xn+1 − 6

(
1 +

2

n+ 1

)
Xn, n ≥ 1.

By dividing the recurrence relation throughout by n + 3, use a suitable substitution to
determine Xn as a function of n.

Solution. Dividing the recurrence relation by n+ 3, we obtain

Xn+2

n+ 3
= 5

(
1

n+ 3
+

1

(n+ 2)(n+ 3)

)
Xn+1 − 6

(
1

n+ 3
+

2

(n+ 1)(n+ 3)

)
Xn.

Note that 1
(n+2)(n+3) =

1
n+2 − 1

n+3 and 2
(n+1)(n+3) =

1
n+1 − 1

n+3 . Thus,

Xn+2

n+ 3
= 5

(
Xn+1

n+ 2

)
− 6

(
Xn

n+ 1

)
.

Let Yn = n+1
Xn

⇐⇒ Xn = (n+ 1)Yn. Then,

Yn+2 = 5Yn+1 − 6Yn.

Note that the characteristic equation of Yn, x
2 − 5x+ 6 = 0, has roots 2 and 3. Hence,

Yn = A · 2n +B · 3n =⇒ Xn = (n+ 1) (A · 2n +B · 3n) .

From X1 = 2 and X2 = 15, we have 2A + 3B = 1 and 4A + 9B = 5. Solving, we obtain
A = −1 and B = 1. Thus,

Xn = (n+ 1) (3n − 2n) .

∗ ∗ ∗ ∗ ∗

Problem 11. A logistics company set up an online platform providing delivery services
to users on a monthly paid subscription basis. The company’s sales manager models the
number of subscribers that the company has at the end of each month. She notes that
approximately 10% of the existing subscribers leave each month, and that there will be a
constant number k of new subscribers in each subsequent month after the first.
Let Tn, n ≥ 1, denote the number of subscribers the company has at the end of the nth

month after the online platform was set up.

(a) Express Tn+1 in terms of Tn.

The company has 250 subscribers at the end of the first month.

(b) Find Tn in terms of n and k.

(c) Find the least number of subscribers the company needs to attract in each subsequent
month after the first if it aims to have at least 350 subscribers by the end of the
12th month.

Let k = 50 for the rest of the question.
The monthly running cost of the company is assumed to be fixed at $4,000. The monthly

subscription fee is $10 per user which is charged at the end of each month.

(d) Given that the mth month is the first month in which the company’s revenue up to
and including that month is able to cover its cost up to and including that month,
find the value of m.
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(e) Using your answer to part (b), determine the long-term behaviour of the number
of subscribers that the company has. Hence, explain whether this behaviour is
appropriate in terms of long-term prospects for the company’s success.

Solution.

Part (a). Tn+1 = 0.9Tn + k

Part (b). Let m be a constant such that Tn+1 + m = 0.9 (Tn +m). Then m = −10k.
Hence,

Tn+1 − 10k = 0.9 (Tn − 10k) =⇒ Tn − 10k = 0.9n−1 (T0 − 10k) .

Since T0 = 250, we get
Tn = 0.9n−1 (250− 10k) + 10k.

Part (c). Consider T12 ≥ 350.

T12 ≥ 350 =⇒ 0.912−1 (250− 10k) + 10k ≥ 350.

Using G.C., k ≥ 39.6. Hence, the company needs to attract at least 40 subscribers in each
subsequent month.

Part (d). Since k = 50, Tn = −250 · 0.9n−1 + 500. Let $Sm be the total revenue for the
first m months.

Sm = 10
m∑

n=1

Tn = 10
m∑

n=1

(
−250 · 0.9n−1 + 500

)

= 10

[
−250

(
1− 0.9m

1− 0.9

)
+ 500m

]
= 25000 (0.9m − 1) + 5000m.

Note that the total cost for the first m months is $4000m. Hence, the total profit for the
first m months is given by $(Sm − 4000m). Hence, we consider Sm − 4000m ≥ 0:

Sm − 4000m ≥ 0 =⇒ 25000 (0.9m − 1) + 1000m ≥ 0.

Using G.C., we obtain m ≥ 22.7, whence the least value of m is 23.

Part (e). As n → ∞, 0.9n−1 → 0. Hence, Tn → 500. Hence, as n becomes very large,
the profit per month approaches 500 · 10 − 4000 = 1000 dollars. Thus, this behaviour is
appropriate as the business will remain profitable in the long run.
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Self-Practice A5

Problem 1. Tom wants to buy a new Aphone11. To save up for his purchase, Tom takes
up a part-time job that pays him $400 per month which will be credited into his bank
account on the 25th of each month, starting from January 2012. On the first day of every
month of 2012, he withdraws half of the total amount of money from his bank account
for food and transportation. Assuming that Tom has $250 in this bank account on 31
December 2011,

(a) write down a recurrence relation for un, where un denotes the amount in his bank
account on the last day of the nth month after December 2011, and

(b) show that un = 800− 550 (0.5n).

Given that a new Aphone 11 costs $850,

(c) explain why Tom is unable to buy the Aphone11, and

(d) find the maximum percentage of the total amount of money in the bank that Tom
should spend on transport and food every month in order to be able to buy the
Aphone11 on the last day of December 2012.

Solution.

Part (a). We have

un =
1

2
un−1 + 400, u0 = 250.

Part (b). Note that the complementary solution is

u(c)n = C

(
1

2

)n

,

where C is an arbitrary constant. Let the particular solution be u
(p)
n = k. Then

k =
1

2
k + 400 =⇒ k = 800.

Hence,

un = u(c)n + u(p)n = C

(
1

2

)n

+ 800.

Using the condition u0 = 250, we get

250 = C + 800 =⇒ C = −500,

whence

un = 800− 500

(
1

2

)n

.

Part (c). Clearly, −500(1/2)n < 0 for all n > 0. Hence,

un = 800− 500

(
1

2

)n

< 800 < 850.

Thus, Tom is unable to buy the Aphone11.
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Part (d). Let the desired percentage be p%. Then

un =
(
1− p

100

)
un−1 + 400.

Let the particular solution be u
(p)
n = k. Then

k =
(
1− p

100

)
k + 400 =⇒ k =

40000

p
.

We thus want
40000

p
≥ 850 =⇒ p ≤ 800

17
= 47.059.

Hence, the maximum percentage is 47%.

∗ ∗ ∗ ∗ ∗

Problem 2. A sequence of real numbers u1, u2, u3, . . . satisfies the recurrence relation

un = 2un−1 + 1, n ≥ 1.

Given that u1 = 2, show that un = 2n + 2n−1 − 1. Hence, determine the behaviour of the
sequence.

Solution. Note that the complementary solution is

u(c)n = C2n,

where C is an arbitrary constant. Let the particular solution be u
(p)
n = k. Then

k = 2k + 1 =⇒ k = −1.

Hence,
un = u(c)n + u(p)n = C2n − 1.

Using the condition u1 = 2, we get

2 = 2C − 1 =⇒ C =
3

2
,

whence

un =
3

2
· 2n − 1 = (2 + 1)2n−1 − 1 = 2n + 2n−1 − 1.

Clearly, un is increasing and diverges to infinity.

∗ ∗ ∗ ∗ ∗

Problem 3. Solve these recurrence relations together with the initial conditions.

(a) un = 7un−1 − 10un−2 for n ≥ 2, u0 = 2, u1 = 1.

(b) un = 1
4un−2 for n ≥ 2, u0 = 1, u1 = 0.

(c) un = −4un−1 − 4un−2 for n ≥ 2, u0 = 0, u1 = 1.

(d) un+2 = −4un+1 + 5un for n ≥ 0, u0 = 2, u1 = 8.
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Solution.

Part (a). Consider the characteristic equation x2 − 7x+ 10 = 0, which has distinct roots
x = 2 and x = 5. Hence,

un = A (2n) +B (5n) .

Using the conditions u0 = 2 and u1 = 1, we get the system
{

A+B = 2

2A+ 5B = 1
,

whence A = 3 and B = −1. Thus,

un = 3 (2n)− 5n.

Part (b). Consider the characteristic equation x2 = 1/4, which has distinct roots x =
±1/2. Hence,

un = A

(
1

2

)n

+B

(
−1

2

)n

=
1

2n
[A+ (−1)nB] .

Using the conditions u0 = 1 and u1 = 0, we get the system
{

A−B = 1

A+B = 0
,

whence A = 1/2 and B = −1/2. Thus,

un =
1

2n

[
1

2
+ (−1)n

(
−1

2

)]
=

1 + (−1)n−1

2n+1
.

Part (c). Consider the characteristic equation x2 − 4x+4 = 0, which has the unique root
x = −2. Hence,

un = (A+Bn)(−2)n.

Using the conditions u0 = 0 and u1 = 1, we get the system
{

A = 0

2A− 2B = 1
,

whence A = 0 and B = −1/2. Thus,

un =
(
0− n

2

)
(−2)n = n(−2)n−1.

Part (d). Consider the characteristic equation x2 + 4x − 5 = 0, which has distinct roots
x = −5 and x = 1. Hence,

un = A(−5)n +B(1)n = A(−5)n +B.

Using the conditions u0 = 2 and u1 = 8, we get the system
{

A+B = 2

5A+B = 8
,

whence A = −1 and B = 3. Thus,

un = 3− (−5)n.
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Problem 4 ( ). Find the unit digit of the number
(
3 +

√
5
)2016

+
(
3−

√
5
)2016

.

Solution. Let un be a sequence such that

un =
(
3 +

√
5
)n

+
(
3−

√
5
)n

.

We aim to find a recurrence relation for un. First, observe that 3 +
√
5 and 3 −

√
5 are

roots to the characteristic polynomial P (x) of un:

P (x) =
[
x−

(
3 +

√
5
)] [

x−
(
3−

√
5
)]

= x2 − 6x+ 4.

Thus, un satisfies the recurrence relation

un = 6un−1 − 4un−2.

Since we are interested in the unit digit of u2016, we consider un (mod 10):

un = 6un−1 − 4un−2 ≡ 6un−1 + 6un−2 = 6 (un−1 + un−2) (mod 10).

Since u0 = 2 and u1 = 6, we construct the following table:

n un (mod 10)

0 2

1 6

2 8

3 4

4 2

5 6

Observe that the pattern repeats every four terms: 2, 6, 8, 4, 2, 6, 8, 4, 2, . . . . Thus,

un (mod 10) ≡





2, n ≡ 0 (mod 4)

6, n ≡ 1 (mod 4)

8, n ≡ 2 (mod 4)

4, n ≡ 3 (mod 4)

.

Since 2016 ≡ 0 (mod 4), it follows that the unit digit of u2016 is 2.

∗ ∗ ∗ ∗ ∗

Problem 5 ( ). A person attempts to cut a circular pizza into as many pieces as possible
with a given number of straight cuts. In order to have as many slices as possible with each
cut, no three cuts are concurrent, no two cuts are parallel, and the intersection of any two
cuts should lie in the interior of the pizza.

n = 1 n = 2 n = 3

Find the maximum number of slices of a circular pizza that a person can obtain by
making n straight cuts with a knife.
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Solution. Let un be the maximum number of slices obtainable from n cuts. From the
above diagrams, we see that the nth slice can add at most n new slices. Hence,

un = un−1 + n.

We can rewrite this as
un − un−1 = n.

Summing over k = 2, 3, . . . , n,

un − a1 =
n∑

k=1

(uk − uk−1) =
n∑

k=2

k =
n2 + n

2
− 1.

Since a1 = 2, we have

un =
n2 + n

2
+ 1 =

n2 + n+ 2

2
.

∗ ∗ ∗ ∗ ∗

Problem 6 ( ). Solve the simultaneous recurrence relations:

an = 3an−1 + 2bn−1, bn = an−1 + 2bn−1

with a0 = 1 and b0 = 2.

Solution. Adding the two equations together, we see that {an + bn} is in geometric
progression:

an + bn = 4 (an−1 + bn−1) = 4n (a0 + b0) = 3 · 4n.
Substituting this into the first equation, we get

an − an−1 = 2 (an−1 + bn−1) = 6 · 4n−1.

Summing over k = 1, 2, . . . , n,

an − a0 =

n∑

k=1

(ak − ak−1) =

n∑

k=1

6 · 4k−1 = 6

(
1− 4n

1− 4

)
= 2 (4n − 1) .

Thus,
an = a0 + 2 (4n − 1) = 22n+1 − 1

and
bn = 3 · 4n − an = 3 · 22n −

(
22n+1 − 1

)
= 22n + 1.
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Assignment A5

Problem 1. In an auction at a charity gala dinner, a group of wealthy businessmen are
competing with each other to be the highest bidder. Each time one of them makes a bid
amount, another counter-bids by 50% more, less a service charge of ten dollars (e.g. If A
bids $1000, then B will bid $1490). Let un be the amount at the nth bid and u1 be the
initial amount.

(a) Write down a recurrence relation that describes the bidding process.

(b) Show that un = $(1.5n−1(u1 − 20) + 20).

(c) The target amount to be raised is $1 234 567 and the bidding stops when the bid
amount meets or crosses this target amount. Given that u1 = 111,

(i) state the least number of bids required to meet this amount.

(ii) find the winning bid amount, correct to the nearest thousand dollars.

Solution.

Part (a). un+1 = 1.5un − 10.

Part (b). Let k be the constant such that un+1 + k = 1.5(un + k). Then k = −20. Hence,
un+1 − 20 = 1.5(un − 20).

un+1− 20 = 1.5(un− 20) =⇒ un− 20 = 1.5n−1(u1− 20) =⇒ un = 1.5n−1(u1− 20)+ 20.

Part (c).

Part (c)(i). Let m be the least integer such that um ≥ 1234567. Consider um ≥ 1234567:

um ≥ 1234567 =⇒ 1.5m−1(111− 20) + 20 ≥ 1234567.

Using G.C., m ≥ 24.5. Hence, it takes at least 25 bids to meet this amount.

Part (c)(ii). Since u25 = 1.525−1(111 − 20) = 1532000 (to the nearest thousand), the
winning bid is $1 532 000.

∗ ∗ ∗ ∗ ∗

Problem 2. Solve these recurrence relations together with the initial conditions.

(a) un+2 = −un + 2un+1, for n ≥ 0, u0 = 5, u1 = −1.

(b) 4un = 4un−1 + un−2, for n ≥ 2, u0 = a, u1 = b, a, b ∈ R.

Solution.

Part (a). Observe that the characteristic equation of un, x
2 − 2x + 1 = 0, has only one

root, namely x = 1. Thus,

un = (A+Bn) · 1n = A+Bn.

Thus, un is in AP. Since u0 = 5 and u1 = −1, it follows that

un = 5− 6n.

Part (b). Rewriting the given recurrence relation, we have un = un−1+
1
4un−2. Thus, the

characteristic equation is x2 − x− 1
4 = 0, which has roots 1

2(1±
√
2). Thus,

un = A

(
1 +

√
2

2

)n

+B

(
1−

√
2

2

)n

.
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Since u0 = a, we obviously haveA+B = a. Since u1 = b, we getA
(
1+

√
2

2

)
+B

(
1−

√
2

2

)
=

b. Solving, we get

A =

√
2− 1

2
√
2

a+
1√
2
b, B =

√
2 + 1

2
√
2

a− 1√
2
b.

Thus,

un =

(√
2− 1

2
√
2

a+
1√
2
b

)(
1 +

√
2

2

)n

+

(√
2 + 1

2
√
2

a− 1√
2
b

)(
1−

√
2

2

)n

.

∗ ∗ ∗ ∗ ∗

Problem 3. A passcode is generated using the digits 1 to 5, with repetitions allowed.
The passcodes are classified into two types. A Type A passcode has an even number of
the digit 1, while a Type B passcode has an odd number of the digit 1. For example, a
Type A passcode is 1231, and a Type B passcode is 1541213. Let an and bn denote the
number of n-digit Type A and Type B passcodes respectively.

(a) State the values of a1 and a2.

(b) By considering the relationship between an and bn, show that

an = xan−1 + yn−1, n ≥ 2

where x and y are constants to be determined.

(c) Using the substitution cn = zan + yn, where z is a constant to be determined, find
a first order linear recurrence relation for cn. Hence, find the general term formula
for an.

Solution.

Part (a). a1 = 4, a2 = 17.

Part (b). Let P be an n-digit passcode with Type T , where T is either A or B. Let Type
T ′ be the other type.

By concatenating a digit from 1 to 5 to P , five (n+1)-digit passcodes can be created. Let
P ′ denote a new passcode that is created via this process. If the digit 1 is concatenated,
then P ′ is of Type T ′. If the digit 1 is not concatenated, then P ′ is of Type T . There are
4 choices for such a case. This hence gives the recurrence relations

{
an = 4an−1 + bn−1

bn = 4bn−1 + an−1

Adding the two equations, we see that an + bn = 5(an−1 + bn−1). Thus,

an + bn = 5n−1(a1 + b1) = 5n−1(4 + 1) = 5n.

Hence,
an = 4an−1 + bn−1 = 3an−1 + an−1 + bn−1 = 3an−1 + 5n−1,

whence x = 3 and y = 5.
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Part (c). Observe that

cn = zan + 5n = z
(
3an−1 + 5n−1

)
+ 5n = 3

(
zan−1 + 5n−1

)
+ (2 + z)5n−1

= 3cn−1 + (2 + z)5n−1.

Let z = −2. Then,

cn = 3cn−1 = 3n−1c1 = 3n−1 (−2a1 + 5) = −3n.

Note that an = 1
z (cn − yn). Thus,

an =
−3n − 5n

−2
=

3n + 5n

2
.
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A6 Polar Coordinates

Tutorial A6

Problem 1.

(a) Find the rectangular coordinates of the following points.

(i) (3,−π
4 )

(ii) (1, π)

(iii) (12 ,
3
2π)

(b) Find the polar coordinates of the following points.

(i) (3, 3)

(ii) (−1,−
√
3)

(iii) (2, 0)

(iv) (4, 2)

Solution.

Part (a).

Part (a)(i). Note that r = 3 and θ = −π
4 . This gives

x = r cos θ =
3√
2
, y = r sin θ = − 3√

2
.

Hence, the rectangular coordinate of the point is (3/
√
2,−3

√
2).

Part (a)(ii). Note that r = 1 and θ = π. This gives

x = r cos θ = −1, y = r sin θ = 0.

Hence, the rectangular coordinate of the point is (−1, 0).

Part (a)(iii). Note that r = 1
2 and θ = 3

2π. This gives

x = ρ cos θ = 0, y = r sin θ = −1

2
.

Hence, the rectangular coordinate of the point is (0,−1/2).

Part (b).

Part (b)(i). Note that x = 3 and y = −3. This gives

r2 = x2 + y2 =⇒ r = 3
√
2, tan θ =

y

x
=⇒ θ = −π

4
.

Hence, the polar coordinate of the point is (3
√
2,−π/4).

Part (b)(ii). Note that x = −1 and y = −
√
3. This gives

r2 = x2 + y2 =⇒ r = 2, tan θ =
y

x
=⇒ θ =

π

3
.

Hence, the polar coordinate of the point is (2, π/3).
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Part (b)(iii). Note that x = 2 and y = 0. This gives

r2 = x2 + y2 =⇒ r = 2, tan θ =
y

x
=⇒ θ = 0.

Hence, the polar coordinate of the point is (2, 0).

Part (b)(iv). Note that x = 4 and y = 2. This gives

r2 = x2 + y2 =⇒ r = 2
√
5, tan θ =

y

x
=⇒ θ = arctan

1

2
.

Hence, the polar coordinate of the point is (2
√
5, arctan(1/2)).

∗ ∗ ∗ ∗ ∗

Problem 2. Rewrite the following equations in polar form.

(a) 2x2 + 3y2 = 4

(b) y = 2x2

Solution.

Part (a).

2x2 + 3y2 = 2(r cos θ)2 + 3(r sin θ)2 = 4 =⇒ r2 =
4

2 cos2 θ + 3 sin2 θ
=

4

2 + sin2 θ
.

Part (b).

y = 2x2 =⇒ y

x
= 2x =⇒ tan θ = 2r cos θ =⇒ r =

1

2
tan θ sec θ.

∗ ∗ ∗ ∗ ∗

Problem 3. Rewrite the following equations in rectangular form.

(a) r = 1
1−2 cos θ

(b) r = sin θ

Solution.

Part (a).

r =
1

1− 2 cos θ
=⇒ r − 2r cos θ = 1 =⇒ r = 2x+ 1 =⇒ r2 = 4x2 + 4x+ 1

=⇒ x2 + y2 = 4x2 + 4x+ 1 =⇒ y2 = 3x2 + 4x+ 1.

Part (b).
r = sin θ =⇒ r2 = r sin θ =⇒ x2 + y2 = y.
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Problem 4.

(a) Show that the curve with polar equation r = 3a cos θ, where a is a positive constant,
is a circle. Write down its centre and radius.

(b) By finding the Cartesian equation, sketch the curve whose polar equation is r =
a sec

(
θ − π

4

)
, where a is a positive constant.

Solution.

Part (a).

r = 3a cos θ =⇒ r2 = 3ar cos θ =⇒ x2 + y2 = 3ax =⇒ x2 − 3ax+ y2 = 0.

Completing the square, we get

(
x− 3a

2

)2

+ y2
(
3a

2

)2

.

Thus, the circle has centre (3a/2, 0) and radius 3a/2.

Part (b).

r = a sec
(
θ − π

4

)
=⇒ r cos

(
θ − π

4

)
= a =⇒ r (cos θ + sin θ) =

√
2a =⇒ x+ y =

√
2a.

√
2a

√
2a

O

x

y
x+ y =

√
2a



368 A6 Polar Coordinates

Problem 5. Sketch the following polar curves, where r is non-negative and 0 ≤ θ ≤ 2π.

(a) r = 2

(b) θ = π
4

(c) r = 1
2θ

(d) r = 2 csc θ

Solution.

Part (a).

2 2

2

2

O

θ = 0

θ = π
2

r = 2

Part (b).

O

θ = 0

θ = π
2 θ = π/4

Part (c).

π1
2π

1
4π

3
4π

O

θ = 0

θ = π
2 r = θ/2
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Part (d).

2

O

θ = 0

θ = π
2 r = 2 csc θ

∗ ∗ ∗ ∗ ∗

Problem 6. A sketch of the curve r = 1+sin θ
3 is shown. Copy the diagram and indicate

the x- and y-intercepts.

O x

y r = 1 + sin(θ/3)

Solution. Observe that the curve is symmetric about the y-axis. Also observe that
θ
3 ∈ [0, 2π), hence we take θ ∈ [0, 6π).
For x-intercepts, y = r sin θ = 0 =⇒ θ = nπ, where n ∈ Z. Due to the symmetry of

the curve, we consider only n = 0, 2, 4.
Case 1 . n = 0 =⇒ r = 1 + sin 0

3π = 1.

Case 2 . n = 2 =⇒ r = 1 + sin 2
3π = 1 +

√
3
2 .

Case 3 . n = 4 =⇒ r = 1 + sin 4
3π = 1−

√
3
2 .

Hence, the curve intersects the x-axis at x = 1, 1 +
√
3
2 , 1 −

√
3
2 . Correspondingly, the

curve also intersects the x-axis at x = −1,−1−
√
3
2 ,−1 +

√
3
2 .

For y-intercepts, x = r cos θ = 0 =⇒ θ = (n+ 1
2)π, where n ∈ Z. Due to the restriction

on θ, we consider n ∈ [0, 5).

Case 1 . n = 0, r = 1 + sin 1/2
3 π = 3

2 .

Case 2 . n = 1, r = 1 + sin 3/2
3 π = 2.

Case 3 . n = 2, r = 1 + sin 5/2
3 π = 3

2 .

Case 4 . n = 3, r = 1 + sin 7/2
3 π = 1

2 .

Case 5 . n = 4, r = 1 + sin 9/2
3 π = 0.

Hence, the curve intersects the y-axis at y = −2,−1
2 ,

3
2 .
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1 1 +
√
3
2

−1−1−
√
3
2

−2

−1
2

3
2

1−
√
3
2−1 +

√
3
2

O

x

y r = 1 + sin(θ/3)

∗ ∗ ∗ ∗ ∗

Problem 7.

(a) A graph has polar equation r = 2
cos θ sinα−sin θ cosα , where α is a constant. Express

the equation in Cartesian form. Hence, sketch the graph in the case α = π
4 , giving

the Cartesian coordinates of the intersection with the axes.

(b) A graph has Cartesian equation (x2 + y2)2 = 4x2. Express the equation in polar
form. Hence, or otherwise, sketch the graph.

Solution.

Part (a).

r =
2

cos θ sinα− sin θ cosα
=⇒ r cos θ sinα− r sin θ cosα = x sinα− y cosα = 2

=⇒ y = x tanα− 2 secα.

When α = π
4 , we have y = x− 2

√
2.

2
√
2

−2
√
2

O

x

y r = 2
cos θ sinα−sin θ cosα
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Part (b).

(x2 + y2)2 = 4x2 =⇒
(
r2
)2

= 4(r cos θ)2 =⇒ r4 = 4r2 cos2 θ =⇒ r2 = 4 cos2 θ.

1 1

1 1

O

θ = 0

θ = π
2 r2 = 4 cos2 θ

∗ ∗ ∗ ∗ ∗

Problem 8. Find the polar equation of the curve C with equation x5 + y5 = 5bx2y2,
where b is a positive constant. Sketch the part of the curve C where 0 ≤ θ ≤ π/2.

Solution.

x5 + y5 = 5bx2y2 =⇒ (r cos θ)5 + (r sin θ)5 = 5b(r cos θ)2(r sin θ)2

=⇒ r
(
cos5 θ + sin5 θ

)
= 5b cos2 θ sin2 θ =⇒ r =

5b cos2 θ sin2 θ

cos5 θ + sin5 θ
.

O

θ = 0

θ = π
2 C
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Problem 9. The equation of a curve, in polar coordinates, is r = e−2θ, for 0 ≤ θ ≤ π.
Sketch the curve, indicating clearly the polar coordinates of any axial intercepts.

Solution.

(
e−2π, π

)
(1, 0)

(
e−π, π2

)

O θ = 0

θ = π
2 r = e−2θ

∗ ∗ ∗ ∗ ∗

Problem 10. Suppose that a long thin rod with one end fixed at the pole of a polar
coordinate system rotates counter-clockwise at the constant rate of 0.5 rad/sec. At time
t = 0, a bug on the rod is 10 mm from the pole and is moving outward along the rod
at a constant speed of 2 mm/sec. Find an equation of the form r = f(θ) for the part of
motion of the bug, assuming that θ = 0 when t = 0. Sketch the path of the bug on the
polar coordinate system for 0 ≤ t ≤ 4π.

Solution. Let θ(t) and r(t) be functions of time, with θ(0) = 0 and r(0) = 10. We know
that dθ/dt = 0.5 and dr/dt = 2. Hence,

dr

dθ
=

dr

dt
· dt
dθ

=
dr

dt
·
(
dθ

dt

)−1

= 2 · (0.5)−1 = 4.

Thus, r = 4θ + r(0) = 4θ + 10.
Since dθ/dt = 0.5 and θ(0) = 0, we have θ = 0.5t. Hence, 0 ≤ t ≤ 4π =⇒ 0 ≤ θ ≤ 2π.

104π + 10 8π + 10

2π + 10

6π + 10

O

θ = 0

θ = π
2 r = 4θ + 10
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Problem 11. The equation, in polar coordinates, of a curve C is r = ae
1
2
θ, 0 ≤ θ ≤ 2π,

where a is a positive constant. Write down, in terms of θ, the Cartesian coordinates, x and
y, of a general point P on the curve. Show that the gradient at P is given by dy

dx = tan θ+2
1−2 tan θ .

Hence, show that the tangent at P is inclined to
−−→
OP at a constant angle α, where

tanα = 2. Sketch the curve C.

Solution. Note that x = r cos θ and y = r sin θ, whence x = ae
1
2
θ cos θ and y = ae

1
2
θ sin θ.

Hence, P
(
ae

1
2
θ cos θ, ae

1
2
θ sin θ

)
.

Observe that dr
dθ = 1

2ae
1
2
θ = 1

2r. Hence,

dy

dx
=

dr
dθ sin θ + r cos θ
dr
dθ cos θ − r sin θ

=
1
2r sin θ + r cos θ
1
2r cos θ − r sin θ

=
sin θ + 2 cos θ

cos θ − 2 sin θ
=

tan θ + 2

1− 2 tan θ
.

Let t =

(
T1

T2

)
represent the direction of the tangent line. Then

t =

(
1

dy/dx

)
=

(
1

tan θ+2
1−2 tan θ

)
=

1

1− 2 tan θ

(
1− 2 tan θ
tan θ + 2

)

and
−−→
OP =

(
x
y

)
=

(
ae

1
2
θ cos θ

ae
1
2
θ sin θ

)
= ae

1
2
θ

(
cos θ
sin θ

)
.

By the definition of the dot-product, we have t · −−→OP = |t|
∣∣∣−−→OP

∣∣∣ cosα, whence

cosα =
t · −−→OP

|t|
∣∣∣−−→OP

∣∣∣
=

(1− 2 tan θ) cos θ + (tan θ + 2) sin θ
√
(1− 2 tan θ)2 + (tan θ + 2)2 ·

√
cos2 θ + sin2 θ

=
cos θ + tan θ sin θ√

5 tan2 θ + 5
=

cos2 θ + sin2 θ√
5 sin2 θ + 5 cos2 θ

=
1√
5
.

Thus, α = arccos 1√
5
. Since tan(arccosx) =

√
1−x2

x ,

tanα = tan

(
arccos

1√
5

)
=

√
1−

(
1/
√
5
)2

1/
√
5

= 2.

Hence, the tangent at P is inclined to
−−→
OP at a constant angle α, where tanα = 2.

aeπae
1
2
π

ae
1
4
π

ae
3
4
π

O

θ = 0

θ = π
2 r = ae

1
2
θ



374 A6 Polar Coordinates

Problem 12. The polar equation of a curve is given by r = eθ where 0 ≤ θ ≤ π
2 . Cartesian

axes are taken at the pole O. Express x and y in terms of θ and hence find the Cartesian

equation of the tangent at
(
e

π
2 , π2

)
.

Solution. Recall that x = r cos θ and y = r sin θ, whence x = eθ cos θ and y = eθ sin θ.
Thus, dx

dθ = eθ(cos θ − sin θ), and dy
dx = eθ(cos θ + sin θ). Hence,

dy

dx
=

dy/dθ

dx/dθ
=

eθ(cos θ + sin θ)

eθ(cos θ − sin θ)
=

cos θ + sin θ

cos θ − sin θ
.

At
(
e

π
2 , π2

)
, we clearly have x = 0 and y = eπ/2. Also, dy/dx = −1. By the point-slope

formula, the equation of the tangent line at
(
e

π
2 , π2

)
is given by y = −x+ e

π
2 .

∗ ∗ ∗ ∗ ∗

Problem 13. A curve C has polar equation r = a cot θ, 0 < θ ≤ π, where a is a positive
constant.

(a) Show that y = a is an asymptote of C.

(b) Find the tangent at the pole.

Hence, sketch C and find the Cartesian equation of C in the form y2(x2 + y2) = bx2,
where b is a constant to be determined.

Solution.

Part (a). Note that
r = a cot θ =⇒ y = r sin θ = a cos θ.

As θ → 0, r → ∞. Hence, there is an asymptote at θ = 0. Since cos θ = 1 when θ = 0,
the line y = a cos θ = a is an asymptote of C.

Part (b). For tangents at the pole, r = 0 =⇒ cot θ = 0 =⇒ θ = π
2 .

y = a

y = −a

O
θ = 0

θ = π
2 r = a cot θ

Note that

r = a cot θ = a

(
r cos θ

r sin θ

)
= a

(
x

y

)
.

Thus,

x2 + y2 = r2 = a2
(
x2

y2

)
=⇒ y2

(
x2 + y2

)
= a2x2,

whence b = a2.
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Problem 14.

P

θ = 0

θ = π
2

Relative to the pole P and the initial line θ = 0, the polar equation of the curve shown is
either

i. r = a+ b sinnθ, or

ii. r = a+ b cosnθ

where a, b and n are positive constants. State, with a reason, whether the equation is (i)
or (ii) and state the value of n.
The maximum value of r is 11

2 and the minimum value of r is 5
2 . Find the values of a

and b.

Solution. Since the curve is symmetrical about the horizontal half-line θ = 0, the polar
equation of the curve is a function of cosnθ only. Hence, the polar equation of the curve
is r = a+ b cosnθ, with n = 5.
Observe that the maximum value of r is achieved when cos 5θ = 1, whence r = a + b.

Thus, a+b = 11
2 . Also observe that the minimum value of r is achieved when cos 5θ = −1,

whence r = a− b. Thus, a− b = 5
2 . Solving, we get a = 4 and b = 3

2 .

∗ ∗ ∗ ∗ ∗

Problem 15.

Stage

Microphone

Audience

r = 6(1 + sin θ)

Sound engineers often use a microphone with a cardioid acoustic pickup pattern to
record live performances because it reduces pickup from the audience. Suppose a cardioid
microphone is placed 3 metres from the front of the stage, and the boundary of the optimal
pickup region is given by the cardioid with polar equation

r = 6(1 + sin θ)



376 A6 Polar Coordinates

where r is measured in metres and the microphone is at the pole.
Find the minimum distance from the front of the stage the first row of the audience can

be seated such that the microphone does not pick up noise from the audience.

Solution. Note that r = 6(1 + sin θ) = 6(1 + y
r ), whence r2 = 6r + 6y. Thus,

r2 − 6r − 6y = 0 =⇒ r = 3±
√
9 + 6y =⇒ 9 + 6y = (r − 3)2.

Since 9 + 6y = (r − 3)2 ≥ 0, we have y ≥ −1.5. Thus, the furthest distance the audience
has to be from the stage is |−1.5|+ 3 = 4.5 m.

∗ ∗ ∗ ∗ ∗

Problem 16. To design a flower pendant, a designer starts off with a curve C1, given by
the Cartesian equation

(
x2 + y2

)2
= a2

(
3x2 − y2

)

where a is a positive constant.

(a) Show that a corresponding polar equation of C1 is r2 = a2(1 + 2 cos 2θ).

(b) Find the equations of the tangents to C1 at the pole.

Another curve C2 is obtained by rotating C1 anti-clockwise about the origin by π
3 radi-

ans.

(c) State a polar equation of C2.

(d) Sketch C1 and C2 on the same diagram, stating clearly the exact polar coordinates
of the points of intersection of the curves with the axes. Find also the exact polar
coordinates of the points of intersection with C1 and C2.

The curve C3 is obtained by reflecting C2 in the line θ = π
2 .

(e) State a polar equation of C3.

(f) The designer wishes to enclose the 3 curves inside a circle given by the polar equation
r = r1. State the minimum value of r1 in terms of a.

Solution.

Part (a). Observe that
(
x2 + y2

)2
= r4 and 3x2 − y2 = r2

(
3 cos2 θ − sin2 θ

)
. Hence,

(
x2 + y2

)2
= a2

(
3x2 − y2

)
=⇒ r2 = a2

(
3 cos2 θ − sin2 θ

)
.

Note that
3 cos2 θ − sin2 θ = 1 + 2 cos2 θ − 2 sin2 θ = 1 + 2 cos 2θ.

Thus,
r2 = a2 (1 + 2 cos 2θ) .

Part (b). For tangents at the pole,

r = 0 =⇒ 1 + 2 cos 2θ = 0 =⇒ cos 2θ = −1

2
.

Since 0 ≤ 2θ ≤ 2π, we have θ = π/3, 2π/3. For full lines, we also have θ = 4π/3 and
θ = 5π/3.
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Part (c).

r2 = a2
[
1 + 2 cos

(
2
(
θ − π

3

))]
= a2

[
1 + 2 cos

(
2θ − 2

3
π

)]
.

Part (d).

(√
3a, 0

)(√
3a, π

)

(√
2a, 12π

)

(√
2a, 32π

)

(√
2a, 76π

)

(√
2a, 16π

)

(0, 0)

θ = 0

θ = π
2 C1

C2

Consider the horizontal intercepts of C1. When θ = 0, r =
√
3a. Hence, by symmetry,

C1 intercepts the horizontal axis at
(√

3a, 0
)
and

(√
3a, π

)
.

Consider the vertical intercepts of C2. When θ = π/2, r =
√
2a. Hence, by symmetry,

C2 intercepts the vertical axis at
(√

2a, π/2
)
and

(√
2a, 3π/2

)
.

Now consider the intersections between C1 and C2. By symmetry, it is obvious that the
points of intersections must lie along the half-lines π/6 and 7π/6, or along the half-lines
4π/6 and 10π/6. By symmetry, we consider only the half-lines π/6 and 4π/6.
Case 1 : θ = π/6. Substituting θ = π/6 into the equation of C1, we obtain r =

√
2a.

Hence, C1 and C2 intersect at
(√

2a, π/6
)
and, by symmetry, at

(√
2a, 7π/6

)
.

Case 2 .θ = 4π/6 Substituting θ = 4π/6 into the equation of C1, we obtain r = 0.
Hence, C1 and C2 intersect at (0, 0).

Part (e). Reflecting about the line θ = π/2 is equivalent to applying the map θ 7→ θ+π/3
to C1. Hence,

r2 = a2
[
1 + 2 cos

(
2

(
θ +

1

3
π

))]
= a2

[
1 + 2 cos

(
2θ +

2

3
π

)]
.

Part (f). r1 =
√
3a.
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Self-Practice A6

Problem 1. A curve C has equation, in polar coordinates, r = a
√(

4 + sin2 θ
)
cos θ,

−1
2π ≤ θ ≤ 1

2π, where a is a positive constant.

(a) Show that d
dθ

[(
4 + sin2 θ

)
cos θ

]
= −

(
2 + 3 sin2 θ

)
sin θ. Hence, state, with a reason,

whether r increases or decreases as θ increases, for 0 < θ ≤ 1
2π.

(b) Sketch the curve C.

(c) Find the Cartesian equation of C in the form
(
x2 + y2

)m
= a2x

(
bx2 + cy2

)
, giving

the numerical values of m, b and c.

Solution.

Part (a).

d

dθ

[(
4 + sin2 θ

)
cos θ

]
= −

(
4 + sin2 θ

)
sin θ + 2 sin θ cos2 θ

= − sin θ
(
sin2 θ − 2 cos2 θ + 4

)

= − sin θ
[
sin2 θ − 2

(
1− sin2 θ

)
+ 4
]

= − sin θ
(
3 sin2 θ + 2

)
.

For t ∈ (0, π/2], we have sin θ > 0 and 3 sin2 θ + 2 > 0. Hence, r is decreasing.

Part (b).

2aO

θ = 0

θ = π
2 C

Part (c). Squaring, we have

r2 = a2
(
4 + sin2 θ

)
cos θ.

Recall that x = r cos θ and y = r sin θ, so

r2 = a2
[
4 +

(y
r

)2](x
r

)
=⇒ r5 = a2x

(
4r2 + y2

)
.

Since x2 + y2 = r2, we get

(
x2 + y2

)5/2
= a2x

(
4x2 + 5y2

)
,

whence m = 5/2, b = 4 and c = 5.
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Problem 2. The diagram shows a sketch of the curve C with polar equation r = a cos2 θ,
where a is a positive constant and −1

2π ≤ θ ≤ 1
2π.

O

θ = 0

θ = π
2 C

(a) Explain briefly about how you can tell from this form of the equation that C is
symmetrical about the line θ = 0 and that the tangent to C at the pole O is
perpendicular to the line θ = 0.

(b) Show that the equation of C in Cartesian coordinates may be expressed in the form
y2 = a2/3x4/3 − x2.

Solution.

Part (a). Observe that
a cos2 θ = a cos2(−θ) .

Hence, C is invariant under the transformation θ 7→ −θ, whence it is symmetrical about
the line θ = 0.
For tangents to the pole, we have r = 0. Since a > 0, we require cos θ = 0, whence

θ = ±π/2, which are clearly perpendicular to the line θ = 0.

Part (b). We have

r = a cos2 θ = a
(x
r

)2
=⇒ r3 = ax2.

Hence,

x2 + y2 = r2 =
(
ax2
)2/3

=⇒ y2 = a2/3x4/3 − x2.

∗ ∗ ∗ ∗ ∗

Problem 3. The equation of curve C is given in polar coordinates by r = 1 + sin 2θ,
0 ≤ θ ≤ 2π.

(a) Prove that C is symmetric about the pole.

(b) Sketch C and any tangents to C at the pole. Label any points of intersection with
the axes, and show clearly the symmetries and curvature near the pole.

(c) Determine whether each loop of C is a circle. Justify your answer.

(d) Show that the Cartesian equation of C is
(
x2 + y2

)3
= (x+ y)4.
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Solution.

Part (a). Observe that

1 + sin 2θ = 1 + sin(2θ + 2π) = 1 + sin(2(θ + π)) .

Hence, C is invariant under the transformation θ 7→ θ + π, whence C is symmetric about
the pole.

Part (b).

11

1

1
θ = 7π

4

θ = 3π
4

O

θ = 0

θ = π
2 C

Part (c). Consider the top-right loop. r attains a maximum of 2 when θ = π/4. Sup-
pose the loop is a circle (with radius 1). Then the centre should be (1, π/4), which is
(1/

√
2, 1

√
2) in Cartesian coordinates. The distance between (1/

√
2, 1/

√
2) and (1, 0) is

given by √(
1√
2
− 1

)2

+

(
1√
2
− 0

)2

=

√
2−

√
2 ̸= 1.

Hence, the loop is not a circle.

Part (d). We have

r = 1 + sin 2θ = 1 + 2 cos θ sin θ = 1 + 2
(x
r

)(y
r

)
.

Thus,

r3 = r2 + 2xy =⇒
(
x2 + y2

)3/2
= x2 + y2 + 2xy = (x+ y)2.

Squaring both sides yields the desired equation:

(
x2 + y2

)3
= (x+ y)4 .

∗ ∗ ∗ ∗ ∗

Problem 4 ( ). Prove that at all points of intersection of the polar curves with equations
r = a(1 + cos θ) and r = b(1− cos θ), the tangent lines are perpendicular.

Solution. Consider the gradient of C1. Firstly, we have

dx

dθ
=

dr

dθ
cos θ − r sin θ = −a sin θ − 2a sin θ cos θ = −a (sin θ + sin 2θ) .

Next, we have

dy

dθ
=

dr

dt
sin θ + r cos θ = a cos θ − a cos2 θ + a sin2 θ = a (cos θ − cos 2θ) .



Self-Practice A6 381

Thus,
dy

dx
=

dy/dθ

dx/dθ
= −

(
cos θ − cos 2θ

sin θ + sin 2θ

)
.

Consider the gradient of C2. Firstly, we have

dx

dθ
=

dr

dθ
cos θ − r sin θ = −b sin θ + 2b cos θ sin θ = b (sin 2θ − sin θ) .

Next, we have

dy

dθ
=

dr

dt
sin θ + r cos θ = b cos θ − b cos2 θ + b sin2 θ = b (cos θ − cos 2θ) .

Thus,
dy

dx
=

dy/dθ

dx/dθ
=

cos θ − cos 2θ

sin 2θ − sin θ
.

Consider the product of the gradients:

−
(
cos θ − cos 2θ

sin θ + sin 2θ

)(
cos θ − cos 2t

sin 2θ − sin θ

)
= −cos2 θ − cos2 2θ

sin2 2θ − sin2 θ
.

Observe that

cos2 θ − cos2 2θ = cos2 θ −
(
2 cos2 θ − 1

)2
= −4 cos4 θ + 5 cos2 θ − 1.

Also observe that

sin2 2θ − sin2 θ = 4 sin2 θ cos2 θ − sin2 θ

= 4
(
1− cos2 θ

)
cos2 θ −

(
1− cos2 θ

)

= −4 cos4 θ + 5 cos2 θ − 1.

Hence, the product of the gradients is

−cos2 θ − cos2 2θ

sin2 2θ − sin2 θ
= −−4 cos4 θ + 5 cos2 θ − 1

−4 cos4 θ + 5 cos2 θ − 1
= −1.

Thus, for any given θ, the tangents of C1 and C2 are perpendicular. This immediately
implies that the tangent lines at all intersection points of C1 and C2 are perpendicular.
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Assignment A6

Problem 1. The planet Mercury travels around the sun in an elliptical orbit given
approximately by

r =
3.442× 107

1− 0.206 cos θ
,

where r is measured in miles and the sun is at the pole.
Sketch the orbit and find the distance from Mercury to the sun at the aphelion (the

greatest distance from the sun) and at the perihelion (the shortest distance from the sun).

Solution.

O

θ = 0

θ = π
2 r = 3.442×107

1−0.206 cos θ

Observe that r attains a maximum when cos θ is also at its maximum. Since the maxi-
mum value of cos θ is 1,

r =
3.442× 107

1− 0.206(1)
= 4.34× 107 (3 s.f.).

Hence, the distance from Mercury to the sun at the aphelion is 4.34× 107 miles.
Observe that r attains a minimum when cos θ is also at its minimum. Since the minimum

value of cos θ is −1,

r =
3.442× 107

1− 0.206(−1)
= 2.85× 107 (3 s.f.).

Hence, the distance from Mercury to the sun at the perihelion is 2.85× 107 miles.

∗ ∗ ∗ ∗ ∗

Problem 2. A variable point P has polar coordinates (r, θ), and fixed points A and
B have polar coordinates (1, 0) and (1, π) respectively. Given that P moves so that the
product PA · PB = 2, show that

r2 = cos 2θ +
√
3 + cos2 2θ.

(a) Given that r ≥ 0 and 0 ≤ θ ≤ 2π, find the maximum and minimum values of r, and
the values of θ at which they occur.

(b) Verify that the path taken by P is symmetric about the lines θ = 0 and θ =
π

2
,

giving your reasons.

Solution. Note that A and B have Cartesian coordinates (1, 0) and (−1, 0) respectively.
Let P (x, y). Then

PA2 = (x− 1)2 + y2, PB2 = (x+ 1)2 + y2.
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Hence,

PA · PB =
(
(x− 1)2 + y2

) (
(x+ 1)2 + y2

)
=
(
x2 + y2

)2 − 2
(
x2 − y2

)
+ 1.

Since x2 − y2 = r2
(
cos2 θ − sin2 θ

)
= r2 cos 2θ, the polar equation of the locus of P is

r4 − 2r2 cos 2θ + 1 = (PA · PB)2 = 4 =⇒ r4 − 2r2 cos 2θ − 3 = 0.

By the quadratic formula, we have

r2 =
2 cos 2θ ±

√
4 cos2 2θ + 12

2
= cos 2θ ±

√
cos2 2θ + 3.

Since
√
cos2 2θ + 3 > cos 2θ and r2 ≥ 0, we reject the negative case. Thus,

r2 = cos 2θ +
√
3 + cos2 2θ.

Part (a). Differentiating with respect to θ, we obtain

2r
dr

dθ
= −2 sin 2θ

(
1 +

1

2
√
3 + cos2 2θ

)
.

For stationary points, dr/dθ = 0. Since 1+1/2
√
3 + cos2 2θ > 0, we must have sin 2θ = 0,

whence θ = 0, π/2, π, 3π/2. By symmetry, we only consider θ = 0 and θ = π/2.
Case 1 . When θ = 0, we have r2 = 3, whence r =

√
3.

Case 2 . When θ = π/2, we have r2 = 1, whence r = 1.
Thus, max r =

√
3 and occurs when θ = 0, π, while min r = 1 and occurs when θ =

π/2, 3π/2.

Part (b). Recall that the path taken by P is given by

(
(x− 1)2 + y2

) (
(x+ 1)2 + y2

)
= 4.

Observe that the above equation is invariant under the transformations x 7→ −x and
y 7→ −y. Hence, the path is symmetric about both the x- and y-axes, i.e. the lines θ = 0
and θ = π/2.

∗ ∗ ∗ ∗ ∗

Problem 3.

(a) Explain why the curve with equation x3 + 2xy2 − a2y = 0 where a is a positive

constant lies entirely in the region |x| ≤ 2−
3
4a.

(b) Show that the polar equation of this curve is r2 =
a2 tan θ

2− cos2 θ
.

(c) Sketch the curve.

Solution.

Part (a). Consider the discriminant ∆ of x3 + 2xy2 − a2y = 0 with respect to y:

∆ =
(
−a2

)2 − 4 (2x) = a4 − 8x4.

For points on the curve, we clearly have ∆ ≥ 0. Thus,

a3 − 8x4 ≥ 0 =⇒ x4 ≤ 2−3a4 =⇒ |x| ≤ 2−3/4a.
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Part (b).

x3 + 2xy2 − a2y = 0 =⇒ 2
(
x2 + y2

)
− x2 − a2

y

x
= 0 =⇒ 2r2 − r2 cos2 θ − a2 tan θ = 0

=⇒ r2 =
a2 tan θ

2− cos2 θ
.

Part (c).

O

θ = 0

θ = π
2 r2 = a2 tan θ

2−cos2 θ

∗ ∗ ∗ ∗ ∗

Problem 4. The curve C has polar equation r = 1− sin 3θ, where 0 ≤ θ ≤ 2π.

(a) Sketch the curve C, showing the tangents at the pole and the intersections with the
axes.

(b) Find the gradient of the curve at the point where θ =
π

3
, giving your answer in the

form a+ b
√
3, where a and b are constants to be determined.

Solution.

Part (a).

(1, π) (1, 0)

(
2, π2

)

θ = 3
2π

θ = 5
6 π θ =

1
6
π

O

θ = 0

θ = π
2 r = 1− sin 3θ

When θ = 0 or θ = π, we have r = 1. Thus, C intersects the horizontal axis at (1, 0)
and (1, π). When θ = π/2, we have r = 2. Thus, C intersects the vertical axis at (2, π/2).
When θ = 3π/2, we have r = 0. Thus, C passes through the pole.

For tangents at the pole, r = 0 =⇒ sin 3θ = 1 =⇒ θ = π/6, 5π/6, 3π/2.
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Part (b). Note that dr/dθ = −3 cos 3θ evaluates to 3 when θ = π/3. Thus,

dy

dx

∣∣∣∣
θ=π

3

=
dr
dθ sin θ + r cos θ
dr
dθ cos θ − r sin θ

∣∣∣∣∣
θ=π

3

=
3
√
3 + 1

3−
√
3

=
12 + 10

√
3

6
= 2 +

5

3

√
3.

Hence, when θ = π/3, the gradient of the curve is 2 + 5
√
3/2.
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A7 Vectors I - Basic Properties and Vector
Algebra

Tutorial A7

Problem 1. The vector v is defined by 3i− 4j+ k. Find the unit vector in the direction
of v and hence find a vector of magnitude 25 which is parallel to v.

Solution.

v̂ =
v

|v| =
1√

32 + (−4)2 + 12




3
−4
1


 =

1√
26




3
−4
1


 , 25v̂ =

25√
26




3
−4
1


 .

∗ ∗ ∗ ∗ ∗

Problem 2. With respect to an origin O, the position vectors of the points A, B, C and
D are 4i+ 7j, i+ 3j, 2i+ 4j and 3i+ dj respectively.

(a) Find the vectors
−−→
BA and

−−→
BC.

(b) Find the value of d if B, C and D are collinear. State the ratio BC
BD .

Solution.

Part (a). Note that

−−→
BA =

−→
OA−−−→

OB =

(
4
7

)
−
(
1
3

)
=

(
3
4

)
,

−−→
BC =

−−→
OC −−−→

OB =

(
2
4

)
−
(
1
3

)
=

(
1
1

)
.

Part (b). If B, C and D are collinear, then
−−→
BC = λ

−−→
CD for some λ ∈ R.

−−→
BC = λ

−−→
CD =⇒

(
1
1

)
= λ

(−−→
OD −−−→

OC
)
= λ

[(
3
d

)
−
(
2
4

)]
=

(
λ

λ(d− 4)

)
.

Hence, λ = 1 and λ(d− 4) = 1, whence d = 5. Also,
−−→
BC =

−−→
CD. Thus,

BC

BD
=

BC

BC + CD
=

BC

BC +BC
=

1

2
.
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Problem 3. The diagram shows a roof, with horizontal rectangular base OBCD, where
OB = 10 m and BC = 6 m. The triangular planes ODE and BCF are vertical and the
ridge EF is horizontal to the base. The planes OBFE and DCFE are each inclined at
an angle θ to the horizontal, where tan θ = 4/3. The point O is taken as the origin and
vectors i, j, k, each of length 1 m, are taken along OB, OD and vertically upwards from
O respectively.

OD

E

F

C
B

θ θ

j

k

i

Find the position vectors of the points B, C, D, E and F .

Solution. Note that
−−→
OB = 10i and

−−→
BC = 6j. Thus,

−−→
OC =

−−→
OB +

−−→
BC = 10i + 6j. Also,

note that △ODE ∼= △BCF . Hence,
−−→
OD =

−−→
BC = 6j. Note that △ODE is isosceles. Let

G be the mid-point of OD. Since tan θ = 4/3, we have

EG

DG
=

4

3
=⇒ EG =

4

3
DG =

2

3
OD =

2

3
· 6 = 4 =⇒ −−→

GE = 4k.

Hence,
−−→
OE =

−−→
OG+

−−→
GE =

1

2

−−→
OD +

−−→
GE = 3j+ 4k.

Hence, −−→
OF =

−−→
OB +

−−→
BF =

−−→
OB +

−−→
OE = 10i+ 3j+ 4k.

Thus,

−−→
OB = 10i,

−−→
OC = 10i+ 6j,

−−→
OD = 6j,

−−→
OE = 3j+ 4k,

−−→
OF = 10i+ 3j+ 4k.

∗ ∗ ∗ ∗ ∗

Problem 4. Find u · v, u× v and the angle between u and v given that

(a) u = i− j+ k, v = 3i+ 2j+ 7k

(b) u = 2i− 3k, v = −i+ 7j+ 2k

Solution.

Part (a). We have u = (1, −1, 1)T and v = (3, 2, 7)T. Hence,

u · v = (1)(3) + (−1)(2) + (1)(7) = 8, u× v =



(−1)(7)− (2)(1)
(1)(3)− (7)(1)
(1)(2)− (3)(−1)


 =



−9
−4
5


 .

Let the angle between u and v be θ.

cos θ =
u · v
|u| |v| =

8√
3
√
62

=⇒ θ = 54.1◦ (1 d.p.).
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Part (b). We have u = (2, 0, −3)T and v = (−1, 7, 2)T. Hence,

u · v = (2)(−1) + (0)(7) + (−3)(2) = −8, u · v =




(0)(2)− (7)(−3)
(−3)(−1)− (2)(2)
(2)(7)− (−1)(0)


 =




21
−1
14


 .

Let the angle between u and v be θ.

cos θ =
u · v
|u| |v| =

−8√
13
√
54

=⇒ θ = 107.6◦ (1 d.p.).

∗ ∗ ∗ ∗ ∗

Problem 5. Find u · v and |u× v| given that u = 2a− b, v = −a+ 3b, where |a| = 2,
|b| = 1 and the angle between a and b is 60◦.

Solution.

u · v = (2a− b) · (−a+ 3b) = −2a · a+ 6a · b+ b · a− 3b · b
= −2 |a|2 − 3 |b|2 + 7 |a| |b| cos θ = −2(2)2 − 3(1)2 + 7(2)(1) cos 60◦ = −4.

|u× v| = |(2a− b)× (−a+ 3b)| = |−2a× a+ 6a× b+ b× a− 3b× b|
= |5a× b| = 5 |a| |b| sin θ = 5(2)(1) sin 60◦ = 5

√
3.

∗ ∗ ∗ ∗ ∗

Problem 6. If a = i+ 4j− k, b = i− j+ 3k and c = 2i+ j, find

(a) a unit vector perpendicular to both a and b,

(b) a vector perpendicular to both (3b− 5c) and (7b+ c).

Solution.

Part (a). Note that a× b = (11, −4, −5)T. Hence, â× b = 1√
162

(11, −4, −5)T.

Part (b). Observe that (3b − 5c) × (7b + c) = λb × c for some λ ∈ R. It hence suffices
to find b× c, which works out to be (−3, 6, 3)T.

∗ ∗ ∗ ∗ ∗

Problem 7. The position vectors of the points A, B and C are given by a = 2i+3j− 4k,
b = 5i− j+ 2k, c = 11i+ λj+ 14k respectively. Find

(a) a unit vector parallel to
−−→
AB;

(b) the position vector of the point D such that ABCD is a parallelogram, leaving your
answer in terms of λ;

(c) the value of λ if A, B and C are collinear;

(d) the position vector of the point P on AB is AP : PB = 2 : 1.
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Solution.

Part (a).

−−→
AB = b− a =




5
−1
2


−




2
3
−4


 =




3
−4
6


 .

Note that
∣∣∣−−→AB

∣∣∣ =
√
61. Hence, the required vector is 1√

61
(3, −4, 6)T.

Part (b). Since ABCD is a parallelogram, we have that
−−→
AD =

−−→
BC. Thus,

−−→
OD − a = c− b =⇒ −−→

OD = a− b+ c =




2
3
−4


−




5
−1
2


+



11
λ
14


 =




8
λ+ 4
8


 .

Part (c). Given that A, B and C are collinear, we have
−−→
AB = k

−−→
BC for some k ∈ R.

Hence, 


3
−4
6


 = k (c− b) = k





11
λ
14


−




5
−1
2




 = k




6
λ+ 1
12


 .

We hence see that k = 1/2, whence λ = −9.

Part (d). By the ratio theorem,

−−→
OP =

a+ 2b

2 + 1
=

1

3






2
3
−4


+ 2




5
−1
2




 =

1

3



12
1
0


 .

∗ ∗ ∗ ∗ ∗

Problem 8. ABCD is a square, and M and N are the midpoints of BC and CD

respectively. Express
−→
AC in terms of p and q, where

−−→
AM = p and

−−→
AN = q.

Solution. Let ABCD be a square with side length 2k with A at the origin. Then

p =
−−→
AM = (2k, −k)T and q =

−−→
AN = (k, −2k)T. Hence, p + q = (3k, −3k)T. Thus,−→

AC = (2k, −2k)T = 2
3 (3k, −3k)T = 2

3 (p+ q).

∗ ∗ ∗ ∗ ∗

Problem 9. The points A, B have position vectors a, b respectively, referred to an origin
O, where a and b are not parallel to each other. The point C lies on AB between A and
B and is such that AC

CB = 2, and D is the mid-point of OC. The line AD produced meets
OB at E.

Find, in terms of a and b,

(a) the position vector of C (referred to O),

(b) the vector
−−→
AD. Find the values of OE

EB and AE
ED .

Solution.

Part (a). By the ratio theorem,

−−→
OC =

a+ 2b

2 + 1
=

1

3
a+

2

3
b.
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Part (b). Since D is the midpoint of OC, we have
−−→
OD = 1

6a+ 1
3b. Hence,

−−→
AD =

−−→
OD −−→

OA =

(
1

6
a+

1

3
b

)
− a = −5

6
a+

1

3
b.

Using Menelaus’ theorem on △BCO,

BA

AC

CD

DO

OE

EB
= 1 =⇒ OE

EB
=

2

3
.

Using Menelaus’ theorem on △BEA,

BO

OE

ED

DA

AC

CB
= 1 =⇒ ED

AD
=

1

5
=⇒ AE

ED
=

AD +DE

ED
= 6.

∗ ∗ ∗ ∗ ∗

Problem 10.

(a) The angle between the vectors (3i− 2j) and (6i+ dj−
√
7k) is arccos 6

13 . Show that
2d2 − 117d+ 333 = 0.

(b) With reference to the origin O, the points A, B, C and D are such that
−→
OA = a,−−→

OB = b,
−→
AC = 5a,

−−→
BD = 3b. The lines AD and BC cross at E.

O C

D

A

B

E

a

b

(i) Find
−−→
OE in terms of a and b.

(ii) The point F divides the line CD in the ratio 5 : 3. Show that O, E and F are
collinear, and find OE : EF .

Solution.

Part (a). Let a = (3, −2, 0)T and b =
(
6, d, −

√
7
)T

. Note that a ·b = 18− 2d. Let θ be
the angle between a and b.

cos θ =
a · b
|a| |b| =⇒ 6

13
=

18− 2d√
43 + d2

√
13

=⇒ 9

13
=

(9− d)2

43 + d2

=⇒ 9(43 + d2) = 13(d2 − 18d+ 81) =⇒ 2d2 − 117d+ 333 = 0.

Part (b).

Part (b)(i). By Menelaus’ theorem,

OC

CA

AE

ED

DB

BO
= 1 =⇒ AE

ED
=

5

18
=⇒ −→

AE =
5

23

−−→
AD =⇒ −−→

OE =
−→
OA+

5

23

−−→
AD.

Since
−−→
AD =

−−→
OD −−→

OA = 4b− a. Thus,

−−→
OE = a+

5

23
(4b− a) =

18

23
a+

20

23
b.
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Part (b)(ii). By the ratio theorem,

−−→
OF =

3c+ 5d

5 + 3
=

23

8

(
18

23
a+

20

23
b

)
=

23

8

−−→
OE.

Thus, OE : OF = 8 : 23.

∗ ∗ ∗ ∗ ∗

Problem 11. Relative to the origin O, two points A and B have position vectors given
by a = 14i+ 14j+ 14k and b = 11i− 13j+ 2k respectively.

(a) The point P divides the line AB in the ratio 2 : 1. Find the coordinates of P .

(b) Show that AB and OP are perpendicular.

(c) The vector c is a unit vector in the direction of
−−→
OP . Write c as a column vector and

give the geometrical meaning of |a · c|.

(d) Find a× p, where p is the vector
−−→
OP , and give the geometrical meaning of |a× p|.

Hence, write down the area of triangle OAP .

Solution.

Part (a). We have a = (14, 14, 14)T = 14 (1, 1, 1)T and b = (11, −13, 2)T. By the ratio
theorem,

−−→
OP =

a+ 2b

2 + 1
=

1

3





14
14
14


+ 2




11
−13
2




 =




12
−4
6


 = 2




6
−2
3


 .

Hence, P (12,−4, 6)

Part (b). Consider
−−→
AB · −−→OP .

−−→
AB · −−→OP =






11
−13
2


−



14
14
14




 ·




12
−4
6


 = −3



1
9
4


 · 2




6
−2
3


 = 0.

Since
−−→
AB · −−→OP = 0, AB and OP must be perpendicular.

Part (c). We have

c =

−−→
OP∣∣∣−−→OP
∣∣∣
=

1√
62 + (−2)2 + 32




6
−2
3


 =

1

7




6
−2
3


 .

|a · c| is the length of the projection of a on
−−→
OP .

Part (d). We have

a× p = 14



1
1
1


× 2




6
−2
3


 = 28



1 · 3− (−2) · 1
1 · 6− 3 · 1
1 · −2− 6 · 1


 = 28




5
3
−8


 .

|a× p| is twice the area of △OAP .

[△OAP ] =
1

2
|a× p| = 14

√
98 = 98

√
2 units2.
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Problem 12. The points A, B and C have position vectors given by i− j+ k, j− k and
2i− j− k respectively.

(a) Find the area of the triangle ABC. Hence, find the sine of the angle BAC.

(b) Find a vector perpendicular to the plane ABC.

(c) Find the projection vector of
−→
AC onto

−−→
AB.

(d) Find the distance of C to AB.

Solution.

Part (a). We have
−→
OA = (1, −1, 1)T,

−−→
OB = (0, 1, −1)T and

−−→
OC = (2, −1, −1)T. Note

that
−−→
AB = (−1, 2, −2)T and

−→
AC = (1, 0, −2)T. Thus,

[△ABC] =
1

2

∣∣∣−−→AB ×−→
AC
∣∣∣ = 1

2

∣∣∣∣∣∣



−4
−4
−2



∣∣∣∣∣∣
=

1

2
· 6 = 3 units2.

We have

sinBAC =

∣∣∣−−→AB ×−→
AC
∣∣∣

∣∣∣−−→AB
∣∣∣
∣∣∣−→AC

∣∣∣
=

6

3
√
5
=

2
√
5

5
.

Part (b). (2, 2, 1)T is parallel to
−−→
AB×−→

AC and is hence perpendicular to the plane ABC.

Part (c). The projection vector of
−→
AC onto

−−→
AB is given by


−→
AC ·

−−→
AB∣∣∣−−→AB
∣∣∣




−−→
AB∣∣∣−−→AB
∣∣∣
=

1

3



−1
2
−2


 .

Part (d). Observe that

∣∣∣∣∣∣
−→
AC ×

−−→
AB∣∣∣−−→AB
∣∣∣

∣∣∣∣∣∣
=

1

3

∣∣∣−−→AB ×−→
AC
∣∣∣ = 2.

Hence, the perpendicular distance between C and AB is 2 units.

∗ ∗ ∗ ∗ ∗

Problem 13.

O

B

C

D

E

F

k
j

i
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The diagram shows a vehicle ramp OBCDEF with horizontal rectangular base ODEF
and vertical rectangular face OBCD. Taking the point O as the origin, the perpendicular
unit vectors i, j and k are parallel to the edges OF , OD and OB respectively. The lengths
of OF , OD and OB are 2h units, 3 units and h units respectively.

(a) Show that
−−→
OC = 3j+ hk.

(b) The point P divides the segment CF in the ratio 2 : 1. Find
−−→
OP in terms of h.

For parts (c) and (d), let h = 1.

(c) Find the length of projection of
−−→
OP onto

−−→
OC.

(d) Using the scalar product, find the angle that the rectangular face BCEF makes with
the horizontal base.

Solution.

Part (a). We have −−→
OC =

−−→
OD +

−−→
DC =

−−→
OD +

−−→
OB = 3j+ hk.

Part (b). By the ratio theorem,

−−→
OP =

−−→
OC + 2

−−→
OF

2 + 1
=

1

3





0
3
h


+ 2



2h
0
0




 =

1

3



4h
3
h


 .

Part (c). The length of projection of
−−→
OP onto

−−→
OC is given by

∣∣∣∣∣∣
−−→
OP ·

−−→
OC∣∣∣−−→OC
∣∣∣

∣∣∣∣∣∣
=

1

3
√
10

∣∣∣∣∣∣



4
3
1


 ·



0
3
1



∣∣∣∣∣∣
=

√
10

3
units.

Part (d). Note that
−−→
OF = (2, 0, 0)T and

−−→
BF =

−−→
OF − −−→

OB = (2, 0, −1)T. Let θ be the
angle the rectangular face BCEF makes with the horizontal base.

cos θ =

−−→
OF · −−→BF∣∣∣−−→OF
∣∣∣
∣∣∣−−→BF

∣∣∣
=

4

2
√
5

=⇒ θ = 26.6◦ (1 d.p.).

∗ ∗ ∗ ∗ ∗

Problem 14. The position vectors of the points A and B relative to the origin O are−→
OA = i + 2j − 2k and

−−→
OB = 2i − 3j + 6k respectively. The point P on AB is such that

AP : PB = λ : 1− λ. Show that
−−→
OP = (1 + λ)i+ (2− 5λ)j+ (−2 + 8)k where λ is a real

parameter.

(a) Find the value of λ for which OP is perpendicular to AB.

(b) Find the value of λ for which angles ∠AOP and ∠POB are equal.

Solution. By the ratio theorem,

−−→
OP =

λ
−−→
OB + (1− λ)

−→
OA

λ+ (1− λ)
= λ




2
−3
6


+ (1− λ)




1
2
−2


 =




1 + λ
2− 5λ
−2 + 8λ


 .
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Part (a). Note that
−−→
AB =

−−→
OB −−→

OA = (1, −5, 8)T. For OP to be perpendicular to AB,

we must have
−−→
OP · −−→AB = 0.

−−→
OP · −−→AB = 0 =⇒




1 + λ
2− 5λ
−2 + 8λ


 ·




1
−5
8


 = 0 =⇒ −25 + 90λ = 0 =⇒ λ =

5

18
.

Part (b). Suppose ∠AOP = ∠POB. Then cos∠AOP = cos∠POB. Thus,

−−→
OP · −→OA∣∣∣−−→OP
∣∣∣
∣∣∣−→OA

∣∣∣
=

−−→
OP · −−→OB∣∣∣−−→OP
∣∣∣
∣∣∣−−→OB

∣∣∣
=⇒ −−→

OP ·
(
1

3

−→
OA− 1

7

−−→
OB

)
= 0 =⇒ −−→

OP ·
(
7
−→
OA− 3

−−→
OB

)
= 0.

This gives



1 + λ
2− 5λ
−2 + 8λ


 ·


7




1
2
−2


− 3




2
−3
6




 =




1 + λ
2− 5λ
−2 + 8λ


 ·




1
23
−32


 = 0.

Taking the dot product and simplifying, we see that 111− 370λ = 0, whence λ = 3
10 .

∗ ∗ ∗ ∗ ∗

Problem 15.

O

B

M

N

a

b

c

A

C

The origin O and the points A, B and C lie in the same plane, where
−→
OA = a,

−−→
OB = b

and
−−→
OC = c,

(a) Explain why c can be expressed as c = λa+ µb, for constants λ and µ.

The point N is on AC such that AN : NC = 3 : 4.

(b) Write down the position vector of N in terms of a and c.

(c) It is given that the area of triangle ONC is equal to the area of triangle OMC,
where M is the mid-point of OB. By finding the areas of these triangles in terms of
a and b, find λ in terms of µ in the case where λ and µ are both positive.

Solution.

Part (a). Since a, b and c are co-planar and a is not parallel to b, c can be written as a
linear combination of a and b.

Part (b). By the ratio theorem,

−−→
ON =

4a+ 3c

3 + 4
=

4

7
a+

3

7
c.

Part (c). Let c = λa+ µb. The area of △ONC is given by

[△ONC] =
1

2

∣∣∣−−→ON ×−−→
OC
∣∣∣ = 1

2

∣∣∣∣
[
4

7
a+

3

7
(λa+ µb)

]
× (λa+ µb)

∣∣∣∣ =
2µ

7
|a× b| .



Tutorial A7 395

Meanwhile, the area of △OMC is given by

[△OMC] =
1

2

∣∣∣−−→OM ×−−→
OC
∣∣∣ = 1

2

∣∣∣∣
1

2
b× (λa+ µb)

∣∣∣∣ =
λ

4
|a× b| .

Since the two areas are equal,

[△ONC] = [△OMC] =⇒ 2µ

7
|a× b| = λ

4
|a× b| =⇒ λ =

8

7
µ.
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Self-Practice A7

Problem 1. The position vector of points A, B and C relative to an origin O are a, b
and ka respectively. The point P lies on AB and is such that AP = 2PB. The point Q
lies on BC such that CQ = 6QB. Find, in terms of a and b, the position vector of P and
Q. Given that OPQ is a straight line, find

(a) the value of k,

(b) the ratio of OP : PQ.

The position vector of a point R is 7
3a. Show that PR is parallel to BC.

Solution. By the ratio theorem,

−−→
OP =

a+ 2b

1 + 2
=

1

3
a+

2

3
b

and
−−→
OQ =

ka+ 6b

6 + 1
=

k

7
a+

6

7
b.

Part (a). Since OPQ is a straight line, there exists some λ ∈ R such that

−−→
OQ = λ

−−→
OP =⇒ k

7
a+

6

7
b =

λ

3
a+

2λ

3
b.

Comparing coefficients of b terms, we have λ = 9/7, whence

k

7
=

9/7

3
=⇒ k = 3.

Part (b). Note that
−−→
OQ = 9

7

−−→
OP . Hence, OP : PQ = 2 : 7.

Note that
−→
PR =

7

3
a−

(
1

3
a+

2

3
b

)
= 2a− 2

3
b.

Hence,
−−→
BC = 3a− b =

3

2

(
2a− 2

3
b

)
=

3

2

−→
PR.

Hence, PR ∥ BC.

∗ ∗ ∗ ∗ ∗

Problem 2. The position vectors of the points P and R, relative to an origin O, are p
and r respectively, where p and r are not parallel to each other. Q is a point such that−−→
OQ = 2

−−→
OP and S is a point such that

−→
OS = 2

−−→
OR. T is the midpoint of QS.

Find, in terms of p and r,

(a)
−→
PR,

(b)
−→
QT ,

(c)
−→
TR.

What shape is the quadrilateral PRTQ? Name another quadrilateral that has the same
shape as PRTQ.
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Solution. By the midpoint theorem,

−→
OT =

−−→
OQ+

−→
OS

2
= p+ r.

Part (a). −→
PR = r− p.

Part (b). −→
QT = (p+ r)− (2p) = r− p.

Part (c). −→
TR = r− (r+ p) = −p.

Consider the following diagram:

O P Q

R

S

T

p p

r

r

Clearly, PRTQ is a parallelogram. Likewise, ORTP is also a parallelogram.

∗ ∗ ∗ ∗ ∗

Problem 3. The position vectors of points A, B, C are given by
−→
OA = 5i,

−−→
OB = i+ 3k,−−→

OC = i + 4j. A parallelepiped has OA, OB and OC as three edges, and the remaining
edges are X, Y , Z and D as shown in the diagram.

A

B

C

DX

Y

Z

O

(a) Write down the position vectors of X, Y , Z and D in terms of i, j and k, and
calculate the length of OD.

(b) Calculate the size of angle OZY .

(c) The point P divides CZ in the ratio λ : 1. Write down the position vector of P , and

evaluate λ if
−−→
OP is perpendicular to

−→
CZ.
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Solution.

Part (a). We have

−−→
OX =

−−→
OB +

−−→
OC = 2i+ 4j+ 3k,

−−→
OY =

−→
OA +

−−→
OC = 6i+ 4j,

−→
OZ =

−→
OA+

−−→
OB = 6i+ 3k,

−−→
OD =

−→
OA+

−−→
OB +

−−→
OC = 7i+ 4j+ 3k.

Part (b). Note that
−−→
ZY = (0, 4, −3)T. Hence,

cos∠OZY =

−→
OZ · −−→ZY∣∣∣−→OZ
∣∣∣
∣∣∣−−→ZY

∣∣∣
=

9√
45
√
25

=⇒ ∠OZY = 74.4◦ (1 d.p.).

Part (c). By the ratio theorem,

−−→
OP =

−−→
OC + λ

−→
OZ

1 + λ
=

1

1 + λ


3λ



2
0
1


+



1
4
0




 .

Note that
−→
CZ = (5, −4, 3)T. Since

−−→
OP ⊥ −→

CZ, we have

−−→
OP · −→CZ = 0.

Hence,

3λ



2
0
1


 ·




5
−4
3


+



1
4
0


 ·




5
−4
3


 = 39λ− 11 = 0,

whence λ = 11/39.

∗ ∗ ∗ ∗ ∗

Problem 4. The vectors a, b and c are such that a · b = b · c = 0 and a · c = 2. Given
that |a| = 1, |b| = 2, |c| = 3, find

(a) |a− b|;

(b) |a− b− c|.

Solution.

Part (a). Observe that

|a− b|2 = (a− b) · (a− b) = a · a− a · b− b · a+ b · b.

Since a · b = 0, we get

|a− b|2 = a · a+ b · b = |a|2 + |b|2 = 11 + 22 = 5.

Thus, |a− b| =
√
5.

Part (b). Observe that

|a− b− c|2 = (a− b− c) · (a− b− c) = (a− b) · (a− b)− 2c · (a− b) + c · c.

Since a · c = 2 and b · c = 0, we have

|a− b− c|2 = |a− b|2 − 2(2) + |c|2 = 5− 2(2) + 32 = 10.
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Thus, |a− b− c| =
√
10.

∗ ∗ ∗ ∗ ∗

Problem 5. The position vectors of the points M and N are given by

−−→
OM = λi+ (2λ− 1)j+ k,

−−→
ON = (1− λ)i+ 3λj− 2k,

where λ is a scalar. Find the values of λ for which
−−→
OM and

−−→
ON are perpendicular. When

λ = 1, find the size of ∠MNO to the nearest degree.

Solution. Since
−−→
OM ⊥ −−→

ON , we have

−−→
OM · −−→ON =




λ
2λ− 1

1


 ·



1− λ
3λ
−2


 = 5λ2 − 2λ− 2 = 0.

Solving the quadratic, we get

λ =
1±

√
11

5
.

When λ = 1, we have

−−→
OM =



1
1
1


 ,

−−→
ON =




0
3
−2


 ,

−−→
MN =



−1
2
−3


 .

Hence,

cos∠MNO =

−−→
ON · −−→MN∣∣∣−−→ON

∣∣∣
∣∣∣−−→MN

∣∣∣
=

12√
13

√
14

=⇒ ∠MNO = 27◦.

∗ ∗ ∗ ∗ ∗

Problem 6. The points A, B, C and D have position vectors i−2j+5k, i+3j, 10i+j+2k
and −2i + 4j + 5k respectively, with respect to an origin O. The point P on AB is such
that AP : PB = λ : 1 − λ and point Q on CD is such that CQ : QD = µ : 1 − µ. Find−−→
OP and

−−→
OQ in terms of λ and µ respectively.

Given that PQ is perpendicular to both AB and CD, show that
−−→
PQ = i+ 2j+ 2k.

Solution. By the ratio theorem,

−−→
OP =

(1− λ)
−→
OA+ λ

−−→
OB

(1− λ) + λ
=

−→
OA+ λ

(−−→
OB −−→

OA
)
=




1
−2
5


+ 5λ




0
1
−1




and

−−→
OQ =

(1− µ)
−−→
OC +

−−→
OD

(1− µ) + µ
=

−−→
OC + µ

(−−→
OD −−−→

OC
)
=



10
1
2


+ 3µ



−4
1
1


 .

Note that

−−→
PQ =





10
1
2


+ 3µ



−4
1
1




−






1
−2
5


+ 5λ




0
1
−1




 = 3




3
1
−1


+3µ



−4
1
1


−5λ




0
1
01


 .
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Since PQ is perpendicular to AB, we have

−−→
PQ · −−→AB =


3




3
1
−1


+ 3µ



−4
1
1


− 5λ




0
1
01




 ·


5




0
1
−1




 = 5(6− 10λ) = 0.

Thus, λ = 3/5.
Since PQ is perpendicular to CD, we have

−−→
PQ · −−→CD =


3




3
1
−1


+ 3µ



−4
1
1


− 5λ




0
1
01




 ·


3



−4
1
1




 = 3(−36 + 54µ) = 0.

Thus, µ = 2/3.
Hence,

−−→
PQ = 3




3
1
−1


+ 3

(
2

3

)

−4
1
1


− 5

(
3

5

)


0
1
−1


 =



1
2
2


 .

∗ ∗ ∗ ∗ ∗

Problem 7. The position vectors of the vertices A, B and C of a triangle are a, b and c
respectively. If O is the origin and not within the triangle, show that the area of triangle
OAB is 1

2 |a× b|, and deduce and expression for the area of the triangle ABC.
Hence, or otherwise, show that the perpendicular distance from B to AC is

|a× b+ b× c+ c× a|
|c− a| .

Solution. Let θ = ∠AOB be the angle between a and b. Clearly,

[△OAB] =
1

2
(OA)(OB) sin θ =

1

2
|a× b| .

Note that AB = |b− a| and AC = |c− a|. Hence,

[△ABC] =
1

2
|(b− a)× (c− a)| .

Expanding, we get

[△ABC] =
1

2
|b× c− b× a− a× c| = 1

2
|a× b+ b× c+ c× a| .

Let the perpendicular distance from B to AC be h. Then

[△ABC] =
1

2
h(AC) =

1

2
h |c− a| .

Hence,

h =
2[△ABC]

|c− a| =
|a× b+ b× c+ c× a|

|c− a| .

∗ ∗ ∗ ∗ ∗

Problem 8 ( ). The points A, B and C lie on a circle with centre O and diameter AC.

It is given that
−→
OA = a and

−−→
OB = b.

(a) Find
−−→
BC in terms of a and b. Hence, show that AB is perpendicular to BC.
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(b) Given that ∠AOB = 30◦, find
−−→
OF where F is the foot of perpendicular of B to AC.

Hence, find
−−→
OB′, where B′ is the reflection of B in the line AC.

Solution.

Part (a). Since A, B and C lie on the same circle, |a| = |b| = |c|. Since AC is the
diameter of the circle, c is in the opposite direction as a. Hence, c = −a. Thus,

−−→
BC =

−−→
OC −−−→

OB = −a− b.

Also note that −−→
AB =

−−→
OB −−→

OA = b− a.

Consider
−−→
AB · −−→BC:

−−→
AB · −−→BC = (b− a) · − (a+ b) = − (b · b− a · a) = −

(
|b|2 − |a|2

)
= 0.

Thus, AB is perpendicular to BC.

Part (b). Observe that

√
3

2
= cos∠AOB =

OF

OB
=

∣∣∣−−→OF
∣∣∣

|a| =⇒
∣∣∣−−→OF

∣∣∣ =
√
3

2
|a| .

Since
−−→
OF is in the same direction as

−→
OA, we have

−−→
OF =

√
3

2
a.

Note that
−−→
BF =

√
3

2
a− b.

By the midpoint theorem,

−−→
OF =

−−→
OB +

−−→
OB′

2
=⇒

−−→
OB′ = 2

−−→
OF −−−→

OB =
√
3a− b.
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Assignment A7

Problem 1. The points A and B have position vectors relative to the origin O, denoted
by a and b respectively, where a and b are non-parallel vectors. The point P lies on AB
such that AP : PB = λ : 1. The point Q lies on OP extended such that OP = 2PQ and−−→
BQ =

−→
OA+ µ

−−→
OB. Find the values of the real constants λ and µ.

Solution. By the ratio theorem,

−−→
OP =

a+ λb

1 + λ
=⇒ −−→

OQ =
3

2

−−→
OP =

3

2
· a+ λb

1 + λ
.

However, we also have −−→
OQ =

−−→
OB +

−−→
BQ = a+ (1 + µ)b.

This gives the equality
3

2
· a+ λb

1 + λ
= a+ (1 + µ)b.

Since a and b are non-parallel, we can compare the a- and b-components of both vectors
separately. This gives us

3

2
· 1

1 + λ
= 1,

3

2
· λ

1 + λ
= 1 + µ,

which has the unique solution λ = 1/2 and µ = −1/2.

∗ ∗ ∗ ∗ ∗

Problem 2. Given that a = i+ j, b = 4i− 2j+ 6k and p = λa+ (1− λ)b where λ ∈ R,
find the possible value(s) of λ for which the angle between p and k is 45◦.

Solution. Observe that

p = λa+ (1− λ)b = λ



1
1
0


+ (1− λ)




4
−2
6


 =




4− 3λ
−2 + 3λ
6− 6λ


 .

Thus,
|p|2 = (4− 3λ)2 + (−2 + 3λ)2 + (6− 6λ)2 = 54λ2 − 108λ+ 56.

Since the angle between p and k is 45◦,

cos 45◦ =
p · k
|p| |k| =⇒ 1√

2
=

6− 6λ

|p| =⇒ |p|2
2

= (6− 6λ)2.

We thus obtain the quadratic equation

54λ2 − 108λ+ 56

2
= 36λ2 − 72λ+ 36 =⇒ 9λ2 − 18λ+ 8 = 0,

which has solutions λ = 2/3 and λ = 4/3. However, we must reject λ = 4/3 since
6− 6λ = |p| /

√
2 > 0 =⇒ λ < 1. Thus, λ = 2/3.
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Problem 3.

(a) a and b are non-zero vectors such that a = (a · b)b. State the relation between the
directions of a and b, and find |b|.

(b) a is a non-zero vector such that a =
√
3 and b is a unit vector. Given that a and

b are non-parallel and the angle between them is 5π/6, find the exact value of the
length of projection of a on b. By considering (2a+b) · (2a+b), or otherwise, find
the exact value of |2a+ b|.

Solution.

Part (a). a and b either have the same or opposite direction. Let b = λa for some λ ∈ R.

a = (a · b)b = (a · λa)λa = λ2 |a|2 a =⇒ λ2 |a|2 = 1 =⇒ |b| = |λ |a|| = 1.

Part (b). Note that |a · b| = |a| |b| cos(5π/6) = −3/2. Hence, the length of projection of

a on b is
∣∣∣a · b̂

∣∣∣ = 3/2 units.

Observe that

|2a+ b|2 = (2a+ b) · (2a+ b) = 4 |a|2 + 4(a · b) + |b|2 = 7.

Thus, |2a+ b| =
√
7.

∗ ∗ ∗ ∗ ∗

Problem 4. The points A, B, C, D have position vectors a, b, c, d given by a = i+2j+3k,
b = i + 2j + 2k, c = 3i + 2j + k, d = 4i − j − k, respectively. The point P lies on AB
produced such that AP = 2AB, and the point Q is the mid-point of AC.

(a) Show that PQ is perpendicular to AQ.

(b) Find the area of the triangle APQ.

(c) Find a vector perpendicular to the plane ABC.

(d) Find the cosine of the angle between
−−→
AD and

−−→
BD.

Solution. Note that
−−→
AB = (0, 0, −1)T,

−→
AC = (2, 0, −2)T and

−−→
AD = (3, −3, −4)T.

Part (a). Note that

−−→
OP =

−→
OA+

−→
AP =

−→
OA+ 2

−−→
AB =



1
2
1




and

−−→
OQ =

−→
OA+

1

2

−→
AC =



2
2
2


 .

Thus,

−−→
PQ =

−−→
OQ−−−→

OP =



1
0
1


 ,

−→
AQ =

−−→
OQ−−→

OA =




1
0
−1


 .

Since
−−→
PQ · −→AQ = 0, the two vectors are perpendicular, whence PQ ⊥ AQ.
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Part (b). Note that
−→
AP = (0, 0, −2)T. Hence,

[△APQ] =
1

2

∣∣∣−→AP ×−→
AQ
∣∣∣ = 1

2

∣∣∣∣∣∣




0
0
−2


×




1
0
−1



∣∣∣∣∣∣
= 1 units2.

Part (c). The vector
−−→
AB ×−→

AC = (0, −2, 0)T is perpendicular to the plane ABC.

Part (d). Let the angle between
−−→
AD and

−−→
BD be θ. Note that

−−→
BD = −3 (−1, 1, 1)T.

Hence,

cos θ =

−−→
AD · −−→BD∣∣∣−−→AD
∣∣∣
∣∣∣−−→BD

∣∣∣
=

30√
34 · 3

√
3
=

10√
102

.



405

A8 Vectors II - Lines

Tutorial A8

Problem 1. For each of the following, write down a vector equivalent of the line l and
convert it to parametric and Cartesian forms.

(a) l passes through the point with position vector −i+ k and is parallel to the vector
i+ j.

(b) l passes through the points P (1,−1, 3) and Q(2, 1,−2).

(c) l passes through the origin and is parallel to the linem : r = (1, −1, 3)T+λ (1, 2, 3)T,
where λ ∈ R.

(d) l is the x-axis.

(e) l passes through the point C(4,−1, 2) and is parallel to the z-axis.

Solution.

Part (a).

Form Expression

Vector r = (−1, 0, 1)T + λ (1, 1, 0)T , λ ∈ R
Parametric x = λ− 1, y = λ, z = 1
Cartesian x+ 1 = y, z = 1

Part (b).

Form Expression

Vector r = (1, −1, 3)T + λ (1, 2, −5)T , λ ∈ R
Parametric x = λ+ 1, y = 2λ− 1, z = −5λ+ 3

Cartesian x− 1 = y+1
2 = 3−z

5

Part (c).

Form Expression

Vector r = λ (1, 2, 3)T , λ ∈ R
Parametric x = λ, y = 2λ, z = 3λ
Cartesian x = y

2 = z
3

Part (d).

Form Expression

Vector r = λ (1, 0, 0)T , λ ∈ R
Parametric x = λ, y = 0, z = 0
Cartesian x ∈ R, y = 0, z = 0
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Part (e).

Form Expression

Vector r = (4, −1, 2)T + λ (0, 0, 1)T , λ ∈ R
Parametric x = 4, y = −1, z = λ+ 2
Cartesian x = 4, y = −1, z ∈ R

∗ ∗ ∗ ∗ ∗

Problem 2. For each of the following, determine if l1 and l2 are parallel, intersecting or
skew. In the case of intersecting lines, find the position vector of the point of intersection.
In addition, find the acute angle between the lines l1 and l2.

(a) l1 : x− 1 = −y = z − 2 and l2 :
x−2
2 = −y+1

2 = z−4
2

(b) l1 : r = (1, 0, 0)T + α (4, −2, −3)T , α ∈ R and l2 : r = (0, 10, 1)T + β (3, 8, 1)T

(c) l1 : r = (i− 5k) + λ(i− j+ k), λ ∈ R and l2 : r = (i− j+ k) + µ(5i− 4j− k), µ ∈ R

Solution.

Part (a). Note that l1 and l2 have vector form

l1 : r =



1
0
2


+ λ




1
−1
1


 , λ ∈ R and l2 : r =



2
1
4


+ µ




2
−2
2


 , µ ∈ R.

Since (2, −2, 2)T = 2 (1, −1, 1)T, l1 and l2 are parallel (θ = 0). Since (1, 0, 2)T ̸=
(2, 1, 4)T + µ (2, −2, 2)T for all real µ, we have that l1 and l2 are distinct.

Part (b). Since (4, −2, 3)T ̸= β (3, 8, 1)T for all real β, it follows that l1 and l2 are not
parallel.
Consider l1 = l2.

l1 = l2 =⇒



1
0
0


+ α




4
−2
−3


 =




0
10
1


+ β



3
8
1


 =⇒ α




4
−2
−3


− β



3
8
1


 =



−1
10
1


 .

This gives the following system:





4α− 3β = −1

−2α− 8β = 10

−3α− β = 1

There are no solutions to the above system. Hence, l1 and l2 do not intersect and are thus
skew.
Let θ be the acute angle between l1 and l2.

cos θ =

∣∣∣(4, −2, −3)T · (3, 8, 1)T
∣∣∣

∣∣∣(4, −2, −3)T
∣∣∣
∣∣∣(3, 8, 1)T

∣∣∣
=

7√
2146

=⇒ θ = 81.3◦ (1 d.p.).

Part (c). Note that l1 and l2 have vector form

l1 : r =




1
0
−5


+ λ




1
−1
1


 and l2 : r =




1
−1
1


+ µ




5
−4
−1


 , λ, µ ∈ R.
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Since (1, −1, 1)T ̸= µ (5, −4, −1)T for all real µ, it follows that l1 and l2 are not parallel.
Consider l1 = l2.

l1 = l2 =⇒




1
0
−5


+ λ




1
−1
1


 =




1
−1
1


+µ




5
−4
−1


 =⇒ λ




1
−1
1


−µ




5
−4
−1


 =




0
−1
6


 .

This gives the following system:




− 5µ+ λ = 0

4µ− λ = −1

µ+ λ = 6

The above system has the unique solution λ = 5 and µ = 1. Hence, l1 and l2 intersect at
(1, 0, −5)T + 5 (1, −1, 1)T = (6, −5, 0)T.
Let θ be the acute angle between l1 and l2.

cos θ =

∣∣∣(1, −1, 1)T · (5, −4, −1)T
∣∣∣

∣∣∣(1, −1, 1)T
∣∣∣
∣∣∣(5, −4, −1)T

∣∣∣
=

8

3
√
14

=⇒ θ = 44.5◦ (1 d.p.).

∗ ∗ ∗ ∗ ∗

Problem 3.

(a) Find the shortest distance from the point (1, 2, 3) to the line with equation r =
3i+ 2j+ 4k+ λ(i+ 2j+ 2k), λ ∈ R.

(b) Find the length of projection of 4i−5j+6k onto the line with equation x+5
4 = y−5

3 =
10− 2z.

(c) Find the projection of 4i− 5j+6k onto the line with equation x+5
4 = y−5

3 = 10− 2z.

Solution.

Part (a). Let
−−→
OP = (1, 2, 3)T and

−→
OA = (3, 2, 4)T. Note that

−→
AP = (−2, 0, −1)T. The

shortest distance between P and the line is thus

Shortest distance =

∣∣∣(−2, 0, −1)T × (1, 2, 2)T
∣∣∣

∣∣∣(1, 2, 2)T
∣∣∣

=

∣∣∣(2, −3, −4)T
∣∣∣

3
=

√
29

3
units.

Part (b). Note that the line has vector form

r =



−5
5
5


+ λ′




4
3

−1/2


 =



−5
5
5


+ λ




8
6
−1


 , λ ∈ R.

The length of projection of (4, −5, 6)T onto the line is thus given by

Length of projection =

∣∣∣(4, −5, 6)T · (8, 6, −1)T
∣∣∣

∣∣∣(8, 6, −1)T
∣∣∣

=
4√
101

units.

Part (c).

Projection =


(4, −5, 6)T · (8, 6, −1)T∣∣∣(8, 6, −1)T

∣∣∣


 · (8, 6, −1)T∣∣∣(8, 6, −1)T

∣∣∣
=

−4

101




8
6
−1
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Problem 4. The points P and Q have coordinates (0,−1,−1) and (3, 0, 1) respectively,
and the equations of the lines l1 and l2 are given by

l1 : r =




0
1
−3


+ λ




0
1
−1


 , λ ∈ R and l2 : r =



−3
3
1


+ µ




2
−1
0


 , µ ∈ R.

(a) Show that P lies on l1 but not on l2.

(b) Determine if l2 passes through Q.

(c) Find the coordinates of the foot of the perpendicular from P to l2. Hence, or
otherwise, find the perpendicular distance from P to l2.

(d) Find the length of projection of
−−→
PQ onto l2.

Solution. We have that
−−→
OP = (0, −1, −1)T and

−−→
OQ = (3, 0, 1)T.

Part (a). When λ = −2, we have (0, 1, −3)T − 2 (0, 1, −1)T = (0, −1, −1)T =
−−→
OP .

Hence, P lies on l1.
Observe that all points on l2 have a z-coordinate of 1. Since P has a z-coordinate of

−1, P does not lie on l2.

Part (b). When µ = 3, we have (−3, 3, 1)T + 3 (2, −1, 0)T = (3, 0, 1)T =
−−→
OQ. Hence, l2

passes through Q.

Part (c). Let the foot of the perpendicular from P to l2 be F . Since F is on l2, we have that−−→
OF = (−3, 3, 1)T+µ (2, −1, 0)T for some real µ. We also have that

−−→
PF · (2, −1, 0)T = 0.

Note that

−−→
PF =

−−→
OF −−−→

OP =



−3
3
1


+ µ




2
−1
0


−




0
−1
−1


 =



−3 + 2µ
4− µ
2


 .

Hence,

−−→
PF ·




2
−1
0


 = 0 =⇒



−3 + 2µ
4− µ
2


 ·




2
−1
0


 = 0 =⇒ −10 + 5µ = 0 =⇒ µ = 2.

Hence,
−−→
OF = (−3, 3, 1)T+2 (3, −1, 0)T = (1, 1, 1)T. Thus, F (1, 1, 1). The perpendicular

distance from P to l2 is thus
∣∣∣−−→PF

∣∣∣ =
∣∣∣(1, 2, 2)T

∣∣∣ = 3 units.

Part (d). Note that
−−→
PQ =

−−→
OQ−−−→

OP =



3
1
2


. The length of projection of

−−→
PQ onto l2 is

thus given by

Length of projection =

∣∣∣(3, 1, 2)T · (2, −1, 0)T
∣∣∣

∣∣∣(2, −1, 0)T
∣∣∣

=
5√
5
=

√
5 units.

∗ ∗ ∗ ∗ ∗

Problem 5. The lines l1 and l2 have equations

r =



0
1
2


+ s



1
0
3


 and r =



−2
3
1


+ t



2
1
0




respectively. Find the position vectors of the points P on l1 and Q on l2 such that O, P
and Q are collinear, where O is the origin.
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Solution. We have that
−−→
OP = (0, 1, 2)T+s (1, 0, 3)T and

−−→
OQ = (−2, 3, 1)T+t (2, 1, 0)T

for some s, t ∈ R. For O, P and Q to be collinear, we need
−−→
OP = λ

−−→
OQ for some λ ∈ R:



0
1
2


+ s



1
0
3


 = λ





−2
3
1


+ t



2
1
0




 =⇒




s
1

2 + 3s


 = λ



−2 + 2t
3 + t
1


 .

This gives us the system: 



s = λ(−2 + 2t)

1 = λ(3 + t)

2 + 3s = λ

Substituting the third equation into the first two gives the reduced system:
{
s = (2 + 3s)(−2 + 2t)

1 = (2 + 3s)(3 + t)

Subtracting twice of the second equation from the first yields s− 2 = −8(2 + 3s), whence
s = −14/25. It quickly follows that t = 1/8. Hence,

−−→
OP =



0
1
2


− 14

25



1
0
3


 =

1

25



−14
25
8


 ,

−−→
OQ =



−2
3
1


+

1

8



2
1
0


 =

1

8



−14
25
8


 .

∗ ∗ ∗ ∗ ∗

Problem 6. Relative to the origin O, the points A, B and C have position vectors
5i+ 4j+ 10k, −4i+ 4j− 2k and −5i+ 9j+ 5k respectively.

(a) Find the Cartesian equation of the line AB.

(b) Find the length of projection of
−→
AC onto the line AB. Hence, find the perpendicular

distance from C to the line AB.

(c) Find the position vector of the foot N of the perpendicular from C to the line AB.

(d) The point D is such that it is a reflection of point C about the line AB. Find the
position vector of D.

Solution. We have that
−→
OA = (5, 4, 10)T,

−−→
OB = (−4, 4, −2)T and

−−→
OC = (−5, 9, 5)T.

Part (a). Note that
−−→
AB = (−9, 0, −12)T = −3 (3, 0, 4)T. The line AB hence has the

vector form

r =




5
4
10


+ λ



3
0
4


 , λ ∈ R

and Cartesian form x−5
3 = z−10

4 , y = 4.

Part (b). Note that
−→
AC = (−10, 5, −5)T = −5 (2, −1, 1)T. Hence, the length of projec-

tion of
−→
AC onto the line AB is given by

Length of projection =

∣∣∣−→AC · −−→AB
∣∣∣

∣∣∣−−→AB
∣∣∣

=
1

15

∣∣∣∣∣∣
5




2
−1
1


 · 3



3
0
4



∣∣∣∣∣∣
= 10 units.

Since
∣∣∣−→AC

∣∣∣ = 5
√
6, the perpendicular distance from C to the line AB is

√(
5
√
6
)2 − 102 =

5
√
2 units.
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Part (c). Let
−−→
AN = λ (−9, 0, −12)T for some λ ∈ R such that

∣∣∣−−→AN
∣∣∣ = 10.

∣∣∣−−→AN
∣∣∣ = 10 =⇒ 15λ = 10 =⇒ λ =

2

3
.

Hence,
−−→
AN = 2

3 (−9, 0, −12)T = (−6, 0, −8)T. Thus,
−−→
ON =

−→
OA+

−−→
AN = (−1, 4, 2)T.

Part (d). Note that
−−→
NC =

−−→
OC −−−→

ON = (−4, 5, 3)T. Since D is the reflection of C about

AB, we have that
−−→
ND = −−−→

NC. Thus,

−−→
OD =

−−→
ON +

−−→
ND =

−−→
ON −−−→

NC =



−1
4
2


−



−4
5
3


 =




3
−1
−1


 .

∗ ∗ ∗ ∗ ∗

Problem 7. The points A and B have coordinates (0, 9, c) and (d, 5,−2) respectively,
where c and d are constants. The line l has equation x+3

−1 = y−1
4 = z−5

3 .

(a) Given that d = 22/7 and the line AB intersects l, find the value of c. Find also the
coordinates of the foot of the perpendicular from A to l.

(b) Given instead that the lines AB and l are parallel, state the value of c and d and
find the shortest distance between the lines AB and l.

Solution. We have that
−→
OA = (0, 9, c)T and

−−→
OB = (d, 5, −2)T. We also have that the

line l is given by the vector r = (−3, 1, 5)T + λ (−1, 4, 3)T for λ ∈ R.
Note that

−−→
AB =

−−→
OB − −→

OA = (d, −4, −2− c)T. Hence, the line AB is given by the
vector rAB = (d, 5, −2)T + µ (d, −4, −2− c)T for µ ∈ R.
Part (a). Consider the direction vectors of AB and l. Since (22/7, −4, −2− c)T ̸=
λ (−1, 4, 3)T for all real λ and c, the lines AB and l are not parallel. Hence, AB and l
intersect at only one point. Thus, there must be a unique solution to r = rAB.

r = rAB =⇒



−3
1
5


+ λ



−1
4
3


 =



22/7
5
−2


+ µ




22/7
−4

−2− c




=⇒ λ



−7
28
21


− µ




22
−28

−14− 7c


 =




43
28
−49




This gives the following system:





−λ− 22µ = 43

4λ+ 28µ = 28

3λ+ (14 + 7c)µ = −49

Solving the first two equations gives λ = 91/3 and µ = −10/3. It follows from the third
equation that c = 4.

Let F be the foot of the perpendicular from A to l. We have that
−−→
OF = (−3, 1, 5)T +

λ (−1, 4, 3)T for some λ ∈ R. We also have that
−→
AF · (−1, 4, 3)T = 0. Note that

−→
AF =

−−→
OF −−→

OA =




−3− λ
−8 + 4λ
1 + 3λ


 .
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Hence,

−→
AF ·



−1
4
3


 = 0 =⇒




−3− λ
−8 + 4λ
1 + 3λ


 ·



−1
4
3


 = 0 =⇒ −26 + 26λ = 0 =⇒ λ = 1.

Hence,
−−→
OF = (−3, 1, 5)T+(−1, 4, 3)T = (−4, 5, 8)T. The foot of the perpendicular from

A to l hence has coordinates (−4, 5, 8).

Part (b). Given that AB is parallel to l, one of their direction vectors must be a scalar
multiple of the other. Hence, for some real λ, (−1, 4, 3)T = λ (d, −4, −2− c)T. It is
obvious that λ = −1, whence c = 1 and d = 1.

Note that the direction vector of l and AB is (−1, 4, 3)T. Also note that l passes through
(−3, 1, 5) and AB passes through (1, 5,−2). Since (1, 5, −2)T−(−3, 1, 5)T = (4, 4, −7)T,
the shortest distance between AB and l is

∣∣∣(−1, 4, 3)T × (4, 4, −7)T
∣∣∣

∣∣∣(−1, 4, 3)T
∣∣∣

=
1√
26

∣∣∣∣∣∣



−40
−5
−20



∣∣∣∣∣∣
=

45√
26

units.

∗ ∗ ∗ ∗ ∗

Problem 8. The equation of the line L is r = (1, 3, 7)T + t (2, −1, 5)T, t ∈ R. The
points A and B have position vectors (9, 3, 26)T and (13, 9, α)T respectively. The line L
intersects the line through A and B at P .

(a) Find α and the acute angle between line L and AB.

The point C has position vector (2, 5, 1)T and the foot of the perpendicular from C to
L is Q.

(b) Find the position vector of Q. Hence, find the shortest distance from C to L.

(c) Find the position vector of the point of reflection of the point C about the line L.
Hence, find the reflection of the line passing through C and the point (1, 3, 7) about
the line L.

Solution.

Part (a). Note that
−−→
AB =

−−→
OB − −→

OA = (4, 6, α− 26)T. The line AB is thus given by
rAB = (9, 3, 26)T+u (4, 6, α− 26)T for u ∈ R. Note that AB is not parallel to L. Hence,−−→
OP is the only solution to the equation r = rAB.



1
3
7


+ t




2
−1
5


 =




9
3
26


+ u




4
6

α− 26


 =⇒ t




2
−1
5


− u




4
6

α− 26


 =




8
0
19


 .

This gives the following system:





2t− 4u = 8

−t− 6u = 0

5t− (α− 26)u = 19

Solving the first two equations gives t = 3 and u = −1
2 . It follows from the third equation

that α = 34.
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Let the acute angle between L and AB be θ.

cos θ =

∣∣∣(2, −1, 5)T · (4, 6, 8)T
∣∣∣

∣∣∣(2, −1, 5)T
∣∣∣
∣∣∣(4, 6, 8)T

∣∣∣
=

42√
30
√
116

=⇒ θ = 44.6◦ (1 d.p.).

Part (b). Since Q is on L, we have that
−−→
OQ = (1, 3, 7)T + t (2, −1, 5)T for some real t.

Further, since
−−→
CQ ⊥ L, we have that

−−→
CQ · (2, −1, 5)T = 0. Note that

−−→
CQ =

−−→
OQ−−−→

OC =



−1 + 2t
−2− t
6 + 5t


 .

Thus,

−−→
CQ ·




2
−1
5


 = 0 =⇒



−1 + 2t
−2− t
6 + 5t


 ·




2
−1
5


 = 0 =⇒ 30 + 30t = 0 =⇒ t = 1.

Hence,
−−→
OQ = (1, 3, 7)T + (2, −1, 5)T = (−1, 4, 2)T. The shortest distance from C to L

is thus
∣∣∣−−→CQ

∣∣∣ =

∣∣∣∣∣∣



−1
4
2


−



2
5
1



∣∣∣∣∣∣
=

∣∣∣∣∣∣



−3
−1
1



∣∣∣∣∣∣
=

√
11 units.

Part (c). Let C ′ be the reflection of C about L. Note that

−−→
OC ′ =

−−→
OQ−−−→

QC =
−−→
OQ+

−−→
CQ =



−1
4
2


+



−3
−1
1


 =



−4
3
3


 .

Note that (1, 3, 7) is on L and is hence invariant under a reflection about L. Let the
reflection about L of the line passing through C and (1, 3, 7) be L′. Since (−4, 3, 3)T −
(1, 3, 7)T = (−5, 0, −4)T ∥ (5, 0, 4)T, L′ hence has direction vector (5, 0, 4)T. Thus, L′

is given by r′ = (1, 3, 7)T + λ (5, 0, 4)T for λ ∈ R.

∗ ∗ ∗ ∗ ∗

Problem 9.

A B

C
D

V

O
i

j
k
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In the diagram, O is the origin of the square base ABCD of a right pyramid with vertex
V . The perpendicular unit vectors i, j and k are parallel to AB, AD and OV respectively.
The length of AB is 4 units and the length of OV is 2h units. P , Q, M and N are the
mid-points of AB, BC, CV and V A respectively. The point O is taken as the origin for
position vectors.
Show that the equation of the line PM may be expressed as r = (0, −2, 0)T+t (1, 3, h)T,

where t is a parameter.

(a) Find an equation for the line QN .

(b) Show that the lines PM and QN intersect and that the position vector
−−→
OX of their

point of intersection is r = 1
2 (1, −1, h)T.

(c) Given that OX is perpendicular to V B, find the value of h and calculate the acute
angle between PM and QN , giving your answer correct to the nearest 0.1◦.

Solution. We are given that
−−→
OP = (0, −2, 0)T,

−−→
OC = (2, 2, 0)T and

−−→
OV = (0, 0, 2h)T.

Hence,
−−→
CV =

−−→
OV − −−→

OC = (−2, −2, 2h)T. Thus,
−−→
CM = 1

2

−−→
CV = (−1, −1, h)T. Since

−−→
OM =

−−→
OC +

−−→
CM = (1, 1, h)T, we have that

−−→
PM =

−−→
OM −−−→

OP = (1, 3, h)T. Thus, PM
is given by

r =




0
−2
0


+ t



1
3
h


 , t ∈ R.

Part (a). Since
−−→
OM = (1, 1, h)T, by symmetry,

−−→
ON = (−1, −1, h)T. Given that

−−→
OQ =

(2, 0, 0)T, we have that
−−→
QN =

−−→
ON −−−→

OQ = (−3, −1, h)T. Thus, QN is given by

r =



2
0
0


+ u



−3
−1
h


 , u ∈ R.

Part (b). Consider PM = QN .

PM = QN =⇒




0
−2
0


+ t



1
3
h


 =



2
0
0


+ u



−3
−1
h


 =⇒ t



1
3
h


− u



−3
−1
h


 =



2
2
0


 .

This gives the following system: 



t+ 3u = 2

3t+ u = 2

ht− hu = 0

From the first two equations, we see that t = 1
2 and u = 1

2 , which is consistent with the

third equation. Hence,
−−→
OX = (0, −2, 0)T + 1

2 (1, 3, h)
T = 1

2 (1, −1, h)T.

Part (c). Note that
−−→
OB = (2, −2, 6)T, whence

−−→
V B =

−−→
OB −−−→

OV = (2, −2, −2h)T. Since

OX is perpendicular to V B, we have that
−−→
OX · −−→V B = 0.

−−→
OX · −−→V B = 0 =⇒ 1

2




1
−1
h


 · 2




1
−1
−h


 = 0 =⇒ h2 = 2.

We hence have that h =
√
2. Note that we reject h = −

√
2 since h > 0.

Let the acute angle between PM and QN be θ.

cos θ =

∣∣∣−−→PM · −−→QN
∣∣∣

∣∣∣−−→PM
∣∣∣
∣∣∣−−→QN

∣∣∣
=

1√
12
√
12

∣∣∣∣∣∣




1
3√
2


 ·



−3
−1√
2



∣∣∣∣∣∣
=

1

3
=⇒ θ = 70.5◦ (1 d.p.).
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Problem 1. The points A and B have positions vectors (8, 3, 2)T and (−2, 3, 4)T re-
spectively.

(a) Show that AB = 2
√
26.

(b) Find the Cartesian equation for the line AB.

(c) The line l has equation r = (−2, 3, 4)T + t (2, 6, 5)T. Find the length of the projec-
tion of AB onto l.

(d) Calculate the acute angle between AB and l, giving your answer correct to the
nearest degree.

(e) Find the position vector of the foot N of the perpendicular from A to l. Hence, find
the position vector of the image of A in the line l.

Solution.

Part (a). Note that

−−→
AB =

−−→
OB −−→

OA =



−2
3
4


−



8
3
2


 = 2



−5
0
1


 .

Hence,

AB =
∣∣∣−−→AB

∣∣∣ = 2
√

(−5)2 + 02 + 12 = 2
√
26 units.

Part (b). The vector equation of the line AB is

r =



8
3
2


+ λ



−5
0
1


 , λ ∈ R.

Hence, the Cartesian equation is

x− 8

−5
= z − 2, y = 3.

Part (c). The length of projection of AB onto l is given by

∣∣∣2 (−5, 0, 1)T · (2, 6, 5)T
∣∣∣

∣∣∣(2, 6, 5)T
∣∣∣

=
10√
65

units.

Part (d). Let the acute angle be θ.

cos θ =

∣∣∣(−5, 0, 1)T · (2, 6, 5)T
∣∣∣

∣∣∣(−5, 0, 1)T
∣∣∣
∣∣∣(2, 6, 5)T

∣∣∣
=

5√
65
√
26

=⇒ θ = 83◦.

Part (e). Since N is on l, there exists some t ∈ R such that

−−→
ON =

−2

3
4 + t



2
6
5


 .
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Hence,

−−→
AN =





−2
3
4


+ t



2
6
5




−



8
3
2


 = 2



−5
0
1


+ t



2
6
5


 .

Since AN is perpendicular to l, we have

−−→
AN ·



2
6
5


 =


2



−5
0
1


+ t



2
6
5




 ·



2
6
5


 = −10 + 65t = 0.

Hence, t = 2/13, whence

−−→
ON =



−2
3
4


+

2

13



2
6
5


 =

1

13



−22
51
62


 .

Let the image of A in l be A′. By the midpoint theorem,

−−→
ON =

−→
OA+

−−→
OA′

2
.

Hence,

−−→
OA′ = 2

−−→
ON −−→

OA =
2

13



−22
51
62


−



8
3
2


 =

1

13



−148
63
98


 .

∗ ∗ ∗ ∗ ∗

Problem 2. The position vectors of the points A and B are i+ 2j+ 3k and 2i+ 3j+ pk
respectively, where p is a constant. The point C is such that OABC is a rectangle, where
O is the origin.

(a) Show that p = 2.

(b) Write down the position vector of C.

(c) Find a vector equation of the line BC.

The equation of line l is given by x−1
3 = y−1

3 , z = 1.

(e) Show that the lines BC and l are skew.

Solution.

Part (a). Note that

−−→
AB =

−−→
OB −−→

OA =



2
3
p


−



1
2
3


 =




1
1

p− 3


 .

Since OABC is a rectangle,
−→
OA ⊥ −−→

AB. Hence,

−→
OA · −−→AB =



1
2
3


 ·




1
1

p− 3


 = 3 + 3(p− 3) = 0 =⇒ p = 2.
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Part (b). Since OABC is a rectangle,

−−→
OC =

−−→
AB = (1, 1, −1)T .

Part (c). Since OABC is a rectangle,

−−→
BC =

−→
OA =



1
2
3


 .

Thus, the vector equation of line BC is

lBC : r =




1
1
−1


+ λ



1
2
3


 , λ ∈ R.

Part (d). Note that the vector equation of l is

r =



1
1
1


+ µ



3
3
0


 .

Consider l ∩ lBC :




1
1
−1


+ λ



1
2
3


 =



1
1
1


+ µ



3
3
0


 =⇒ λ



1
2
3


− µ



3
3
0


 =



0
0
2


 .

This gives the system 



λ− 3µ = 3

2λ− 3µ = 3

3λ = 2

,

which has no solution. Since the direction vectors of l and lBC are not parallel (i.e.
(1, 2, 3)T ∦ (3, 3, 0)T), the two lines are skew.

∗ ∗ ∗ ∗ ∗

Problem 3. The lines l1 and l2 have equations r = (3, 1, 2)T+λ (b, 1, −1)T, where b > 1,
and r = (4, 0, 1)T + µ (−1, −1, 1)T respectively.

(a) Given that the acute angle between l1 and l2 is 30◦, find the value of b, giving your
answer correct to 2 decimal places.

For the rest of the question, use b = 3.

(b) Find the coordinates of the points A and B where l1 and l2 meet the xy-plane
respectively.

(c) The point C has position vector 2i+ 7j+ 3k. Find whether C is closer to l1 or l2.

Solution.

Part (a).
√
3

2
= cos 30◦ =

∣∣∣(b, 1, −1)T · (−1, −1, 1)T
∣∣∣

∣∣∣(b, 1, −1)T
∣∣∣
∣∣∣(−1, −1, 1)T

∣∣∣
=

|−b− 2|√
b2 + 2

√
3
.
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Since b > 1, we clearly have |−b− 2| = b+ 2. Thus,

b+ 2√
b2 + 2

=
3

2
.

Using G.C., we have b = 0.13 or b = 3.07. Since b > 1, we take b = 3.07.

Part (b). Note that the xy-plane has equation z = 0. Consider the intersection between
l1 and the xy-plane. Clearly, we need λ = 2, whence

−→
OA =



3
1
2


+ 2




3
1
−1


 =



9
3
0


 ,

and A(9, 3, 0).
Consider the intersection between l2 and the xy-plane. Clearly, we need µ = −1, whence

−−→
OB =



4
0
1


−



−1
−1
1


 =



5
1
0


 ,

and B(5, 1, 0).

Part (c). The perpendicular distance between C and l1 is given by

∣∣∣
[
(2, 7, 3)T − (3, 1, 2)T

]
× (3, 1, −1)T

∣∣∣
∣∣∣(3, 1, −1)T

∣∣∣
=

∣∣∣(−7, 2, 19)T
∣∣∣

√
11

=

√
414√
11

= 6.13 units.

The perpendicular distance between C and l2 is given by

∣∣∣
[
(2, 7, 3)T − (4, 0, 1)T

]∣∣∣× (−1, −1, 1)T

∣∣∣(−1, −1, 1)T
∣∣∣

=

∣∣∣(9, 0, 9)T
∣∣∣

√
3

=

√
162√
3

= 7.35 units.

Thus, C is closer to l1.

∗ ∗ ∗ ∗ ∗

Problem 4. Relative to an origin O, points C and D have position vectors (7, 3, 2)T and
(10, a, b)T respectively, where a and b are constants.

(a) The straight line through C and D has equation r = (7, 3, 2)T + t (1, 3, 0)T, t ∈ R.
Find the values of a and b.

(b) Find the position vector of the point P on the line CD such that
−−→
OP is perpendicular

to
−−→
CD.

(c) Find the position vector of the point Q on the line CD such that the angle between−−→
OQ and

−−→
OC is equal to the angle between

−−→
OQ and

−−→
OD.

Solution.

Part (a). Note that

−−→
CD =



10
a
b


−



7
3
2


 =




3
a− 3
b− 2


 .
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Since
−−→
CD is parallel to (1, 3, 0)T, we have




3
a− 3
b− 2


 = 3



1
3
0


 =



3
9
0


 ,

whence a = 12 and b = 2.

Part (b). Since P is on CD, there exists some t ∈ R such that

−−→
OP =



7
3
2


+ t



1
3
0


 .

Since
−−→
OP is perpendicular to

−−→
CD, we have

−−→
OP · −−→CD =





7
3
2


+ t



1
3
0




 · 3



1
3
0


 = 16 + 10t = 0,

whence t = −8/5 and

−−→
OP =



7
3
2


− 8

5



1
3
0


 =

1

5




27
−9
10


 .

Part (c). By the angle bisector theorem,

OC

CQ
=

OD

DQ
=⇒ CQ : QD = OC : OD.

Since

OC =

∣∣∣∣∣∣



7
3
2



∣∣∣∣∣∣
=

√
62 and OD =

∣∣∣∣∣∣



10
12
2



∣∣∣∣∣∣
=

√
248,

we have
CQ : QD =

√
62 :

√
248 = 1 : 2.

By the ratio theorem,

−−→
OQ =

−−→
OD + 2

−−→
OC

1 + 2
=

1

3





10
12
2


+ 2



7
3
2




 =



8
6
2


 .

∗ ∗ ∗ ∗ ∗

Problem 5. Relative to an origin O, points A and B have position vectors (3, 4, 1)T and
(−1, 2, 0)T respectively. The line l has vector equation r = (6, a, 0)T+ t (1, 3, a)T, where
t is a real parameter and a is a constant. The line m passes through the point A and is
parallel to the line OB.

(a) Find the position vector of the point P on m such that OP is perpendicular to m.

(b) Show that the two lines l and m have no common point.

(c) If the acute angle between the line l and the z-axis is 60◦, find the exact values of
the constant a.
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Solution.

Part (a). Note that the line m has vector equation

m : r =



3
4
1


+ s



−1
2
0


 , s ∈ R.

Since P is on m, there exists some s ∈ R such that

−−→
OP =



3
4
1


+ s



−1
2
0


 .

Since
−−→
OP is perpendicular to m, we have

−−→
OP ·



−1
2
0


 =





3
4
1


+ s



−1
2
0




 ·



−1
2
0


 = 5 + 5s = 0,

whence s = −1 and

−−→
OP =



3
4
1


−



−1
2
0


 =



4
2
1


 .

Part (b). Consider l ∩m:



6
a
0


+ t



1
3
a


 =



3
4
1


+ s



−1
2
0


 .

Comparing z-coordinates, we have

ta = 1 =⇒ t =
1

a
.

Substituting this into the equation, we get



6
a
0


+

1

a



1
3
a


 =



3
4
1


+ s



−1
2
0


 .

This yields the system

6 +
1

a
= 3− s

a+
3

a
= 4 + 2s

Adding the second equation to twice the first yields

2

(
6 +

1

a

)
+

(
a+

3

a

)
= 2 (3− s) + (4 + 2s) =⇒ a+

5

a
+ 2 = 0.

Multiplying through by a gives the quadratic

a2 + 2a+ 5 = (a+ 1)2 + 4 = 0,

which clearly has no real solution. Hence, l ∩m has no solution, whence the two lines do
not have any common point
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Part (c). Note that the z-axis is parallel to the vector (0, 0, 1)T. Thus,

1

2
= cos 60◦ =

∣∣∣(1, 3, a)T · (0, 0, 1)T
∣∣∣

∣∣∣(1, 3, a)T
∣∣∣
∣∣∣(0, 0, 1)T

∣∣∣
=

|a|√
10 + a2

√
1
.

Squaring, we get

1

4
=

a2

10 + a2
=⇒ 10 + a2 = 4a2 =⇒ a2 =

10

3
=⇒ a = ±

√
10

3
.

∗ ∗ ∗ ∗ ∗

Problem 6. The lines l1 and l2 have vector equations

r =




1
−2
3


+ λ



0
2
1


 and r =



1
0
4


+ µ




1
−2
1




respectively, where λ and µ are real parameters.

(a) Find the acute angle between the two lines l1 and l2, giving your answer to the
nearest 0.1◦.

(b) Show that l1 passes through the point P with position vector (1, −4, 2)T. Hence,
show that the distance between point P and any point on the line l2 is given by√

6µ2 − 12µ+ 20. Deduce the shortest distance between point P and the line l2.

Solution.

Part (a). Let the acute angle be θ. Then

cos θ =

∣∣∣(0, 2, 1)T · (1, −2, 1)T
∣∣∣

∣∣∣(0, 2, 1)T
∣∣∣ (1, −2, 1)T

=
3√
5
√
6

=⇒ θ = 56.8◦.

Part (b). Take λ = −1. Then

r =



1
2
3


−



0
2
1


 =




1
−4
2


 .

Hence, l1 passes through P (1,−4, 2).
Note that l2 has vector equation

r =



1
0
4


+ µ




1
−2
1


 =



1 + µ
−2µ
4 + µ


 .

Hence,

r−−−→
OP =



1 + µ
−2µ
4 + µ


−




1
−4
2


 =




µ
4− 2µ
2 + µ


 .

Thus, the distance between P and any point on l2 is given by
√

µ2 + (4− 2µ)2 + (2 + µ)2 =
√
µ2 + (4µ2 − 16µ+ 16) + (µ2 + 4µ+ 4)

=
√
6µ2 − 12µ+ 20 units.
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Since 6µ2 − 12µ+ 20 = 6(µ+ 1)2 + 13, the shortest distance is
√
14 units.

∗ ∗ ∗ ∗ ∗

Problem 7 ( ). The coordinates of the points A, B and C are given by A(0, 2, 4),
B(4, 6, 11) and C(8, 1, 0).

(a) Show that the triangle with vertices A, B and C is an isosceles right-angled triangle.

(b) Find the position vector of point D in the same plane as A, B and C such that BCD
is an equilateral triangle.

Solution.

Part (a). Observe that

−−→
AB =




4
6
11


−



0
2
4


 =



4
4
7


 =⇒ AB =

√
42 + 42 + 72 = 9

and

−→
CA =



0
2
4


−



8
1
0


 =



−8
1
4


 =⇒ AC =

√
(−8)2 + 12 + 42 = 9.

Since AB = AC, triangle ABC is isosceles.

Consider
−−→
AB · −→CA:

−−→
AB · −→CA =



4
4
7


 ·



−8
1
4


 = −32 + 4 + 28 = 0.

Thus,
−−→
AB ⊥ −→

CA, whence triangle ABC is a right-angled triangle.
Hence, triangle ABC is an isosceles right-angled triangle.

Part (b). Let N be the foot of perpendicular of A on BC. Since △ABC is isosceles, with
AB = AC, by symmetry, N is the midpoint of BC:

−−→
ON =

−−→
OB +

−−→
OC

2
=

1

2



12
7
11


 .

Consider pointD. Since△BCD is equilateral, it must also be isosceles, withDB = DC.
Hence, D lies on AN (extended). Also, we have ND/BC = sin 60◦ =

√
3/2.

Since

−−→
AN =

1

2



12
7
11


−



0
2
4


 =

3

2



4
1
1


 ,

the line AN has vector equation

r =



0
2
4


+ λ



4
1
1


 , λ ∈ R.

Hence, there exists some λ ∈ R such that

−−→
OD =



0
2
4


+ λ



4
1
1


 .
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Thus,

−−→
ND =





0
2
4


+ λ



4
1
1




− 1

2



12
7
11


 =

(
λ− 3

2

)

4
1
1


 .

Note that
−−→
BC = (4, −5, −11)T. Hence,

ND

BC
=

|λ− 3/2|
√
42 + 12 + 12√

42 + (−5)2 + (−11)2
=

|λ− 3/2|
√
18√

162
=

√
3

2
.

Rearranging, we get

∣∣∣∣λ− 3

2

∣∣∣∣ =
√
3
√
162

2
√
18

=
3
√
3

2
=⇒ λ =

3± 3
√
3

2
.

Thus,

−−→
OD =



0
2
4


+

3± 3
√
3

2



4
1
1


 .

∗ ∗ ∗ ∗ ∗

Problem 8 ( ). The equations of the lines l1 and l2 are given by

l1 : r =



1
0
0


+ λ



1
2
3


 , λ ∈ R and l2 : r =



1
0
0


+ µ




1
0
−1


 , µ ∈ R.

(a) The point P with coordinates (2, 2, 3) lies on the line l1. Find the reflection of P in
the line l2.

(b) The line l3 is the reflection of the line l1 in the line l2. Find an equation for the line
l3.

(c) The line l4 is such that it is parallel to l1 and its distance between the two lines is√
13/14. Find two possible vector equations of l4.

Solution.

Part (a). Let N be the foot of perpendicular of P on l2. Since N lies on l2, there exists
some µ ∈ R such that

−−→
ON =



1
0
0


+ µ




1
0
−1


 .

Thus,

−−→
PN =





1
0
0


+ µ




1
0
−1




−



2
2
3


 = −



1
2
3


+ µ




1
0
−1


 .

Since PN is perpendicular to l2,

−−→
PN ·




1
0
−1


 =


−



1
2
3


+ µ




1
0
−1




 ·




1
0
−1


 = 2 + 2µ = 0,
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whence µ = −1 and

−−→
ON =



1
0
0


−




1
0
−1


 =



0
0
1


 .

Let P be the reflection of P in l2. By the midpoint theorem,

−−→
ON =

−−→
OP +

−−→
OP ′

2
=⇒

−−→
OP ′ = 2

−−→
ON −−−→

OP = 2



0
0
1


−



2
2
3


 = −



2
2
1


 .

Part (b). Note that l1 and l2 have a common point (1, 0, 0). Under reflection, this point is
an invariant. Hence, l3 must also contain the point (1, 0, 0). Additionally, l3 must contain
P ′, the reflection of P in l2. Since

−



2
2
1


−



1
0
0


 = −



3
2
1


 ∥



3
2
1


 ,

l3 has vector equation

λ3 : r =



1
0
0


+ ν



3
2
1


 , ν ∈ R.

Part (c). Clearly, l4 is given by

l4 : r =



a
b
c


 ξ



1
2
3


 , ξ ∈ R.

The perpendicular distance between l1 and l4 is hence given by
∣∣∣
[
(a, b, c)T − (1, 0, 0)T 0

]
× (1, 2, 3)T

∣∣∣
∣∣∣(1, 2, 3)T

∣∣∣
=

∣∣∣(3b− 2c, c− 3a+ 3, 2a− 2− b)T
∣∣∣

√
14

=

√
13√
14

.

Hence, ∣∣∣∣∣∣




3b− 2c
c− 3a+ 3
2a− 2− b



∣∣∣∣∣∣
=

√
13.

This immediately gives

(3b− 2c)2 + (c− 3a+ 3)2 + (2a− 2− b)2 = 13.

Taking a = 0, b = 0, this reduces to

(−2c)2 + (c+ 3)2 + (−2)2 = 13 =⇒ 5c2 + 6c = 0 =⇒ c = 0 or − 6

5
.

Thus,

l4 : r =



0
0
0


+ ξ



1
2
3


 , ξ ∈ R

or

l4 : r =




0
0

−6/5


+ ξ



1
2
3


 , ξ ∈ R.
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Assignment A8

Problem 1. Find the position vector of the foot of the perpendicular from the point with
position vector c to the line with equation r = a + λb, λ ∈ R. Leave your answers in
terms of a, b and c.

Solution. Let the foot of the perpendicular be F . We have that
−−→
OF = a+ λb for some

real λ, and
−−→
CF · b = 0. Note that

−−→
CF =

−−→
OF −−−→

OC = a+ λb− c. Thus,

−−→
CF · b = 0 =⇒ (a+ λb− c) · b = 0 =⇒ λ |b|2 + (a− c) · b = 0 =⇒ λ =

(c− a) · b
|b|2

.

Thus,
−−→
OF = a+

(
(c− a) · b

|b|2
)
b.

∗ ∗ ∗ ∗ ∗

Problem 2. The point O is the origin, and points A, B, C have position vectors given

by
−→
OA = 6i,

−−→
OB = 3j,

−−→
OC = 4k. The point P is on the line AB between A and B, and

is such that AP = 2PB. The point Q has position vector given by
−−→
OQ = qi, where q is a

scalar.

(a) Express, in terms of i, j, k, the vector
−−→
CP .

(b) Show that the line BQ has equation r = 3j+ t(qi−3j), where t is a parameter. Give
an equation of the line CP in a similar form.

(c) Find the value of q for which the lines CP and BQ are perpendicular.

(d) Find the sine of the acute angle between the lines CP and BQ in terms of q.

Solution. We have that
−→
OA = (6, 0, 0)T,

−−→
OB = (0, 3, 0)T and

−−→
OC = (0, 0, 4)T.

Part (a). By the ratio theorem,

−−→
OP =

2
−−→
OB +

−→
OA

1 + 2
=

1

3


2



0
3
0


+



6
0
0




 =



2
2
0


 =⇒ −−→

CP =
−−→
OP −−−→

OC =




2
2
−4


 .

Hence,
−−→
CP = 2i+ 2j− 4k.

Part (b). Note that
−−→
BQ =

−−→
OQ−−−→

OB = (q, −3, 0)T. Thus, BQ is given by

r =



0
3
0


+ t




q
−3
0


 , t ∈ R ⇐⇒ r = 3j+ t(qi− 3j), t ∈ R.

Note that
−−→
CP = (2, 2, −4)T = 2 (1, 1, −2)T. Hence, CP is given by

r =



0
0
4


+ u




1
1
−2


 , u ∈ R ⇐⇒ r = 4k+ u(i+ j− 2k), u ∈ R.

Part (c). Since CP is perpendicular to BQ, we have
−−→
CP · −−→BQ = 0. Thus,

−−→
CP · −−→BQ = 0 =⇒ 2




1
1
−2


 ·




q
−3
0


 = 0 =⇒ q − 3 + 0 = 0 =⇒ q = 3.
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Part (d). Let θ be the acute angle between CP and BQ.

sin θ =

∣∣∣(1, 1, −2)T × (q, −3, 0)T
∣∣∣

∣∣∣(1, 1, −2)T
∣∣∣
∣∣∣(q, −3, 0)T

∣∣∣
=

∣∣∣(−6, 2q, 3− q)T
∣∣∣

√
6
√

q2 + 9
=

√
5q2 − 6q + 45

6q2 + 54
.

∗ ∗ ∗ ∗ ∗

Problem 3. Line l1 passes through the point A with position vector 3i−2k and is parallel
to −2i+ 4j− j. Line l2 has Cartesian equation given by x−1

2 = y = z + 3.

(a) Show that the two lines intersect and find the coordinates of their point of intersec-
tion.

(b) Find the acute angle between the two lines l1 and l2. Hence, or otherwise, find the
shortest distance from point A to line l2.

(c) Find the position vector of the foot N of the perpendicular from A to the line l2.
The point B lies on the line AN produced and is such that N is the mid-point of
AB. Find the position vector of B.

Solution. We have

l1 : r =




3
0
−2


+ λ



−2
4
−1


 , λ ∈ R, l2 : r =




1
0
−3


+ µ



2
1
1


 , µ ∈ R.

Part (a). Consider l1 = l2.

l1 = l2 =⇒




3
0
−2


+ λ



−2
4
−1


 =




1
0
−3


+ µ



2
1
1


 =⇒ µ



2
1
1


− λ



−2
4
−1


 =



2
0
1


 .

This gives the following system: 



2λ+ 2µ = 2

−4λ+ µ = 0

λ+ µ = 1

which has the unique solution µ = 4/5 and λ = 1/5. Thus, the intersection point P has
position vector (3, 0, −2)T + 1

5 (−2, 4, −1)T = 1
5 (13, 4, −11)T and thus has coordinates

(13/5, 4/5,−11/5).

Part (b). Let θ be the acute angle between l1 and l2.

cos θ =

∣∣∣(−2, 4, −1)T · (2, 1, 1)T
∣∣∣

∣∣∣(−2, 4, −1)T
∣∣∣
∣∣∣(2, 1, 1)T

∣∣∣
=

1√
126

=⇒ θ = 84.9◦ (1 d.p.).

Note that

AP =

√(
17

5
− 3

)2

+

(
−4

5
− 0

)2

+

(
−9

5
− (−2)

)2

=

√
21

25
=

√
21

5
.

Since sin θ = AN
AP , we have that AN = AP sin θ. Note that

sin θ = sin arccos
1√
126

=

√(√
126
)2 − 1

√
126

=

√
125√
126

=
5
√
5√

6
√
21

.
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Thus,

AN =

√
21

5
· 5

√
5√

6
√
21

=

√
5

6
.

The shortest distance between A and l2 is hence
√

5
6 units.

Part (c). Since N is on l2, we have that
−−→
ON = (1, 0, −3)T + µ (2, 1, 1)T for some real µ.

Additionally, since
−−→
AN ⊥ l2, we have

−−→
AN · (2, 1, 1)T = 0. Note that

−−→
AN =

−−→
ON −−→

OA =




1
0
−3


+ µ



2
1
1


−




3
0
−2


 =



−2 + 2µ

µ
−1 + µ


 .

Thus,

−−→
AN ·



2
1
1


 = 0 =⇒



−2 + 2µ

µ
−1 + µ


 ·



2
1
1


 = 0 =⇒ −5 + 6µ = 0 =⇒ µ =

5

6
.

Hence,

−−→
ON =




1
0
−3


+

5

6



2
1
1


 =

1

6




16
5

−13


 .

Note that
−−→
ON =

−→
OA+

−−→
OB

2 . Hence,

−−→
OB = 2

−−→
ON −−→

OA =
2

6




16
5

−13


−




3
0
−2


 =

1

3




7
5
−7


 .
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A9 Vectors III - Planes

Tutorial A9

Problem 1. A student claims that a unique plane can always be defined based on the
given information. True or False? (Whenever a line is mentioned, assume the vector
equation is known.)

Statement T/F

(a) Any 2 vectors parallel to the plane and a point lying on the plane. False
(b) Any 3 distinct points lying on the plane. False
(c) A vector perpendicular to the plane and a point lying on the plane. True
(d) A line l perpendicular to the plane and a particular point on l lying on the

plane.
True

(e) A line l lying on the plane. False
(f) A line l and a point not on l, both lying on the plane. True
(g) A pair of distinct, intersecting lines, both lying on the plane. True
(h) A pair of distinct, parallel lines, both lying on the plane. True
(i) A pair of skew lines both parallel to the plane. False
(j) 2 intersecting lines both parallel to the plane. False

∗ ∗ ∗ ∗ ∗

Problem 2. Find the equations of the following planes in parametric, scalar product and
Cartesian form:

(a) The plane passes through the point with position vector 7i+ 2j− 3j and is parallel
to i+ 3j and 4j− 2k.

(b) The plane passes through the points A(2, 0, 1), B(1,−1, 2) and C(1, 3, 1).

(c) The plane passes through the point with position vector 7i and is parallel to the
plane r = (2− p+ q)i+ (p+ 3q)j+ (−2− 3q)k, p, q ∈ R.

(d) The plane contains the line l : r = (−2i + 5j − 3k) + λ(2i + j + 2k), λ ∈ R and is
perpendicular to the plane π : r · (7i+ 4j+ 5k) = 2.

Solution.

Part (a). Parametric. Note that (0, 4, −2)T ∥ (0, 2, −1)T. Hence, the plane has
parametric form

r =




7
2
−3


+ λ



1
3
0


+ µ




0
2
−1


 , λ, µ ∈ R.

Scalar Product. Note that n = (1, 3, 0)T × (0, 2, −1)T = (−3, 1, 2)T =⇒ d =
(7, 2, −3)T · (−3, 1, 2)T = −25. Thus, the plane has scalar product form

r ·



−3
1
2


 = −2.
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Cartesian. Let r = (x, y, z)T. From the scalar product form, we have

−3x+ y + 2z = −25.

Part (b). Parametric. Since the plane passes through the points A, B and C, it is parallel

to both
−−→
AB = − (1, 1, −1)T and

−→
AC = (−1, 3, 0)T. Hence, the plane has parametric form

r =



2
0
1


+ λ




1
1
−1


+ µ



−1
3
0


 , λ, µ ∈ R.

Scalar Product. Note that n = (1, 1, −1)T × (−1, 3, 0)T = (3, 1, 4)T =⇒ d =
(2, 0, 1)T · (3, 1, 4)T = 10. Thus, the plane has scalar product form

r ·



3
1
4


 = 10.

Cartesian. Let r = (x, y, z)T. From the scalar product form, we have

3x+ y + 4z = 10.

Part (c). Parametric. Note that the plane is parallel to r = (2, 0, −1)T+p (−1, 1, 0)T+
q (1, 3, −3)T and passes through (7, 0, 0). Hence, the plane has parametric form

r =



7
0
0


+ λ



−1
1
0


+ µ




1
3
−3


 , λ, µ ∈ R.

Scalar Product. Note that (−1, 1, 0)T × (1, 3, −3)T = (−3, −3, −4)T ∥ (3, 3, 4)T.
We hence take n = (3, 3, 4)T, whence d = (7, 0, 0)T · (3, 3, 4)T = 21. Thus, the plane has
scalar product form

r ·



3
3
4


 = 21.

Cartesian. Let r = (x, y, z)T. From the scalar product form, we have

3x+ 3y + 4z = 21.

Part (d). Parametric. Since the plane contains the line with equation r = (−2, 5, −3)T+
λ (2, 1, 2)T , λ ∈ R, the plane passes through (−2, 5,−3) and is parallel to the vec-
tor (2, 1, 2)T. Furthermore, since the plane is perpendicular to the plane with normal
(7, 4, 5)T, it must be parallel to said vector. Thus, the plane has the following parametric
form:

r =



−2
5
−3


+ λ



2
1
2


+ µ



7
4
5


 , λ, µ ∈ R.

Scalar Product. Note that n = (2, 1, 2)T × (7, 4, 5)T = (−3, 4, 1)T =⇒ d =
(−2, 5, −3)T · (−3, 4, 1)T = 23. Thus, the plane has scalar product form

r ·



−3
4
1


 = 23.
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Cartesian. Let r = (x, y, z)T. From the scalar product form, we have

−3x+ 4y + z = 23.

∗ ∗ ∗ ∗ ∗

Problem 3. The line l passes through the points A and B with coordinates (1, 2, 4) and
(−2, 3, 1) respectively. The plane p has equation 3x− y + 2z = 17. Find

(a) the coordinates of the point of intersection of l and p,

(b) the acute angle between l and p,

(c) the perpendicular distance from A to p, and

(d) the position vector of the foot of the perpendicular from B to p.

The line m passes through the point C with position vector 6i + j and is parallel to
2j+ k.

(e) Determine whether m lies in p.

Solution. Note that
−→
OA = (1, 2, 4)T and

−−→
OB = (−2, 3, 1)T, whence

−−→
AB = − (3, −1, 3)T.

Thus, the line l has vector equation

r =



1
2
4


+ λ




3
−1
3


 , λ ∈ R.

Also note that the equation of the plane p can be written as

r ·




3
−1
2


 = 17.

Part (a). Let the point of intersection of l and p be P . Consider l = p.

l = p =⇒





1
2
4


+ λ




3
−1
3




 ·




3
−1
2


 = 17 =⇒ 9 + 16λ = 17 =⇒ λ =

1

2
.

Thus,
−−→
OP = (1, 2, 4)T + 1

2 (3, −1, 3)T = (5/2, 3/2, 11/2)T, whence P (5/2, 3/2, 11/2).

Part (b). Let θ be the acute angle between l and p.

sin θ =

∣∣∣(3, −1, 3)T · (3, −1, 2)T
∣∣∣

∣∣∣(3, −1, 3)T
∣∣∣
∣∣∣(3, −1, 2)T

∣∣∣
=

16√
266

=⇒ θ = 78.8◦ (1 d.p.).

Part (c). Note that
−→
AP = 1

2 (3, −1, 3)T. The perpendicular distance from A to p is hence

∣∣∣−→AP · n̂
∣∣∣ =

∣∣∣12 (3, −1, 3)T · (3, −1, 2)T
∣∣∣

∣∣∣(3, −1, 2)T
∣∣∣

=
8√
14

units.
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Part (d). Let F be the foot of the perpendicular from B to p. Since F is on p, we have−−→
OF · (3, −1, 2)T = 17. Furthermore, since BF is perpendicular to p, we have

−−→
BF =

λn = λ (3, −1, 2)T for some λ ∈ R. We hence have
−−→
OF =

−−→
OB +

−−→
BF = (−2, 3, 1)T +

λ (3, −1, 2)T. Thus,





−2
3
1


+ λ




3
−1
2




 ·




3
−1
2


 = 17 =⇒ −7 + 14λ = 17 =⇒ λ =

12

7
.

Hence,
−−→
OF = (−2, 3, 1)T + 12

7 (3, −1, 2)T = 1
7 (22, 9, 31)

T.

Part (e). Note that m has the vector equation

rm =



6
1
0


+ λ



0
2
1


 , λ ∈ R.

Consider rm · n:

rm · n =





6
1
0


+ λ



0
2
1




 ·




3
−1
2


 = 17.

Since rm · n = 17 for all λ ∈ R, it follows that m lies in p.

∗ ∗ ∗ ∗ ∗

Problem 4. A plane contains distinct points P , Q, R and S, of which no 3 points are

collinear. What can be said about the relationship between the vectors
−−→
PQ,

−→
PR and

−→
PS?

Solution. Each of the three vectors can be expressed as a unique linear combination of
the other two.

∗ ∗ ∗ ∗ ∗

Problem 5.

(a) Interpret geometrically the vector equation r = a + tb where a and b are constant
vectors and t is a parameter.

(b) Interpret geometrically the vector equation r · n = d, where n is a constant unit
vector and d is a constant scalar, stating what d represents.

(c) Given that b · n ̸= 0, solve the equations r = a+ tb and r · n = d to find r in terms
of a, b, n and d. Interpret the solution geometrically.

Solution.

Part (a). The vector equation r = a + tb represents a line with direction vector b that
passes through the point with position vector a.

Part (b). The vector equation r · n = d represents a plane perpendicular to n that has a
perpendicular distance of d units from the origin. Here, a negative value of d corresponds
to a plane d units from the origin in the opposite direction of n.

Part (c).

r · n = d =⇒ (a+ tb) · n = d =⇒ a · n+ tb · n = d

=⇒ t =
d− a · n
b · n =⇒ r = a+

d− a · n
b · n b.

a+ d−a·n
b·n b is the position vector of the point of intersection of the line and plane.
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Problem 6. The planes p1 and p2 have equations r · (2, −2, 1)T = 1 and r · (−6, 3, 2)T =
−1 respectively, and meet in the line l.

(a) Find the acute angle between p1 and p2.

(b) Find a vector equation for l.

(c) The point A(4, 3, c) is equidistant from the planes p1 and p2. Calculate the two
possible values of c.

Solution.

Part (a). Let θ the acute angle between p1 and p2.

cos θ =

∣∣∣(2, −2, 1)T · (−6, 3, 2)T
∣∣∣

∣∣∣(2, −2, 1)T
∣∣∣
∣∣∣(−6, 3, 2)T

∣∣∣
=

16

21
=⇒ θ = 40.4◦ (1 d.p.).

Part (b). Observe that p1 has the Cartesian equation 2x − 2y + z = 1 and p2 has the
Cartesian equation −6x + 3y + 2z = −1. Consider p1 = p2. Solving both Cartesian
equations simultaneously gives the solution

x = −1

6
+

7

6
t, y = −2

3
+

5

3
t, z = t

for all t ∈ R. The line l thus has vector equation

r =



x
y
z


 = −1

6



1
4
0


+ t




7
10
6


 , t ∈ R.

Part (c). LetQ be the point with position vector−1
6 (1, 4, 0)

T. Then
−→
AQ = −1

6 (25, 22, 6c)
T.

Since Q lies on l, it lies on both p1 and p2. Since A is equidistant to p1 and p2, the per-
pendicular distances from A to p1 and p2 are equal.

The perpendicular distance from A to p1 is given by:

∣∣∣−→AQ · (2, −2, 1)T
∣∣∣

∣∣∣(2, −2, 1)T
∣∣∣

=
1

3

∣∣∣∣∣∣
−1

6



25
22
6c


 ·




2
−2
1



∣∣∣∣∣∣
=

1

3
|1 + c| .

Meanwhile, the perpendicular distance from A to p2 is given by:

∣∣∣−→AQ · (−6, 3, 2)T
∣∣∣

∣∣∣(−6, 3, 2)T
∣∣∣

=
1

7

∣∣∣∣∣∣
−1

6



25
22
6c


 ·



−6
3
2



∣∣∣∣∣∣
=

1

7
|−14 + 2c| .

Equating the two gives

1

3
|1 + c| = 1

7
|−14 + 2c| =⇒ |7 + 7c| = |−42 + 6c| .

This splits into the following two cases:
Case 1 . (7 + 7c)(−42 + 6c) > 0 =⇒ 7 + 7c = −42 + 6c =⇒ c = −49.
Case 2 . (7 + 7c)(−42 + 6c) < 0 =⇒ 7 + 7c = −(−42 + 6c) =⇒ c = −35/13.
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Problem 7. A plane Π has equation r · (2i+ 3j) = −6.

(a) Find, in vector form, an equation for the line passing through the point P with
position vector 2i+ j+ 4k and normal to the plane Π.

(b) Find the position vector of the foot Q of the perpendicular from P to the plane Π
and hence find the position vector of the image of P after the reflection in the plane
Π.

(c) Find the sine of the acute angle between OQ and the plane Π.

The plane Π′ has equation r · (i+ j+ k) = 5.

(d) Find the position vector of the point A where the planes Π, Π′ and the plane with
equation r · i = 0 meet.

(e) Hence, or otherwise, find also the vector equation of the line of intersection of planes
Π and Π′.

Solution.

Part (a). Let l be the required line. Since l is normal to Π, it is parallel to the normal
vector of Π, (2, 3, 0)T. Thus, l has vector equation

l : r =



2
1
4


+ λ



2
3
0


 , λ ∈ R.

Part (b). Since Q is on Π,
−−→
OQ · (2, 3, 0)T = −6. Furthermore, observe that Q is also on

the line l. Thus,
−−→
OQ = (2, 1, 4)T + λ (2, 3, 0)T for some λ ∈ R. Hence,

−−→
OQ ·



2
3
0


 = −6 =⇒





2
1
4


+ λ



2
3
0




 ·



2
3
0


 = −6 =⇒ 7 + 13λ = −6 =⇒ λ = −1.

Thus,
−−→
OQ = (2, 1, 4)T − (2, 3, 0)T = (0, −2, 4)T.

Let the reflection of P in Π be P ′. Then

−−→
PQ =

−−→
QP ′ =⇒ −−→

OQ−−−→
OP =

−−→
OP ′ −−−→

OQ =⇒
−−→
OP ′ = 2

−−→
OQ−−−→

OP.

Hence,
−−→
OP ′ = 2 (0, −2, 4)T − (2, 1, 4)T = (−2, −5, 4)T.

Part (c). Let θ be the acute angle between OQ and Π.

sin θ =

∣∣∣(0, −2, 4)T · (2, 3, 0)T
∣∣∣

∣∣∣(0, −2, 4)T
∣∣∣
∣∣∣(2, 3, 0)T

∣∣∣
=

3√
65

.

Part (d). Let
−→
OA = (x, y, z)T. We thus have the following system:





(x, y, z)T · (2, 3, 0)T = −6 =⇒ 2x+ 3y = −6

(x, y, z)T · (1, 1, 1)T = 5 =⇒ x+ y + z = 5

(x, y, z)T · (1, 0, 0)T = 0 =⇒ x = 0

Solving, we obtain x = 0, y = −2 and z = 7, whence
−→
OA = (0, −2, 7)T.
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Part (e). Let the line of intersection of Π and Π′ be l′. Observe that A is on Π and Π′

and thus lies on l′. Hence,

l′ : r =




0
−2
7


+ λb, λ ∈ R.

Since l′ lies on both Π and Π′, b is perpendicular to the normals of both planes, i.e.
(2, 3, 0)T and (1, 1, 1)T. Thus, b = (2, 3, 0)T × (1, 1, 1)T = (3, −2, −1)T and

l′ : r =




0
−2
7


+ λ




3
−2
−1


 , λ ∈ R.

∗ ∗ ∗ ∗ ∗

Problem 8.

A B

C
D

E F

GH

L M

θ

i

j
k

3 m

2 m

2 m

The diagram shows a garden shed with horizontal base ABCD, where AB = 3 m
and BC = 2 m. There are two vertical rectangular walls ABFE and DCGH, where
AE = BF = CG = DH = 2 m. The roof consists of two rectangular planes EFML and
HGML, which are inclined at an angle θ to the horizontal such that tan θ = 3

4 .
The point A is taken as the origin and the vectors i, j and k, each of length 1 m, are

taken along AB, AD and AE respectively.

(a) Verify that the plane with equation r · (22i+ 33j− 12k) = 66 passes through B, D
and M .

(b) Find the perpendicular distance, in metres, from A to the plane BDM .

(c) Find a vector equation of the straight line EM .

(d) Show that the perpendicular distance from C to the straight line EM is 2.91 m,
correct to 3 significant figures.
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Solution.

Part (a). We have
−−→
AB = (3, 0, 0)T,

−−→
BF =

−→
AE = (0, 0, 2)T and

−−→
FG =

−−→
AD = (0, 2, 0)T.

Let T be the midpoint of FG. We have
−→
FT = (0, 1, 0)T and TM/FT = tan θ = 3/4,

whence
−−→
TM = (0, 0, 3/4)T. Hence,

−−→
AM =

−−→
AB +

−−→
BF +

−→
FT +

−−→
TM =



3
0
0


+



0
0
2


+



0
1
0


+




0
0

3/4


 =

1

4



12
4
11


 .

Consider
−−→
AB · (22, 33, −12)T,

−−→
AD · (22, 33, −12)T and

−−→
AM · (22, 33, −12)T.

−−→
AB ·




22
33
−12


 =



3
0
0


 ·




22
33
−12


 = 66

−−→
AD ·




22
33
−12


 =



0
2
0


 ·




22
33
−12


 = 66

−−→
AM ·




22
33
−12


 =

1

4



12
4
11


 ·




22
33
−12


= 66

Since
−−→
AB,

−−→
AD and

−−→
AM satisfy the equation r · (22, 33, −12)T = 66, they all lie on the

plane with said equation.

Part (b). The perpendicular distance from A to the plane BDM is given by

Perpendicular distance =
∣∣∣−−→AB · n̂

∣∣∣ =

∣∣∣(3, 0, 0)T · (22, 33, −12)T
∣∣∣

∣∣∣(22, 33, −12)T
∣∣∣

=
66√
1717

m.

Part (c). Observe that
−−→
EM =

−−→
AM −−→

AE = 1
4 (12, 4, 3)

T. Hence, the line EM has vector
equation

r =



0
0
2


+ λ



12
4
3


 , λ ∈ R.

Part (d). Note that
−−→
EC =

−→
AC −−→

AE = (3, 2, −2)T. The perpendicular distance from C
to the line EM is hence given by

∣∣∣−−→EC × (12, 4, 3)T
∣∣∣

∣∣∣(12, 4, 3)T
∣∣∣

=
1

13

∣∣∣∣∣∣




3
2
−2


×



12
4
3



∣∣∣∣∣∣
=

1

13

∣∣∣∣∣∣




14
−33
−12



∣∣∣∣∣∣
=

√
1429

13
= 2.91 m (3 s.f.).

∗ ∗ ∗ ∗ ∗

Problem 9. The planes π1 and π2 have equations

x+ y − z = 0 and 2x− 4y + z + 12 = 0

respectively. The point P has coordinates (3, 8, 2) and O is the origin.

(a) Verify that the vector i+ j+ 2k is parallel to both π1 and π2.
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(b) Find the equation of the plane which passes through P and is perpendicular to both
π1 and π2.

(c) Verify that (0, 4, 4) is a point common to both π1 and π2, and hence or otherwise,
find the equation of the line of intersection of π1 and π2, giving your answer in the
form r = a+ λb, λ ∈ R.

(d) Find the coordinates of the point in which the line OP meets π2.

(e) Find the length of projection of OP on π1.

Solution. Note that π1 and π2 have vector equations r·(1, 1, −1)T = 0 and r·(2, −4, 1)T =
−12 respectively.

Part (a). Observe that (1, 1, 2)T · (1, 1, −1)T = (1, 1, 2)T · (2, −4, 1)T = 0. Thus, the
vector (1, 1, 2)T is perpendicular to the normal vectors of both π1 and π2 and is hence
parallel to them.

Part (b). Let the required plane be π3. Since π3 is perpendicular to both π1 and π2,
its normal vector is parallel to both planes. Thus, n = (1, 1, 2)T =⇒ d = (3, 8, 2)T ·
(1, 1, 2)T = 15. π3 hence has the vector equation

r ·



1
1
2


 = 15.

Part (c). Since (0, 4, 4)T · (1, 1, −1)T = 0 and (0, 4, 4)T · (2, −4, 1)T = −12, (0, 4, 4)
satisfies the vector equation of both π1 and π2 and thus lies on both planes.
Let l be the line of intersection of π1 and π2. Since (0, 4, 4) is a point common

to both planes, l passes through it. Furthermore, since l lies on both π1 and π2, it
is perpendicular to the normal vector of both planes and hence has direction vector
(1, 1, −1)T × (2, −4, 1)T = −3 (1, 1, 2)T. Thus, l can be expressed as

l : r =



0
4
4


+ λ



1
1
2


 , λ ∈ R.

Part (d). Note that the line OP , denoted lOP has equation

lOP : r = µ



3
8
2


 , µ ∈ R.

Consider the intersection between lOP and π2.

µ



3
8
2


 ·




2
−4
1


 = −12 =⇒ −24µ = −12 =⇒ µ =

1

2
.

Hence, OP meets π2 at (3/2, 4, 1).

Part (e). The length of projection of OP on π1 is given by

−−→
OP × (1, 1, −1)T∣∣∣(1, 1, −1)T

∣∣∣
=

1√
3

∣∣∣∣∣∣



3
8
2


×




1
1
−1



∣∣∣∣∣∣
=

1√
3

∣∣∣∣∣∣



−10
5
−5



∣∣∣∣∣∣
=

5
√
6√
3

= 5
√
2 units.
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Problem 10. The line l1 passes through the point A, whose position vector is 3i−5j−4k,
and is parallel to the vector 3i + 4j + 2k. The line l2 passes through the point B, whose
position vector is 2i+ 3j+ 5k, and is parallel to the vector i− j− 4k. The point P on l1
and Q on l2 are such that PQ is perpendicular to both l1 and l2. The plane Π contains
PQ and l1.

(a) Find a vector parallel to PQ.

(b) Find the equation of Π in the forms r = a+ λb+ µc, λ, µ ∈ R and r · n = D.

(c) Find the perpendicular distance from B to Π.

(d) Find the acute angle between Π and l2.

(e) Find the position vectors of P and Q.

Solution.

Part (a). Note that l1 and l2 have vector equations

r =




3
−5
−4


+ λ



3
4
2


 , λ ∈ R and r =



2
3
5


+ µ




1
−1
−4


 , µ ∈ R

respectively. Since PQ is perpendicular to both l1 and l2, it is parallel to (3, 4, 2)T ×
(1, −1, −4)T = (−14, 14, −7)T = −7 (2, −2, 1)T.

Part (b). Since Π contains PQ and l1, it is parallel to (2, −2, 1)T and (3, 4, 2)T. Also
note that Π contains (3, −5, −4)T. Thus,

Π : r =




3
−5
−4


+ λ




2
−2
1


+ µ



3
4
2


 , λ, µ ∈ R.

Note that (2, −2, 1)T × (3, 4, 2)T = (−8, −1, 14)T ∥ (8, 1, −14)T. We hence take n =
(8, 1, −14)T, whence d = (3, −5, −4)T · (8, 1, −14)T = 75. Thus, |Pi is also given by

Π : r ·




8
1

−14


 = 75.

Part (c). Note that
−−→
AB = (−1, 8, 9)T. Hence, the perpendicular distance from B to Π is

given by ∣∣∣(−1, 8, 9)T · (8, 1, −14)T
∣∣∣

∣∣∣(8, 1, −14)T
∣∣∣

=
126√
261

units.

Part (d). Let θ be the acute angle between Π and l2.

sin θ =

∣∣∣(1, −1, −4)T · (8, 1, −14)T
∣∣∣

∣∣∣(1, −1, −4)T
∣∣∣
∣∣∣(8, 1, −14)T

∣∣∣
=

7√
58

=⇒ θ = 66.8◦ (1 d.p.).

Part (e). Since P is on l1, we have
−−→
OP = (3, −5, −4)T + λ (3, 4, 2)T for some λ ∈ R.

Similarly, since Q is on l2, we have
−−→
OQ = (2, 3, 5)T+µ (1, −1, 4)T for some µ ∈ R. Thus,

−−→
PQ =

−−→
OQ−−−→

OP =



−1
8
9


− λ



3
4
2


+ µ




1
−1
−4


 .
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Recall that PQ is parallel to (2, −2, 1)T. Hence,
−−→
PQ can be expressed as ν (2, −2, 1)T

for some ν ∈ R. Equating the two expressions for
−−→
PQ, we obtain



−1
8
9


− λ



3
4
2


+ µ




1
−1
−4


 = ν




2
−2
1


 =⇒ λ



3
4
2


+ µ



−1
1
4


+ ν




2
−2
1


 =



−1
8
9


 .

This gives the following system:





3λ− µ+ 2ν = −1

4λ+ µ− 2ν = 8

2λ+ 4µ+ ν = 9

which has the unique solution λ = 1, µ = 2 and ν = −1. Thus,

−−→
OP =




3
−5
−4


+



3
4
2


 =




6
−1
−2


 ,

−−→
OQ =



2
3
5


+ 2




1
−1
−4


 =




4
1
−3


 .

∗ ∗ ∗ ∗ ∗

Problem 11. The equations of three planes p1, p2 and p3 are

2x− 5y + 3z = 3

3x+ 2y − 5z = −5

5x+ λy + 17z = µ

respectively, where λ and µ are constants. The planes p1 and p2 intersect in a line l.

(a) Find a vector equation of l.

(b) Given that all three planes meet in the line l, find λ and µ.

(c) Given instead that the three planes have no point in common, what can be said
about the values of λ and µ?

(d) Find the Cartesian equation of the plane which contains l and the point (1,−1, 3).

Solution.

Part (a). Consider the intersection of p1 and p2:

{
2x− 5y + 3z = 3

3x+ 2y − 5z = −5

The above system has solution

x = −1 + t, y = −1 + t, z = t

for all t ∈ R. Thus, the line l has vector equation

l : r =



−1
−1
0


+ t



1
1
1


 , t ∈ R.
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Part (b). Since all three planes meet in the line l, l must satisfy the equation of p3.
Substituting the above solution to the given equation, we have

5(−1 + t) + λ(−1 + t) + 17t = µ =⇒ (22 + λ)t− (5 + λ+ µ) = 0.

Comparing the coefficients of t and the constant terms, we have the following system:

{
λ + 22 = 0

λ+ µ+ 5 = 0

which has the unique solution λ = −22 and µ = 17.

Part (c). If the three planes have no point in common, we have

(22 + λ)t− (5 + λ+ µ) ̸= 0

for all t ∈ R. To satisfy this relation, we need 22 + λ = 0 and 5 + λ + µ ̸= 0, whence
λ = −22 and µ ̸= 17.

Part (d). Note that (−1, −1, 0)T lies on l and is thus contained on the required plane.
Observe that (−1, −1, 0)T − (1, −1, 3)T = (−2, 0, −3)T. Thus, the required plane is
parallel to (1, 1, 1)T and (−2, 0, −3)T and hence has vector equation

r =



−1
−1
0


+ λ



1
1
1


+ µ



−2
0
−3


 , λ, µ ∈ R.

Observe that n = (1, 1, 1)T × (−2, 0, 3)T = (−3, 1, 2)T, whence d = (−1, −1, 0)T ·
(−3, 1, 2)T = 2. The required plane thus has the equation

r ·



−3
1
2


 = 2.

Let r = (x, y, z)T. It follows that the plane has Cartesian equation

−3x+ y + 2 = 2.

∗ ∗ ∗ ∗ ∗

Problem 12. The planes p1 and p2, which meet in line l, have equations x− 2y+2z = 0
and 2x− 2y + z = 0 respectively.

(a) Find an equation of l in Cartesian form.

The plane p3 has equation (x− 2y + 2z) + c(2x− 2y + z) = d.

(b) Given that d = 0, show that all 3 planes meet in the line l for any constant c.

(c) Given instead that the 3 planes have no point in common, what can be said about
the value of d?

Solution.
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Part (a). Consider the intersection of p1 and p2. This gives the system

{
x− 2y + 2z = 0

2x− 2y + z = 0

which has solution x = t, y = 3
2 t and z = t. Thus, l has Cartesian equation

x =
2

3
y = z.

Part (b). When d = 0, p3 has equation

(x− 2y + 2z) + c(2x− 2y + z) = 0.

Observe that the line l satisfies the equations x− 2y+2z = 0 and 2x− 2y+ z = 0. Hence,
l also satisfies the equation that gives p3 for all c. Thus, p3 contains l, implying that all 3
planes meet in the line l.

Part (c). If the 3 planes have no point in common, then l does not have any point in
common with p3. That is, all points on l satisfy the relation

(x− 2y + 2z) + c(2x− 2y + z) ̸= d.

Since x − 2y + 2z = 0 and 2x − 2y + z = 0 for all points on l, the LHS simplifies to 0.
Thus, to satisfy the above relation, we require d ̸= 0.

∗ ∗ ∗ ∗ ∗

Problem 13.

O

A B

CD

V

P

Screen

i

j
k

A right opaque pyramid with square base ABCD and vertex V is placed at ground level
for a shadow display, as shown in the diagram. O is the centre of the square base ABCD,

and the perpendicular unit vectors i, j and k are in the directions of
−−→
AB,

−−→
AD and

−−→
OV

respectively. The length of AB is 8 units and the length of OV is 2h units.
A point light source for this shadow display is placed at the point P (20,−4, 0) and a

screen of height 35 units is placed with its base on the ground such that the screen lies on

a plane with vector equation r ·



1
0
0


 = α, where α < −4.
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(a) Find a vector equation of the line depicting the path of the light ray from P to V
in terms of h.

(b) Find an inequality between α and h so that the shadow of the pyramid cast on the
screen will not exceed the height of the screen.

The point light source is now replaced by a parallel light source whose light rays are
perpendicular to the screen. It is also given that h = 10.

(c) Find the exact length of the shadow cast by the edge V B on the screen.

A mirror is placed on the plane V BC to create a special effect during the display.

(d) Find a vector equation of the plane V BC and hence find the angle of inclination
made by the mirror with the ground.
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Solution.

Part (a). Note that
−−→
OV = (0, 0, 2h)T and

−−→
OP = (20, −4, 0)T, whence

−−→
PV = (−20, 4, 2h)T =

2 (−10, 2, h)T. Thus, the line from P to V , denoted lPV , has the vector equation

lPV : r =




20
−4
0


+ λ



−10
2
h


 , λ ∈ R.

Part (b). Let the point of intersection between lPV and the screen be I.






20
−4
0


+ λ



−10
2
h




 ·



1
0
0


 = α =⇒ 20− 10λ = α =⇒ λ =

20− α

10
.

Hence,
−→
OI = (20, −4, 0)T+ 20−α

10 (−10, 2, h)T. To prevent the shadow from exceeding the

screen, we require the k-component of
−→
OI to be less than the height of the screen, i.e. 35

units. This gives the inequality 20−α
10 · h ≤ 35, whence we obtain

h ≤ 350

20− α
.

Part (c). Since the light rays emitted by the light source are now perpendicular to the
screen, the image of some point with coordinates (a, b, c) on the screen is given by (α, b, c).
Thus, the image of B(4,−4, 0) and V (0, 0, 20) on the screen have coordinates (α,−4, 0)
and (α, 0, 20). The length of the shadow cast by V B is thus

√
(α− α)2 + (−4− 0)2 + (0− 20)2 = 4

√
26 units.

Part (d). Note that
−−→
BV = 4 (−1, 1, 5)T and

−−→
BC = 8 (0, 1, 0)T. Hence, the plane V BC

is parallel to (−1, 1, 5)T and (0, 1, 0)T. Note that (−1, 1, 5)T × (0, 1, 0)T = − (5, 0, 1)T.
Thus, n = (5, 0, 1)T, whence d = (0, 0, 20)T · (5, 0, 1)T = 20. Thus, the plane V BC has
the vector equation

r ·



5
0
1


 = 20.

Observe that the ground is given by the vector equation r · (0, 0, 1)T = 0. Let θ be the
angle of inclination made by the mirror with the ground.

cos θ =
(5, 0, 1)T · (0, 0, 1)T∣∣∣(5, 0, 1)T

∣∣∣
∣∣∣(0, 0, 1)T

∣∣∣
=

1√
26

=⇒ θ = 78.7◦ (1 d.p.).
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Self-Practice A9

Problem 1. The position vectors of the vertices of A, B and C of a triangle are a, b and
c respectively.
If O is the origin, show that the area of triangle OAB is 1

2 |a× b| and deduce an
expression for the area of the triangle ABC.
Hence, or otherwise, show that the perpendicular distance from B to AC is

|a× b+ b× c+ c× a|
|c− a| .

Solution. Let θ be the angle between OA and OB. Then

[△OAB] =
1

2
(OA)(OB) sin θ =

1

2

∣∣∣−→OA
∣∣∣
∣∣∣−−→OB

∣∣∣ sin θ =
1

2
|a× b| .

Similarly, let φ be the angle between AB and AC. Then

[△ABC] =
1

2
(AB)(AC) sinφ =

1

2

∣∣∣−−→AB ×−→
AC
∣∣∣ = 1

2
|(b− a)× (c− a)|

=
1

2
|b× c− a× c− b× a+ a× a| = 1

2
|b× c− a× c− b× a|

=
1

2
|a× b+ b× c+ c× a| .

Let h be the perpendicular distance from B to AC. Then

[△ABC] =
1

2
(AC)(h) =⇒ h =

2[△ABC]∣∣∣−→AC
∣∣∣

=
|a× b+ b× c+ c× a|

|c− a| .

∗ ∗ ∗ ∗ ∗

Problem 2. Points A, B, C and D have position vectors, relative to the origin O, given

by
−→
OA = i+2j− k,

−−→
OB = −i+2j+ ck,

−−→
OC = 2i+ j+4k and

−−→
OD = i+ j+ k, where c is

a constant. It is given that OA and OB are perpendicular.

(a) Find the value of c.

(b) Show that OA is normal to the plane OBC.

(c) Find an equation of the plane through D and parallel to OBC.

Also, find the position vector of the point of intersection of this plane and the line AC.
Find the acute angle between the plane OBC and the plane through D normal to OD.

Solution.

Part (a). Since OA and OB are perpendicular, we have

−→
OA · −−→OB =




1
2
−1


 ·



−1
2
c


 = 3− c = 0 =⇒ c = 3.

Part (b). The normal vector of the plane OBC is given by

−−→
OB ×−−→

OC =



−1
2
3


×



2
1
4


 = 5




1
2
−1


 = 5

−→
OA,

hence
−→
OA is normal to the plane OBC.



Self-Practice A9 443

Part (c). Note that

−−→
OD ·




1
2
−1


 =



1
1
1


 ·




1
2
−1


 = 2.

Thus, the equation of the plane through D and parallel to OBC is given by

Π : r ·




1
2
−1


 = 2.

Note that the line AC has vector equation

r =
−→
OA+ λ

−→
AC =




1
2
−1


+ λ





2
1
4


−




1
2
−1




 =




1
2
−1


+ λ




1
−1
5


 , λ ∈ R.

When this line intersects Π, we have






1
2
−1


+ λ




1
−1
5




 ·




1
2
−1


 = 6− 6λ = 2 =⇒ λ =

2

3
.

Thus, the point of intersection has position vector




1
2
−1


+

2

3




1
−1
5


 =

1

3



5
4
7


 .

Let θ be the acute angle between the plane OBC and the plane through D normal to
OD. Then

cos θ =

∣∣∣(1, 1, 1)T · (1, 2, −1)T
∣∣∣

∣∣∣(1, 1, 1)T
∣∣∣
∣∣∣(1, 2, −1)T

∣∣∣
=

2√
3
√
6

=⇒ θ = 61.9◦ (1 d.p.).

∗ ∗ ∗ ∗ ∗

Problem 3. The equations of the line l1 and the plane Π1 are as follows:

l1 : r =




5
−1
4


+ λ




1
−1
0


 , λ ∈ R,

Π1 : xa+ z = 5a+ 4, a ∈ R+.

(a) If the angle between l1 and Π1 is π/6, show that a = 1.

Using the value of a in (a),

(b) Verify that l1 and Π1 intersect at the point A(5,−1, 4).

(c) Given that C(7,−3, 4), find the length of projection of
−→
AC on Π1.

(d) Find the position vector of N , the foot of perpendicular of C to Π1.

(e) Point C ′ is obtained by reflecting C about Π1. Determine the vector equation of the
line that passes through A and C ′.
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Solution. Note that Π1 has vector equation

Π1 : r ·



a
0
1


 = 5a+ 4.

Part (a). Since the angle between l1 and Π1 is π/6, we have

1

2
= sin

π

6
=

∣∣∣(1, −1, 0)T · (a, 0, 1)T
∣∣∣

∣∣∣(1, −1, 0)T
∣∣∣ ·
∣∣∣(a, 0, 1)T

∣∣∣
=

a√
2
√
a2 + 1

,

which yields a = 1.

Part (b). (5,−1, 4) is clearly on l1. Since




5
−1
4


 ·



1
0
1


 = 9 = 5(1) + 4,

it follows that (5,−1, 4) is also on Π1. Thus, l1 and Π1 intersect at (5,−1, 4).

Part (c). Note that

−→
AC =

−−→
OC −−→

OA =




7
−3
4


−




5
−1
4


 =




2
−2
0


 .

The length of projection of
−→
AC on Π1 is hence given by

∣∣∣(2, −2, 0)T × (1, 0, 1)T
∣∣∣

∣∣∣(1, 0, 1)T
∣∣∣

=

∣∣∣(−2, −2, 2)T
∣∣∣

∣∣∣(1, 0, 1)T
∣∣∣

=
√
6.

Part (d). Observe that
−−→
CN is parallel to the normal vector of Π1, so

−−→
ON =

−−→
OC +

−−→
CN =




7
−3
4


+ µ



1
0
1




for some µ ∈ R. Since N lies on Π1, we have






7
−3
4


+ µ



1
0
1




 ·



1
0
1


 = 11 + 2µ = 9 =⇒ µ == −1.

Thus, the position vector of N is

−−→
ON =




7
−3
4


−



1
0
1


 =




6
−3
−3


 .

Part (e). By the midpoint theorem,

−−→
ON =

−−→
OC +

−−→
OC ′

2
=⇒

−−→
OC ′ = 2

−−→
ON −−−→

OC = 2




6
−3
3


 =




7
−3
4


 =




5
−3
2


 .
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Thus,

−−→
AC ′ =

−−→
OC ′ −−→

OA =




5
−3
2


−




5
−1
4


 = −2



0
1
1


 ,

hence the vector equation of the line AC ′ is given by

r =




5
−1
4


+ ν



0
1
1


 , ν ∈ R.

∗ ∗ ∗ ∗ ∗

Problem 4. The equation of the plane Π1 is x+ y − 2z = 3.

(a) Find the vector equation of the line l1, which lies in both the plane Π1 and the yz
plane.

(b) Another plane Π2 contains the line l2 with equation x = 1, y+1
2 = z and is perpen-

dicular to Π1. Find the equation of the plane Π2 in scalar product form. Determine
whether l1 lies on Π2.

Solution. Note that the vector equations of Π1 and the yz plane are

Π1 : r ·




1
1
−2


 = 3 and r ·



1
0
0


 = 0

respectively.

Part (a). Note that 


1
1
−2


×



1
0
0


 =




0
−2
−1


 = −



0
2
1


 .

Since (0, 1,−1) lies on both Π1 and the yz plane, it follows that the vector equation of l1
is

l1 : r =




0
1
−1


+ λ



0
2
1


 , λ ∈ R.

Part (b). Let the normal vector of Π2 be (x, y, z)T, so it has vector equation

Π2 : r ·



x
y
z


 = d

for some constant d.
The vector equation of l2 is

l2 : r =




1
−1
0


+ µ



0
2
1


 , µ ∈ R.

Since l2 lies on Π2, for all µ ∈ R, we must have





1
−1
0


+ µ



0
2
1




 ·



x
y
z


 = d.



446 A9 Vectors III - Planes

This simplifies to
(x− y) + µ (2y + z) = d,

whence we conclude that 2y + z = 0 and x − y = d. The vector equation of Π2 hence
updates as

Π2 : r ·




x
y

−2y


 = x− y.

Since Π1 and Π2, we have that

0 = cos
π

2
=

∣∣∣(1, 1, −2)T · (x, y, −2y)T
∣∣∣

∣∣∣(1, 1, −1)T
∣∣∣
∣∣∣(x, y, −2y)T

∣∣∣
=⇒ x+ 5y = 0.

Thus, the normal vector is




x
y

−2y


 =



−5y
y

−2y


 = y



−5
1
−2


 .

Taking y = 1, we get x = −5, so d = x− y = −6. Thus, the vector equation of Π2 is

Π2 : r ·



−5
1
−2


 = −6.

Note that l1 is parallel to l2. Since l2 lies on Π2, this implies that l1 is parallel to Π2.
Since 


0
1
−1


 ·



−5
1
−2


 = 3 ̸= −6,

it follows that (0, 1,−1) does not lie on Π2, thus l1 does not lie on Π2.

∗ ∗ ∗ ∗ ∗

Problem 5. The lines l1 and l2 intersect at the point P with position vector i+5j+12k.
The equations of l1 and l2 are r = (1 + 3λ)i+ (5 + 2λ)j+ (12− 2λ)k and r = (1 + 8µ)i+
(5 + 11µ)j+ (12 + 6µ)k respectively, where λ and µ are real parameters.

(a) Find an equation of the plane Π1, which contains l1 and l2 in the form r · n = d.

Π2 and Π3 are two planes with equations 2x+ az = b and x− 3y − z = 7 respectively,
where a and b are constants.

(b) Find the line of intersection between Π1 and Π3.

(c) (i) Find the condition satisfied by a if the three planes Π1, Π2 and Π3 intersect at
one unique point.

(ii) Given that all three planes meet in a line l, find a and b.

(iii) Given instead that the three planes have no point in common, what can be said
about the values of a and b?
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Solution. Rewriting, we see that the equations of l1 and l2 are

l1 : r =




1
5
12


+ λ




3
2
−2


 , λ ∈ R,

l2 : r =




1
5
12


+ µ




8
11
6


 , µ ∈ R.

Part (a). Note that




3
2
−2


×




8
11
6


 =




34
−34
17


 = 17




2
−2
1


 .

Thus, the equation of Π1 is

Π1 : r ·




2
−2
1


 =




1
5
12


 ·




2
−2
1


 = 4.

Part (b). Note that Π3 has vector equation

Π3 : r ·




1
−3
−1


 = 7.

By inspection, we see that (−1/2,−3/2, 0) lies on both Π1 and Π3. Since




2
−2
1


×




1
−3
−1


 =




5
3
−4


 ,

the vector equation of the line of intersection l is

r = −1

2



1
3
0


+ ν




5
3
−4


 , ν ∈ R.

Part (c). Note that Π2 has vector equation

Π2 : r ·



2
0
a


 = b.

Part (c)(i). If the three planes intersect at a common point, it must be that l intersects
Π2 at a single point. Consider now the intersection between l and Π2:


−1

2



1
3
0


+ ν




5
3
−4




 ·



2
0
a


 = −1 + ν (10− 4a) = b.

In order for this equation to have a unique solution, we must be able to write

ν =
b+ 1

10− 4a
,

i.e. 10 − 4a ̸= 0. Thus, so long as a ̸= 5/2, the three planes will intersect at a unique
point.
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Part (c)(ii). If the planes intersect at a common line, then l must lie on Π2. Thus,

−1 + ν (10− 4a) = b

must hold true for all ν ∈ R. This can only happen when 10− 4a = 0 and b = −1. Hence,
the three planes meet in a line when a = 5/2 and b = −1.

Part (c)(iii). The complement of (a ̸= 5/2) or (a = 5/2 and b = −1) is (a = 5/2 and b ̸=
−1), which corresponds to the case where the three planes neither meet in a point nor in
a line, i.e. they have no common point.

∗ ∗ ∗ ∗ ∗

Problem 6. The point A and B have position vectors 3i+ j and 3i+3j respectively. The
line l1 and the planes Π1 and Π2 have equations as follows:

l1 : r =
−→
OA+ α




2
1
−1


 , Π1 : x+ 2z = 3, Π2 : r = λ



1
1
0


+ µ



0
1
1


 ,

where α, λ and µ ∈ R.
It is given that the planes Π1 and Π2 intersect in the line l2 and B lies on l2.

(a) Find a vector equation of the line l2 and show that the line l2 is parallel to the line
l1. Hence, find the shortest distance between the lines l1 and l2.

(b) The plane Π3 is parallel to the plane Π2 and is equidistant to both point A and the
plane Π2. Show that the equation of the plane Π3 is given by r · (i− j+k) = 1. Find
the position vector of the foot of perpendicular from the point A to the plane Π3.

Solution. Note that 

1
1
0


×



0
1
1


 =




1
−1
1


 ,

hence Π2 has vector equation

Π2 : r ·




1
−1
1


 = 0.

Part (a). Note that 

1
0
2


×




1
−1
1


 =




2
1
−1


 .

Thus, the equation of l2 is

l2 : r =



3
3
0


+ t




2
1
−1


 , t ∈ R.

Since l1 and l2 have the same direction vector, they are parallel. The shortest distance
between them is
∣∣∣−−→AB × (2, 1, −1)T

∣∣∣
∣∣∣(2, 1, −1)T

∣∣∣
=

∣∣∣(0, 2, 0)T × (2, 1, −1)T
∣∣∣

∣∣∣(2, 1, −1)T
∣∣∣

=

∣∣∣(−2, 0, −4)T
∣∣∣

∣∣∣(2, 1, −1)T
∣∣∣

=

√
20√
6

=

√
10

3
units.
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Part (b). Let A′ be the reflection of A in Π3. Let M be foot of perpendicular from A to
Π3, so that it is the midpoint of AA′. By the midpoint theorem,

−−→
OM =

−→
OA+

−−→
OA′

2
.

Since Π3 is parallel to Π2, it is normal to (1, −1, 1)T. Thus, its vector equation is

Π3 : r ·




1
−1
1


 =

−−→
OM ·




1
−1
1


 =

1

2


−→OA ·




1
−1
1


+

−−→
OA′ ·




1
−1
1




 =

1

2
(2 + 0) = 1,

where we used the fact that A′ lies on Π2 and M lies on Π3.
Note that

−−→
AM is parallel to the normal vector (1, −1, 1)T, so

−−→
OM =

−→
OA+

−−→
AM =



3
1
0


+ s




1
−1
1




for some s ∈ R. Since M lies on Π3, we must have




3
1
0


+ s




1
−1
1




 ·




1
−1
1


 = 2 + 3s = 1 =⇒ s = −1

3
.

Thus,

−−→
OM =



3
1
0


− 1

3




1
−1
1


 =

1

3




8
4
−1


 .

∗ ∗ ∗ ∗ ∗

Problem 7. The planes p1, p2 and p3 have equations x = 1, 2x + y + az = 5 and
x + 2y + z = b, where a and b are real constants. Given that p1 and p2 intersect at the
line l, show that the vector equation of l, in terms of a, is r = i+ (3− λa)j+ λk, where λ
is a real parameter.

(a) The acute angle between l and p3 is 60
◦. Without using a calculator, find the possible

values of a.

(b) Given that the shortest distance from the origin to p3 is
√
6/3 and without solving

for the value of b, determine the possible position vectors of the foot of perpendicular
from the origin to p3.

(c) What can be said about a and b if p1, p2 and p3 do not have any points in common?

Solution. Note that p1, p2 and p3 have vector equations

p1 : r ·



1
0
0


 = 1, p2 : r ·



2
1
a


 = 5, p3 : r ·



1
2
1


 = b.

Consider the intersection of p1 and p2. Substituting x = 1 into the equation for p2, we
get y = 3− az. Thus,

l : r =



1
y
z


 =




1
3− az

z


 =



1
3
0


+ z




0
−a
1


 =



1
3
0


+ λ




0
−a
1


 ,

where λ = z is a real parameter.
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Part (a). We have

√
3

2
=

∣∣∣(0, −a, 1)T · (1, 2, 1)T
∣∣∣

∣∣∣(0, −a, 1)T
∣∣∣
∣∣∣(1, 2, 1)T

∣∣∣
=

|1− 2a|√
a2 + 1

√
6
.

This yields

|1− 2a| = 3√
2

√
a2 + 1 =⇒ (1− 2a)2 =

9

2

(
a2 + 1

)
,

which simplifies to
a2 + 8a+ 7 = (a+ 7)(a+ 1) = 0.

Thus, the possible values of a are a = −1 or a = −7.

Part (b). Let N be the foot of perpendicular from the origin to p3. Then |ON | =
s (1, 2, 1)T for some s ∈ R. The given condition implies

√
6

3
=
∣∣∣−−→ON

∣∣∣ =

∣∣∣∣∣∣
s



1
2
1



∣∣∣∣∣∣
= |s|

√
6 =⇒ |s| = 1

3
,

so s = ±1/3, thus

−−→
ON =

1

3



1
2
1


 or

−−→
ON = −1

3



1
2
1


 .

Part (c). If the three planes do not have any points in common, it must be that l does
not intersect p3. Thus,





1
3
0


+ λ




0
−a
1




 ·



1
2
1


 = 7 + λ (1− 2a) ̸= b

for all λ ∈ R. This implies that 1− 2a = 0 so a = 1/2, and b ̸= 7.

∗ ∗ ∗ ∗ ∗

Problem 8 ( ). The points A and B have position vectors a and b respectively. The
plane π, with vector equation r = b+λu+µv, where λ and µ are real parameters, contains
B but not A.

(a) Show that the perpendicular distance of A from π is p, where

p =
|(u× v) · (b− a)|

|u× v| .

(b) The perpendicular from A to π meets π at C, and D is the point on AB such that
CD is perpendicular to AB. Show that AD = p2/AB and hence, or otherwise, show
that the position vector of D is

a+

(
p

|b− a|

)2

(b− a).

In the case where a = −i+7j+8k, b = 2i+7j+5k, u = i−2j+2k and v = 3i+2j+2k,
find the value of p, and show that

−−→
CD =

8
√
2

9
x+

4

9
y,

where x and y are the unit vectors of
−−→
CB and

−→
CA respectively.
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Solution.

Part (a). Note that the normal vector of π is n = u×v. Thus, the perpendicular distance
of A from π is

p =
n×−−→

AB

|n| =
|(u× v) · (b− a)|

|u× v| .

Part (b).

A

B C

D
p

Consider the above diagram. Observe that △ACB is similar to △ADC, so

AD

AC
=

AC

AB
=⇒ AD =

AC2

AB
.

But AC is the perpendicular distance from A to π, so AC = p and AD = p2/AB as
desired.
Note that

AD

AB
=

p2

AB2
,

thus
AD

DB
=

AD

AB −AD
=

1

AB/AD − 1
=

1
AB2

p2
− 1

=
p2

AB2 − p2
.

Thus, by the Ratio Theorem,

−−→
OD =

p2b+
(
AB2 − p2

)
a

p2 + (AB2 − p2)
=

AB2

AB2
a+

( p

AB

)2
(b− a) = a+

(
p

|b− a|

)2

(b− a).

We have

u× v =




1
−2
2


×



3
2
2


 = 4



−2
1
2


 and

−−→
AB =



2
7
5


−



−1
7
8


 = 3




1
0
−1


 ,

thus

p =
12
∣∣∣(−2, 1, 2)T × (1, 0, −1)T

∣∣∣

4
∣∣∣(−2, 1, 2)T

∣∣∣
= 4 and AB =

∣∣∣−−→AB
∣∣∣ = 3

√
2.

This gives
AD

DB
=

p2

AB2 − p2
= 42

(
3
√
2
)2

− 16 =
16

2
=

8

1
.

By the Ratio Theorem,

−−→
CD =

8
−−→
CB +

−→
CA

9
=

8

9
(CB)x+

1

9
(CA)y.
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Note that CA = p = 4. Meanwhile, using the Pythagorean theorem, we see that

AB2 = BC2 + CA2 =⇒ CB2 = AB2 − CA2 =
(
3
√
2
)2

− 42 = 2,

so
−−→
CD =

8
√
2

9
x+

4

9
y.
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Assignment A9

Problem 1. The equation of the plane Π1 is y + z = 0 and the equation of the line l is
x−5
2 = y−2

−1 = z−2
3 . Find

(a) the position vector of the point of intersection of l and Π1,

(b) the length of the perpendicular from the origin to l,

(c) the Cartesian equation for the plane Π2 which contains l and the origin,

(d) the acute angle between the planes Π1 and Π2, giving your answer correct to the
nearest 0.1◦.

Solution. Note that Π1 has equation r · (0, 1, 1)T = 0 and l has equation r = (5, 2, 2)T+
λ (2, −1, 3)T, λ ∈ R.
Part (a). Let P be the point of intersection of Π1 and l. Then

−−→
OP = (5, 2, 2)T +

λ (2, −1, 3)T for some λ ∈ R. Also,
−−→
OP · (0, 1, 1)T = 0. Hence,





5
2
2


+ λ




2
−1
3




 ·



0
1
1


 = 0 =⇒ 4 + 2λ = 0 =⇒ λ = −2.

Thus,

−−→
OP =



5
2
2


− 2




2
−1
3


 =




1
4
−4


 .

Part (b). The perpendicular distance from the origin to l is
∣∣∣(5, 2, 2)T × (2, −1, 3)T

∣∣∣
∣∣∣(2, −1, 3)T

∣∣∣
=

1√
14

∣∣∣∣∣∣




8
−11
−9



∣∣∣∣∣∣
=

√
266√
14

=
√
19 units.

Part (c). Observe that Π2 is parallel to (5, 2, 2)T and (2, −1, 3)T. Thus, n = (5, 2, 2)T×
(2, −1, 3)T = (8, −11, −9)T. Since Π2 contains the origin, d = 0. Hence, Π2 has vector
equation r · (8, −11, −9)T = 0, which translates to 8x− 11y − 9z = 0.

Part (d). Let the acute angle be θ.

cos θ =

∣∣∣(0, 1, 1)T · (8, −11, −9)T
∣∣∣

∣∣∣(0, 1, 1)T
∣∣∣
∣∣∣(8, −11, −9)T

∣∣∣
=

20√
2
√
266

=⇒ θ = 29.9◦ (1 d.p.).

∗ ∗ ∗ ∗ ∗

Problem 2. The plane Π1 has equation r · (−i+ 2k) = −4 and the points A and P have
position vectors 4i and i+ αj+ k respectively, where α ∈ R.

(a) Show that A lies on Π1, but P does not.

(b) Find, in terms of α, the position vector of N , the foot of perpendicular of P on Π1.

The plane Π2 contains the points A, P and N .

(c) Show that the equation of Π2 is r · (2αi+5j+αk) = 8α and write down the equation
of l, the line of the intersection of Π1 and Π2.
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The plane Π3 has equation r · (i+ j+ 2k) = 4.

(d) By considering l, or otherwise, find the value of α for which the three planes intersect
in a line.

Solution. Note that Π1 : r · (−1, 0, 2)T = −4,
−→
OA = (4, 0, 0)T and

−−→
OP = (1, α, 1)T.

Part (a). Since
−→
OA · (−1, 0, 2)T = (4, 0, 0)T · (−1, 0, 2)T = −4, A lies on Π1. On the

other hand, since
−−→
OP · (−1, 0, 2)T = (1, α, 1)T · (−1, 0, 2)T = 1 ̸= −4, P does not lie on

Π1.

Part (b). Note that
−−→
NP = λ (−1, 0, 2)T for some λ ∈ R, and

−−→
ON · (−1, 0, 2)T = −4.

Hence,

−−→
NP =

−−→
OP −−−→

ON =



1
α
1


−−−→

ON = λ



−1
0
2


 .

Thus,




1
α
1


−−−→

ON


 ·



−1
0
2


 = λ



−1
0
2


 ·



−1
0
2


 =⇒ 1− (−4) = 5λ =⇒ λ = 1.

Hence,
−−→
NP = (−1, 0, 2)T, whence

−−→
ON =

−−→
OP −−−→

NP = (2, α, −1)T.

Part (c). Note that Π2 is parallel to
−−→
NP = (−1, 0, 2)T and

−−→
AN =

−−→
ON − −→

OA =
(−2, α, −1)T. Since (−1, 0, 2)T×(−2, α, −1)T = − (2α, 5, α)T, we take n = (2α, 5, α)T,
whence d = (4, 0, 0)T ·(2α, 5, α)T = 8α. Thus, Π2 has vector equation r ·(2α, 5, α)T = 8α
which translates to r · (2αi+ 5j+ αk) = 8α.

Meanwhile, the line of intersection between Π1 and Π2 has equation

l :



4
0
0


+ µ



−2
α
−1


 , µ ∈ R.

Part (d). If the three planes intersect in a line, they must intersect at l. Hence, l lies on
Π3. 




4
0
0


+ µ



−2
α
−1




 ·



1
1
2


 = 4 =⇒ 4 + (α− 4)µ = 4 =⇒ (α− 4)µ = 0.

Since (α− 4)µ = 0 must hold for all µ ∈ R, we must have α = 4.

∗ ∗ ∗ ∗ ∗

Problem 3. When a light ray passes from air to glass, it is deflected through an angle.
The light ray ABC starts at point A(1, 2, 2) and enters a glass object at point B(0, 0, 2).
The surface of the glass object is a plane with normal vector n. The diagram shows a
cross-section of the glass object in the plane of the light ray and n.

A

B

C

n

θ
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(a) Find a vector equation of the line AB.

The surface of the glass object is a plane with equation x+ z = 2. AB makes an acute
angle θ with the plane.

(b) Calculate the value of θ, giving your answer in degrees.

The line BC makes an angle of 45◦ with the normal to the plane, and BC is parallel to
the unit vector (−2/3, p, q)T.

(c) By considering a vector perpendicular to the plane containing the light ray and n,
or otherwise, find the values of p and q.

The light ray leaves the glass object through a plane with equation 3x+ 3z = −4.

(d) Find the exact thickness of the glass object, taking one unit as one cm.

(e) Find the exact coordinates of the point at which the light ray leaves the glass object.

Solution. Let ΠG be the plane representing the surface of the glass object.

Part (a). Note that
−−→
AB =

−−→
OB −−→

OA = (0, 0, 2)T − (1, 2, 2)T = − (1, 2, 0)T. Hence,

lAB : r =



0
0
2


+ λ



1
2
0


 , λ ∈ R.

Part (b). Observe that ΠG has equation r · (1, 0, 1)T = 2. Hence,

sin θ =

∣∣∣(1, 0, 1)T · (1, 2, 0)T
∣∣∣

∣∣∣(1, 0, 1)T
∣∣∣
∣∣∣(1, 2, 0)T

∣∣∣
=

1√
2
√
5

=⇒ θ = 71.6◦ (1 d.p.).

Part (c). Since line BC makes an angle of 45◦ with nG,

sin 45◦ =

∣∣∣(1, 0, 1)T · (−2/3, p, q)T
∣∣∣

∣∣∣(1, 0, 1)T
∣∣∣
∣∣∣(−2/3, p, q)T

∣∣∣
=⇒ 1√

2
=

|q − 2/3|√
2 · 1

=⇒
∣∣∣∣q −

2

3

∣∣∣∣ = 1.

Hence, q = −1/3. Note that we reject q = 5/3 since (−2/3, p, q)T is a unit vector, which
implies that |q| ≤ 1.

Let ΠL be the plane containing the light ray. Note that ΠL is parallel to
−−→
AB and

−−→
BC.

Hence, nL = (1, 2, 0)T × (−2/3, p, q)T = 1
3 (6q, −3q, 3p+ 4)T. Since ΠL contains nG, we

have that nL ⊥ nG, whence nL · nG = 0. This gives us




6q
−3q
3p+ 4


 ·



1
0
1


 = 0 =⇒ 6q + 3p+ 4 = 0 =⇒ 6

(
−1

3

)
+ 3p+ 4 = 0 =⇒ p = −2

3
.

Part (d). Let Π′
G be the plane with equation 3x+ 3z = −4. Observe that ΠG is parallel

to Π′
G. Also note that (−4/3, 0, 0) is a point on Π′

G. Hence, the distance between ΠG and
Π′

G is given by ∣∣∣2− (−4/3, 0, 0)T · (1, 0, 1)T
∣∣∣

∣∣∣(1, 0, 1)T
∣∣∣

=
10

3
√
2
cm.



456 A9 Vectors III - Planes

Part (e). Observe that (−2/3, p, q)T = (−2/3, −2/3, −1/3)T = −1
3 (2, 2, 1)

T, whence

the line BC has equation r = (0, 0, 2)T + µ (2, 2, 1)T, µ ∈ R. Let P be the intersection

between line BC and Π′
G. Also note that

−−→
OP = (0, 0, 2)T + µ (2, 2, 1)T for some µ ∈ R,

and
−−→
OP · (3, 0, 3)T = −4. Hence,





0
0
2


+ µ



2
2
1




 ·



3
0
3


 = −4 =⇒ 6− 9µ = −4 =⇒ µ = −10

9
.

Hence,
−−→
OP = (0, 0, 2)T − 10

9 (2, 2, 1)T = (−20/9, −20/9, 8/9)T. The coordinates of the
point are hence (−20/9,−20/9.8/9).
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A10.1 Complex Numbers - Complex
Numbers in Cartesian Form

Tutorial A10.1

Problem 1. Given that z = 3 − 2i and w = 1 + 4i, express in the form a + bi, where
a, b ∈ R:
(a) z + 2w

(b) zw

(c) z/w

(d) (w − w∗)3

(e) z4

Solution.

Part (a).
z + 2w = (3− 2i) + 2(1 + 4i) = 3− 2i + 2 + 8i = 5 + 6i.

Part (b).
zw = (3− 2i)(1 + 4i) = 3 + 12i − 2i + 8 = 11 + 10i.

Part (c).

z

w
=

3− 2i

1 + 4i
=

(3− 2i)(1− 4i)

(1 + 4i)(1− 4i)
=

3− 12i − 2i − 8

12 + 42
=

−5− 14i

17
= − 5

17
− 14

17
i.

Part (d).
(w − w∗)3 = [2 Im(w) i]3 = (8i)3 = −512i.

Part (e).

z4 = (3− 2i)4 = 34 + 4 · 33(−2i) + 6 · 32(−2i)2 + 4 · 3(−2i)3 + (−2i)4

= 81− 216i − 216 + 96i + 16 = −119− 120i.

∗ ∗ ∗ ∗ ∗

Problem 2. Is the following true or false in general?

(a) Im(zw) = Im(z) Im(w)

(b) Re(zw) = Re(z)Re(w)

Solution. Let z = a+bi and w = c+di. Then zw = (a+bi)(c+di) = (ac−bd)+(ad+bc)i.

Part (a). Observe that

Im(zw) = ad+ bc ̸= bd = Im(z) Im(w) .

Hence, the statement is false in general.

Part (b). Observe that

Re(zw) = ac− bd ̸= ac = Re(z)Re(w) .

Hence, the statement is false in general.
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Problem 3.

(a) Find the complex number z such that z−2
z = 1 + i.

(b) Given that u = 2 + i and v = −2 + 4i, find in the form a + bi, where a, b ∈ R, the
complex number z such that 1

z = 1
u + 1

v .

Solution.

Part (a).

z − 2

z
= 1 + i =⇒ z − 2 = z + iz =⇒ iz = −2 =⇒ z = −2

i
= 2i.

Part (b).

1

z
=

1

u
+

1

v
=⇒ z =

1

1/u+ 1/v
=

uv

u+ v
=

(2 + i)(−2 + 4i)

(2 + i) + (−2 + 4i)
=

−8 + 6i

5i
=

6

5
+

8

5
i.

∗ ∗ ∗ ∗ ∗

Problem 4. The complex numbers z and w are 1 + ai and b − 2i respectively, where a
and b are real and a is negative. Given that zw∗ = 8i, find the exact values of a and b.

Solution. Note that

zw∗ = (1 + ai)(b+ 2i) = (b− 2a) + (2 + ab)i.

Comparing real and imaginary parts, we have b − 2a = 0 =⇒ b = 2a and 2 + ab = 8.
Hence, 2a2 = 6, giving a = −

√
3 and b = −2

√
3.

∗ ∗ ∗ ∗ ∗

Problem 5. Find, in the form x+ iy, the two complex numbers z satisfying both of the
equations

z

z∗
=

3

5
+

4

5
i and zz∗ = 5.

Solution. Multiplying both equations together, we have z2 = 3 + 4i. Let z = x + iy,
with x, y ∈ R. We thus have z2 = x2 − y2 +2xy i = 3+4i. Comparing real and imaginary
parts, we obtain the following system:

x2 − y2 = 3, 2xy = 4.

Squaring the second equation yields x2y2 = 4. From the first equation, we have x2 = 3+y2.
Thus, y2(3 + y2) = 4 =⇒ y2 = 1 =⇒ y = ±1 =⇒ x = ±2. Hence, z = 2 + i or
z = −2− i.
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Problem 6.

(a) Given that iw + 3z = 2 + 4i and w + (1 − i)z = 2 − i, find z and w in the form of
x+ iy, where x and y are real numbers.

(b) Determine the value of k such that z = 1−ki√
3+i

is purely imaginary, where k ∈ R.

Solution.

Part (a). Let w = a+ bi and z = c+ di. Then

iw + 3z = i(a+ bi) + 3(c+ di) = (−b+ 3c) + (a+ 3d)i = 2 + 4i

and

w + (1− i)z = (a+ bi) + (1− i)(c+ di) = (a+ c+ d) + (b− c+ d)i = 2− i.

Comparing the real and imaginary parts of both equations yields the following system:





− b+ 3c = 2

a + 3d = 4

a + c+ d = 2

b− c+ d = −1

which has the unique solution a = 1, b = −2, c = 0 and d = 1. Hence, w = 1 − 2i and
z = i.

Part (b).

z =
1− k i√
3 + i

=
(1− k i)(

√
3− i)

√
3
2
+ 12

=
1

4
(
√
3− i − k

√
3i − k) =

1

4

[
(
√
3− k)− (1 + k

√
3)i
]
.

Since z is purely imaginary, Re(z) = 0. Hence, 1
4(
√
3− k) = 0 =⇒ k =

√
3.

∗ ∗ ∗ ∗ ∗

Problem 7.

(a) The complex number x + iy is such that (x + iy)2 = i. Find the possible values of
the real numbers x and y, giving your answers in exact form.

(b) Hence, find the possible values of the complex number w such that w2 = −i.

Solution.

Part (a). Note that (x+ iy)2 = x2 − y2 +2xy i = i. Comparing real and imaginary parts,
we have

x2 − y2 = 0, 2xy = 1.

Note that the second equation implies that both x and y have the same sign. Hence, from
the first equation, we have x = y. Thus, x2 = y2 = 1/2 =⇒ x = y = ±1/

√
2.

Part (b).

w2 = −i =⇒ (w∗)2 = i =⇒ w∗ = ± 1√
2
± 1√

2
i =⇒ w = ± 1√

2
∓ 1√

2
i.



460 A10.1 Complex Numbers - Complex Numbers in Cartesian Form

Problem 8.

(a) The roots of the equation z2 = −8i are z1 and z2. Find z1 and z2 in Cartesian form
x+ iy, showing your working.

(b) Hence, or otherwise, find in Cartesian form the roots w1 and w2 of the equation
w2 + 4w + (4 + 2i) = 0.

Solution.

Part (a). Let z = x + iy where x, y ∈ R. Then (x + iy)2 = x2 − y2 + 2xy i = −8i.
Comparing real and imaginary parts, we have the following system:

x2 − y2 = 0, 2xy = 8.

From the second equation, we know that x and y have opposite signs. Hence, from the
first equation, we have that x = −y. Thus, x2 = 4 =⇒ x = ±2 =⇒ y = ∓2. Thus,
z = ±2(1− i), whence z1 = 2− 2i and z2 = −2 + 2i.

Part (b).

w2 + 4w + (4 + 2i) = 0 =⇒ (w + 2)2 = −2i =⇒ (2w + 4)2 = −8i

=⇒ 2w + 4 = ±2(1− i) =⇒ w = 2± (1− i).

∗ ∗ ∗ ∗ ∗

Problem 9. One of the roots of the equations 2x3 − 9x2 + 2x+ 30 = 0 is 3 + i. Find the
other roots of the equation.

Solution. Let P (x) = 2x3−9x2+2x+30. Since P (x) is a polynomial with real coefficients,
by the conjugate root theorem, we have that (3+ i)∗ = 3− i is also a root of P (x). Let α
be the third root of P (x). Then

P (x) = 2x3 − 9x2 + 2x+ 30 = 2(x− α) [x− (3 + i)] [x− (3− i)] .

Comparing constants,

2(−α)(−3− i)(−3 + i) = 30 =⇒ α = − 15

(−3− i)(−3 + i)
= −3

2
.

Hence, the other roots of the equation are 3− i and −3/2.

∗ ∗ ∗ ∗ ∗

Problem 10. Obtain a cubic equation having 2 and 5
4−

√
7
4 i as two of its roots, in the form

az3 + bz2 + cz+ d = 0, where a, b, c and d are real integral coefficients to be determined.

Solution. Let P (z) = az3+bz2+cz+d. Since P (z) is a polynomial with real coefficients,

by the conjugate root theorem, we have that
(
5
4 −

√
7
4 i
)∗

= 5
4 +

√
7
4 i is also a root of P (z).

We can thus write P (z) as

P (z) = k(z − 2)

[
z −

(
5

4
−

√
7

4
i

)][
z −

(
5

4
+

√
7

4
i

)]

= k(z − 2)



(
z − 5

4

)2

+

(√
7

4

)2

 = k(z − 2)

(
z2 − 5

2
z + 2

)

=
1

2
k(2z3 − 9z2 + 14z − 8),
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where k is an arbitrary real number. Taking k = 2, we have P (z) = 2z3 − 9z2 + 14z − 8,
whence a = 2, b = −9, c = 14 and d = −8.

∗ ∗ ∗ ∗ ∗

Problem 11.

(a) Verify that −1 + 5i is a root of the equation w2 + (−1 − 8i)w + (−17 + 7i) = 0.
Hence, or otherwise, find the second root of the equation in Cartesian form, p+ iq,
showing your working.

(b) The equation z3−5z2+16z+k = 0, where k is a real constant, has a root z = 1+ai,
where a is a positive real constant. Find the values of a and k, showing your working.

Solution.

Part (a). Let P (w) = w2 + (−1− 8i)w + (−17 + 7i). Consider P (−1 + 5i).

P (−1 + 5i) = (−1 + 5i)2 + (−1− 8i)(−1 + 5i) + (−17 + 7i)

= (1− 10i − 25) + (1− 5i + 8i + 40) + (−17 + 7i) = 0.

Hence, −1 + 5i is a root of w2 + (−1− 8i)w + (−17 + 7i) = 0.
Let α be the other root of the equation. By Vieta’s formula, we have

α+ (−1 + 5i) = −
(−1− 8i

1

)
= 1 + 8i =⇒ α = 2 + 3i.

Part (b). Let P (z) = z3 − 5z2 + 16z + k. Then P (1 + ai) = 0. Note that

P (1 + ai) = (1 + ai)3 − 5(1 + ai)2 + 16(1 + ai) + k

=
[
1 + 3ai − 3a2 − a3 i

]
− 5(1 + 2ai − a2) + (16 + 16ai) + k

= (12 + k + 2a2) + (9− a2)ai.

Comparing real and imaginary parts, we have a(9− a2) = 0 =⇒ a = 3 (since a > 0) and
12 + k + 2a2 = 0 =⇒ k = −30.
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Self-Practice A10.1

Problem 1. By writing z = x+ iy, x, y ∈ R, solve the simultaneous equations

z2 + zw − 2 = 0 and z∗ =
w

1 + i
,

where z∗ is the conjugate of z.

Solution. From the second equation, we see that w = (1 + i)z∗. Substituting this into
the first equation yields

z2 + zz∗(1 + i)− 2 = 0.

Let z = x+ iy, where x, y ∈ R. Then

(x+ iy)2 +
(
x2 + y2

)
(1 + i)− 2 = 0.

Simplifying, we get
2
(
x2 − 1

)
+ (x+ y)2 i = 0.

Comparing real and imaginary parts, we require x2 − 1 = 0 and x+ y = 0, so x = ±1 and
y = −x = ∓1, so z = ±1∓ i.
When z = 1 − i, we have w = (1 + i)2 = 2i. When z = −1 + i, we have w =

(−1 + i)(1 + i) = −2.

∗ ∗ ∗ ∗ ∗

Problem 2. Given that the complex numbers w and z satisfy the equations

w∗ + 2z = i and w + (1− 2i)z = 3 + 3i,

find w and z in the form a+ bi, where a and b are real.

Solution. From the first equation, we obtain w = −i − 2z∗. Substituting this into the
second equation, we see that

(−i − 2z∗) (1− 2i) z = 3 + 3i.

Let z = a+ bi, where a, b ∈ R. Then

[−i − 2 (a− bi)] + (1− 2i) (a+ bi) = 3 + 3i,

which upon simplification yields

(2b− a) + i (3b− 2a) = 3 + 4i.

Comparing real and imaginary parts, we require 2b− a = 3 and 3b− 2a = 3, which gives
a = 1 and b = 2. Thus, z = 1 + 2i and w = −i − 2 (1− 2i) = −2 + 3i.

∗ ∗ ∗ ∗ ∗

Problem 3.

(a) Determine the complex numbers u and v for which

z2 + (6− 2i)z = (z − u)2 − v, ∀z ∈ C.

(b) Write down the square roots of 7 − 24i. Hence, solve the quadratic equation z2 +
(6− 2i)z = −1− 18i.



Self-Practice A10.1 463

Solution.

Part (a). Completing the square, we see that

z2 − (6− 2i) z = (z + (3− i))2 − (3− i)2 ,

so u = −(3− i) = −3 + i and v = (3− i)2 = 8− 6i.

Part (b). Using G.C., ±
√
7− 24i = ± (4− 3i). From (a), we see that

(z + (3− i))2 − (8− 6i) = z2 + (6− 2i) z = −1− 18i,

thus
(z + (3− i))2 = −1− 18i + 8− 6i = 7− 24i,

so
z + (3− i) = ± (4− 3i) .

Finally, we obtain z = 1− 2i or z = −7 + 4i.

∗ ∗ ∗ ∗ ∗

Problem 4. If z = i is a root of the equation z3+(1−3i)z2− (2+3i)z−2 = 0, determine
the other roots. Hence, find the roots of the equation w3+(1+3i)w2+(3i−2)w−2 = 0.

Solution. By inspection,

(−1)3 + (1− 3i)(−1)2 − (2 + 3i)(−1)− 2 = 0,

so z = −1 is a root. Let α be the other root. By Vieta’s formula, i + (−1) + α =
− (1− 3i) =⇒ α = 2i. Thus, the roots are z = i, z = 2i and z = −1.
Conjugating the cubic in w, we see that

(w∗)3 + (1− 3i) (w∗)2 + (−2− 3i)w∗ − 2 = 0,

so
w∗ = i, 2i,−1 =⇒ w = −i,−2i,−1.

∗ ∗ ∗ ∗ ∗

Problem 5. Show that the equation z4 − 2z3 + 6z2 − 8z + 8 = 0 has a root of the form
k i, where k is real. Hence, solve the equation z4 − 2z3 + 6z2 − 8z + 8 = 0.

Solution. Let z = k i. Then

(k i)4 − 2(k i)3 + 6(k i)2 − 8(k i) + 8 =
(
k4 − 6k2 + 8

)
+ i
(
2k3 − 8k

)
= 0.

We hence require
k4 − 6k2 + 8 = 0 and 2k3 − 8k = 0.

By inspection k = 2 satisfies both equation, so z = 2i is a root.
Since the coefficients of the quartic are all real, by the conjugate root theorem, z = −2i

is also a root. Let P (z) be a degree two polynomial such that the quartic factorizes as

z4 − 2z3 + 6z2 − 8z + 8 = (z − 2i) (z + 2i)P (z).

Then

P (z) =
z4 − 2z3 + 6z2 − 8z + 8

z2 + 4
= z2 − 2z + 2.

Solving P (z) = 0, we get z = 1 ± i, so the roots to the quartic are z = 2i, −2i, 1 + i,
1− i.
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Problem 6. Verify that −2 + i is a root of the equation z4 + 24z + 55 = 0. Hence,
determine the other roots.

Solution. Substituting z = −2 + i, we see that

(−2 + i)4 + 24 (−2 + i) + 55 = 0,

so it is a root. Since the coefficients of z4 + 24z + 55 are real, by the conjugate root
theorem, z = −2 − i is also a root. Let P (z) be a degree two polynomial such that the
quartic factorizes as

z4 + 24z + 55 = (z − (−2 + i)) (z − (−2− i))P (z).

Then

P (z) =
z4 + 24z + 55

z2 + 4z + 5
= z2 + 4z + 11.

Solving P (z) = 0, we get z = 2 ±
√
7i. Hence, the roots of the quartic are z = −2 + i,

−2− i, 2 +
√
7i, 2−

√
7i.



Assignment A10.1 465

Assignment A10.1

Problem 1. The complex number w is such that ww∗ + 2w = 3 + 4i, where w∗ is the
complex conjugate of w. Find w in the form a+ ib, where a and b are real.

Solution. Note ww∗ = (Rew)2 + (Imw)2 ∈ R.
Taking the imaginary part of the given equation,

Im(ww∗ + 2w) = Im(3 + 4i) =⇒ 2 Imw = 4 =⇒ Imw = 2.

Taking the real part of the given equation,

Re(ww∗ + 2w) = Re(3 + 4i) =⇒
[
(Rew)2 + (Imw)2

]
+ 2Rew = 3

=⇒ (Rew)2 + 2Re(w) + 1 = 0 =⇒ (Rew + 1)2 = 0 =⇒ Re(w) = −1.

Hence, w = −1 + 2i.

∗ ∗ ∗ ∗ ∗

Problem 2. Express (3− i)2 in the form a+ ib.
Hence, or otherwise, find the roots of the equation (z + i)2 = −8 + 6i.

Solution. We have
(3− i)2 = 32 − 6i + i2 = 8− 6i.

Consider (z + i)2 = −8 + 6i. Note that −(z + i)2 = (iz − 1)2.

(z + i)2 = −8 + 6i =⇒ (iz − 1)2 = 8− 6i =⇒ iz − 1 = ±(3− i)

=⇒ z =
1

i
(1± (3− i)) = −i(1± (3− i)) = −1− 4i or 1 + 2i.

∗ ∗ ∗ ∗ ∗

Problem 3.

(a) It is given that z1 = 1 +
√
3i. Find the value of z31 , showing clearly how you obtain

your answer.

(b) Given that 1 +
√
3i is a root of the equation

2z3 + az2 + bz + 4 = 0

find the values of the real numbers a and b. Hence, solve the above equation.

Solution.

Part (a). We have

z31 =
(
1 +

√
3i
)3

= 1 + 3
(√

3i
)
+ 3

(√
3i
)2

+
(√

3i
)3

= 1 + 3
√
3i − 9− 3

√
3i = −8.

Part (b). Since 1 +
√
3i is a root of the given equation, we have

2
(
1 +

√
3i
)3

+ a
(
1 +

√
3i
)2

+ b
(
1 +

√
3i
)
+ 4 = 0

=⇒ −16 + a
(
−2 + 2

√
3i
)
+ b

(
1 +

√
3i
)
+ 4 = 0 =⇒ (−2a+ b) +

√
3(2a+ b)i = 12.

Comparing real and imaginary parts, we obtain −2a + b = 12 and 2a + b = 0, whence
a = −3 and b = 6.
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Since the coefficients of 2z3 + az2 + bz + 4 are all real, the second root is (1 +
√
3i)∗ =

1−
√
3i. Let the third root be α. By Vieta’s formula,

(1 +
√
3i)(1−

√
3i)α = −4

2
=⇒ 4α = −2 =⇒ α = −1

2
.

The roots of the equation are hence 1 +
√
3i, 1−

√
3i and −1

2 .

∗ ∗ ∗ ∗ ∗

Problem 4. The complex number z is such that az2 + bz + a = 0 where a and b are real
constants. It is given that z = z0 is a solution to this equation where Im(z0) ̸= 0.

(a) Verify that z = 1
z0

is the other solution. Hence, show that |z0| = 1.

Take Im(z0) = 1/2 for the rest of the question.

(b) Find the possible complex numbers for z0.

(c) If Re(z0) > 0, find b in terms of a.

Solution.

Part (a).

a

(
1

z0

)2

+ b

(
1

z0

)
+ a =

(
1

z0

)2 (
a+ bz0 + az20

)
= 0

Hence, z = 1/z0 is a root of the given equation.
Since a, b ∈ R, by the conjugate root theorem, z∗0 = 1/z0. Hence,

z0z
∗
0 = 1 =⇒ Re(z0)

2 + Im(z0)
2 = |z0|2 = 1 =⇒ |z0| = 1.

Part (b). Let z0 = x+ 1
2 i. Then

∣∣∣∣x+
1

2
i

∣∣∣∣ = 1 =⇒ x2 +

(
1

2

)2

= 12 =⇒ x2 =
3

4
=⇒ x = ±

√
3

2
.

Hence, z0 =
√
3
2 + 1

2 i or z0 = −
√
3
2 + 1

2 i.

Part (c). Since Re(z0) > 0, we have z0 =
√
3
2 + 1

2 i. By Vieta’s formula,

− b

a
= z0 +

1

z0
= z0 + z∗0 = 2Re(z0) =

√
3 =⇒ b = −

√
3a.
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A10.2 Complex Numbers - Complex
Numbers in Polar Form

Tutorial A10.2

Problem 1. Is the following true or false in general?

(a)
∣∣w2
∣∣ = |w|2

(b) |z + 2w| = |z|+ |2w|

Solution.

Part (a). Let w = reiθ, where r, θ ∈ R. Note that
∣∣eiθ
∣∣ =

∣∣e2iθ
∣∣ = 1.

∣∣w2
∣∣ =

∣∣∣r2e2iθ
∣∣∣ = r2

∣∣∣e2iθ
∣∣∣ = r2 = r2

∣∣∣eiθ
∣∣∣
2
=
∣∣∣reiθ

∣∣∣
2
= |w|2 .

The statement is hence true in general.

Part (b). Take z = 1 and w = −1.

|z + 2w| = |1− 2| = 1 ̸= 3 = |1|+ |2(−1)| = |z|+ |2w| .

The statement is hence false in general.

∗ ∗ ∗ ∗ ∗

Problem 2. Express the following complex numbers z in polar form r(cos θ+ i sin θ) with
exact values.

(a) z = 2− 2i

(b) z = −1 + i
√
3

(c) z = −5i

(d) z = −2
√
3− 2i

Solution.

Part (a).

2

−2i
Z(z)

θO

Re

Im
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We have r2 = 22 + (−2)2 =⇒ r = 2
√
2 and tan θ = −2/2 =⇒ θ = −π/4. Hence,

2− 2i = 2
√
2
[
cos
(
−π

4

)
+ i sin

(
−π

4

)]
.

Part (b).

−1

√
3i

Z(z)

θ

O

Re

Im

We have r2 = (−1)2 + (
√
3)2 =⇒ r = 2 and tan t =

√
3/(−1) =⇒ θ = 2π/3. Hence,

−1 +
√
3i = 2

[
cos
(
2π
3

)
+ i sin

(
2π
3

)]
.

Part (c).

−5i Z(z)

θO

Re
Im

We have r = 5 and θ = −π/2. Hence, −5i = 5
[
cos
(
−π

2

)
+ i sin

(
−π

2

)]
.

Part (d).

−2
√
3

−2i
Z(z)

θ

O Re

Im

We have r2 = (−2
√
3)2 + (−2)2 =⇒ r = 4 and tan t = −2/(−2

√
3) =⇒ θ = −5π/6.

Hence, −2
√
3− 2i = 4

[
cos
(
−5π

6

)
+ i sin

(
−5π

6

)]
.
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Problem 3. Express the following complex numbers z in exponential form reiθ.

(a) z = −1 + 2
13 i

(b) z = cos 50◦ − i sin 50◦

Solution.

Part (a).

−1

2
13 i

Z(z)

θ

O

Re

Im

We have r2 = (−1)2 +
(

2
13

)2
=⇒ r = 1.01 (3 s.f.) and tan t = 2/13

−1 =⇒ θ =

2.99 (3 s.f.). Hence, −1 + 2
13 i = 1.01e2.99i .

Part (b). We have r = 1 and θ = −50◦ = − 5
18π. Hence, cos 50

◦ + i sin 50◦ = e−i 5
18

π.

∗ ∗ ∗ ∗ ∗

Problem 4. Express the following complex numbers z in Cartesian form.

(a) z = 7e1−5i

(b) z = 6
(
cos π

8 − i sin π
8

)

Solution.

Part (a). We have

z = 7e1−5i = 7e · e−5i = 7e [cos(−5) + i sin(−5)] = 5.40 + 18.2i (3 s.f.).

Part (b). We have

z = 6
(
cos

π

8
− i sin

π

8

)
= 5.54− 2.30i (3 s.f.).
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Problem 5. Given that z =
√
3 − i, find the exact modulus and argument of z. Hence,

find the exact modulus and argument of 1/z2 and z10.

Solution.

√
3

−i
Z(z)

θO

Re

Im

We have r2 = (
√
3)2 + (−1)2 =⇒ r = 2 and tan θ = −1/

√
3 =⇒ θ = −π/6. Hence,

|z| = 2 and arg z = −π/6.
Note that

∣∣1/z2
∣∣ = |z|−2 = 1/4. Also, arg

(
1/z2

)
= −2 arg z = π/3.

Note that
∣∣z10

∣∣ = |z|1 0 = 1024. Also, arg z10 = 10 arg z = −5π/3 ≡ π/3.

∗ ∗ ∗ ∗ ∗

Problem 6. If arg(z − 1/2) = π/5, determine arg(2z − 1).

Solution.

arg(2z − 1) = arg

(
1

2

[
z − 1

2

])
= arg

(
z − 1

2

)
=

π

5
.

∗ ∗ ∗ ∗ ∗

Problem 7. In an Argand diagram, points P and Q represent the complex numbers
z = 1 + i and w = 1 + 2i respectively, and O is the origin.

(a) Mark on the Argand diagram the points P and Q, and the points R and S which
represent z + w and iw respectively.

(b) What is the geometrical shape of OPRQ?

(c) State the angle SOP .

Solution.

Part (a).

−2 1 2

i

2i

3i

P (z)

Q(w)

R(z + w)

S(iw)

O

Re

Im
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Part (b). OPRQ is a parallelogram.

Part (c). ∠SOP = π/2.

∗ ∗ ∗ ∗ ∗

Problem 8. B andD are points in the Argand diagram representing the complex numbers
1+5i and 5+3i respectively. Given that BD is a diagonal of the square ABCD, calculate
the complex numbers represented by A and C.

Solution.

1 5

3i

5i

A

B

C

D

O

Re

Im

Let A(x+ iy). Since AB ⊥ AD, we have b− a = i(d− a).

b− a = i(d− a) =⇒ (1 + 5i)− (x+ iy) = i [(5 + 3i)− (x+ iy)]

=⇒ (1− x) + (5− y)i = (−3 + y) + (5− x)i =⇒ (x+ y) + (y − x)i = 4.

Comparing real and imaginary parts, we obtain x = y = 2. Hence, A(2 + 2i).
Let C(u+ iv). Since CB ⊥ CD, we have d− c = i(b− c).

d− c = i(b− c) =⇒ (5 + 3i)− (u+ iv) = i [(1 + 5i)− (u+ iv)]

=⇒ (5− u) + (3− v)i = (−5 + v) + (1− u)i =⇒ (u+ v) + (v − u)i = 10 + 2i.

Comparing real and imaginary parts, we obtain u = 4 and v = 6. Hence, C(4 + 6i).

∗ ∗ ∗ ∗ ∗

Problem 9.

(a) Given that u = 2
(
cos π

6 + i sin π
6

)
and w = 4

(
cos π

3 − i sin π
3

)
, find the modulus and

argument of u∗/w3 in exact form.

(b) Let z be the complex number −1 + i
√
3. Find the value of the real number a such

that arg
(
z2 + az

)
= −π/2.

Solution.

Part (a). Note that |u| = 2, arg u = π/6, |w| = 4 and argw = −π/3. Hence,

∣∣∣∣
u∗

w3

∣∣∣∣ =
|u∗|
|w3| =

|u|
|w|3

=
2

43
=

1

32

and

arg
u∗

w3
= arg u∗ − argw3 = − arg u− 3 argw = −π

6
− 3

(
−π

3

)
=

5

6
π.
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Part (b). Since arg
(
z2 + az

)
= −π/2, we have that z2 + az is purely imaginary, with a

negative imaginary part. Since

z2 + az =
(
−1 + i

√
3
)2

+ a
(
−1 + i

√
3
)
=
(
−2− 2

√
3i
)
+ a

(
−1 + i

√
3
)
.

Hence,
Re
(
z2 + az

)
= 0 =⇒ −2− a = 0 =⇒ a = −2.

∗ ∗ ∗ ∗ ∗

Problem 10. The complex number w has modulus r and argument θ, where 0 < θ < π/2,
and w∗ denotes the conjugate of w. State the modulus and argument of p, where p = w/w∗.
Given that p5 is real and positive, find the possible values of θ.

Solution. Clearly, |p| = 1 and arg p = 2θ.
Since p5 is real and positive, we have arg p5 = 2πn, where n ∈ Z. Thus, arg p = 2πn/5 =

2θ =⇒ θ = πn/5. Since 0 < θ < π/2, the possible values of θ are π/5 and 2π/5.

∗ ∗ ∗ ∗ ∗

Problem 11. The complex number w has modulus
√
2 and argument −3π/4, and the

complex number z has modulus 2 and argument −π/3. Find the modulus and argument
of wz, giving each answer exactly.

By first expressing w and z in the form x+ iy, find the exact real and imaginary parts
of wz.

Hence, show that sin π
12 =

√
3−1
2
√
2
.

Solution. Note that
|wz| = |w| |z| = 2

√
2

and

arg(wz) = argw + arg z = −3

4
π − 1

3
π = −13

12
π ≡ 11

12
π.

Also,

w =
√
2

[
cos

(
−3

4
π

)
+ i sin

(
−3

4
π

)]
=

√
2

(
− 1√

2
− 1√

2
i

)
= −1− i

and

z = 2
[
cos
(
−π

3

)
+ i sin

(
−π

3

)]
= 2

(
1

2
−

√
3

2
i

)
= 1−

√
3i.

Hence,

wz = (−1− i)(1−
√
3i) = (−1 +

√
3− i −

√
3) = (−1−

√
3) + (

√
3− 1)i,

whence Re(wz) = −1−
√
3 and Im(wz) =

√
3− 1.

From the first part, we have that wz = 2
√
2
[
cos
(
11
12π
)
+ i sin

(
11
12π
)]
. Thus, Im(wz) =

2
√
2 sin

(
11
12π
)
= 2

√
2 sin π

12 . Equating the result for Im(wz) found in the second part, we
have

2
√
2 sin

π

12
=

√
3− 1 =⇒ sin

π

12
=

√
3− 1

2
√
2

.
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Problem 12. Given that 5+z
5−z = eiθ, show that z can be written as 5i tan θ

2 .

Solution. Note that

5 + z

5− z
= eiθ =⇒ 5 + z = eiθ(5− z) =⇒ z + eiθz = 5eiθ − 5 =⇒ z = 5

(
eiθ − 1

eiθ + 1

)
.

Hence,

z = 5

(
eiθ − 1

eiθ + 1

)
= 5

(
eiθ/2 − e−iθ/2

eiθ/2 + e−iθ/2

)
= 5

(
2i sin(θ/2)

2 cos(θ/2)

)
= 5i tan

θ

2
.

∗ ∗ ∗ ∗ ∗

Problem 13. The polynomial P (z) has real coefficients. The equation P (z) = 0 has a
root reiθ, where r > 0 and 0 < θ < π.

(a) Write down a second root in terms of r and θ, and hence show that a quadratic
factor of P (z) is z2 − 2rz cos θ + r2.

(b) Given that 3 roots of the equation z6 = −64 are 2ei
π
6 , 2ei

π
2 and 2e−i 5π

6 , express
z6 + 64 as a product of three quadratic factors with real coefficients, giving each
factor in non-trigonometric form.

(c) Represent all roots of z6 = −64 on an Argand diagram and interpret the geometrical
shape formed by joining the roots.

Solution.

Part (a). Since P (z) has real coefficients, by the conjugate root theorem,
(
reiθ

)∗
= re−iθ

is also a root of P (z). By the factor theorem, a quadratic factor of P (z) is

(z − reiθ)(z − re−iθ) = z2 − rz(eiθ + e−iθ) + r2eiθe−iθ = z2 − 2rz cos θ + r2.

Part (b). Let r1 = r2 = r3 = 2 and θ1 = π/6, θ2 = π/2 and θ3 = −5π/6.

z6 + 64 =
(
z2 − 2r1z cos θ1 + r21

) (
z2 − 2r2z cos θ2 + r22

) (
z2 − 2r3z cos θ3 + r23

)

=
(
z2 − 4z cos

(π
6

)
+ 4
)(

z2 − 4z cos
(π
2

)
+ 4
)(

z2 − 4z cos

(
−5

6
π

)
+ 4

)

=
(
z2 − 2

√
3z + 4

) (
z2 + 4

) (
z2 + 2

√
3z + 4

)

Part (c).

Z1

Z2

Z3

Z4

Z5

Z6

O

Re

Im

The geometrical shape formed is a regular hexagon.
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Self-Practice A10.2

Problem 1. The complex numbers 2eiπ/12 and 2ei(5π/12) are represented by the points A
and B respectively in an Argand diagram with origin O. Show that the triangle OAB is
equilateral.

Solution. Note that OA = OB = 2 and

∠BOA = arg
(
2ei(5π/12)

)
− arg

(
2ei(π/12)

)
=

π

3
.

It follows that △OAB is equilateral.

∗ ∗ ∗ ∗ ∗

Problem 2. The complex numbers z and w are such that

|z| = 2, arg(z) = −2π

3
, and |w| = 5, arg(w) =

3π

4
.

(a) Find the exact values of the modulus and argument of w/z2. Hence, represent z, w
and w/z2 clearly in an Argand diagram.

(b) Express w/z2 in the exponential form. Hence, or otherwise, find the smallest positive
integer n such that (w/z2)n is a real number.

Solution.

Part (a). We have ∣∣∣w
z2

∣∣∣ = |w|
|z|2

=
5

22
=

5

4

and

arg
(w
z2

)
= arg(w)− 2 arg(z) =

3π

4
− 2

(
−2π

3

)
=

π

12
.

P (z)

Q (w)

R
(
w
z2

)

O

Re

Im

Part (b). For (w/z2)n to be real, its argument must be an integer multiple of π, i.e.

arg
(w
z2

)n
= n arg

(w
z2

)
=

nπ

12
= kπ =⇒ n = 12k

for some k ∈ Z. It is clear that the smallest value n can be is 12 (occurring when k = 1).

∗ ∗ ∗ ∗ ∗

Problem 3. Express cot θ+i
cot θ−i in the exponential form.
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Solution. We have
cot θ + i

cot θ − i
=

cos θ + i sin θ

cos θ − i sin θ
=

eiθ

e−iθ
= e2iθ.

∗ ∗ ∗ ∗ ∗

Problem 4. Do not use a calculator in answering this question.
Two complex numbers are z1 = 2

(
cos π

18 − i sin π
18

)
and z2 = 2i.

(a) Show that
z21
z∗1

+ z2 =
√
3 + i.

(b) A third complex number, z3, is such that
(
z21
z∗1

+ z2

)
z3 ∈ R and

∣∣∣∣
(
z21
z∗1

+ z2

)
z3

∣∣∣∣ =
2

3
.

Find the possible values of z3 in the form of r (cos θ + i sin θ), where r > 0 and
−π < θ ≤ π.

Solution.

Part (a). Note that

z1 = 2
(
cos
(
− π

18

)
+ i sin

(
− π

18

))
= 2e−iπ/18.

Thus,

z21
z∗1

+ z2 =
z31
|z1|2

+ z2 =
23e−iπ/6

22
+ 2i = 2

[
cos
(
−π

6

)
+ i sin

(
−π

6

)]
+ 2i =

√
3 + i.

Part (b). Let w = z21/z
∗
1 + z2. Note that

|w| =
√√

3
2
+ 12 = 1 and arg(w) = arctan

(
1√
3

)
=

π

6
,

so w = 2eiπ/6. Let z3 = reiθ. Since wz3 is real, its argument must be an integer multiple
of π, i.e.

arg(wz3) = arg(w) + arg(z3) =
π

6
+ θ = kπ =⇒ θ =

π (6k − 1)

6

for some k ∈ Z. The only solutions for θ within the specified range (−π, π) are θ = −π/6
and θ = 5π/6. Further, we have

2

3
= |wz3| = |w| |z3| = 2r =⇒ r =

1

3
.

Thus,

z3 =
1

3

(
cos
(
−π

6

)
+ i sin

(
−π

6

))
or z3 =

1

3

(
cos

5π

6
+ i sin

5π

6

)
.

∗ ∗ ∗ ∗ ∗

Problem 5. Do not use a calculator in answering this question.
The complex numbers z and w satisfy the following equations:

w − z = 1−
√
3, iz + w =

(√
3 + 1

)
i.

Find w in the form reiθ, where r > 0 and −π < θ ≤ π. Give r and θ in exact form.
Hence, find the three smallest positive whole number values of n for which (iw)n is an

imaginary number.
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Solution. Multiplying the second equation by i yields

iw − z = −
(
1 +

√
3
)
.

Along with the first equation, this gives

w − iw =
(
1−

√
3
)
+
(
1 +

√
3
)
= 2 =⇒ w =

2

1− i
=

2 (1 + i)

2
= 1 + i =

√
2eiπ/4.

For (iw)n to be purely imaginary, its argument must be a half-integer multiple of π, i.e.

arg((iw)n) = n (arg(i) + arg(w)) = n
(π
2
+

π

4

)
=

(
k +

1

2

)
π =⇒ n =

4k + 2

3

for some k ∈ Z. The first three smallest positive values of n are hence n = 2, 6, 10
(occurring when k = 1, 4, 7 respectively).

∗ ∗ ∗ ∗ ∗

Problem 6 ( ). It is given that z = cos θ + i sin θ, where 0 < θ < π/2.

(a) Show that ei(θ−π/2) = sin θ − i cos θ.

(b) Hence, or otherwise, show that arg
(
1− z2

)
= θ−π/2 and find the modulus of 1−z2.

(c) Hence, represent the complex number 1− z2 on an Argand diagram.

(d) Given that z∗

z3(1−z2)
is real, find the possible values of θ.

Solution.

Part (a). By trigonometric identities, we readily have

ei(t−π/2) = cos
(
θ − π

2

)
+ i sin

(
θ − π

2

)
= sin θ − i cos θ.

Part (b). Note that z = reiθ. Thus,

1− z2 = −
(
e2iθ − 1

)
= −eiθ

(
eiθ − e−iθ

)
= −eiθ (2i sin θ)

= (2 sin θ) eiθe−iπ/2 = (2 sin θ) ei(θ−π/2).

Thus, arg
(
1− z2

)
= θ − π/2 and

∣∣1− z2
∣∣ = 2 sin θ.

Part (c).

P
(
1− z2

)

θ − π
2

O

Re
Im
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Part (d). Note that

arg

(
z∗

z3 (1− z2)

)
= arg(z∗)− 3 arg(z)− arg

(
1− z2

)
= (−θ)− 3θ −

(
θ − π

2

)
= −5θ +

π

2
.

Since z∗

z3(1−z2)
is real, its argument is an integer multiple of π, i.e.

−5θ +
π

2
= kπ =⇒ θ =

π (1− 2k)

10

for some k ∈ Z. Since θ ∈ (0, π/2), the only possible values of θ are θ = π/10 and
θ = 3π/10 (corresponding to k = 0 and k = −1 respectively).
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Assignment A10.2

Problem 1. On an Argand diagram, mark and label clearly the points P and Q repre-
senting the complex numbers p and q respectively, where

p = cos
π

4
+ i sin

π

4
, q = 2 cos

π

4
+ 2i sin

π

4
.

Find the moduli and arguments of the complex numbers a, b, c, d and e, where a = p4,
b = q2, c = −ip, d = 1/q, e = p+ p∗.

On your Argand diagram, mark and label the points A, B, C, D and E representing
these complex numbers.
Find the area of triangle COQ.
Find the modulus and argument of p13/3q45/2.

Solution.

-1
√
2

4i

P

Q

A

B

C
D

E
π
4

π
4

1

1

1
2

1
2

O

Re

Im

Note that p = eiπ/4 and q = 2eiπ/4.

a = p4 =
(
eiπ/4

)4
= eiπ, b = q2 =

(
2eiπ/4

)2
= 4eiπ/2

c = −ip = e−iπ/2eiπ/4 = e−iπ/4, d =
1

q
=

1

2
e−iπ/4

e = p+ p∗ = 2Re p = 2 cos
(π
4

)
=

√
2

z |z| arg z

a 1 π
b 4 π/2
c 1 −π/4
d 1/2 −π/4

e
√
2 0

Since ∠COQ = π/2, we have [△COQ] = 1
2(2)(1) = 1 units2.

We have

p
13
3 q

45
2 =

(
ei

π
4

) 13
3
(
2ei

π
4

) 45
2
= 2

45
2 ei

161π
24 = 2

45
2 ei

17π
24 .
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Hence,
∣∣p13/3q45/2

∣∣ = e45/2 and arg
(
p13/3q45/2

)
= 17

24π.

∗ ∗ ∗ ∗ ∗

Problem 2. The complex number q is given by q = ei2θ

1−ei2θ
, where 0 < θ < 2π. In either

order,

(a) find the real part of q,

(b) show that the imaginary part of q is 1
2 cot θ.

Solution. We have

q =
ei2θ

1− ei2θ
=

eiθ

e−iθ − eiθ
=

cos θ + i sin θ

−2i sin θ
= −1

2
− 1

2i
cot θ = −1

2
+

i

2
cot θ.

Hence, Re q = −1
2 and Im q = 1

2 cot θ.

∗ ∗ ∗ ∗ ∗

Problem 3. The complex numbers z and w are such that z = 4
(
cos 3

4π + i sin 3
4π
)
and

w = 1− i
√
3. z∗ denotes the conjugate of z.

(a) Find the modulus r and the argument θ of w2/z∗, where r > 0 and −π < θ < π.

(b) Given that
(
w2/z∗

)n
is purely imaginary, find the set of values that n can take.

Solution.

Part (a). Note that z = 4ei3π/4 and w = 2
(
1
2 − i

√
3
2

)
= 2e−iπ/3. Hence,

w2

z∗
=

(
2e−i π

3

)2

4e−i 3π
4

=
4e−i 2π

3

4e−i 3π
4

= ei
π
12 .

Thus, r = 1 and θ = π/12.

Part (b). Note that
(
w2/z∗

)n
=
(
eiπ/12

)n
= einπ/12. Since

(
w2/z∗

)n
is purely imaginary,

we have arg
(
w2/z∗

)n
= π/2 + πk, where k ∈ Z. Thus, nπ/12 = π/2 + πk, whence

n = 6 + 12k. Hence, {n ∈ Z : n = 6 + 12k, k ∈ Z}.
∗ ∗ ∗ ∗ ∗

Problem 4. The complex number w has modulus
√
2 and argument π/4 and the complex

number z has modulus
√
2 and argument 5π/6.

(a) By first expressing w and z in the form x + iy, find the exact real and imaginary
parts of w + z.

(b) On the same Argand diagram, sketch the points P , Q, R representing the complex
numbers z, w, and z+w respectively. State the geometrical shape of the quadrilateral
OPRQ.

(c) Referring the Argand diagram in part (b), find arg(w + z) and show that tan 11
24π =

a+
√
2√

6+b
, where a and b are constants to be determined.
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Solution.

Part (a). Note that

w =
√
2eiπ/4 =

√
2
(
cos

π

4
+ i sin

π

4

)
=

√
2

(
1√
2
+ i

1√
2

)
= 1 + i

and

z =
√
2ei5π/6 =

√
2

(
cos

5

6
π + i sin

5

6
π

)
=

√
2

(
−
√
3

2
+ i

1

2

)
= −

√
3√
2
+ i

1√
2
.

Hence,

w + z = (1 + i) +

(
−
√
3√
2
+ i

1√
2

)
=

(
1−

√
3√
2

)
+ i

(
1 +

1√
2

)
.

Part (b).

P

Q

R

π
4

π
6

O

Re

Im

OPRQ is a rhombus.

Part (c). Note that ∠POQ = π − π
6 − π

4 = 7
12π. Since |z| = |w|, we have OP = OQ,

whence ∠ROQ = 1
2 · 7

12π = 7
24π. Hence, arg(w + z) = π

4 + 7
24π = 13

24π. Thus,

tan

(
13

24
π

)
=

1 + 1/
√
2

1−
√
3/
√
2
=

√
2 + 1√
2−

√
3
=

2 +
√
2

2−
√
6

However, tan
(
13
24π
)
= − tan

(
π − 13

24

)
= − tan

(
11
24π
)
. Hence,

tan

(
11

24
π

)
= −2 +

√
2

2−
√
6
=

2 +
√
2√

6− 2
,

whence a = 2 and b = −2.

∗ ∗ ∗ ∗ ∗

Problem 5. The complex number z is given by z = 2 (cosβ + i sinβ) where 0 < β < π
2 .

(a) Show that z
4−z2

= (k cscβ)i, where k is positive real constant to be determined.

(b) State the argument of z
4−z2

, giving your reasons clearly.

(c) Given the complex number w = −
√
3 + i, find the three smallest positive integer

values of n such that
(

z
4−z2

)
(w∗)n is a real number.
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Solution.

Part (a). Observe that z = 2 (cosβ + i sinβ) = 2eiβ. Hence,

z

4− z2
=

2eiβ

4− 4ei2β
=

1

2

(
1

e−iβ − eiβ

)
=

1

2

(
1

−2i sinβ

)
=

(
1

4
cscβ

)
i,

thus k = 1/4.

Part (b). Since 0 < β < π/2, we know that cscβ > 0. Hence, Im
(

z
4−z2

)
> 0. Further-

more, Re
(

z
4−z2

)
= 0. Thus, arg

(
z

4−z2

)
= π/2.

Part (c). Note that w = −
√
3 + i = 2

(
−

√
3
2 + 1

2 i
)
= 2e−i5π/6. Hence,

arg

((
z

4− z2

)
(w∗)n

)
=

π

2
+ n

(
−5π

6

)
= π

(
1

2
− 5n

6

)
.

For
(

z
4−z2

)
(w∗)n to be a real number, we require arg

((
z

4−z2

)
(w∗)n

)
= πk, where k ∈ Z.

Hence,

π

(
1

2
− 5

6
n

)
= πk =⇒ 1

2
− 5

6
n = k =⇒ 3− 5n = 6k =⇒ n ≡ 3 (mod 6).

Hence, the three smallest possible values of n are 3, 9 and 15.
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Effects and De Moivre’s Theorem

Tutorial A10.3

Problem 1. Given that z = 1 + i and w = 1 + 2i, mark on an Argand diagram, the
positions representing: z, w, z + w, z − w, iz and 2z∗.

Solution.

−1 1 2

−2i

−i

i

2i

3i

Z1(z)

Z2(w)

Z3(z + w)

Z4(z − w)

Z5(iz)

Z6(2z
∗)

O

Re

Im

∗ ∗ ∗ ∗ ∗

Problem 2.

(a) Write down the exact values of the modulus and the argument of the complex number
1
2 +

√
3
2 i.

(b) The complex numbers z and w satisfy the equation

z2 − zw + w2 = 0.

Find z in terms of w. In an Argand diagram, the points O, A and B represent
the complex numbers 0, z and w respectively. Show that △OAB is an equilateral
triangle.

Solution.

Part (a). We have r2 =
(
1
2

)2
+
(√

3
2

)2
=⇒ r = 1 and tan θ =

√
3/2
1/2 =⇒ θ = π

3 . Hence,∣∣∣12 +
√
3
2 i
∣∣∣ = 1 and arg

(
1
2 +

√
3
2 i
)
= π

3 .

Part (b). From the quadratic formula, we have

z =
w ±

√
w2 − 4w2

2
= w

(
1

2
±

√
3

2
i

)
.
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B(w)

A1(z1)

A2(z2)

θ
θ

O

Re

Im

Since
∣∣∣12 ±

√
3
2 i
∣∣∣ = 1, we have that OB = OA1 = OA2. Further, since arg

(
1
2 ±

√
3
2 i
)
=

±π/3, we know ∠A1OB = ∠A2OB = π/3, whence △A1OB and △A2OB are both equi-
lateral.

∗ ∗ ∗ ∗ ∗

Problem 3. Find the exact roots of the equations

(a) z3 = 1

(b) (z − 1)4 = −16

in the form x+ iy.

Solution.

Part (a). Note that

z3 = 1 = ei2πn =⇒ z = ei2πn/3 = cos
2πn

3
+ i sin

2πn

3
,

for n ∈ Z. Evaluating z in the n = 0, 1, 2 cases, we see that the roots of z3 = 1 are

z = 1, −1

2
+

√
3

2
i, −1

2
−

√
3

2
i.

Part (b). Note that (z − 1)4 = −16 = 16eiπ(2n+1). Hence,

z = 1 + 2eiπ(2n+1)/4 = 1 + 2

[
cos

(
2n+ 1

4
π

)
+ i sin

(
2n+ 1

4
π

)]
,

where n ∈ Z. Evaluating z in the n = 0, 1, 2, 3 cases, we see that the roots of (z−1)4 = −16
are

z = (1 +
√
2) + i

√
2, (1−

√
2) + i

√
2, (1−

√
2)− i

√
2, (1 +

√
2)− i

√
2.

∗ ∗ ∗ ∗ ∗

Problem 4.

(a) Write down the 5 roots of the equation z5 − 1 = 0 in the form reiθ, where r > 0 and
−π < θ ≤ π.

(b) Show that the roots of the equation (5 + z)5 − (5 − z)5 = 0 can be written in the
form 5i tan kπ

5 , where k = 0,±1,±2.
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Solution.

Part (a). Note that
z5 = 1 = ei2πn =⇒ z = ei2πn/5.

Since −π < θ ≤ π, we have

z = e−i4π/5, e−i2π/5, 1, ei2π/5, ei4π/5.

Part (b). Note that

(5 + z)5 − (5− z)5 = 0 =⇒
(
5 + z

5− z

)5

− 1 = 0 =⇒ 5 + z

5− z
= ei2kπ/5.

Solving for z, we get

z = 5

(
ei2kπ/5 − 1

ei2kπ/5 + 1

)
= 5

(
eikπ/5 − e−ikπ/5

eikπ/5 + e−ikπ/5

)
= 5

[
2i sin(kπ/5)

2 cos(kπ/5)

]
= 5i tan

kπ

5
.

∗ ∗ ∗ ∗ ∗

Problem 5. De Moivre’s theorem for a positive integral exponent states that

(cos θ + i sin θ)n = cosnθ + i sinnθ.

Use de Moivre’s theorem to show that

cos 7θ = 64 cos7 θ − 112 cos5 θ + 56 cos3 θ − 7 cos θ.

Hence, obtain the roots of the equation

128x7 − 224x5 + 112x3 − 14x+ 1 = 0

in the form cos qπ, where q is a rational number.

Solution. Taking n = 7, we have cos 7θ + i sin 7θ = (cos θ + i sin θ)7, whence cos 7θ =
Re(cos θ + i sin θ)7. Let c = cos θ and s = sin θ. By the binomial theorem,

cos 7θ = Re (c+ is)7 = Re

7∑

k=0

(
7

k

)
ikskc7−k.

Note that Re ik is given by

Re ik =





0, k = 1, 3 (mod 4)

1, k = 0 (mod 4)

−1, k = 2 (mod 4)

We hence have

cos 7θ = c7 − 21c5s2 + 35c3s4 − 7cs6 = c7 − 21c5
(
1− c2

)
+ 35c3

(
1− c2

)2 − 7c
(
1− c2

)3

= 64c7 − 112c5 + 56c3 − 7c = 64 cos7 θ − 112 cos5+56 cos3 θ − 7 cos θ.

Observe that we can manipulate the given equation into

128x7 − 224x5 + 112x3 − 14x+ 1 = 0 =⇒ 64x7 − 112x5 + 56x3 − 7x = −1

2
.
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Under the substitution x = cos θ, we see that

cos 7θ = −1

2
=⇒ 7θ =

2

3
π + 2πn =⇒ θ =

2π

21
(3n+ 1),

where n ∈ Z. Taking 0 ≤ n < 7,

x = cos
2π

21
, cos

8π

21
, cos

14π

21
, cos

20π

21
, cos

26π

21
, cos

32π

21
, cos

38π

21

= cos
2π

21
, cos

4π

21
, cos

8π

21
, cos

10π

21
, cos

14π

21
, cos

16π

21
, cos

20π

21
.

∗ ∗ ∗ ∗ ∗

Problem 6. By considering
∑N

n=1 z
2n−1, where z = eiθ, or by any method, show that

N∑

n=1

sin(2n− 1)θ =
sin2Nθ

sin θ
,

provided sin θ ̸= 0.

Solution. Observe that

N∑

n=1

sin(2n− 1)θ = Im
N∑

n=1

[cos(2n− 1)θ + i sin(2n− 1)θ] = Im
N∑

n=1

z2n−1.

Since

N∑

n=1

z2n−1 =
1

z

N∑

n=1

(
z2
)n

=
1

z



z2
[(
z2
)N − 1

]

z2 − 1


 =

z2N − 1

z − z−1

= zN
(
zN − z−N

z − z−1

)
= zN

(
2i sinNθ

2i sin θ

)
= zN

(
sinNθ

sin θ

)
,

we have

N∑

n=1

sin(2n− 1)θ =

(
sinNθ

sin θ

)
Im
(
zN
)
=

(
sinNθ

sin θ

)
sinNθ =

sin2Nθ

sin θ
.

∗ ∗ ∗ ∗ ∗

Problem 7. By considering the series
∑N

n=0

(
e2iθ
)n
, show that, provided sin θ ̸= 0,

N∑

n=0

cos 2nθ =
sin(N + 1)θ cosNθ

sin θ

and deduce that
N∑

n=0

sin2 nθ =
N

2
+

1

2
− sin(N + 1)θ cosNθ

2 sin θ
.

Solution. Let z = eiθ. Then

N∑

n=0

cos 2nθ = Re

N∑

n=0

(cos 2nθ + i sin 2nθ) = Re

N∑

n=0

ei2nθ = Re

N∑

n=0

(
z2
)n

.
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Observe that

N∑

n=0

(
z2
)n

=

(
z2
)N+1 − 1

z2 − 1
=

zN+1

z

(
zN+1 − z−(N+1)

z − z−1

)
= zN

(
sin(N + 1)θ

sin θ

)
.

Hence,
N∑

n=0

cos 2nθ =

(
sin(N + 1)θ

sin θ

)
Re
(
zN
)
=

sin(N + 1)θ cosNθ

sin θ
.

Recall that cos 2nθ = 1− 2 sin2 nθ =⇒ sin2 nθ = 1
2(1− 2 cos 2nθ). Thus,

N∑

n=0

sin2 nθ =
1

2

N∑

n=0

(1− cos 2nθ) =
N + 1

2
− sin(N + 1)θ cosNθ

2 sin θ
.

∗ ∗ ∗ ∗ ∗

Problem 8. Given that z = eiθ, show that zk + 1/zk = 2 cos kθ, k ∈ Z.
Hence, show that cos8 θ = 1

128 (cos 8θ + 8 cos 6θ + 28 cos 4θ + 56 cos 2θ + 35).
Find, correct to three decimal places, the values of θ such that 0 < θ < 1

2π and cos 8θ+
8 cos 6θ + 28 cos 4θ + 56 cos 2θ + 1 = 0.

Solution. Note that

zk +
1

zk
= zk + z−k =

(
eiθ
)k

+
(
eiθ
)−k

= eikθ + e−ikθ

= [cos(kθ) + i sin(kθ)] + [cos(−kθ) + i sin(−kθ)] = 2 cos(kθ) .

Observe that

cos8 θ =
1

256
(2 cos θ)8 =

1

256
(z + z−1)8 =

1

256
z−8

(
z2 + 1

)8

=
1

256

(
z−8 + 8z−6 + 28z−4 + 56z−2 + 70 + 56z2 + 28z4 + 8z6 + z8

)

=
1

128

[(
z8 + z−8

2

)
+ 8

(
z6 + z−6

2

)
+ 28

(
z4 + z−4

2

)
+ 56

(
z2 + z−2

2

)
+

70

2

]

=
1

128
(cos 8θ + 8 cos 6θ + 28 cos 4θ + 56 cos 2θ + 35) .

Note that we rewrite the equation as

cos 8θ + 8 cos 6θ + 28 cos 4θ + 56 cos 2θ + 35 = 128 cos8 θ = 34.

Thus,

cos θ =
8

√
34

128
=⇒ θ = 0.560 (3 s.f.).
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Self-Practice A10.3

Problem 1. Express cot θ+i
cot θ−i in the exponential form. Hence, show that one of the roots

of the equation

z4 =

√
3 + i√
3− i

is eiπ/12, and find three more roots in the exponential form.

Solution. Note that

cot θ + i

cot θ − i
=

cos θ + i sin θ

cos θ − i sin θ
=

eiθ

e−iθ
= e2iθ.

Note that cot θ =
√
3 =⇒ θ = π/6, so

z4 =

√
3 + i√
3− i

= e2iπ/6 = eiπ(1/3+2k),

where k ∈ Z. Taking fourth roots,

z = eiπ(1/12+k/2).

Taking k = 0, 1, 2, 3, we see that the four roots are

z = eiπ/12, e7iπ/12, e13iπ/12, e19iπ/12.

∗ ∗ ∗ ∗ ∗

Problem 2. Find the cube roots of the complex number 1 + i
√
3. Give your answers

exactly, in the form reiθ. Hence, solve the equation z6 − 2z3 + 4 = 0. Give your answers
exactly, in the form reiθ.

Solution. Consider
z3 = 1 + i

√
3 = 2eiπ/3 = 2eiπ(1/3+2k),

where k ∈ Z. Taking roots,
z = 21/3eiπ(1/9+2k/3).

Taking k = −1, 0, 1, the cube roots of 1 + i
√
3 are

z = 21/3e−8iπ/9, 21/3eiπ/9, 21/3e7iπ/9.

Consider z6 − 2z3 + 4 = 0. Then
z3 = 1±

√
3.

From the positive branch, we get the aforementioned roots. Since the coefficients of the
sextic are all real, by the conjugate root theorem, the six roots are

z = 21/3e−8iπ/9, 21/3e−7iπ/9, 21/3e−iπ/9, 21/3eiπ/9, 21/3e7iπ/9, 21/3e8iπ/9.

∗ ∗ ∗ ∗ ∗

Problem 3. Express 8
(√

3− i
)
in the form r (cos θ + i sin θ), where r > 0 and −π ≤ θ ≤

π, giving θ in terms of π. Hence, obtain the roots of the equation z4 = 8
(√

3− i
)
in the

same form.
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Solution. Note that

8
(√

3− i
)
= 16

(√
3

2
− 1

2
i

)
= 16

[
cos
(
−π

6

)
+ i sin

(
−π

6

)]
= 16e−iπ/6.

We are given

z4 = 8
(√

3− i
)
= 16e−iπ/6 = 16eiπ(−1/6+2k),

for k ∈ Z. Taking roots,
z = 2eiπ(−1/24+k/2).

Taking k = −1, 0, 1, 2, the roots are

z = 2e−13iπ/24, 2e−iπ/24, 2e11iπ/24, 2e23iπ/24.

∗ ∗ ∗ ∗ ∗

Problem 4. Write down, in any form, the five complex numbers which satisfy the equation
z5 − 1 = 0. Hence, show that the five complex numbers which satisfy the equation

(
2w + 1

w

)5

= 1

are
−2 + cos

(
2
5πk

)
− i sin

(
2
5πk

)

5− 4 cos
(
2
5πk

) ,

where k = 0, 1, 2, 3, 4.

Solution. The fifth roots of unity are given by

z = e2kiπ/5,

where k = 0, 1, 2, 3, 4.
We have

2w + 1

w
= e2kiπ/5 =⇒ w =

1

e2kiπ/5 − 2
=

e−2kiπ/5 − 2∣∣e2kiπ/5 − 2
∣∣2 .

Note that

∣∣∣e2kiπ/5 − 2
∣∣∣
2
=
(
e2kiπ/5 − 2

)(
e−2kiπ/5 − 2

)
= 1− 2

(
2 cos

2kπ

5

)
+ 4 = 5− 4 cos

2kπ

5
.

Thus,

w =
−2 + cos

(
2
5πk

)
− i sin

(
2
5πk

)

5− 4 cos
(
2
5πk

)

for k = 0, 1, 2, 3, 4.

∗ ∗ ∗ ∗ ∗

Problem 5.

(a) Show that, for all complex numbers z and all real numbers α,

(
z − eiα

) (
z − e−iα

)
= z2 − 2z cosα+ 1.

(b) Write down, in any form, the seven complex numbers which satisfy the equation
z7 − 1 = 0.
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(c) Hence, show that, for all complex numbers z,

z7 − 1 = (z − 1)

[
z2 − 2z cos

2π

7
+ 1

] [
z2 − 2z cos

4π

7
+ 1

] [
z2 − 2z cos

6π

7
+ 1

]
.

Solution.

Part (a). We have

(
z − eiα

) (
z − e−iα

)
= z2 −

(
eiα + e−iα

)
z + 1 = z2 − 2z cosα+ 1.

Part (b). The seventh roots of unity are

z = e2kiπ/7

where k = −3,−2,−1, 0, 1, 2, 3.

Part (c). Let Pk = z − e2kiπ/7. Observe that

PkP−k =
(
z − e2kiπ/7

)(
z − e2kiπ/7

)
= z2 − 2z cos

2kπ

7
+ 1.

Hence,

z7 − 1 = P0 (P1P−1) (P2P−2) (P3P−3)

= (z − 1)

[
z2 − 2z cos

2π

7
+ 1

] [
z2 − 2z cos

4π

7
+ 1

] [
z2 − 2z cos

6π

7
+ 1

]
.

∗ ∗ ∗ ∗ ∗

Problem 6. Use De Moivre’s theorem to show that

cos 6θ = 32 cos6 θ − 48 cos4 θ + 18 cos2 θ − 1.

Deduce that, for all θ,

0 ≤ cos6 θ − 3

2
cos4 θ +

9

16
cos2 θ ≤ 1

16
.

Solution. Let c = cos θ and s = sin θ. Then

cos 6θ = Re e6iθ = Re (c+ is)6

=

(
6

0

)
c6 −

(
6

2

)
c4s2 +

(
6

4

)
c2s4 −

(
6

6

)
s6

= c6 − 15c4
(
1− c2

)
+ 15c2

(
1− c2

)2 −
(
1− c2

)3

= c6 − 15c4
(
1− c2

)
+ 15c2

(
1− 2c2 + c4

)
−
(
1− 3c2 + 3c4 − c6

)

= 32c6 − 48c4 + 18c2 − 1

= 32 cos6 θ − 48 cos4 θ + 18 cos2 θ − 1.

Observe that

− 1

32
≤ cos 6θ

32
= cos6 θ − 3

2
cos4 θ +

9

16
cos2 θ − 1

32
≤ 1

32
,

so

0 ≤ cos6 θ − 3

2
cos4 θ +

9

16
cos2 θ ≤ 1

16
.
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Problem 7. Show that for z ̸= −1,

z − z2 + z3 − · · ·+ z7 =
z + z8

1 + z
.

Hence, by substituting z = eiθ, show that

7∑

k=1

(−1)k−1 sin kθ =
sin 4θ cos 7

2θ

cos 1
2θ

,

where θ is not an odd multiple of π.

Solution. Observe that z− z2+ z3−· · ·+ z7 is a geometric series with common ratio −z,
so it evaluates to

z − z2 + z3 − · · ·+ z7 = z

(
1− (−z)7

1− (−z)

)
=

z − z8

1 + z
,

with the condition z ̸= −1.
We have

7∑

k=1

(−1)k−1 sin kθ =

7∑

k=1

(−1)k−1 Im zk = Im

7∑

k=1

(−1)k−1zk = Im
z + z8

1 + z

= Im
z9/2

(
z7/2 + z−7/2

)

z1/2
(
z1/2 + z−1/2

) =
2 cos

(
7
2θ
)

2 cos
(
1
2θ
) Im z4 =

cos
(
7
2θ
)
sin 4θ

cos 1
2θ

.

Note that z = eiθ ̸= −1 = eiπ(2k+1)) for k ∈ Z, so θ ̸= (2k + 1)π, i.e. θ cannot be an odd
multiple of π.
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Assignment A10.3

Problem 1.

(a) Solve z4 = −4 − 4
√
3i, expressing your answers in the form reiθ, where r > 0 and

−π < θ ≤ π.

(b) Sketch the roots on an Argand diagram.

(c) Hence, solve w4 = −1 +
√
3i, expressing your answers in a similar form.

Solution.

Part (a). Observe that −4− 4
√
3i = 8

(
−1

2 −
√
3
2 i
)
= 8ei

4
3
π+2kπ i for all k ∈ Z. Hence,

z4 = 8ei
4
3
π+2kπ i =⇒ z = 8

1
4 ei

1
3
π+ 1

2
kπ i = 2

3
4 ei

2+3k
6

π.

Taking k = −2,−1, 0, 1, we see that the roots are

z−2 = 2
3
4 e−i 2

3
π, z−1 = 2

3
4 e−i 1

6
π, z0 = 2

3
4 ei

1
3
π, z1 = 2

3
4 ei

5
6
π.

Part (b).

z−2

z−1

z0

z1

2
3

4

π
3· ·

··
O

Re

Im

Part (c). Observe that w4 = −1+
√
3i = 1

4(−4+ 4
√
3i) = 2−2(z∗)4. Hence, w = 2−1/2z∗.

Thus, the roots are

w−2 = 2
1
4 ei

2
3
π, w−1 = 2

1
4 ei

1
6
π, w0 = 2

1
4 e−i 1

3
π, w1 = 2

1
4 e−i 5

6
π.

∗ ∗ ∗ ∗ ∗

Problem 2. Let

C = 1−
(
2n

1

)
cos θ +

(
2n

2

)
cos 2θ −

(
2n

3

)
cos 3θ + . . .+ cos 2nθ

S = −
(
2n

1

)
sin θ +

(
2n

2

)
sin 2θ −

(
2n

3

)
sin 3θ + . . .+ sin 2nθ

where n is a positive integer.
Show that C = (−4)n cos(nθ) sin2n(θ/2), and find the corresponding expression for S.
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Solution. Clearly,

C =
2n∑

k=0

(
2n

k

)
(−1)k cos kθ, S =

2n∑

k=0

(
2n

k

)
(−1)k sin kθ.

Hence,

C + iS =

2n∑

k=0

(
2n

k

)
(−1)k(cos kθ + i sin kθ) =

2n∑

k=0

(
2n

k

)
(−eiθ)k =

(
1− eiθ

)2n

=
(
eiθ/2

)2n (
e−iθ/2 − eiθ/2

)2n
= einθ

(
2i sin

θ

2

)2n

= einθ(−4)n sin2n
θ

2

= (cosnθ + i sinnθ)(−4)n sin2n
θ

2
.

Comparing real and imaginary parts, we have

C = (−4)n cos(nθ) sin2n
θ

2
, S = (−4)n sin(nθ) sin2n

θ

2
.

∗ ∗ ∗ ∗ ∗

Problem 3. Given that z = cos θ + i sin θ, show that

(a) z − 1/z = 2i sin θ,

(b) zn + z−n = 2 cosnθ.

Hence, show that

sin6 θ =
1

32
(10− 15 cos 2θ + 6 cos 4θ − cos 6θ)

Find a similar expression for cos6 θ, and hence express cos6 θ− sin6 θ in the form a cos 2θ+
b cos 6θ.

Solution.

Part (a). Note that

z − 1

z
= z − z−1 = eiθ − e−iθ = [cos θ + i sin θ]− [cos(−θ) + i sin(−θ)] = 2i sin θ.

Part (b). Note that

zn + z−n = einθ + e−inθ = [cosnθ + i sinnθ] + [cos(−nθ) + i sin(nθ)] = 2 cosnθ.

Observe that

sin6 θ =
1

(2i)6
(2i sin θ)6 = − 1

64
(z − z−1)6

= − 1

64

(
z6 − 6z4 + 15z2 − 20 + 15z−2 − 6z−4 + z−6

)

= − 1

32

[
−20

2
+ 15

(
z2 + z−2

2

)
− 6

(
z4 + z−4

2

)
+

(
z6 + z−6

2

)]

=
1

32
(10− 15 cos 2θ + 6 cos 4θ − cos 6θ) .
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Similarly,

cos6 θ =
1

26
(2 cos θ)6 =

1

64
(z + z−1)6

=
1

64

[
z6 + 6z4 + 15z2 + 20 + 15z−2 + 6z−4 + z−6

]

=
1

32

[
20

2
+ 15

(
z2 + z−2

2

)
+ 6

(
z4 + z−4

2

)
+

(
z6 + z−6

2

)]

=
1

32
(10 + 15 cos 2θ + 6 cos 4θ + cos 6θ) .

Hence,

cos6 θ − sin6 θ =
1

32
(30 cos 2θ + 2 cos 6θ) =

15

16
cos 2θ +

1

16
cos 6θ,

whence a = 15/16 and b = 1/16.
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A10.4 Complex Numbers - Loci in Argand
Diagram

Tutorial A10.4

Problem 1. A complex number z is represented in an Argand diagram by the point P .
Sketch, on separate Argand diagrams, the locus of P . Describe geometrically the locus of
P and determine its Cartesian equation.

(a) |2z − 6− 8i| = 10

(b) |z + 2| = |z − i|

(c) arg(z + 2− i) = −π/4

Solution.

Part (a). Note that |2z − 6− 8i| = 10 =⇒ |z − (3 + 4i)| = 5.

3 + 4i

5

O

Re

Im locus of P

The locus of P is a circle with centre (3, 4) and radius 5. Its Cartesian equation is
(x− 3)2 + (y − 4)2 = 52.

Part (b). Note that |z + 2| = |z − i| =⇒ |z − (−2)| = |z − i|.

−2

i

O

Re

Im locus of P
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The locus of P is the perpendicular bisector of the line segment joining (−2, 0) and
(0, 1). Its Cartesian equation is y = −2x− 1.5.

Part (c). Note that arg(z + 2− i) = −π/4 =⇒ arg(z − (−2 + i)) = −π/4.

−2

i
−2 + i

−π
4

O

Re

Im locus of P

The locus of P is the half-line starting from (−2, 1) and inclined at an angle −π/4 to
the positive real axis. Its Cartesian equation is y = −x− 1

∗ ∗ ∗ ∗ ∗

Problem 2. Sketch the following loci on separate Argand diagrams.

(a) Re
(
z2
)
= 1

(b) |6− iz| = 2,

(c) arg
(

iz
1−

√
3i

)
= π

Solution.

Part (a). Let z = r(cos θ + i sin θ). Then Re
(
z2
)
= 1 =⇒ r2 cos 2θ = 1 =⇒ r2 = sec 2θ.

−1 1O

Re

Im required locus

Part (b). Note |6− iz| = 2 =⇒ |−i(z + 6i)| = 2 =⇒ |z + 6i| = 2 =⇒ |z − (6i)| = 2.
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−6i
2

O

ReIm required locus

Part (c). Note arg
(

iz
1−

√
3i

)
= π =⇒ π

2 + arg(z)−
(
−π

3

)
=⇒ arg(z) = π

6 .

−π
4

O

Re

Im required locus

∗ ∗ ∗ ∗ ∗

Problem 3. Sketch, on separate Argand diagrams, the set of points satisfying the follow-
ing inequalities.

(a) 2 < |z − 2i| ≤ |3− 4i|

(b) |z + i| > |z + 1− i|

(c) π
4 < arg

(
1
z

)
≤ π

2

Solution.

Part (a). Note 2 < |z − 2i| ≤ |3− 4i| =⇒ 2 < |z − 2i| ≤ 5.

5
2

2i

O

Re

Im required locus
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Part (b). Note |z + i| > |z + 1− i| =⇒ |z − (−i)| > |z − (−1 + i)|.

−1 + i

−i

O

Re

Im required locus

Part (c). Note π
4 < arg

(
1
z

)
≤ π

2 =⇒ π
4 < − arg(z) ≤ π

2 =⇒ −π
2 ≥ arg(z) > −π

4 .

−π
4O

Re
Im required locus

∗ ∗ ∗ ∗ ∗

Problem 4. Sketch on separate Argand diagrams for (a) and (b) the set of points repre-
senting all complex numbers z satisfying both of the following inequalities.

(a) |z − 3− i| ≤ 3 and |z| ≥ |z − 3− i|
(b) π

2 < arg(z + 1) ≤ 2
3π and 3 Im(z) > 2

Solution.

Part (a). Note |z − 3− i| ≤ 3 =⇒ |z − (3 + i)| ≤ 3 and |z| ≥ |z − 3− i| =⇒ |z| ≥
|z − (3 + i)|.

3 + i

3
O

Re

Im required locus
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Part (b). Note π
2 < arg(z + 1) < 2

3π =⇒ π
2 < arg(z − (−1)) < 2

3π and 3 Im(z) > 2 =⇒
Im(z) > 2

3 .

−1

2
3 i

O

Re

Im required locus

∗ ∗ ∗ ∗ ∗

Problem 5. Illustrate, in separate Argand diagrams, the set of points z for which

(a) Re
(
z2
)
< 0

(b) Im
(
z3
)
> 0

Solution.

Part (a). Let z = r(cos θ + i sin θ), 0 ≤ θ < 2π. Then Re(z2) < 0 =⇒ r2 cos 2θ < 0 =⇒
cos 2θ < 0 =⇒ 2θ ∈

(
1
2π,

3
2π
)
∪
(
5
2π,

7
2π
)

=⇒ θ ∈
(
1
4π,

3
4π
)
∪
(
5
4π,

7
4π
)
.

O

Re

Im required locus
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Part (b). Let z = r(cos θ + i sin θ), 0 ≤ θ < 2π. Then Im(z3) > 0 =⇒ r3 sin 3θ > 0 =⇒
sin 3θ > 0 =⇒ 3θ ∈ (0, π) ∪ (2π, 3π) ∪ (4π, 5π) =⇒ θ ∈

(
0, 13π

)
∪
(
2
3π, π

)
∪
(
4
3π,

5
3π
)
.

O

Re

Im required locus

∗ ∗ ∗ ∗ ∗

Problem 6. The complex number z satisfies |z + 4− 4i| = 3.

(a) Describe, with the aid of a sketch, the locus of the point which represents z in an
Argand diagram.

(b) Find the least possible value of |z − i|.

(c) Find the range of values of arg(z − i).

Solution.

Part (a). Note |z + 4− 4i| = 3 =⇒ |z − (−4 + 4i)| = 3.

C(−4 + 4i)

I(i)

3

A

B

θ
θ

O

Re

Im required locus

Part (b). Observe that the distance CI is equal to the sum of the radius of the circle and
min |z − i|. Hence,

min |z − i| =
√

(−4− 0)2 + (4− 1)2 − 3 = 2.

Part (c). Let A and B be points on the circle such that AI and BI are tangent to the
circle. Let ∠CIA = θ. Then tan θ = 3

4 =⇒ θ = arctan 3
4 . By symmetry, we also have

∠CIB = θ, whence ∠AIB = 2θ = 2arctan 3
4 . Hence, min arg(z − i) = π − 2 arctan 3

4 (at
B) and max arg(z − i) = π (at A). Thus, π − 2 arctan 3

4 ≤ arg(z − i) ≤ π.
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Problem 7. Sketch, on the same Argand diagram, the two loci representing the complex
number z for which z = 4 + k i, where k is a positive real variable, and |z − 1| = 4. Write
down, in the form x+ iy, the complex number satisfying both conditions.

Solution.

1 4

4

O

Re

Im |z − 1| = 4
z = 4 + k i

Note that z is of the form 4 + k i, k ∈ R+. Since |z − 1| = 4, we have |3 + k i| = 4 =⇒
32 + k2 = 4 =⇒ k =

√
7. Note that we reject k = −

√
7 since k > 0. Thus, z = 4+

√
7i.

∗ ∗ ∗ ∗ ∗

Problem 8. Describe, in geometrical terms, the loci given by |z − 1| = |z + i| and
|z − 3 + 3i| = 2 and sketch both loci on the same diagram.
Obtain, in the form a+ ib, the complex numbers representing the points of intersection

of the loci, giving the exact values of a and b.

Solution. Note that |z − 1| = |z + i| =⇒ |z − 1| = |z − (−i)| and |z − 3 + 3i| = 2 =⇒
|z − (3− 3i)| = 2.
The locus given by |z − 1| = |z + i| is the perpendicular bisector of the line segment

joining 1 and −i. The locus given by |z − 3 + 3i| = 2 is a circle with centre 3 − 3i and
radius 2.

1
−i

3− 3i

O

Re
Im |z − 1| = |z + i|

|z − 3 + 3i| = 2

Observe that the locus of |z − 1| = |z + i| has Cartesian equation y = −x and the locus
of |z − 3 + 3i| = 2 has Cartesian equation (x−3)2+(y+3)2 = 22. Solving both equations
simultaneously, we have

(x− 3)2 + (y + 3)2 = (x− 3)2 + (3− x)2 = 22 =⇒ x2 − 6x+ 7 = 0

=⇒ x = 3±
√
2 =⇒ y = −3∓

√
2.
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Hence, the complex numbers representing the points of intersections of the loci are (3 +√
2) + (−3−

√
2)i and (3−

√
2) + (−3 +

√
2)i.

∗ ∗ ∗ ∗ ∗

Problem 9. Sketch the locus for arg
(
z − (4

√
3− 2i)

)
= 5

6π in an Argand diagram.

(a) Verify that the points 2i and 2
√
3 lie on it.

(b) Find the minimum value of |z| and the range of values of arg(z).

Solution.

A(2i)

B(2
√
3)

4
√
3− 2i

5
6π

C

O

Re

Im required locus

Part (a). Note that

arg
(
2i − (4

√
3− 2i)

)
= arg

(
−
√
3 + i

)
= arctan

1

−
√
3
=

5

6
π

and

arg
(
2
√
3− (4

√
3− 2i)

)
= arg

(
−
√
3 + i

)
= arctan

1

−
√
3
=

5

6
π.

Hence, the points 2i and 2
√
3 satisfy the equation arg

(
z − (4

√
3− 2i)

)
= 5

6π and thus lie
on its locus.

Part (b). Let A(2i) and B(2
√
3). Let C be the point on the required locus such that

OC ⊥ AB. Observe that △OAB, △COB and △CAO are all similar to one another.
Hence,

OC

CB
=

AO

BO
=

1√
3

=⇒ AC =
1√
3
OC,

OC

CA
=

BO

OA
=

√
3

1
=⇒ BC =

√
3OC.

Hence, AB = AC + CB =
(√

3 + 1√
3

)
OC, whence

min |z| = OC =
AB√

3 + 1/
√
3
=

√
22 + (2

√
3)2

√
3 + 1

√
3

=
4
√
3

4
=

√
3.

Observe that max arg(z) = 5
6π and min arg(z) = min arg

(
4
√
3− 2i

)
= arctan −2

4
√
3
=

− arctan 1
2
√
3
. Thus, − arctan 1

2
√
3
< arg(z) ≤ 5

6π.
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Problem 10. The complex number z satisfies |z − 3− 3i| ≥ |z − 1− i| and π
6 < arg(z) ≤

π
3 .

(a) On an Argand diagram, sketch the region in which the point representing z can lie.

(b) Find the area of the region in part (a).

(c) Find the range of values of arg(z − 5 + i).

Solution.

Part (a). Note that |z − 3− 3i| ≤ |z − 1− i| =⇒ |z − (3 + 3i)| ≤ |z − (1 + i)|.

A

B

3 + 3i

1 + i

5− i

M

O

Re

Im required locus

Part (b). Note that the locus of |z − 3− 3i| = |z − 1− i| has Cartesian equation y =
−x + 4, while the loci of π

6 = arg(z) and arg(z) = π
3 have Cartesian equations y = 1√

3
x

and y =
√
3x respectively. Let A and B be the intersections between y = −x + 4 with

y =
√
3x and y = 1√

3
x respectively.

At A, we have y =
√
3x = −x+ 4, whence A

(
4

1+
√
3
, 4

√
3

1+
√
3

)
. Thus,

OA =

√√√√
(

4

1 +
√
3

)2

+

(
4
√
3

1 +
√
3

)2

=
8

1 +
√
3
.

By symmetry, we also have OA = OB. Finally, since ∠AOB = π
3 − π

6 = π
6 ,

[△AOB] =
1

2
(OA)(OB) sin∠AOB =

1

2

(
8

1 +
√
3

)2 1

2
=

16
(
1 +

√
3
)2 = 4

(
1−

√
3
)2

.

Part (c). Observe that min arg(z − (5− i)) = 3
4π and max arg(z − (5− i)) = arctan −1

5 +
π = π − arctan 1

5 . Hence,
3
4π ≤ arg(z − 5 + i) < π − arctan 1

5 .
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Problem 11. Sketch on an Argand diagram the set of points representing all complex
numbers z satisfying both inequalities

|iz − 2i − 2| ≤ 2 and Re(z) >
∣∣∣1 +

√
3i
∣∣∣

Find

(a) the range of arg(z − 2− 2i),

(b) the complex number z where arg(z − 2− 2i) is a maximum.

The locus of the complex number w is defined by |w − 5 + 2i| = k, where k is a real
and positive constant. Find the range of values of k such that the loci of w and z will
intersect.

Solution. Note |iz − 2i− 2| ≤ 2 =⇒ |i(z − 2 + 2i)| ≤ 2 =⇒ |z − (2− 2i)| ≤ 2 and
Re(z) >

∣∣1 +
√
3i
∣∣ = 2.

C
D

2

B

A

T

O

Re

Im required locus

Part (a). Note |z − 2− 2i| = arg(z − (2 + 2i)). Let A(2+2i) and C(2−2i). Let T be the
point at which AT is tangent to the circle. Then ∠ATC = π

2 , AC = 4 and TC = 2. Hence,
∠CAT = arcsin 2

4 = π
6 . Thus, min arg(z − 2− 2i) = −π

2 and max arg(z − 2− 2i) =
min arg(z − 2− 2i) + ∠CAT = −π

2 + π
6 = −π

3 . Hence, −π
2 < arg(z − 2− 2i) ≤ −π

3 .

Part (b). Relative to C, T is given by 2
(
cos π

6 + i sin π
6

)
=

√
3+ i. Thus, T = (

√
3+ i) +

(2− 2i) = 2 +
√
3− i.

Note |w − 5 + 2i| = k =⇒ |w − (5− 2i)| = k. Let D(5 − 2i). Observe that CD is
given by the sum of the radius of the circle and min k. Hence, min k = 3 − 2 = 1. Let
B(2 − 4i). Then max k is given by the distance between B and D. By the Pythagorean
Theorem, we have max k =

√
(5− 2)2 + (−2− (−4))2 =

√
13. Thus, 1 ≤ k ≤

√
13.
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Self-Practice A10.4

Problem 1. If arg(z − 2) = 2π/3 and |z| = 2, determine arg(z).

Solution. Let A(2 + 0i) and Z(z).

Z

A

|
|

2π
3

O

Re

Im

Observe that ∠OAZ = π − 2π/3 = π/3. Since OA = OZ = 2 it follows that △OAZ is
equilateral, so arg(z) = ∠AOZ = π/3.

∗ ∗ ∗ ∗ ∗

Problem 2. z is a complex number such that arg(z − 1) = π/3 and arg(z − i) = π/6.
By finding the Cartesian equations of the two half-lines, or otherwise, find the value of
arg(z).

Solution. Let z = x+ iy, where x, y ∈ R. Then

arg(z − 1) = arctan
y

x− 1
=

π

3
=⇒ y

x− 1
=

√
3 =⇒ y =

√
3x−

√
3

and

arg(z − i) = arctan
y − 1

x
=

π

6
=⇒ y − 1

x
=

1√
3

=⇒ y = 1 +
1√
3
x.

Equating the two, we have

√
3x−

√
3 = 1 +

1√
3
x =⇒ x =

1 +
√
3√

3− 1/
√
3
=

√
3 + 3

2
.

Thus,

y =
√
3 (x− 1) =

√
3

(√
3 + 3

2
− 1

)
=

3 +
√
3

2
,

so x = y and

arg z = arctan
y

x
= arctan 1 =

π

4
.

∗ ∗ ∗ ∗ ∗

Problem 3. The complex number z is given by z = reiθ, where r > 0 and 0 ≤ θ ≤ π/2.

(a) Given that w =
(
1− i

√
3
)
z, find |w| in terms of r and argw in terms of θ.

(b) Given that r has a fixed value, draw an Argand diagram to show the locus of z as
θ varies. On the same Argand diagram, show the corresponding locus of w. You
should identify the modulus and argument of the end-point of each locus.
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Solution.

Part (a). Note that 1− i
√
3 = 2e−π/3. Thus,

w =
(
1−

√
3i
)
z =

(
2e−π/3

)(
reiθ

)
= 2rei(θ−π/3).

Hence, |w| = 2r and arg(w) = θ − π/3.

Part (b).

r

r

π/6

−π/3

2r

2r

O

Re

Im locus of z
locus of w

∗ ∗ ∗ ∗ ∗

Problem 4. The complex number z satisfies the equation |z| = |z + 2|. Show that the
real part of z is −1. The complex number z also satisfies the equation |z| = 3. The two
possible values of z are represented by the points P and Q in an Argand diagram. Draw
a sketch showing the positions of P and Q, and calculate the two possible values of arg z,
giving your answers in radians correct to 3 significant figures.
It is given that P and Q lie on the locus |z − a| = b, where a and b are real, and b > 0.

Give a geometrical description of this locus, and hence find the least possible value of b
and the corresponding value of a.

Solution. Observe that the locus of |z| = |z + 2| is the perpendicular bisector of (0, 0)
and (2, 0), which has Cartesian equation x = 1, y ∈ R. Thus, the real part of z (i.e. x) is
always 1.

P

Q

3−3 2

3

−3

O

Re

Im |z| = 3

|z| = |z + 2|

From the diagram,

arg(z) = ± arccos
1

3
= ±1.23 (3 s.f.).

The locus of |z − a| = b is a circle of radius b centred at the point representing a.
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For b to be at a minimum, PQ must be the diameter of the circle. By the Pythagorean
Theorem,

32 =

(
PQ

2

)2

+ 12 =⇒ PQ = 32.

Thus,

min b =
PQ

2
=

√
32

2
= 2

√
2.

The point representing a is then the midpoint of P and Q, i.e. a = 1.

∗ ∗ ∗ ∗ ∗

Problem 5. The complex number z is given by z = x+iy, where x > 0 and y > 0. Sketch
an Argand diagram, with origin O, showing points P , Q and R representing z, 2iz and
(z + 2iz) respectively. State the size of angle POQ, and describe briefly the geometrical
relationship between O, P , Q and R.

(a) Given that x = 2y, show that R lies on the imaginary axis.

(b) Given that y = 2x, show that the point representing z2 is collinear with the origin
and the point R.

(c) Given that |z| ≤ 2 and arctan 1
2 ≤ arg z ≤ arctan 2, calculate the area of the region

in which the point P can lie.

Solution.

P (z)

Q(2iz)

R(z + 2iz)

O

Re

Im

∠POQ = π/2, and OPQR forms a rectangle.

Part (a). Given x = 2y, we have

z + 2iz = z (1 + 2i) = (2y + iy) (1 + 2i) = 5y i,

which is purely imaginary. Hence, R lies on the imaginary axis.

Part (b). Given y = 2x, we have

z = x+ 2ix = x (1 + 2i) =⇒ arg
(
z2
)
= 2arg(1 + 2i) .

Meanwhile,

arg(z + 2iz) = arg(z) + arg(1 + 2i) = arg(1 + 2i) + arg(1 + 2i) = 2 arg(1 + 2i) .

Since z2 and z + 2iz have identical arguments, the points representing them must be
collinear with the origin.
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Part (c).

2

2

α

O

Re

Im

From the above figure, we see that α = arctan 2− arctan(1/2). The area of the region
in which P can lie in is thus

Area = π(2)2 × arctan 2− arctan(1/2)

2π
= 1.29 units2.

∗ ∗ ∗ ∗ ∗

Problem 6. A complex number z satisfies |z − a| = a, a ∈ R+.

(a) The point P represents the complex number w, where w = 1/z, in an Argand
diagram. Show that the locus of P is a straight line.

(b) Sketch both loci on the same diagram and show that the two loci do not intersect if
0 < a < 1/2.

(c) For a = 1/2, find the range of values of arg(z − 1/a), giving your answer correct to
0.1◦. State the limit of arg(z − 1/a) when a approaches 0.

Solution.

Part (a). We have

|z − a| =
∣∣∣∣
1

w
− a

∣∣∣∣ =
∣∣∣∣
1− aw

w

∣∣∣∣ = a =⇒ |1− aw| = |aw| =⇒ |w| =
∣∣∣∣
1− aw

a

∣∣∣∣ =
∣∣∣∣
1

a
− w

∣∣∣∣ .

Hence, the locus of P is the perpendicular bisector of the origin and (1/a, 0). Equivalently,
it is the vertical line passing through (1/2a, 0).
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Part (b). If 0 < a < 1/2, then 1/a > 2, so the real part of any point on the locus of w is
1/2a > 1. The largest real part of any point on the locus of z is a + a = 2a < 1. Thus,
both loci will not intersect.

1
2a

2aa
O

Re

Im locus of z
locus of w

Part (c).

1
θ

1
2

O
Re

Im

From the diagram,

sin θ =
1/2

2− 1/2
=⇒ θ = arcsin

1

3
.

Thus,
160.5◦ = π − θ ≤ arg(z − 2) ≤ π + θ = 199.5◦.

As a → 0, arg(z − 1/a) → π.

∗ ∗ ∗ ∗ ∗

Problem 7. Sketch, on an Argand diagram, the locus representing the complex number
z for which

|z − 4− 3i| = 2.

(a) Given that a is the least possible value of |z|, find a.

(b) The complex number p is such that

|p− 4− 3i| = 2 and |p| = a.

State the exact value of arg p.

(c) Deduce the greatest value of arg(z/p), giving your answer correct to 2 decimal places.
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Solution.

(4, 3)

P

2

θ

O
Re

Im locus of z

Part (a). Clearly, a =
√
42 + 32 − 2 = 3.

Part (b). Clearly, arg p = arctan(3/4).

Part (c). Observe that

max arg
z

p
= θ = arcsin

2

5
= 23.58◦.

∗ ∗ ∗ ∗ ∗

Problem 8 ( ). On an Argand diagram, the point U represents the complex number z,
and the points V and W represent the complex numbers z2 and z2 + 1 respectively.

(a) (i) Given that arg(z) = α, where π/4 < α < π/2, so that U lies on the half-line L1

with equation y = x tanα for x > 0, show that V lies on the half-line L2 with
equation y = x tan 2α for x < 0. Find the equation of the locus L3 of W .

(ii) The points E and F represent the values of z for which W coincides with U .
Find the value of α for which the common point of L1 and L3 is either E or F .

(b) Given instead that |z| = k, where k > 0, so that U lies on a circle C, show that W
lies on a circle C ′, and find its centre and radius. Find the value of k for which the
common points of C and C ′ are E and F .

Solution.

Part (a).

Part (a)(i). Note that arg z2 = 2arg z = 2α. Let z2 = x + iy, where x, y ∈ R. Then
arg
(
z2
)
= arctan(y/x). Equating the two yields

arctan
y

x
= 2α =⇒ y = x tan(2α) .

Note that arg
(
z2
)
= 2α ∈ (π/2, π), so x = Re

(
z2
)
< 0.

L3 is precisely L2 shifted one unit in the positive real axis. Hence, the equation of L3

is y = (x− 1) tan(2α).

Part (a)(ii). Since W coincides with U , we have z = z2 + 1. Solving, we get

z =
1 +

√
3i

2
.
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Note that we reject the negative branch since arg z ∈ (π/4, π/2) implies Im z > 0. Thus,

α = arg z = arctan

√
3

1
=

π

3
.

Part (b). Observe that ∣∣(z2 + 1
)
− 1
∣∣ =

∣∣z2
∣∣ = k2,

so W lies on a circle with radius k2 and centre (1, 0). For E and F to lie on C, we require

k =

∣∣∣∣∣
1±

√
3i

2

∣∣∣∣∣ = 1.
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Assignment A10.4

Problem 1. On a single Argand diagram, sketch the following loci.

(a) |z − 2i| = 4.

(b) arg
(

7
z+2

)
= −π

4 .

Hence, or otherwise, find the exact value of z satisfying both equations in part (a) and
(b).

Solution. Note that arg
(

7
z+2

)
= −π

4 =⇒ arg(z − (−2)) = π
4 .

−2

6i

2i

−2i

C
π
4

4

O

Re

Im locus of |z − 2i| = 4

locus of arg(7/(z + 2)) = −π
4

Solving both equations simultaneously,

z = 2i +
(
cos

π

4
+ i sin

π

4

)
= 2i +

√
2

2
+ i

√
2

2
=

√
2

2
+

(
2 +

√
2

2

)
i.

∗ ∗ ∗ ∗ ∗

Problem 2. Given that |z − 2i| ≤ 4, illustrate the locus of the point representing the
complex number z in an Argand diagram.
Hence, find the greatest and least possible value of |z − 3 + 4i|, given that |z − 2i| ≤ 4.

Solution.

(3,−4)

C

4

6

2

−2

O

Re

Im required locus

Note that |z − 3 + 4i| = |z − (3− 4i)| represents the distance between z and the point
(3,−4). By Pythagoras’ Theorem, the distance between the centre of the circle (0, 2)
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and (3,−4) is
√
(0− 3)2 + (2 + 4)2 = 3

√
5. Hence, max |z − 3 + 4i| = 3

√
5 + 4, while

min |z − 3 + 4i| = 3
√
5−4. Thus, max |z − 3 + 4i| = 3

√
5+4, min |z − 3 + 4i| = 3

√
5−4.

∗ ∗ ∗ ∗ ∗

Problem 3. The point A on an Argand diagram represents the fixed complex number a,
where 0 < arg a < π

2 . The complex numbers z and w are such that |z − 2ia| = |a| and
|w| = |w + ia|.
Sketch, on a single diagram, the loci of the point representing z and w.
Find

(a) the minimum value of |z − w| in terms of |a|,

(b) the range of values of arg 1
z in terms of arg a.

Solution. Note that |w| = |w + ia| =⇒ |w − 0| = |w − (−ia)|.

A(a)

C(2ia)

B(−ia)

D

E

|a|

θ
θ

O

Re

Im locus of z
locus of w

Part (a). Let B(−ia) and C(2ia). Note that W
(
−1

2 ia
)
lies on the locus of w as well as

the line passing through OC. Since CW is perpendicular to the locus of w, it follows that
the minimum value of |z − w| is given by

CW − |a| =
∣∣∣∣2ia+

1

2
ia

∣∣∣∣− |a| = 5

2
|a| |i| − |a| = 3

2
|a| .

Part (b). Let D and E be such that OD and OE are tangent to the circle given by

the locus of z. Let ∠COD = θ. Observe that sin θ = CD
CO = |a|

|2ia| = 1
2 , whence θ = π

6 .

Since ∠COA = arg i = π
2 , it follows that ∠DOA = π

2 − θ = π
2 − arcsin 1

2 = π
3 . Thus,

min arg z = arg a + ∠DOA = arg a + π
3 . Meanwhile, ∠COE = ∠COD = θ, whence

max arg z = arg a + π
2 + θ = arg a + 2

3π. Since arg 1
z = − arg z, we thus have arg 1

z ∈[
−
(
arg a+ 2

3π
)
,−
(
arg a+ π

3

)]
.

∗ ∗ ∗ ∗ ∗

Problem 4.

(a) Solve the equation
z7 − (1 + i) = 0,

giving the roots in the form reiα, where r > 0 and −π < α ≤ π.

(b) Show the roots on an Argand diagram.

(c) The roots represented by z1 and z2 are such that 0 < arg z1 < arg z2 < π
2 . Explain

why the locus of all points z such that |z − z1| = |z − z2| passes through the origin.
Draw this locus on your Argand diagram and find its Cartesian equation.
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(d) Describe the transformation that will map the points representing the roots of the
equation z7 − (1 + i) = 0 to the points representing the roots of the equation (z −
2)7 − (1 + i) = 0 on the Argand diagram.

Solution.

Part (a). Note that 1 + i = 2
1
2 eiπ(

1
4
+2k), where k ∈ Z. Hence,

z7 = 1 + i = 2
1
2 eiπ(

1
4
+2k) =⇒ z = 2

1
14 eiπ(

1
4
+2k)/7 = 2

1
14 eiπ(1+8k)/28.

Taking k ∈ {−3,−2, . . . , 2, 3}, we have

z = 2
1
14 e−iπ 23

28 , 2
1
14 e−iπ 15

28 , 2
1
14 e−iπ 7

28 , 2
1
14 eiπ

1
28 , 2

1
14 eiπ

9
28 , 2

1
14 eiπ

17
28 , 2

1
14 eiπ

25
28 .

Part (b).

z5

z6

z7

z1

z2
z3

z4
2

1
14

2π
7

O

Re

Im

Part (c). Since |z1| = |z2| = 2
1
14 , the distance between z1 and the origin and the distance

between z2 and the origin are equal. Since the locus of |z − z1| = |z − z2| represents all
points equidistant from z1 and z2, it passes through the origin.

Observe that the midpoint of z1 and z2 will have argument 1
2

(
1
28π + 9

28π
)
= 5

28π. Thus,
the Cartesian equation of the locus of z is given by y = tan(5π/28)x.

Part (d). Translate the points 2 units in the positive real direction.
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A11 Permutations and Combinations

Tutorial A11

Problem 1. In a particular country, the alphabet contains 25 letters. A car registration
number consists of two different letters of the alphabet followed by an integer n such that
100 ≤ n ≤ 999. Find the number of possible car registration numbers.

Solution. Note that the number of possible n is 999− 100+ 1 = 900. Hence, the number
of possible car registration numbers is given by 25C2 · 900 = 540000.

∗ ∗ ∗ ∗ ∗

Problem 2. A girl wishes to phone a friend but cannot remember the exact number.
She knows that it is a five-digit number that is even, and that it consists of the digits 2,
3, 4, 5, and 6 in some order. Using this information, find the greatest number of wrong
telephone numbers she could try.

Solution. Since the number is odd, there are only 3 possibilities for the last digit. Hence,
the maximum wrong numbers she could try is 3 · 4!− 1 = 71.

∗ ∗ ∗ ∗ ∗

Problem 3. How many ways are there to select a committee of

(a) 3 students

(b) 5 students

out of a group of 8 students?

Solution.

Part (a). There are 8C3 = 56 ways.

Part (b). There are 8C5 = 56 ways.

∗ ∗ ∗ ∗ ∗

Problem 4. How many ways are there for 2 men, 2 women and 2 children to sit a round
table?

Solution. Since the men, women and children are all distinct, there are (2+2+2−1)! = 120
ways.

∗ ∗ ∗ ∗ ∗

Problem 5. Find the number of different arrangements of the eight letters of the word
NONSENSE if

(a) there is no restriction on the arrangement,

(b) the two letters E are together,

(c) the two letters E are not together,

(d) the letters N are all separated,
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(e) only two of the letters N are together.

Solution.

Part (a). Note that N, S and E are repeated 3, 2, and 2 times respectively. Thus, the
total number of arrangements is given by 8!

3! 2! 2! = 1680.

Part (b). Consider the two E’s as one unit. Altogether, there are 7 units. Hence, the
required number of arrangements is given by 7!

3! 2! = 420.

Part (c). From part (a) and part (b), the required number of arrangements is given by
1680− 420 = 1260.

Part (d). There are 5!
2! 2! ways to arrange the non-N letters, and 6C3 ways to slot in

the 3 N’s into the 6 gaps in between the non-N letters. Thus, the required number of
arrangements is given by 5!

2! 2! · 6C3 = 600.

Part (e). Consider the three N’s as one unit. Altogether there are 6 units. Hence, the
number of arrangements where all 3 N’s are together is given by 6!

2! 2! = 180. Thus, from
parts (a) and (d), the required number of arrangements is given by 1680−600−180 = 900.

∗ ∗ ∗ ∗ ∗

Problem 6. Find the number of teams of 11 that can be select from a group of 15 players

(a) if there is no restriction on choice,

(b) if the youngest two players and at most one of the oldest two players are to be
included.

Solution.

Part (a). The number of teams is given by 15C11 = 1365.

Part (b). Given that the youngest two players are always included, we are effectively
finding the number of teams of 9 from a group of 13 players with the restriction that at
most one of the oldest two players are to be included.

Disregarding the restriction, the total number of teams is given by 13C9 = 715.
Consider now that number of teams where both of the 2 oldest players are included.

This is given by 11C7 = 330.
Thus, the required number of teams is 715− 330 = 385.

∗ ∗ ∗ ∗ ∗

Problem 7. A ten-digit number is formed by writing down the digits 0, 1, . . . , 9 in some
order. No number is allowed to start with 0. Find how many such numbers are

(a) odd,

(b) less than 2 500 000 000.

Solution.

Part (a). Since the number is odd, there are 5 possibilities for the last digit. Furthermore,
since no number is allowed to start with 0, there are 10 − 2 = 8 possibilities for the
first digit. The remaining 8 digits are free. Hence, the required number of numbers is
5 · 8 · 8! = 1612800.

Part (b). Case 1 : Number starts with 1. Since there are no further restrictions, the
number of valid numbers in this case is 9!.
Case 2 : Number starts with 2. Given the restriction that the number be less than 2 500

000 000, the second digit must be strictly less than 5, thus giving 4 possibilities for the
second digit. The remaining 8 digits are free, for a total number of valid numbers of 4 · 8!.
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Thus, the required number of numbers is 9! + 4 · 8! = 524160.

∗ ∗ ∗ ∗ ∗

Problem 8. Eleven cards each bear a single letter, and together, they can be made to
spell the word “EXAMINATION”.

(a) Three cards are selected from the eleven cards, and the order of selection is not
relevant. Find how many possible selections can be made

(i) if the three cards all bear different letters,

(ii) if two of the three cards bear the same letter.

(b) Two cards bearing the letter N have been taken away. Find the number of different
arrangements for the remaining cards that can be made with no two adjacent letters
the same.

Solution.

Part (a).

Part (a)(i). Observe that there are 8 distinct letters in “EXAMINATION”. Hence, the
number of possible selections is 8C3 = 56.

Part (a)(ii). Note that there are 3 letters that appear twice in “EXAMINATION”. Hence,
the number of possible selections is given by 3C1 · 7C1 = 21.

Part (b). Note that there are now 2 letters that appear twice, namely A and I. Hence,
the total number of possible arrangements is 9!

2! 2! .
Consider “AA” and “II” as one unit each. Altogether, there are 7 units. The number

of arrangements with two pairs of adjacent letters that are the same is hence given by 7!.
Consider “AA” as one unit, and suppose the two I’s are not adjacent to each other.

Observe that the non-I letters comprise 6 units, hence giving 6! ways of arranging them.
Also observe that there are 7C2 ways to slot in the two I’s (which guarantee that they are
not adjacent to each other). There are hence 6! · 7C2 possible arrangements in this case.
A similar argument follows for the case where the two I’s are adjacent but the A’s are not.
From the above discussion, it follows that the required number of arrangements is given

by 9!
2! 2! − 7!− 2 · 6! · 7C2 = 55440.

∗ ∗ ∗ ∗ ∗

Problem 9. Find how many three-letter code words can be formed from the letters of
the word:

(a) PEAR.

(b) APPLE.

(c) BANANA.

Solution.

Part (a). Since all 4 letters are distinct, the number of code-words is given by 4P 3 = 24.

Part (b). Tally of letters: 2 ‘P’, 1 ‘A’, 1 ‘L’, 1 ‘E’ (5 letters, 4 distinct).
Case 1 : All letters distinct. Since there are 4 distinct letters, the number of code-words

in this case is 4P 3 = 24.
Case 2 : 2 letters the same, 1 different. Note that ‘P’ is the only letter repeated more

than once. Reserving two spaces for ‘P’ leaves one space left for three remaining letters.
Hence, there are 1C1 ·3C1 = 3 different combinations that can be formed, with 3!

2! = 3 ways
to arrange each combination. Hence, the number of code-words in this case is 3 · 3 = 9.
Thus, the total number of code-words is 24 + 9 = 33.
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Part (c). Tally of letters: 3 ‘A’, 2 ‘N’, 1 ‘B’ (6 letters, 3 distinct).
Case 1 : All letters distinct. Since there are only 3 distinct letters, the number of

code-words in this case is 3P 3 = 6.
Case 2 : 2 letters the same, 1 different. Observe that both ‘A’ and ‘N’ are repeated more

than once. Reserving 2 spaces for either letter leaves one space left for the two remaining
letters. Hence, there are 2C1 · 2C1 = 4 different combinations that can be formed, with
3!
2! = 3 ways to arrange each combination. Hence, the number of code-words in this case
is 4 · 3 = 12.

Case 3 : All letters the same. Observe that ‘A’ is the only letter repeated thrice. Hence,
the number of code-words in this case is 1.
Altogether, the total number of code-words is 6 + 12 + 1 = 19.

∗ ∗ ∗ ∗ ∗

Problem 10. A group of diplomats is to be chosen to represent three islands, K, L
and M . The group is to consist of 8 diplomats and is chosen from a set of 12 diplomats
consisting of 3 from K, 4 from L and 5 from M . Find the number of ways in which the
group can be chosen if it includes

(a) 2 diplomats from K, 3 from L and 3 from M ,

(b) diplomats from L and M only,

(c) at least 4 diplomats from M ,

(d) at least 1 diplomat from each island.

Solution.

Part (a). Note that there are 3C2 ways to select 2 diplomats from K, 4C3 ways to select
3 diplomats from L, and 5C3 ways to select 3 diplomats from M . Thus, the number of
possible groups is given by 3C2 · 4C3 · 5C3 = 120.

Part (b). There are a total of 9 diplomats from L and M . Hence, the number of possible
groups is 9C8 = 9.

Part (c). Case 1 : 4 diplomats from M . Note that there are 5C4 combinations for the
4 diplomats from M . Furthermore, since M contributes 4 diplomats, K and L must
contribute the other 4 diplomats. Since K and L have a total of 7 diplomats, this gives a
total of 5C4 · 7C4 possibilities.
Case 2 : 5 diplomats from M . Since M has 5 diplomats, there is only one way for M to

send 5 diplomats (all of them have to be chosen). Meanwhile, K and L must contribute
the other 3 diplomats from a pool of 7. This gives a total of 7C3 possibilities.
Altogether, there are 5C4 · 7C4 +

7C3 = 210 total possibilities.

Part (d). Observe that K and M have a total of 8 diplomats. Hence, there is only one
possibility where the group only consists of diplomats from K and M .

Since K and L have a total of 7 diplomats, it is impossible for the group to only come
from K and L.
From part (b), we know that there are 9 ways where the group consists only of diplomats

from L and M .
Note that there are a total of 12C8 possible ways to choose the group.
Altogether, the required number of possibilities is given by 12C8 − 9− 1 = 485.
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Problem 11. Alisa and Bruce won a hamper at a competition. The hamper comprises 9
different items.

(a) How many ways can the 9 items be divided among Alisa and Bruce if each of them
gets at least one item each?

(b) How many ways can a set of 3 or more items be selected from the 9 items?

Solution.

Part (a). Note that the total number of ways to distribute the items is given by 29 = 512.
Also note that the only way either of them does not receive an item is when the other
party gets all the items. This can only occur twice (once when Alisa receives nothing, and
once when Bruce receives nothing). Thus, the number of ways where both of them gets
at least one item each is 512− 2 = 510.

Part (b). Observe that the number of ways to choose a set of n items from the original 9
is given by 9Cn. Hence, the required number of ways is given by 512−(9C0+

9C1+
9C2) =

466.

∗ ∗ ∗ ∗ ∗

Problem 12. In how many ways can 12 different books be distributed among students
A, B, C and D

(a) if A gets 5, B gets 4, C gets 2 and D gets 1?

(b) if each student gets 3 books each?

Solution.

Part (a). At the start, A gets to pick 5 books from the 12 available books. There are
12C5 ways to do so. Next, B gets to pick 4 books from the 12 − 5 = 7 remaining books.
There are 7C4 ways to do so. Similarly, there are 3C2 ways for C to pick his book, and
1C1 ways for D to pick his. Hence, there are a total of 12C5 · 7C4 · 3C2 · 1C1 = 83160 ways
for the 12 books to be distributed.

Part (b). Following a similar argument as in part (a), the number of ways the 12 books
can be distributed is given by 12C3 · 9C3 · 6C3 · 3C3 = 369600.

∗ ∗ ∗ ∗ ∗

Problem 13. 3 men, 2 women and 2 children are arranged to sit around a round table
with 7 non-distinguishable seats. Find the number of ways if

(a) (i) the 3 men are to be together,

(ii) the 3 men are to be together, and the seats are numbered,

(b) no 2 men are to be adjacent to each other,

(c) only 2 men are adjacent to each other.

Solution.

Part (a).

Part (a)(i). Consider the 3 men as one unit. Altogether, there are a total of 5 units, which
gives a total of (5 − 1)! = 4! ways for the 5 units to be arranged around the table. Since
there are 3! ways to arrange the men, there are a total of 4! · 3! = 144 arrangements.

Part (a)(ii). Since there are a total of 7 distinguishable seats, the total number of arrange-
ments is 7 times that of the number of arrangements with non-distinguishable seats. From
part (a), this gives 144 · 7 = 1008 total arrangements.
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Part (b). Observe that there is only one possible layout for no 2 men to be adjacent
to each other (as shown in the diagram below). Since there are 4! ways to arrange the
non-men, and 3! ways to arrange the men, there are a total of 4! · 3! = 144 arrangements.

Part (c). Observe that there are 3 possible layouts for only 2 men to be adjacent to each
other (as shown in the diagram below). Since there are 4! ways to arrange the non-men,
and 3! ways to arrange the men, there are a total of 3 · 4! · 3! = 432 arrangements.

∗ ∗ ∗ ∗ ∗

Problem 14. Find the number of ways for 4 men and 4 boys to be seated alternately if
they sit

(a) in a row,

(b) at a round table.

Solution.

Part (a). Note that there are 2 possible layouts: one where a man sits at the start of the
row, and one where a boy sits at the start of the row. Since there are 4! ways to arrange
both the men and boys, there are a total of 2 · 4! · 4! = 1152 arrangements.

Part (b). Given the rotational symmetry of the circle, there is now only one possible
layout. Fixing one man, there are 3! ways to arrange the other men and 4! ways to
arrange the boys, giving a total of 3! · 4! = 144 arrangements.
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Problem 15. A rectangular shed, with a door at each end, contains ten fixed concrete
bases marked A, B, C, . . . , J , five on each side (see diagram). Ten canisters, each
containing a different chemical, are placed with one canister on each base. In how many
ways can the canisters be placed on the bases?

A B C D E

F G H I J

DoorDoor

Find the number of ways in which the canisters can be placed

(a) if 2 particular canisters must not be placed on any of the 4 bases A, E, F and J
next to a door,

(b) if 2 particular canisters must not be placed next to each other on the same side.

Solution. There are 10! = 3628800 ways to place the canisters on the bases.

Part (a). Observe that there are 6P 2 possible placements for the two particular canisters.
Since the other 8 canisters have no restrictions, the total number of ways to place the
canisters is given by 6P 2 · 8! = 1209600.

Part (b). Consider the number of ways the two particular canisters can be placed adja-
cently. There are 2 · (5− 1) = 8 possible arrangements per side, giving a total of 2 · 8 = 16
possible arrangements. Since the other 8 canisters have no restrictions, the total number
of ways to place the canisters is given by 16 · 8! = 645120. The required number of ways
is thus given by 3628800− 645120 = 2983680.
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Self-Practice A11

Problem 1. Find the number of three-letter codewords that can be made using the letters
of the word “THREE” if at least one of the letters is E.

Solution.
Case 1 : Exactly 1 ‘E’. There are 3C2 × 3! = 18 ways to form the codeword.
Case 2 : 2 ‘E’s. There are 3C1 × 3!/2! = 9 ways to form the codeword.
Thus, there are a total of 18 + 9 = 27 ways to form a codeword containing at least one

‘E’.

∗ ∗ ∗ ∗ ∗

Problem 2. Eight people go to the theatre and sit in a particular group of eight adjacent
reserved seats in the front row. Three of the eight belong to one family and sit together.

(a) If the other five people do not mind where they sit, find the number of possible
seating arrangements for all eight people.

(b) If the other five people do not mind where they sit, except that two of them refuse
to sit together, find the number of possible seating arrangements for all eight people.

Solution.

Part (a). Treat the family as one unit. Altogether, there are 6 units. There are 6! ways to
arrange the 6 units, and there are 3! ways to arrange the family within their unit. Hence,
there are a total of 6!× 3! = 4320 possible arrangements for all eight people.

Part (b). We arrange the family unit and the three non-conflicting people first. There are
4! ways to do so. Next, we slot in the two conflicting people. There are 5P 2 ways to do so.
Lastly, we arrange the family members, of which there are 3! ways to do so. Altogether,
there are 4!× 5P 2 × 3! = 2880 possible arrangements.

∗ ∗ ∗ ∗ ∗

Problem 3. A panel of judges in an essay competition has to select, and place in order
of merit, 4 winning entries from a total entry of 20. Find the number of ways in which
this can be done.
As a first step in the selection, 5 finalists are selected, without being placed in order.

Find the number of ways in which this can be done.
All 20 essays are subsequently assessed by three panels of judges for content, accuracy

and style, respectively, and three special prizes are awarded, one by each panel. Find the
number of ways in which this can be done, assuming that an essay may win more than
one prize.

Solution. There are 20P 4 = 116280 ways to select and place the four winning entries.
There are 20C5 = 15504 ways to select the five finalists.

There are
(
20C1

)3
= 8000 ways to give out the three prizes.

∗ ∗ ∗ ∗ ∗

Problem 4.

(a) A bookcase has four shelves with ten books on each shelf. Find the number of
different selections that can be made by taking two books from each shelf (i.e. 8
books in all). Find also the number of different selections that can be made by
taking eight books from each shelf (i.e. 32 books in all.)
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(b) Eight cards each have a single digit written on them. The digits are 2, 2, 4, 5, 7, 7,
7, 7 respectively. Find the number of different 7-digit numbers that can be formed
by placing seven of the cards side by side.

Solution.

Part (a). The number of difference selections in both scenarios is given by

(
10C2

)9
=
(
10C8

)9
= 4100625.

Part (b).
Case 1 : A ‘4’ or ‘5’ is not selected. Of the seven digits available, there are two ‘2’s and

four ‘7’s. The number of arrangements is hence

7!

2!4!
× 2 = 210.

Case 2 : A ‘7’ is excluded. Of the seven digits available, there are two ‘2’s and three
‘7’s. The number of arrangements is hence

7!

2!3!
= 420.

Case 3 : A ‘2’ is excluded. Of the seven digits available, there are four ‘7’s. The number
of arrangements is hence

7!

4!
= 210.

Altogether, there are 210 + 420 + 210 = 840 different 7-digit numbers that can be
formed.

∗ ∗ ∗ ∗ ∗

Problem 5. A team in a particular sport consists of 1 goalkeeper, 4 defenders, 2 mid-
fielders and 4 attackers. A certain club has 3 goalkeepers, 8 defenders, 5 midfielders and
6 attackers.

(a) How many different teams can be formed by the club?

One of the midfielders in the club is the brother of one of the attackers in the club.

(b) How many different teams can be formed which include exactly one of the two
brothers?

The two brothers leave the club. The club manager decides that one of the remaining
midfielders can play either as a midfielder or a defender.

(c) How many different teams can now be formed by the club?

Solution.

Part (a).

Position Goalkeeper Defender Midfielder Attacker

No. Available 3 8 5 6

No. to Select 1 4 2 4

The number of teams that can be formed is

3C1 × 8C4 × 5C2 × 6C4 = 31500.



Self-Practice A11 523

Part (b). Case 1 . Suppose the midfielder brother is included.

Position Goalkeeper Defender Midfielder Attacker

No. Available 3 8 4 6

No. to Select 1 4 1 4

The number of teams that can be formed in this case is

3C1 × 8C4 × 4C1 × 6C4 = 4200.

Case 2 . Suppose the attacker brother is included.

Position Goalkeeper Defender Midfielder Attacker

No. Available 3 8 5 5

No. to Select 1 4 2 3

The number of teams that can be formed in this case is

3C1 × 8C4 × 5C2 × 5C3 = 12600.

Altogether, there are 4200 + 12600 = 16800 ways to form a team where exactly one
brother plays.

Part (c). Case 1 . The midfielder appears as a midfielder.

Position Goalkeeper Defender Midfielder Attacker

No. Available 3 8 3 5

No. to Select 1 4 1 4

The number of teams that can be formed in this case is

3C1 × 8C4 × 3C1 × 5C4 = 3150.

Case 2 . The midfielder appears as a defender.

Position Goalkeeper Defender Midfielder Attacker

No. Available 3 8 3 5

No. to Select 1 3 2 4

The number of teams that can be formed in this case is

3C1 × 9C3 × 3C2 × 5C4 = 2520.

Case 3 . The midfielder does not play.

Position Goalkeeper Defender Midfielder Attacker

No. Available 3 8 3 5

No. to Select 1 4 2 4

The number of teams that can be formed in this case is

3C1 × 8C4 × 3C2 × 5C4 = 3150.

Altogether, there are 3150 + 2520 + 3150 = 8820 ways to form a team.
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Problem 6. A group of 12 people consists of 6 married couples.

(a) The group stands in a line.

(i) Find the number of different possible orders.

(ii) Find the number of different possible orders in which each man stands next to
his wife.

(b) The group stands in a circle.

(i) Find the number of different possible arrangements.

(ii) Find the number of different possible arrangements if men and women alternate.

(iii) Find the number of different possible arrangements if each man stands next to
his wife and men and women alternate.

Solution.

Part (a).

Part (a)(i). There are 12! = 479001600 different possible orders.

Part (a)(ii). Group each couple as one unit, for a total of 6 units. There are 6! ways to
arrange the 6 units, and 2 ways to arrange each couple within their unit. Thus, there are
a total of

6!× 26 = 46080

different possible orders.

Part (b).

Part (b)(i). There are 11! = 39916800 different possible orders.

Part (b)(ii). Fix one man. There are then

6× 5× 5× 4× 4× 3× 3× 2× 2× 1× 1 = 86400

ways to arrange all other 11 people.

Part (b)(iii). Group each couple as one unit, for a total of 6 units. There are (6− 1)! ways
to arrangement the 6 units. Since men and women alternate, we either have ‘man-woman’
or ‘woman-man’ within each unit. Thus, there are a total of

(6− 1)!× 2 = 240

different possible orders.

∗ ∗ ∗ ∗ ∗

Problem 7 ( ). A delegation of four students is to be selected from five badminton
players, m floorball players, where m > 3, and six swimmers to attend the opening cer-
emony of the 2017 National Games. A pair of twins is among the floorball players. The
delegation is to consist of at least one player from each sport.

(a) Show that the number of ways to select the delegation in which neither of the twins
is selected is k(m− 2)(m+ 6), where k is an integer to be determined.

(b) Given that the number of ways to select a delegation in which neither of the twins is
selected is more than twice the number of ways to select a delegation which includes
exactly one of the twins, find the least value of m.

The pair of twins, one badminton player, one swimmer and two teachers, have been
selected to attend a welcome lunch at the opening ceremony. Find the number of ways in
which the group can be seated at a round table with distinguishable seats if the pair of
twins is to be seated together and the teachers are separated.
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Solution.

Part (a).
Case 1 : 2 badminton players. There are

5C2 × (m− 2)× 6 = 60(m− 2)

ways to form a delegation without the twins in this case.
Case 2 : 2 floorball players. There are

5× m−2C2 × 6 = 30× (m− 2)(m− 3)

2
= 15(m− 3)(m− 2)

ways to form a delegation without the twins in this case.
Case 3 : 2 swimmers. There are

5× (m− 2)× 6C2 = 75(m− 2)

ways to form a delegation without the twins in this case.
Altogether, there are a total of

60(m− 2) + 15(m− 3)(m− 2) + 75(m− 2) = 15(m+ 6)(m− 2)

ways to form a delegation without the twins, so k = 15.

Part (b).
Case 1 : 2 badminton players. There are

5C2 × 2× 6 = 120

ways to form a delegation with exactly one twin in this case.
Case 2 : 2 floorball players. There are

5× 2 (m− 2)× 6 = 60(m− 2)

ways to form a delegation with exactly one twin in this case.
Case 3 : 2 swimmers. There are

5× 2× 6C2 = 150

ways to form a delegation with exactly one twin in this case.
Altogether, there are a total of

120 + 60(m− 2) + 150 = 60m+ 150

ways to form a delegation with exactly one twin. From the given condition,

2 (60m+ 150) < 15(m− 2)(m+ 6),

hence the least m is 9.
First, consider the case where there are no restrictions on the teachers. Group the twins

together as one unit for a total of 5 units. Since the seats are distinguishable, there are 5!
ways to arrange the 5 units, and 2 ways to arrange the twins within their unit. In total,
there are 5!× 2 = 240 arrangements without restrictions.

Now, consider the case where the teachers are together. Group the twins together, and
group the teachers together for a total of 4 units. Since the seats are distinguishable, there
are 4! ways to arrangement the 4 units. There are 2 ways each to arrange the twins and
teachers within their unit. In total, there are 4!×22 = 96 arrangements where the teachers
are together.
Thus, there are 240− 96 = 144 arrangements where the teachers are separated.
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Assignment A11

Problem 1. Find the number of different arrangements of seven letters in the word
ADVANCE. Find the number of these arrangements which begin and end with “A” and
in which “C” and “D” are always together.
Find the number of 4-letter code words that can be made from the letters of the word

ADVANCE, using

(a) neither of the “A”s,

(b) both of the “A”s.

Solution. Tally of letters: 2 “A”s, 1 “D”, 1 “V”, 1 “N”, 1 “C”, 1 “E” (7 total, 6 distinct)

Number of different arrangements =
7!

2!
= 2520.

Since both “A”s are at the extreme ends, we are effectively finding the number of
arrangements of the word “DVNCE” such that “C” and “D” are always together.
Let “C” and “D” be one unit. Altogether, there are 4 units. Hence,

Required number of arrangements = 4! · 2 = 48.

Part (a). Without both “A”s, there are only 5 available letters to form the code words.
This gives 5C4 ways to select the 4 letters of the code word. Since each of the 5 remaining
letters are distinct, there are 4! possible ways to arrange each word. This gives 5C4·4! = 120
such code words.

Part (b). With both “A”s included, we need another 2 letters from the 5 non-“A” letters.
This gives 5C2 ways to select the 4 letters of the code word. Since the 2 non-“A” letters
are distinct, but the “A”s are repeated, there are 4!

2! possible ways to arrange each code

word. This gives 5C2 · 4!
2! = 120 such code words.

∗ ∗ ∗ ∗ ∗

Problem 2. A box contains 8 balls, of which 3 are identical (and so are indistinguishable
from one another) and the other 5 are different from each other. 3 balls are to be picked
out of the box; the order in which they are picked out does not matter. Find the number
of different possible selections of 3 balls.

Solution. Note that there are 6 distinct balls in the box.
Case 1 : No identical balls chosen. No. of selections = 6C3

Case 2 : 2 identical balls chosen. No. of selections = 5C1

Case 3 : 3 identical balls chosen. No. of selections = 3C3

Hence, the total number of selections is given by 6C3 +
5C1 +

3C3 = 26.

∗ ∗ ∗ ∗ ∗

Problem 3. The management board of a company consists of 6 men and 4 women. A
chairperson, a secretary and a treasurer are chosen from the 10 members of the board.
Find the number of ways the chairperson, the secretary and the treasurer can be chosen
so that

(a) they are all women,

(b) at least one is a woman and at least one is a man.

The 10 members of the board sit at random around a round table. Find the number of
ways that
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(c) the chairperson, the secretary and the treasurer sit in three adjacent places.

(d) the chairperson, the secretary and the treasurer are all separated from each other
by at least one other person.

(Extension) What if the seats around the table are numbered? Try parts (c) and (d)
again.

Solution.

Part (a). Since there are 4 women and 3 distinct roles, the required number of ways is
given by 4P 3 = 24.

Part (b). Note that the number of ways that all three positions are men is given by
6P 3, while the number of ways to choose without restriction is given by 10P 3. Hence, the
required number of ways is given by 10P 3 − 6P 3 − 24 = 576.

Part (c). Consider the three positions as one unit. This gives 8 units altogether. There
are hence (8− 1)! · 3! = 30240 ways.

Part (d). Seat the seven other people first. There are (7 − 1)! ways to do so. Then, slot
in the three positions in the 7 slots. There are 7C3 · 3! ways to do so. Hence, the required
number of ways is given by (7− 1)! · 7C3 · 3! = 151200.

Extension. Since the seats are numbered, the number of ways scales up by the number of
seats, i.e. 10. Hence, the number of ways becomes 302400 and 1512000.
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A12 Probability

Tutorial A12

Problem 1. A and B are two independent events such that P[A] = 0.2 and P[B] = 0.15.
Evaluate the following probabilities.

(a) P[A | B],

(b) P[A ∩B],

(c) P[A ∪B].

Solution.

Part (a). Since A and B are independent, P[A | B] = P[A] = 0.2.

Part (b). Since A and B are independent, P[A ∩B] = P[A]P[B] = 0.2 · 0.15 = 0.03.

Part (c). P[A ∪B] = P[A] + P[B]− P[A ∩B] = 0.2 + 0.15− 0.03 = 0.32.

∗ ∗ ∗ ∗ ∗

Problem 2. Two events A and B are such that P[A] = 8
15 , P[B] = 1

3 and P[A | B] = 1
5 .

Calculate the probabilities that

(a) both events occur,

(b) only one of the two events occurs,

(c) neither event occurs.

Determine if event A and B are mutually exclusive or independent.

Solution.

Part (a).

P[A ∩B] = P[B]P[A | B] =
1

3
· 1
5
=

1

15
.

Part (b).

P[only one occurs] = P[A ∪B]− P[A ∩B] = P[A] + P[B]− 2P[A ∩B]

=
8

15
+

1

3
− 2

(
1

15

)
=

11

15
.

Part (c).

P[neither occurs] = 1− P[at least one occurs] = 1−
(

1

15
− 11

15

)
=

1

5
.

Since P[A] = 8
15 ̸= 1

5 = P[A | B], it follows that A and B are not independent. Also,
since P[A ∩B] = 1

15 ̸= 0, the two events are also not mutually exclusive.
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Problem 3. Two events A and B are such that P[A] = P[B] = p and P[A ∪B] = 5
9 .

(a) Given that A and B are independent, find a quadratic equation satisfied by p.

(b) Hence, find the value of p and the value of P[A ∩B].

Solution.

Part (a). Since A and B are independent, we have P[A | B] = P[A] = p. Hence,

p = P[A | B] =
P[A ∩B]

P[B]
=

P[A] + P[B]− P[A ∪B]

P[B]
=

p+ p− 5/9

p
= 2− 5

9p

=⇒ 9p2 = 18p− 5 =⇒ 9p2 − 18p+ 5 = 0.

Part (b). Observe that 9p2 − 18p + 5 = (3p − 1)(3p − 5). Thus, p = 1
3 . Note that p ̸= 5

3
since 0 < p ≤ 1.

Since A and B are independent, P[A ∩B] = P[A]P[B] = 1
3 · 1

3 = 1
9 .

∗ ∗ ∗ ∗ ∗

Problem 4. Two players A and B regularly play each other at chess. When A has the
first move in a game, the probability of A winning that game is 0.4 and the probability of
B winning that game is 0.2. When B has the first move in a game, the probability of B
winning that game is 0.3 and the probability of A winning that game is 0.2. Any game of
chess that is not won by either player ends in a draw.

(a) Given that A and B toss a fair coin to decide who has the first move in a game, find
the probability of the game ending in a draw.

(b) To make their games more enjoyable, A and B agree to change the procedure for
deciding who has the first move in a game. As a result of their new procedure, the
probability of A having the first move in any game is p. Find the value of p which
gives A and B equal chances of winning each game.

Solution.

Part (a).

P[draw] = P[A first]P[draw | A first] + P[B first]P[draw | B first]

= 0.5 · (1− 0.4− 0.2) + 0.5 · (1− 0.3− 0.2) = 0.45.

Part (b). Observe that

P[A wins] = P[A first]P[A wins | A first] + P[B first]P[A wins | B first]

= p · 0.4 + (1− p) · 0.2 = 0.2p+ 0.2

and

P[B wins] = P[A first]P[B wins | A first] + P[B first]P[B wins | B first]

= p · 0.2 + (1− p) · 0.3 = −0.1p+ 0.3

Consider P[A wins] = P[B wins]. Then 0.2p+ 0.2 = −0.1p+ 0.3 =⇒ p = 1
3 .
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Problem 5. Two fair dices are thrown, and events A, B and C are defined as follows:

• A: the sum of the two scores is odd,

• B: at least one of the two scores is greater than 4,

• C: the two scores are equal.

Find, showing your reasons clearly in each case, which two of these three events are

(a) mutually exclusive,

(b) independent.

Find also P[C | B], making your method clear.

Solution.

Part (a). Let the scores of the first and second die be p and q respectively. Suppose A
occurs. Then p and q are of different parities (e.g. p even =⇒ q odd). Thus, p and q
cannot be equal. Hence, C cannot occur, whence A and C are mutually exclusive.

Part (b). Let the scores of the first and second die be p and q respectively. Observe that
p is independent of q, and vice versa. Hence, the parity of q is not affected by the parity
of p. Thus, P[A] = P[p even]P[q odd] + P[p odd]P[q even] = 3

6 · 3
6 + 3

6 · 3
6 = 1

2 .

We also have P[B] = 1− P[neither p nor q is greater than 4] = 1−
(
4
6

)2
= 20

36 .

p\q 1 2 3 4 5 6

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 9 10

5 6 7 8 9 10 11

6 7 8 9 10 11 12

We now consider P(A∩B). From the table of outcomes above, it is clear that P(A∩B) =
10
36 = P[A]P[B]. Hence, A and B are independent.

∗ ∗ ∗ ∗ ∗

Problem 6. For events A and B, it is given that P[A] = 0.7, P[B] = 0.6 and P[A | B′] =
0.8. Find

(a) P[A ∩B′],

(b) P[A ∪B],

(c) P[B′ | A].

For a third event C, it is given that P[C] = 0.5 and that A and C are independent.

(d) Find P[A′ ∩ C].

(e) Hence, find an inequality satisfied by P[A′ ∩B ∩ C] in the form

p ≤ P
[
A′ ∩B ∩ C

]
≤ q,

where p and q are constants to be determined.
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Solution.

Part (a).
P
[
A ∩B′] = P

[
B′]P

[
A | B′] = (1− 0.6) · 0.8 = 0.32.

Part (b).

P[A ∪B] = P[A] + P[B]− P[A ∩B] = P[A] + P[B]−
[
P[A]− P

[
A ∩B′]]

= 0.7 + 0.6− (0.7− 0.32) = 0.92.

Part (c).

P
[
B′ | A

]
=

P[B′ ∩A]

P[A]
=

0.32

0.7
=

16

35
.

Part (d). Since A and C are independent, P[A ∩ C] = P[A]P[C]. Hence, P[A′ ∩ C] =
P[C]− P[A ∩ C] = 0.5− 0.7 · 0.5 = 0.15.

Part (e). Consider the following Venn diagram.

A B

C

a

b

c d

e

f

g

h

Note that P[A′ ∩B ∩ C] = g. Firstly, from part (d), we have b+ g = P[A′ ∩ C] = 0.15.
Hence, g ≤ 0.15. Secondly, from part (b), we have a+ b = 1−P[A ∪B] = 1− 0.92 = 0.08.
Hence, b ≤ 0.08 =⇒ g ≥ 0.07. Lastly, we know that P[A′ ∩B] = P[A ∪B] − P[A] =
0.92− 0.7 = 0.22. Hence, d+ g = 0.22 =⇒ g ≤ 0.22.
Thus, 0.07 ≤ g ≤ 0.15, whence 0.07 ≤ P[A′ ∩B ∩ C] ≤ 0.15.

∗ ∗ ∗ ∗ ∗

Problem 7. Camera lenses are made by two companies, A and B. 60% of all lenses are
made by A and the remaining 40% by B. 5% of the lenses made by A are faulty. 7% of
the lenses made by B are faulty.

(a) One lens is selected at random. Find the probability that

(i) it is faulty,

(ii) it was made by A, given that it is faulty.

(b) Two lenses are selected at random. Find the probability that both were made by A,
given that exactly one is faulty.

(c) Ten lenses are selected at random. Find the probability that exactly two of them
are faulty.
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Solution.

Part (a).

Part (a)(i).

P[faulty] = P[A ∪ faulty] + P[B ∪ faulty] = 0.6 · 0.05 + 0.4 · 0.07 = 0.058.

Part (a)(ii).

P[A | faulty] = P[A ∩ faulty]

P[faulty]
=

0.6 · 0.05
0.058

=
15

19
.

Part (b).

P[both A | one faulty] =
P[both A ∪ one faulty]

P[one faulty]
=

[0.6 · 0.05] · [0.6 · (1− 0.05)]

0.058 · (1− 0.058)
=

1425

4553
.

Part (c).

P[two faulty] = 0.0582(1− 0.058)8 · 10!
2!8!

= 0.0939 (3 s.f.)

∗ ∗ ∗ ∗ ∗

Problem 8. A certain disease is present in 1 in 200 of the population. In a mass
screening programme a quick test of the disease is used, but the test is not totally reliable.
For someone who does have the disease there is a probability of 0.9 that the test will prove
positive, whereas for someone who does not have the disease there is a probability of 0.02
that the test will prove positive.

diseased

not diseased

test positive

test negative
1

200

(a) One person is selected at random and test.

(i) Copy and complete the tree diagram, which illustrates one application of the
test.

(ii) Find the probability that the person has the disease and the test is positive.

(iii) Find the probability that the test is negative.

(iv) Given that the test is positive, find the probability that the person has the
disease.

(b) People for whom the test proves positive are recalled and re-tested. Find the prob-
ability that a person has the disease if the second test also proves positive.
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Solution.

Part (a).

Part (a)(i).

diseased

not diseased

test positive

test negative

test positive

test negative

1
200

199
200

0.9

0.1

0.02

0.98

Part (a)(ii).

P[diseased ∩ positive] =
1

200
· 0.9 = 0.0045.

Part (a)(iii).

P[negative] =
1

200
· 0.1 + 199

200
· 0.98 = 0.9756.

Part (a)(iv).

P[diseased | positive] = P[diseased ∩ positive]

P[positive]
=

0.0045

1− 0.9756
= 0.184.

Part (b).

Required probability =
P[diseased ∩ both positive]

P[both positive]

=
P[diseased ∩ both positive]

P[diseased ∩ both positive] + P[not diseased ∩ both positive]

=
1/200 · 0.92

1/200 · 0.92 + 199/200 · 0.022 =
2025

2224
.

∗ ∗ ∗ ∗ ∗

Problem 9. In a probability experiment, three containers have the following contents.

• A jar contains 2 white dice and 3 black dice.

• A white box contains 5 red balls and 3 green balls.

• A black box contains 4 red balls and 3 green balls.

One die is taken at random from the jar. If the die is white, two balls are taken from the
white box, at random and without replacement. If the die is black, two balls are taken
from the black box, at random and without replacement. Events W and M are defined
as follows:

• W : A white die is taken from the jar.

• M : One red ball and one green ball are obtained.
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Show that P[M | W ] = 15
28 .

Find, giving each of your answers as an exact fraction in its lowest terms,

(a) P[M ∩W ],

(b) P[W | M ],

(c) P[W ∪M ].

All the dice and balls are now placed in a single container, and four objects are taken
at random, each object being replaced before the next one is taken. Find the probability
that one object of each colour is obtained.

Solution. Since W has occurred, both red and green balls must come from the white
box. Note that there are two ways for M to occur: first a red then a green, or first a green
then a red. Hence, P[M | W ] = 5

8 · 3
7 + 3

8 · 5
7 = 15

28 as desired.

Part (a).

P[M ∩W ] = P[W ]P[M | W ] =
2

5
· 15
28

=
3

14
.

Part (b). Let B represent the event that a black die is taken from the jar. Then

P[M ] = P[M ∩W ] + P[M ∩B] = P[M ∩W ] + P[B]P[M | B]

=
3

14
+

3

5

(
4

7
· 3
6
+

3

7
· 4
6

)
=

39

70
.

Hence, P[W | M ] = P[W∩M ]
P[M ] = 3/14

39/70 = 5
13 .

Part (c).

P[W ∪M ] = P[W ] + P[M ]− P[W ∩M ] =
2

5
+

39

70
− 3

14
=

26

35
.

Note that the container has 2 white objects, 3 black objects, 9 red objects and 6 green
objects, for a total of 20 objects. The probability that one object of each colour is taken
is thus given by

2

20
· 3

20
· 9

20
· 6

20
· 4! = 243

5000
.

∗ ∗ ∗ ∗ ∗

Problem 10. A man writes 5 letters, one each to A, B, C, D and E. Each letter is
placed in a separate envelope and sealed. He then addresses the envelopes, at random,
one each to A, B, C, D and E.

(a) Find the probability that the letter to A is in the correct envelope and the letter to
B is in an incorrect envelope.

(b) Find the probability that the letter to A is in the correct envelope, given that the
letter to B is in an incorrect envelope.

(c) Find the probability that both the letters to A and B are in incorrect envelopes.
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Solution.

Part (a).

P[A correct ∩ B incorrect] =
1

5
× 3

4
=

3

20
.

Part (b).

P[A correct | B incorrect] =
P[A correct ∩ B incorrect]

P[B incorrect]
=

3/20

4/5
=

3

16
.

Part (c).

P[A incorrect ∩ B incorrect] = P[B incorrect]P[A incorrect | B incorrect]

=
4

5

(
1− 3

16

)
=

13

20
.

∗ ∗ ∗ ∗ ∗

Problem 11. A bag contains 4 red counters and 6 green counters. Four counters are
drawn at random from the bag, without replacement. Calculate the probability that

(a) all the counters drawn are green,

(b) at least one counter of each colour is drawn,

(c) at least two green counters are drawn,

(d) at least two green counters are drawn, given that at least one counter of each colour
is drawn.

State with a reason whether the events “at least two green counters are drawn” and “at
least one counter of each colour is drawn” are independent.

Solution.

Part (a).

P[all green] =
6C4

10!/(4! 6!)
=

1

14
.

Part (b).

P[one of each colour] = 1− P[all green]− P[all red] = 1− 1

14
−

4C4

10!/(4! 6!)
=

97

105
.

Part (c).

P[at least 2 green] = 1− P[no green]− P[one green] = 1− 1

210
−

6C1 · 4C3

10!/(4! 6!)
=

37

42
.

Part (d).

P[at least 2 green | one of each colour] =
6C3 · 4C1 +

6C2 · 4C2

10!/(4! 6!)− 6C4 − 4C4
=

85

97
.

Since P[at least 2 green] = 37
42 ̸= 85

97 = P[at least 2 green | one of each colour], the two
events are not independent.
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Problem 12. A group of fifteen people consists of one pair of sisters, one set of three
brothers and ten other people. The fifteen people are arranged randomly in a line.

(a) Find the probability that the sisters are next to each other.

(b) Find the probability that the brother are not all next to one another.

(c) Find the probability that either the sisters are next to each other or the brothers
are all next to one another or both.

(d) Find the probability that the sisters are next to each other given that the brothers
are not all next to one another.

Solution.

Part (a). Let the two sisters be one unit. There are hence 14 units altogether, giving
14! · 2! arrangements with the restriction. Since there are a total of 15! arrangements
without the restriction, the required probability is 14!·2!

15! = 2
15 .

Part (b). Consider the case where all brothers are next to one another. Counting the
brothers as one unit gives 13 units altogether. There are hence 13! · 3! arrangements with
this restriction. Since there are a total of 15! arrangements without the restriction, the
probability that all three brothers are not together is given by 13!·3!

15! = 34
35 .

Part (c). Consider the case where both the sisters are adjacent, and all three brothers
are next to one another. Counting the sisters as one unit, and counting the brothers as
one unit gives 12 units altogether. There are hence 12! · 2! · 3! arrangements with this
restriction. Since there are a total of 15! arrangements without the restriction, we have

P[sisters together ∩ brothers together] =
12! · 2! · 3!

15!
=

2

455
.

Hence,

P[sisters together ∪ brothers together]

= P[sisters together] + P[brothers together]− P[sisters together ∩ brothers together]

=
2

15
+

(
1− 1

35

)
− 2

455
=

43

273
.

Part (d). Note that

P[sisters together ∩ brothers not together]

= P[sisters together]− P[sisters together ∩ brothers together]

=
2

15
− 2

455
=

176

1365
.

Hence, the required probability can be calculated as

P[sisters together | brothers not together] = P[sisters together ∩ brothers not together]

P[brothers not together]

=
176/1365

34/35
=

88

663
.
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Self-Practice A12

Problem 1. Two events A and B are such that P[A] = 0.6, P[B] = 0.3, P[A | B] = 0.2.
Calculate the probabilities that

(a) both events occur,

(b) at least one of the two events occurs,

(c) exactly one of the events occur.

Solution.

Part (a). We have

P[A ∩B] = P[B]P[A | B] = (0.2)(0.3) = 0.06.

Part (b). We have

P[A ∪B] = P[A] + P[B]− P[A ∩B] = 0.6 + 0.3− 0.06 = 0.84.

Part (c). The required probability is given by

P[A ∪B]− P[A ∩B] = 0.84− 0.06 = 0.78.

∗ ∗ ∗ ∗ ∗

Problem 2. For events A and B, it is given that P[A] = 0.7, P[B | A′] = 0.8, P[A | B′] =
0.88. Find

(a) P[B ∩A′],

(b) P[A′ ∩B′],

(c) P[A ∩B].

Solution.

Part (a). We have

P
[
B ∩A′] = P

[
A′]P

[
B | A′] = (1− 0.7) (0.8) = 0.24.

Part (b). Note that P[B′ | A′] = 1− P[B | A′]. Hence,

P
[
B′ ∩A′] = P

[
A′]P

[
B′ | A′] = (1− 0.7) (1− 0.8) = 0.06.

Part (c). Let x = P[A ∩B]. Then

P
[
A ∩B′] = P[A]− x = 0.7− x,

so

0.88 = P
[
A | B′] = P[A ∩B′]

P[B′]
=

P[A ∩B′]
P[A ∩B′] + P[A′ ∩B′]

=
0.7− x

(0.7− x) + 0.06
,

which yields x = P[A ∩B] = 0.26 upon simplification.

∗ ∗ ∗ ∗ ∗

Problem 3. A group of student representatives is to be chosen from three schools, R,
S and T . The group is to consist of 10 students and is chosen from a set of 15 students
consisting of 3 from R, 4 from S and 8 from T . Find the probability that the group
consists of
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(a) students from S and T only,

(b) at least one student from each school.

Solution.

Part (a). There are 15C10 ways to form a group without restriction, and there are 4+8C10

ways to form a group consisting of students from only S and T . Thus, the desired proba-
bility is 4+8C10/

15C10 = 2/91.

Part (b). Consider the complement, i.e. the event that at least one school has no repre-
sentative. The only way this can happen is if the group consists of students from R and
T only, or from S and T only. Thus, the required probability is

1−
3+8C10 +

4+8C10
15C10

=
38

39
.

∗ ∗ ∗ ∗ ∗

Problem 4. A box contains 25 apples, of which 20 are red and 5 are green. Of the red
apples, 3 contain maggots and of the green apples, 1 contains maggots. Two apples are
chosen at random from the box. Find, in any order,

(a) the probability that both apples contain maggots.

(b) the probability that both apples are red and at least one contains maggots.

(c) the probability that at least one apple contains maggots, given that both apples are
red.

(d) the probability that both apples are red given that at least one apple is red.

Solution.

Part (a). The required probability is

4

25
× 3

24
=

1

50
.

Part (b). The required probability is

P[both red]− P[both red and no maggot] =
20

25
× 19

24
− 17

25
× 16

24
=

9

50
.

Part (c). The required probability is

P[both red and at least one maggot]

P[both red]
=

9/50

(20/25)× (19/24)
=

27

95
.

Part (d). The required probability is

P[both red]

P[at least one red]
=

P[both red]

1− P[both green]
=

(20/25)× (19/24)

1− (5/25)(4/24)
=

19

29
.

∗ ∗ ∗ ∗ ∗

Problem 5. A bag contains 15 tokens that are indistinguishable apart from their colours.
2 of the tokens are blue and the rest are either red or green. Participants are required to
draw the tokens randomly, one at a time, from the bag without replacement.
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(a) Given that the probability that a participant draws 2 red tokens on the first 2 draws
is 1/35, show that there are 3 red tokens in the bag.

(b) Find the probability that a participant draws a red or green token on the second
draw.

Events A and B are defined as follows.

• A: A participant draws his/her second red token on the third draw.

• B: A participant draws a blue token on the second draw.

(c) Find P[A ∪B].

(d) Determine if A and B are independent events.

Solution.

Part (a). Let r be the number of red tokens. Then

P[2 red tokens on second draw] =
r

15
× r − 1

14
=

1

35
=⇒ r2 − r − 6 = 0.

Solving, we get r = 3. Note that we reject r = −2 since r ≥ 0.

Part (b). We have

P[red/green on 2nd draw] =
13

15
× 12

14
+

2

15
× 13

14
=

13

15
.

Part (c). We have

P[A] =
3

15
× 12

14
× 2

13
+

12

15
× 3

14
× 2

13
=

24

455

and

P[B] = 1− P[red/green on 2nd draw] = 1− 13

15
=

2

15
.

Note that the event A ∩ B can only occur if the first and third draws are red, and the
second draw is blue. Thus,

P[A ∩B] =
3

15
× 2

14
× 2

13
=

2

455
.

Thus,

P[A ∪B] = P[A] + P[B]− P[A ∩B] =
24

455
+

2

15
− 2

455
=

248

1365
.

Part (d). Observe that

P[A]P[B] =
24

455
× 2

15
=

16

2275
̸= 248

1365
= P[A ∩B] .

Thus, A and B are not independent.
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Problem 6.

Laptop
Games
machine

Tablet

x

130

48 55

12

10

15

20

A group of students is asked whether they own any of a laptop, a tablet and a games
machine. The numbers owning different combinations are shown in the Venn diagram.
The number of students owning none of these is x. One of the students is chosen at
random.

• L is the event that the student owns a laptop.

• T is the event that the student owns a tablet.

• G is the event that the student owns a game machine.

(a) Write down expressions for P[L] and P[G] in terms of x. Given that L and G are
independent, show that x = 10.

Using this value of x, find

(b) P[L ∪ T ],

(c) P[T ∩G′],

(d) P[L | G].

Two students from the whole group are chosen at random.

(e) Find the probability that both of these students each owns exactly two out of the
three items (laptop, tablet, games machine).

Solution.

Part (a). We have

P[L] =
90

290 + x
and P[G] =

100

290 + x
and P[L ∩G] =

30

290 + x
.

Since L and G are independent,

P[L]P[G] = P[L ∩G] =⇒ 90

290 + x
× 100

290 + x
=

30

290 + x
.

Clearing denominators and simplifying, we get

(290 + x)2 − 300 (290 + x) = 0,

which implies 290 + x = 300, whence x = 10.
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Part (b). We have

P[L ∪ T ] =
235

300
=

47

60
.

Part (c). We have

P
[
T ∩G′] = 143

300
=

71

150
.

Part (d). We have

P[L | G] =
P[L ∩G]

P[G]
=

30/300

100/300
=

3

10
.

Part (e). Observe that the number of students that own exactly two items is 12+15+10 =
37. The required probability is hence

37

300
× 36

299
=

111

7475
.

∗ ∗ ∗ ∗ ∗

Problem 7. A group of students takes an examination in Science. A student who fails the
examination at the first attempt is allowed one further attempt. For a randomly chosen
student, the probability of passing the examination at the first attempt is p. If the student
fails the examination at the first attempt, the probability of passing at the second attempt
is 0.3 more than the probability of passing the examination at the first attempt.

(a) Show that the probability that a randomly chosen student passes the examination
is 0.3 + 1.7p− p2.

Find the value of p such that the probability that a randomly chosen student passes the
examination on the first attempt given that the student passes is 0.6.
Two students are randomly chosen.

(b) (i) Find the probability that one passes the examination on the first attempt and
the other passes the examination on the second attempt, leaving your answer
in terms of p.

(ii) Find the value of p such that the value of the probability in part (i) is maximum.

Solution.

Part (a). We have

P[pass] = p+ (1− p) (p+ 0.3) = −p2 + 1.7p+ 0.3.

Part (b). We have

P[pass on 1st attempt | pass] = P[pass on 1st attempt]

P[pass]
=

p

−p2 + 1.7p+ 0.3
.

Equating this to 0.6, we get p = 0.565 or p = −0.531, which we reject since p ∈ [0, 1].
Thus, the desired probability is p = 0.565.

Part (c). The required probability is

2 [p× (1− p) (p+ 0.3)] = −2p3 + 1.4p2 + 0.6p.

Part (d). Let f(p) = −2p3 + 1.4p2 + 0.6p. For stationary points,

df

dp
= −6p2 + 2.8p+ 0.6 = 0,
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which occurs when p = 0.626. Note that we reject p = −0.160 since p ∈ [0, 1]. At
p = 0.626, the second derivative is

d2f

dp2

∣∣∣∣
p=0.626

= (−12p+ 2.8)|p=0.626 = −4.712 < 0,

thus the probability is maximum at p = 0.626.

∗ ∗ ∗ ∗ ∗

Problem 8. In Haha College, 70% of the students watch the show Jogging Man and 60%
of the students watch the show Voice of Me. 40% of those who do not watch the show
Voice of Me watch the show Jogging Man. Find the probability that a student chosen at
random from the college

(a) watches both shows,

(b) watches exactly one show,

(c) watches the show Voice of Me given that the student does not watch the show
Jogging Man.

State, with a reason, whether the events ‘watches Jogging Man’ and ‘watches Voice of
Me’ are independent.

Solution. Let J be the event that a student watches Jogging Man, and V be the event
that a student watches Voice of Me. We have P[J ] = 0.7, P[V ] = 0.6 and P[J | V ′] = 0.4.

Part (a). We have

P
[
J ∩ V ′] = P

[
V ′] (J)V ′ = (1− 0.6) (0.4) = 0.16.

Thus, the probability that the student watches both shows is

P[J ∩ V ] = P[J ]− P
[
J ∩ V ′] = 0.7− 0.16 = 0.54.

Part (b). The probability that the student watches exactly one show is

P[J ∪ V ]−P[J ∩ V ] = (P[J ] + P[V ]− P[J ∩ V ])−P[J ∩ V ] = (0.7 + 0.6− 0.54)−0.54 = 0.22.

Part (c). The desired probability is

P
[
V | J ′] = P[V ∩ J ′]

P[J ′]
=

P[V ]− P[V ∩ J ]

1− P[J ]
=

0.6− 0.54

1− 0.7
= 0.2.

Note that
P[J ∩ V ] = 0.54 ̸= (0.7)(0.6) = P[J ]P[V ] ,

thus J and V are not independent.

∗ ∗ ∗ ∗ ∗

Problem 9. For events A and B, it is given that P[A] = 2/3 and P[B] = 1/2.

(a) State an inequality satisfied by P[A ∩B].

It is given further that A and B are independent. Find

(b) P[A ∩B],

(c) P[A′ ∪B].
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Solution.

Part (a). Note that

P[A ∩B] ≤ min{P[A] ,P[B]} =
1

2
.

Further,

P[A ∪B] = P[A] + P[B]− P[A ∩B] =
7

6
− P[A ∩B] ,

so P[A ∩B] ≥ 1/6. Putting both inequalities together, we have

1

6
≤ P[A ∩B] ≤ 1

2
.

Part (b). Since A and B are independent,

P[A ∩B] = P[A]P[B] =
2

3
× 1

2
=

1

3
.

Part (c). We have

P
[
A′ ∪B

]
= 1− P

[
A ∩B′] = 1− (P[A]− P[A ∩B]) = 1−

(
2

3
− 1

3

)
=

2

3
.

∗ ∗ ∗ ∗ ∗

Problem 10 ( ). A fast food restaurant gives away a free action figure for every child’s
meal bought. There are five different action figures and each figure is equally likely to be
given away with a child’s meal. A customer intends to collect all five different figures by
buying child’s meals.

(a) Find the probability that the first 4 child’s meals bought by the customer all had
different action figures.

(b) Two of the five action figures are X and Y. Find the probability that the first 4
action figures obtained result in the customer having at least one X or one Y or
both.

(c) Find the probability that the first 4 child’s meals bought by the customer had exactly
two different action figures.

(d) At a certain stage, the customer collected 4 of the five action figures. Given that
the probability of the customer completing the set by at most n meals is larger than
0.95, find the least value of n.

Solution.

Part (a). Without restriction, there are 54 ways to get action figures from four orders.
If all four action figures are distinct, there are only 5P 4 ways to do so. The required
probability is thus 5P 4/5

4 = 24/125.

Part (b). Consider the complement, i.e. the event that the first 4 action figures do not
contain any X or Y. Since there are now only three possible action figures available, there
are 34 ways for this to happen. The required probability is then

1− 34

54
=

544

625
.

Part (c). Let X and Y be the pair of action figures that the customer obtained. There
are 5C2 possible pairs. Since there are only two possible action figures available, there are
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24 ways to obtain at most two different action figures. Since there are 2 ways to get only
one action figure (either all four orders are X’s or Y’s), the desired probability is

5C2

(
24 − 2

)

54
=

28

125
.

Part (d). Consider the complement, i.e. the event that the customer does not complete
his set by at most n meals. This probability is given by (4/5)n, so the desired inequality
is

1−
(
4

5

)n

≥ 0.95.

Using G.C., the least n is 14.
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Assignment A12

Problem 1.

(a) Events A and B are such that P[A] = 0.4, P[B] = 0.3 and P[A ∪B] = 0.5.

(i) Determine whether A and B are mutually exclusive.

(ii) Determine whether A and B are independent.

(b) In a competition, 2 teams (A and B) will play each other in the best of 3 games.
That is, the first team to win 2 games will be the winner and the competition will
end. In the first game, both teams have equal chances of winning. In subsequent
games, the probability of team A winning team B given that team A won in the
previous game is p and the probability of team A winning team B given that team
A lost in the previous game is 1

3 .

(i) Illustrate the information with an appropriate tree diagram.

(ii) Find the value of p such that team A has equal chances of winning and losing
the competition.

Solution.

Part (a).

Part (a)(i). Note that

P[A ∩B] = P[A] + P[B]− P[A ∪B] = 0.4 + 0.3− 0.5 = 0.2.

Since P[A ∩B] = 0.2 ̸= 0, A and B are not mutually exclusive.

Part (a)(ii). Note that

P[A | B] =
P[A ∩B]

P[B]
=

0.2

0.3
=

2

3
.

Since P[A] = 0.4 ̸= 2
3 = P[A | B], A and B are not independent.

Part (b).

Part (b)(i).

A wins

B wins

A wins

B wins

A wins

B wins

A wins

B wins

A wins

B wins

0.5

0.5

p

1− p

1/3

2/3

1/3

2/3

p

1− p

Part (b)(ii). Consider

P[A wins competition] =

[
1

2
· p
]
+

[
1

2
· (1− p) · 1

3

]
+

[
1

2
· 1
3
· p
]
=

p

2
+

1

6
=

1

2
.

We hence need p = 2
3 for A to have equal chances of winning and losing.
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Problem 2. A Personal Identification Number (PIN) consists of 4 digits in order, where
each digit ranges from 0 to 9. Susie has difficulty remembering her PIN. She tries to
remember her PIN and writes down what she thinks it is. The probability that the first
digit is correct is 0.8 and the probability that the second digit is correct is 0.86. The
probability that the first two digits are both correct is 0.72. Find

(a) the probability that the second digit is correct given that the first digit is correct,

(b) the probability that the first digit is correct, and the second digit is incorrect,

(c) the probability that the second digit is incorrect given that the first digit is incorrect.

Solution. Let 1D be the event that the first digit is correct, and 2D be the event that
the second digit is correct. We have P[1D] = 0.8, P[2D] = 0.86, and P[1D ∩ 2D] = 0.72.

Part (a).

P[2D | 1D] =
P[2D ∩ 1D]

P[1D]
=

0.72

0.8
= 0.9.

Part (b).
P
[
1D ∩ 2D′] = P[1D]− P[1D ∩ 2D] = 0.8− 0.72 = 0.08.

Part (c).

P
[
2D′ | 1D′] = P[2D′ ∩ 1D′]

P[1D′]
=

1− P[1D ∪ 2D]

1− P[1D]

=
1− [P[1D] + P[2D]− P[1D ∩ 2D]]

1− P[1D]
=

1− (0.8 + 0.86− 0.72)

1− 0.8
= 0.3.

∗ ∗ ∗ ∗ ∗

Problem 3. An international tour group consists of the following seventeen people: a pair
of twin sisters and their boyfriends, all from Canada; three policewomen from China; a
married couple and their two daughters from Singapore, and a large family from Indonesia,
consisting of a man, his wife, his parents and his two sons.
Four people from the group are randomly chosen to play a game. Find the probability

that

(a) the four people are all of different nationalities,

(b) the four people are all the same gender,

(c) the four people are all of different nationalities, given that they are all the same
gender.

Solution.

TALLY Male Female SUBTOTAL

Canada 2 2 4

China 0 3 3

Singapore 1 3 4

Indonesia 4 2 6

SUBTOTAL 7 10 17

Part (a).

P[all different nationalities] =
4

17
· 3

16
· 4

15
· 6

14
· 4! = 72

595
.
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Part (b).

P[all same gender] =
7C4 +

10C4
17C4

=
7

68
.

Part (c).

P[all different nationalities | all female] =
2

17
· 3

16
· 3

15
· 2

14
· 4! = 9

595

Note that P[all different nationalities | all male] since there are no males from China,
whence

P[all different nationalities | all same gender]

=
P[all different nationalities ∩ all same gender]

P[all same gender]
=

9/595 + 0

7/68
=

36

245
.
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A14A Discrete Random Variables

Tutorial A14A

Problem 1. An unbiased die is in the form of a regular tetrahedron and has its faces
numbered 1, 2, 3, 4. When the die is thrown on to a horizontal table, the number on the
fact in contact with the table is noted. Two such dice are thrown and the score X is found
by multiplying these numbers together. Obtain the probability distribution of X. Find
the values of

(a) P[X > 8],

(b) E[X],

(c) Var[X].

Solution. The following table displays all possible outcomes.

1 2 3 4
1 1 2 3 4
2 2 4 6 8
3 3 6 9 12
4 4 8 12 16

Hence, the probability distribution is

x 1 2 3 4 6 8 9 12 16

P[X = x] 1
16

2
16

2
16

3
16

2
16

2
16

1
16

2
16

1
16

Part (a).

P[X > 8] = P[X = 9] + P[X = 12] + P[X = 16] =
1

16
+

2

16
+

1

16
=

1

4
.

Part (b). Using G.C., E[X] = 6.25.

Part (c). Using G.C., Var[X] = (4.14578)2 = 17.2.

∗ ∗ ∗ ∗ ∗

Problem 2. A computer can give independent observations of a random variable X with
probability distribution given by P[X = 0] = 3

4 and P[X = 2] = 1
4 . It is programmed to

output a value for the random variable Y defined by Y = X1 +X2, where X1 and X2 are
two observations of X.

Tabulate the probability distribution of Y and show that E[Y ] = 1.
The random variable T is defined by T = Y 2. Find E[T ] and show that Var[T ] = 63

4 .

Solution. Quite clearly, we have

P[Y = 0] =

(
3

4

)2

=
9

16
, P[Y = 2] = 2

(
3

4

)(
1

4

)
=

3

8
, P[Y = 4] =

(
1

4

)2

=
1

16
.
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Thus, the probability distribution of Y is given by

y 0 2 4

P[Y = y] 9
16

3
8

1
16

Thus,

E[Y ] = 0

(
9

16

)
+ 2

(
3

8

)
+ 4

(
1

16

)
= 1.

Note that E[T ] = E
[
Y 2
]
and E

[
T 2
]
= E

[
Y 4
]
. Hence,

E[T ] = 02
(

9

16

)
+ 22

(
3

8

)
+ 42

(
1

16

)
=

5

2

and

E
[
T 2
]
= 04

(
9

16

)
+ 24

(
3

8

)
+ 44

(
1

16

)
= 22.

Thus,

Var[T ] = E
[
T 2
]
− E[T ]2 = 22−

(
5

2

)2

=
63

4
.

∗ ∗ ∗ ∗ ∗

Problem 3. The discrete random variable X takes values −1, 0, 1 with probabilities 1
4 ,

1
2 ,

1
4 respectively. The variable X̄ is the mean of a random sample of 3 values of X (i.e.

X1, X2 and X3 are independent random variables).
Tabulate the probability distribution of X̄, and use your values to calculate Var

[
X̄
]
.

Hence, verify that Var
[
X̄
]
= 1

3 Var[X] in this case.

Solution. By symmetry, we have P
[
X̄ = −n

]
= P

[
X̄ = n

]
. Now, notice that the only

way to get a total score of 3 is to have X1 = X2 = X3 = 1. Thus,

P
[
X̄ = 1

]
= P

[
X̄ = −1

]
=

(
1

4

)3

=
1

64
.

Similarly, the only way to get a total score of 2 is to have two 1’s and one 0. Thus,

P
[
X̄ =

2

3

]
= P

[
X̄ = −2

3

]
=

(
3

1

)(
1

4

)2(1

2

)
=

3

32
.

Now note that there are two ways to achieve a total score of 1: have two 1’s and one −1,
or have two 0’s and one 1. This gives

P
[
X̄ =

1

3

]
= P

[
X̄ = −1

3

]
=

(
3

1

)(
1

4

)2(1

4

)
+

(
3

1

)(
1

2

)2(1

4

)
=

15

64
.

Lastly, by the complement principle, we have

P
[
X̄ = 0

]
= 1− 2

(
1

64
+

3

32
+

15

64

)
=

5

16
.

Hence, the probability distribution of X is given by

x̄ −1 −2
3 −1

3 0 1
3

2
3 1

P
[
X̄ = x̄

]
1
64

3
32

15
64

5
16

15
64

3
32

1
64
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We now calculate Var
[
X̄
]
. Observe that the means of X and X̄ are 0 by symmetry.

Hence,

Var
[
X̄
]
= E

[
X̄2
]
= 2

[
12
(

1

64

)
+

(
2

3

)2( 3

32

)
+

(
1

3

)2(15

64

)]
=

1

6
.

Now, note that

Var[X] = E
[
X2
]
= 2

[
12
(
1

4

)]
=

1

2
.

Thus,

Var
[
X̄
]
=

1

3
Var[X] .

∗ ∗ ∗ ∗ ∗

Problem 4. The probability of obtaining a head when a particular type of coin is tossed
is p. The random variable X is the number of heads obtained when three such coins are
tossed.

(a) Draw up a table showing the probability distribution of X.

(b) Prove that E
[
1
3X
]
= p.

(c) Given that p = 1
3 , and denoting by E the event that X > 1, find the probability

that in 100 throws of the three coins, E will not occur more than 30 times.

Solution.

Part (a). Observe that

P[X = n] =

(
3

n

)
pn(1− p)n.

Hence, the probability distribution of X is given by

x 0 1 2 3

P[X = x] (1− p)3 3p(1− p)2 3p2(1− p) p3

Part (b). Note that

E[X] =
3∑

n=0

n

(
3

n

)
pn(1− p)3−n.

Differentiating with respect to p, we get

0 =
3∑

n=0

(
3

n

)[
npn−1(1− p)3−n − (3− n)pn(1− p)3−n−1

]
.

Rearranging, we have

(
1

p
+

1

1− p

)∑

n=0

(
3

n

)
npn(1− p)3−n

︸ ︷︷ ︸
E[X]

=
3

1− p

∑

n=0

(
3

n

)
pn(1− p)3−n

︸ ︷︷ ︸
1

.

Thus,

E[X] =

3
1−p

1
p + 1

1−p

= 3p =⇒ E
[
1

3
X

]
=

1

3
E[X] =

1

3
(3p) = p.
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Part (c). Note that

P[E] = P[X > 1] = P[X = 2] + P[X = 3] = 3

(
1

3

)2(
1− 1

3

)
+

(
1

3

)3

=
7

27
.

Now, observe that

P[#E = n] =

(
100

n

)(
7

27

)n(
1− 7

27

)100−n

.

Thus,

P[#E ≤ 30] =
30∑

n=0

(
100

n

)(
7

27

)n(
1− 7

27

)100−n

= 0.851.

∗ ∗ ∗ ∗ ∗

Problem 5.

1

2 3
2

1

3

A circular card is divided into 3 sectors 1, 2, 3 and having angles 135◦, 90◦ and 135◦

respectively. On a second circular card, sectors scoring 1, 2, 3 have angles 180◦, 90◦ and
90◦ respectively (see diagram). Each card has a pointer pivoted at its centre. After being
set in motion, the pointers come to rest independently in random positions. Find the
probability that

(a) the score on each card is 1,

(b) the score on at least one of the cards is 3.

The random variable X is the larger of the two scores if they are different, and their
common value if they are the same. Show that P[X = 2] = 9

32 .
Show that E[X] = 75

32 and find Var[X].

Solution.

Part (a). Clearly,

P[both scores are 1] =
135

360
· 180
360

=
3

16
.

Part (b). Likewise,

P[one score is 3] =
135

360
+

90

360
− 135

360
· 90

360
=

17

32
.

Observe that the event X = 1 is equivalent to both scores being 1, whence we have
P[X = 1] = 3

16 from part (a). From part (b), we also have P[X = 3] = 17
32 . Thus,

P[X = 2] = 1− P[X = 1]− P[X = 3] = 1− 3

16
− 17

32
=

9

32
.

Note that

E[X] = 1

(
3

16

)
+ 2

(
9

32

)
+ 3

(
17

32

)
=

75

32
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and

E
[
X2
]
= 12

(
3

16

)
+ 22

(
9

32

)
+ 32

(
17

32

)
=

195

32
.

Thus,

Var[X] = E
[
X2
]
− E[X]2 =

195

32
−
(
75

32

)2

=
615

1024
.

∗ ∗ ∗ ∗ ∗

Problem 6. Alfred and Bertie play a game, each starting with cash amounting to $100.
Two dice are thrown. If the total score if 5 or more, then Alfred pays $x, where 0 < x ≤ 8,
to Bertie. If the total score if 4 or less, then Bertie pays $(x+ 8) to Alfred.

(a) Show that the expectation of Alfred’s cash after the first game is $1
3(304− 2x).

(b) Find the expectation of Alfred’s cash after six games.

(c) Find the value of x for the game to be fair.

(d) Given that x = 3, find the variance of Alfred’s cash after the first game.

Solution.

Part (a). Note that

P[score < 5] =
3 + 2 + 1

62
=

1

6
=⇒ P[score ≥ 5] = 1− 1

6
=

5

6
.

Let $an be the expectation of Alfred’s cash after n games. Suppose Alfred and Bertie play
one more game (i.e. n+ 1 total games). Then

an+1 =
5

6
(an − x) +

1

6
(an + x+ 8) = an +

2

3
(2− x) .

an is in AP with common difference 2
3 (2− x) and is thus given by

an = a0 + n

[
2

3
(2− x)

]
= 100 +

2n

3
(2− x).

Hence, the expectation of Alfred’s cash after the first game is

a1 = 100 +
2(1)

3
(2− x) =

1

3
(304− 2x).

Part (b). The expectation of Alfred’s cash after six games is

a6 = 100 +
2(6)

3
(2− x) = 108− 4x.

Part (c). For the game to be fair, a0 = a1 = a2 = · · · , i.e. the common difference is 0.
Hence, x = 2.

Part (d). Let the random variable X be Alfred’s cash after one game. Since the payouts
are unaffected by a0, we take a0 = 0. When x = 3, E(X) = −2

3 . Hence,

Var[X] =
5

6

(
3− 2

3

)2

+
1

6

(
3 + 8 +

2

3

)2

=
245

9
.



Tutorial A14A 553

Problem 7. A random variable X has the probability distribution given in the following
table.

x 2 3 4 5

P[X = x] p 2
10

3
10 q

(a) Given that E[X] = 4, find p and q.

(b) Show that Var[X] = 1.

(c) Find E[|X − 4|].

(d) Ten independent observations of X are taken. Find the probability that the value 3
is obtained at most three times.

Solution.

Part (a). We have

E[X] = 2p+ 3

(
2

10

)
+ 4

(
3

10

)
+ 5q = 4 =⇒ 2p+ 5q = 2.2.

Additionally, we know that the probabilities must sum to 1:

p+
2

10
+

3

10
+ q = 1 =⇒ p+ q = 0.5.

We hence get a system of two linear equations. Solving, we have p = 1/10 and q = 2/5.

Part (b). Note that

E
[
X2
]
= 22

(
1

10

)
+ 32

(
2

10

)
+ 42

(
3

10

)
+ 52

(
2

5

)
= 17.

Thus,
Var[X] = E

[
X2
]
− E[X]2 = 17− 42 = 1.

Part (c).

x 0 1 2

P[|X − 4| = x] 3
10

2
5 + 2

10
1
10

Hence,

E[|X − 4|] = 0

(
3

10

)
+ 1

(
2

5
+

2

10

)
+ 2

(
2

10

)
= 0.8.

Part (d). Observe that the probability that we get exactly n 3’s is given by

P[n 3’s] =

(
10

n

)(
2

10

)n(
1− 2

10

)10−n

.

Hence, the required probability is

Required probability =

3∑

n=0

(
10

n

)(
2

10

)n(
1− 2

10

)10−n

= 0.879.
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Self-Practice A14A

Problem 1. An unbiased disc has a single dot marked on one side and two dots marked
on the other side. The disc and an unbiased die are thrown, and the random variable X
is the sum of the number of dots showing on the disc and on the top of the die.

(a) Tabulate the probability distribution of X.

(b) Show that P[X ≥ 4 | X ≤ 7] = 8/11.

(c) Write down E[X] and show that Var[X] = 19/6.

∗ ∗ ∗ ∗ ∗

Problem 2. The discrete random variable X denotes the number of “sixes” showing when
two ordinary fair dice are thrown. Tabulate the probability distribution of X.
Two dice are thrown repeatedly. Find the probability that, in 5 throws, the result X = 2

occurs at least once.
The dice are thrown n times. Find the least value of n such that

P[X = 2 occurs at least once in the n throws] > 0.9.

∗ ∗ ∗ ∗ ∗

Problem 3. A writer who writes articles for a magazine finds that his proposed articles
sometimes need to be revised before they are accepted for publication. The writer finds
that the number of days, X, spent in revising a randomly chosen article can be modelled
by the following discrete probability distribution.

x 0 1 2 4

P[X = x] 0.8 0.1 0.05 0.05

Calculate E[X] and Var[X].
The writer prepares a series of 15 articles for the magazine. Find the expected value of

the total time required for revisions to these articles.
The writer regards articles that need no revisions (i.e. X = 0) or which need only minor

revisions (i.e. X = 1) as ‘successful’ articles, and those requiring major revisions (i.e.
X = 2) or complete replacement (i.e. X = 4) as ‘failures’. Assuming independence, find
the probability that there will be fewer than 3 ‘failures’ in the 15 articles in the series.

∗ ∗ ∗ ∗ ∗

Problem 4. In a game, 2 red balls and 8 blue balls are placed in a bottle. The bottle is
shaken and Mary draws 3 balls at random without replacement. The number of red balls
that the draws is denoted by R. Find the probability distribution of R, and show that
P[R ≥ 1] = 8/15.
Show that the expectation of R is 3/5 and find the variance of R.
Mary scores 4 points for each red ball that she draws. The balls are now replaced in

the bottle and the bottle is shaken again. John draws 3 balls at random and without
replacement. He scores 1 point for each blue ball that he draws. Mary’s score is denoted
by M and John’s score is denoted by J . Find the expectation and variance of M − J .

∗ ∗ ∗ ∗ ∗

Problem 5 ( ). A fair cubical die has three faces marked with a ‘1’, two faces marked
with a ‘2’ and one face marked with a ‘3’.
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(a) Calculate the expectation and variance of the score obtained when this die is thrown
once.

(b) Deduce the expectation and variance of the score obtained in one throw of a second
cubical die, which has one face marked ‘1’, two faces marked ‘2’ and three faces
marked ‘3’.

(c) Two of the first type of die and one of the second type are thrown together, and X
denotes the total score obtained. Denoting the expectation and variance of X by µ
and σ2 respectively, show that σ2 = 5/3 and P[|X − µ| > 2σ] = 1/18.
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Assignment A14A

Problem 1. On a long train journey, a statistician is invited by a gambler to play a die
game. The game uses two ordinary dice which the statistician is to throw.
If the total score is 12, the statistician is paid $6 by the gambler. If the total score is 8,

the statistician is paid $3 by the gambler. However, if both or either dice show a 1, the
statistician pays the gambler $2. The game is considered a draw if none of the 3 scenarios
occur.
Let $X be the amount paid to the statistician by the gambler after the dice are thrown

once.

(a) Determine the probability that

(i) X = 6,

(ii) X = 3,

(iii) X = −2.

(b) Find the expected value of X and show that, if the statistician played the game 100
times, his expected loss would be $2.78, to the nearest cent.

(c) Find the amount $a that the $6 would have to be changed to in order to make the
game unbiased.

Solution.

Part (a).

1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

From the table of outcomes, we clearly have

Part (a)(i).

P[X = 6] =
1

36
.

Part (a)(ii).

P[X = 3] =
5

36
.

Part (a)(iii).

P[X = −2] =
11

36
.

Part (b). We have

E[X] = (6)

(
1

36

)
+ (3)

(
5

36

)
+ (−2)

(
11

36

)
= − 1

36
.

Thus, the expected value of X after 100 games is

E[X1 +X2 + · · ·+X100] = − 1

36
· 100 = −2.78.
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Part (c). Replacing $6 with $a, the expected value of X becomes

E[X] = (a)

(
1

36

)
+ (3)

(
5

36

)
+ (−2)

(
11

36

)
=

1

36
(a− 7) .

For the game to be unbiased, E[X] = 0. Hence, a = 7.

∗ ∗ ∗ ∗ ∗

Problem 2. Four rods of length 1, 2, 3, and 4 units are placed in a bag from which one
rod is selected at random. The probability of selecting a rod of length l is kl.

(a) Find the value of k.

(b) Show that the expected value of X, the length of the selected rod, is 3 units and
find the variance of X.

After a rod has been selected it is not replaced. The probabilities of selection for each
of the three rods that remain are in the same ratio as they were before the first selection.
A second rod is now selected from the bag. Let Y be the length of this rod.

(c) Show that 16P[Y = 1 | X = 2] = 9P[Y = 2 | X = 1].

(d) Show that P[X + Y = 3] = 17/370.

Solution.

Part (a). The sum of probabilities must be 1. Hence,

1k + 2k + 3k + 4k = 1 =⇒ k =
1

10
.

Part (b). We have

E[X] = 1

(
1

10

)
+ 2

(
2

10

)
+ 3

(
3

10

)
+ 4

(
4

10

)
= 3.

Also,

E
[
X2
]
= 12

(
1

10

)
+ 22

(
2

10

)
+ 32

(
3

10

)
+ 42

(
4

10

)
= 10.

Thus,
Var[X] = E

[
X2
]
− (E[X])2 = 10− 32 = 1.

Part (c). Consider P[Y = 1 | X = 2]. Since the rod of length 2 has already been chosen,
we are left with the rods of length 1, 3, and 4. Thus,

P[Y = 1 | X = 2] =
1

1 + 3 + 4
=

1

8
.

Consider P[Y = 2 | X = 1]. Since the rod of length 1 has already been chosen, we are
left with the rods of length 2, 3, and 4. Thus,

P[Y = 2 | X = 1] =
2

2 + 3 + 4
=

2

9
.

Thus,

16P[Y = 1 | X = 2] = 16

(
1

8

)
= 2 = 9

(
2

9

)
= 9P[Y = 2 | X = 1] .
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Part (d). For X + Y = 3, either X = 1, Y = 2 or X = 2, Y = 1. Thus,

P[X + Y = 3] = P[X = 1, Y = 2] + P[X = 2, Y = 1] =

(
1

10

)(
2

9

)
+

(
2

10

)(
1

8

)
=

17

360
.

∗ ∗ ∗ ∗ ∗

Problem 3. The random variable has the following probability distribution:

x 1 2 3

P[X = x] θ 2θ 1− 3θ

(a) It is given that 0 < θ < 1/3. Show that E[X] = 3− 4θ, and find Var[X] in terms of
θ.

The random variable S is the sum of n independent values of X.

(b) Write down E[S] and Var[S] in terms of θ and n.

The random variable T is defined by T = a + bS. The values of a and b are such that
E[T ] = θ for all θ in the interval 0 < θ < 1/3. Show that

(c) a = 3/4 and b = −1/4n,

(d) Var[T ] = θ(3− 8θ)/8n.

Solution.

Part (a). We have
E[X] = 1(θ) + 2(2θ) + 3(1− 3θ) = 3− 4θ.

Also,
E
[
X2
]
= 12(θ) + 22(2θ) + 32(1− 3θ) = 9− 18θ.

Hence,
Var[θ] = E

[
X2
]
− (E[X])2 = (9− 18θ)− (3− 4θ)2 = 6θ − 16θ2.

Part (b). We have

E[S] = E[X1 +X2 + · · ·+Xn] = nE[X] = n (3− 4θ) .

Also,
Var[S] = Var[X1 +X2 + · · ·+Xn] = nVar[X] = n

(
6θ − 16θ2

)
.

Part (c). We have

E[T ] = E[a+ bS] = a+ bE[S] = a+ bn (3− 4θ) = (a+ 3bn)− (4bn) θ.

Since E[T ] = θ, we have the system

a = 3bn = 0, 4bn = 1,

whence b = −1/4n. Substituting this into the first equation yields

a+ 3

(
− 1

4n

)
n = 0 =⇒ a =

3

4
.

Part (d). We have

Var[T ] = Var[a+ bS] = Var[bS] = b2Var[S] =

(
− 1

4n

)2 [
n
(
6θ − 16θ2

)]
=

θ(3− 8θ)

8n
.
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Tutorial A14B

Problem 1. For each of the following situations, determine whether it can be modelled
by a binomial distribution, geometric distribution, a Poisson distribution, or neither of
the mentioned.

(a) The number of heads obtained when a biased coin is tossed three times.

(b) The number of phone calls received in a randomly chosen hour.

(c) The number of accidents occurring in a factory in a randomly chosen week.

(d) The number of accidents until the first fatal accident at a traffic junction.

(e) The number of red balls obtained when 3 balls are chosen from a bag containing 4
red, 3 green and 3 white balls

(i) with replacement;

(ii) without replacement.

(f) The number of typing errors on a randomly chosen page in a draft of a novel.

(g) The number of seeds in a chosen packet of 12 seeds that fail to germinate.

(h) The number of throws of a die until a six is obtained.

Solution.

Part Distribution

(a) Binomial

(b) Poisson

(c) Poisson

(d) Geometric

(e)(i) Binomial

(e)(ii) -

(f) Poisson

(g) Binomial

(h) Geometric

∗ ∗ ∗ ∗ ∗

Problem 2. Explain why each of the following situations is not a good model for the
proposed distribution.

(a) Using the Poisson distribution to model the number of cars sold at a particular car
dealer in a randomly chosen year.

(b) Using the Binomial distribution to model the number of family members that will
vote for Party A in the coming election.
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(c) Using the Poisson distribution to model the number of people using a particular
ATM during a randomly chosen day.

(d) Using the Geometric distribution to model the number of train trips for a particular
train before the first breakdown.

Solution.

Part (a). Over the course of a year, the mean rate will likely not be uniform. For instance,
the car dealer may only be open on weekdays, so the mean rate on weekdays is different
from that on weekends.

Part (b). The probability that one will vote for Party A is not uniform.

Part (c). Over the course of a day, the mean rate will likely not be uniform. For instance,
the mean rate at night will be less than the mean rate in the afternoon.

Part (d). The trials are not independent. For instance, wear and tear from previous trials
will affect the probability that the next train will break down.

∗ ∗ ∗ ∗ ∗

Problem 3. Calculate the probability that in a group of ten people,

(a) none has his or her birthday on a Saturday,

(b) at least two have their birthdays on Saturday,

(c) more than two but at most five have their birthdays on Saturday,

(d) less than four have their birthdays on other days except Saturday.

Find also the mean number of people whose birthday falls on Saturday.

Solution. Let X be the number of people with a birthday on Saturday. Note that
X ∼ B(10, 1/7).

Part (a). P[X = 0] = 0.214.

Part (b). P[X ≥ 2] = 1− P[X ≤ 1] = 0.429.

Part (c). P[2 < X <≤ 5] = P[X = 3] + P[X = 4] + P[X = 5] = 0.161.

Part (d). P[X > 6] = 1− P[X ≤ 6] = 9.77× 10−5.
Since n = 10 and p = 1/7, the expected value of X is

E[X] = np =
10

7
.

∗ ∗ ∗ ∗ ∗

Problem 4. In a binomial experiment, the mean number of successful trials is 24 and
the variance is 20. Find the number of trials conducted and the probability of success for
each trial.

Solution. Let n be the number of trials and p be the probability of success of each trial.
We have

µ = np = 24 and σ2 = np(1− p) = 20.

Thus,

p = 1− 20

np
=

1

6
=⇒ n =

24

p
= 144.

∗ ∗ ∗ ∗ ∗

Problem 5. If Y ∼ Po(2.5), state the expected value, µ, and the standard deviation, σ,
of Y . Use your GC to evaluate the following correct to 3 significant figures.
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(a) P[Y = 3]

(b) P[Y > 4.5]

(c) P[Y ≤ 5]

(d) P[6 < Y < 10]

(e) P[Y is 0 or 1]

(f) P[|Y − µ| < σ]

Solution. Since Y follows a Poisson distribution, µ = σ2 = 2.5, whence σ =
√
2.5.

Part (a). P[Y = 3] = 0.214.

Part (b). P[Y > 4.5] = 1− P[Y ≤ 4] = 0.109.

Part (c). P[Y ≤ 5] = 0.958.

Part (d). P[6 < Y < 10] = P[Y ≤ 9]− P[Y ≤ 6] = 0.0139.

Part (e). P[Y is 0 or 1] = P[Y = 0] + P[Y = 1] = 0.287.

Part (f). P[|Y − µ| < σ] = P
[
2.5−

√
2.5 < Y < 2.5 +

√
2.5
]
= P[1 ≤ Y ≤ 4] = 0.809.

∗ ∗ ∗ ∗ ∗

Problem 6. Epple Company manufactures many E-phones. It is known that 1% of the
E-phones manufactured are defective.

(a) A random sample of n phones was selected. Using an algebraic method, find the
smallest value of n such that the probability that there is at least one defective phone
in the sample is more than 0.95.

(b) A carton, which consists of 24 E-phones, will be rejected if there are at least two
defective phones. Show that the probability that a randomly chosen carton is being
rejected is 0.0239.

Solution.

Part (a). Let X be the number of defective phones in the sample. Then X ∼ B(n, 0.01).
Consider P[X ≥ 1] ≥ 0.95:

P[X ≥ 1] ≥ 0.95 =⇒ P[X = 0] = 0.99n ≤ 0.05 =⇒ n ≥ 298.1.

Since n ∈ N, the least n is 299.

Part (b). Take n = 24. Then

P[X ≥ 2] = 1− P[X ≤ 1] = 0.0239.

∗ ∗ ∗ ∗ ∗

Problem 7. In an opinion poll before an election, a sample of 30 voters is obtained.

(a) The number of voters in the sample who support the Alliance Party is denoted by
A. State, in context, what must be assumed for A to be well modelled by a binomial
distribution.

Assume now that A has the distribution B(30, p).

(b) Given that p = 0.15, find P[A = 3 or 4].
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(c) For an unknown value of p, it is given that P[A = 15] = 0.06864 correct to 5 decimal
places. Show that p satisfies an equation of the form p(1 − p) = k, where k is
a constant to be determined. Hence, find the value of p to a suitable degree of
accuracy, given that p < 0.5.

Solution.

Part (a). Votes must be made independently, and the probability of voting A is the same
for all voters.

Part (b). P[A = 3 or 4] = P[A = 3] + P[A = 4] = 0.373.

Part (c). Note that k = p(1− p) = Var[A] is a constant. Consider P[A = 15]:

P[A = 15] =

(
30

15

)
p15(1− p)15 = 0.06864 =⇒ k = p(1− p) = 15

√
0.06864(

30
15

) = 0.23790.

Expanding k = p(1− p) into a quadratic in p, we have

p2 − p+ 0.23790 = 0 =⇒ p = 0.390 or 0.610.

Since p < 0.5, we take p = 0.390.

∗ ∗ ∗ ∗ ∗

Problem 8. In a large population, the proportion having blood group A is 35%. Spec-
imens of blood from the first five people attending a clinic are to be tested. It can be
assumed that these five people are a random sample from the population. The random
variable X denotes the number of people in the sample we are found to have blood group
A.

(a) Find P[X ≤ 2], correct to 3 decimal places.

(b) Three such samples of five people are taken. Find

(i) the probability that each of these three samples has more than two people with
blood group A,

(ii) the probability that one of these three samples has exactly one person with
blood group A, another has exactly two people with blood group A, and the
remaining sample has more than two people with blood group A.

(c) Ten such samples of five people were taken. Find the probability that seven samples
have exactly one person with blood group A.

Solution. Note that X ∼ B(5, 0.35).

Part (a). P[X ≤ 2] = 0.76483 (5 s.f.) = 0.765 (3 d.p.).

Part (b).

Part (b)(i). The required probability is given by

[P[X > 2]]3 = [1− P[X ≤ 2]]3 = 0.0130.

Part (b)(ii). The required probability is given by

3! [P[X = 1]P[X = 2]P[X > 2]] = 0.148.



Tutorial A14B 563

Part (c). Note that P[X = 1] = 0.31239. Let Y be the number of samples with exactly
one person with blood group A. Then Y ∼ B(10, 0.31239). Hence, P[Y = 7] = 0.0113.

∗ ∗ ∗ ∗ ∗

Problem 9. Every student in Sunny Junior College owns a graphic calculator (GC). The
probability of a student carrying a GC to school is 0.98. Assume that the number of
students who carries a GC to school follows a binomial distribution.

(a) (i) Given that the probability that more than m students, in a random sample of
30 students, carry a GC to school is at most 0.99, find the least value of m.

(ii) Give a reason why in real life, the number of students who carries a GC to
school may not follow a binomial distribution.

The latest operating system (OS) of the GC is required for the installation of a new
application. On average, 3 out of 4 students have the latest OS in their GC. A class of 26
students is to report to their mathematics tutor, Mr Ng, to install the new application.

(b) Find the probability that the 15th student who reports to Mr Ng is the 9th student
whose GC has the latest OS while the last student is the 10th student without the
latest OS.

Solution.

Part (a).

Part (a)(i). Let X be the number of students who bring a GC to school. Then X ∼
B(30, 0.98). Consider P[X > m] ≤ 0.99. Using GC, the least m is 27.

Part (a)(ii). The probability that a student brings their GC to school is not the same for
all students, as different students may have different timetables.

Part (b). Number the students in the order in which they report to Mr Ng.

• Students 1–14: 8 students have the latest OS installed, remaining 6 students do not.

• Student 15: Has the latest OS installed.

• Students 16–25: 7 students have the latest OS installed, remaining 3 students do
not.

• Student 26: Does not have the latest OS installed.

The probability of this happening is given by

[(
14

8

)(
3

4

)8(1

4

)6
][

3

4

][(
10

3

)(
3

4

)7(1

4

)3
] [

1

4

]
= 0.00344.

∗ ∗ ∗ ∗ ∗

Problem 10. In a computer game, a bug moves from left to right through a network of
connected paths. The bug starts at S and, at each junction, randomly takes the left fork
with probability p or the right fork with probability q, where q = 1− p. The forks taken
at each junction are independent. The bug finishes its journey at one of the 9 endpoints
labelled A–I (see diagram below).



564 A14B Special Discrete Random Variables

S

A

B

C

D

E

F

G

H

I

(a) Show that the probability that the bug finishes its journey at D is 56p5q3.

(b) Given that the probability that the bug finishes its journey at D is greater than
the probability at any one of the other endpoints, find exactly the possible range of
values of p.

In another version of the game, the probability that, at each junction, the bug takes the
left fork is 0.9p, the probability that the bug takes the right fork is 0.9q and the probability
that the bug is swallowed up by a ‘black hole’ is 0.1.

(c) Find the probability that, in this version of the game, the bug reaches one of the
endpoints A–I, without being swallowed up by a black hole.

Solution.

Part (a). Relabel each endpoint from A–I to 0–8. Let the random variable X be the
end-point that the bug ends up at. Clearly, to reach endpoint i, the bug must take i right
forks and 8 − i left forks. Hence, X ∼ B(8, q) and the probability that the bug reaches
endpoint 3 (i.e. endpoint D) is

P[X = 3] =

(
8

3

)
q3(1− q)8−3 = 56p5q3.

Part (b). Since X follows a binomial distribution, it suffices to find the range of values of
p that satisfy P[X = 2] < P[X = 3] > P[X = 4].
Case 1 : P[X = 2] < P[X = 3]. Note that P(X = 2) =

(
8
2

)
q2(1− q)8−2 = 28p6q2.

P(X = 2) < P(X = 3) =⇒ 28p6q2 < 56p5q3 =⇒ 28p < 56(1− p) =⇒ p <
2

3
.

Case 2 : P[X = 3] > P[X = 4]. Note that P[X = 4] =
(
8
4

)
q4(1− q)8−4 = 70p4q4.

P(X = 3) > P(X = 4) =⇒ 56p5q3 > 70p4q4 =⇒ 56p > 70(1− p) =⇒ p >
5

9
.

Hence, 5/9 < p < 2/3.
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Part (c). Note that the bug most take a total of 8 forks. Since the probability of not
getting swallowed by a black hole at each fork is 0.9, the desired probability is clearly
0.98 = 0.430 (3 s.f.).

∗ ∗ ∗ ∗ ∗

Problem 11. The number of injuries, X, sustained by workers in a factory per week fol-
lows a Poisson distribution with standard deviation σ. Given that 3P[X = 2] = 16P[X = 4]
determine the value of σ and hence state the mean of X.

(a) Find the probability that, in a randomly chosen week, there is at least one injury.

(b) Assuming that a month consists of four weeks, find the probability that, in a ran-
domly chosen month, there are less than 4 injuries.

(c) Calculate the probability that there will be more than 1 but less than 4 injuries in
each of two consecutive weeks.

Solution. We have

3e−µµ
2

2!
= 3P[X = 2] = 16P[X = 4] = 16e−µµ

4

4!
=⇒ µ2 = σ = 2.25 =⇒ µ = 1.5.

Thus, X ∼ Po(1.5).

Part (a). P[X ≥ 1] = 1− P[X = 0] = 0.777.

Part (b). Let Y be the number of injuries in a month. Then Y ∼ Po(6). Hence,
P[Y < 4] = P[Y ≤ 3] = 0.151.

Part (c). The required probability is given by

[P[1 < X < 4]]2 = [P[X = 2] + P[X = 3]]2 = 0.142.

∗ ∗ ∗ ∗ ∗

Problem 12. During a weekday, heavy lorries pass a census point P on a village high
street independently and at random times. The mean rate for westward travelling lorries
is 2 in any 30-minute period and for eastward travelling lorries is 3 in any 30-min period.
Find the probability

(a) that there will be no lorries passing P in a given 10-min period,

(b) that at least one lorry from each direction will pass P in a given 10-minute period,

(c) more than 2 westward travelling lorries will pass P between the time 1410 and 1445,

(d) that there will be exactly 4 lorries passing P in a given 20-minutes period

(e) at least 2 eastward travelling lorries passing P in a period of 20 minutes given that
there are exactly 4 lorries passing P at that time.

Solution. Let Wk and Ek be the number of westward and eastward travelling lorries
passing P in a k-minute period. Then

Wk ∼ Po

(
k

15

)
and Ek ∼ Po

(
k

10

)
.

Part (a). P[W10 = 0]P[E10 = 0] = 0.189.
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Part (b). P[W10 ≥ 1]P[E10 ≥ 1] = [1− P[W10 = 0]] [1− P[E10 = 0]] = 0.308.

Part (c). P[W35 ≥ 2] = 1− P[W35 ≤ 2] = 0.413.

Part (d). Note that W20 + E20 ∼ P
[
20
15 + 20

10

]
= P

[
10
3

]
. Thus, P[W20 + E20 = 4] = 0.184.

Part (e). The desired probability is given by

1− P[W20 = 4]P[E20 = 0] + P[W20 = 3]P[E20 = 1]

P[W20 + E20 = 4]
= 0.821.

∗ ∗ ∗ ∗ ∗

Problem 13. A car rental company has n cars which may be hired on a daily basis. The
demand for cars in a day follows a Poisson distribution with variance 1.5.

(a) For n = 5, for any one day,

(i) find the probability that less than 3 cars are hired.

(ii) find the probability that all the cars are hired.

(b) The probability that the demand for cars being met on any day is at least 0.95. Find
the least value of n.

(c) The probability that no car is rented out on k consecutive days is less than 0.01.
Find the least value of k.

(d) The probability that there are less than two cars rented out on h consecutive days
is less than 0.005. Find the least value of h.

Solution. Let X be the number of cars hired in a given day. Then X ∼ Po(1.5).

Part (a).

Part (a)(i). P[X < 3] = P[X ≤ 2] = 0.809 (3 s.f.).

Part (a)(ii). P[X ≥ 5] = 1− P[X ≤ 4] = 0.0186.

Part (b). Consider P[X ≤ n] ≥ 0.95. Using G.C., the least n is 4.

Part (c). Consider P[X = 0]k ≤ 0.01. Using G.C., the least k is 4.

Part (d). Consider P[X < 2]h = P[X ≤ 1]h ≤ 0.005. Using G.C., the least h is 10.

∗ ∗ ∗ ∗ ∗

Problem 14. A randomly chosen doctor in general practices sees, on average, one case
of a broken nose per year and each case is independent of other similar cases.

(a) Regarding a month as a twelfth part of a year,

(i) show that the probability that, between them, three such doctors see no cases
of a broken nose in a period of one month is 0.779, correct to three significant
figures,

(ii) find the variance of the number of cases seen by three such doctors in a period
of six months.

(b) Find the probability that, between them, three such doctors see at least three cases
in one year.

(c) Find the probability that, of three such doctors, one sees three cases and the other
two see no cases in one year.
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Solution. Let Xt,n be the number of cases of a broken nose seen by n doctors in t months.
Then Xt,n ∼ Po(tn/12).

Part (a).

Part (a)(i). The required probability is

P[X1,3 = 0] = 0.779 (3 s.f.).

Part (a)(ii). Since Xt,n follows a Poisson distribution, µ = σ2. Hence,

Var[X6,3] =
(6)(3)

12
=

3

2
.

Part (b). The required probability is

P[X12,3 ≥ 3] = 1− P[X12,3 ≤ 2] = 0.577 (3 s.f.).

Part (c). The required probability is

3C1 P[X12,1 = 3]P[X12,2 = 0] = 0.0249 (3 s.f.).

∗ ∗ ∗ ∗ ∗

Problem 15. During the winter in New York, the probability that snow will fall on any
given day is 0.1. Taking November 1st as the first day of winter and assuming independence
from day to day, find the probability that the first snow of winter will fall in New York on
the last day of November (30th).

Given that no snow has fallen at New York during the whole of November, a teacher
decides not to wait any longer to book a skiing holiday. The teacher decides to book for
the earliest date for which the probability that snow will have fallen on, or before, that
date is at least 0.9. Find the date of the booking.

Solution. The probability that the first snow of winter will fall on 30 November is given
by

(0.9)29(0.1) = 0.00471 (3 s.f.).

Let n be the number of days after 30 November. Consider P[X ≤ n] ≥ 0.9, where
X ∼ Geo(0.1). Using G.C., the least n is 22. Hence, the date of the booking is 22
December.

∗ ∗ ∗ ∗ ∗

Problem 16. A salesman sells goods by telephone. The probability that any particular
call achieves a sale is 1/12. The salesman continues to make calls until one call achieves
a sale.

(a) State one assumption need for this to be modelled by a Geometric distribution.

(b) Given that a Geometric distribution is used to model this, find the probability that
the call achieves a sale

(i) is the fifth call made,

(ii) does not occur in the first five calls.

(c) The salesman uses 5 minutes for each call, find the expected amount of time he has
to spend to reach his first sale.
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Solution.

Part (a). The calls must be independent.

Part (b). Let X be the number of calls made under the salesman achieves a sale. Then
X ∼ Geo(1/12).

Part (b)(i). P[X = 5] = 0.0588 (3 s.f.).

Part (b)(ii). P[X > 5] = (1− 1/12)5 = 0.647.

Part (c). Note that E[X] = 1/p = 12. Hence, the expected amount of time he has to
spend to reach his first sale is 5× 12 = 60 minutes.

∗ ∗ ∗ ∗ ∗

Problem 17. If X ∼ B(n, p) and Y ∼ Geo(p), explain why P[Y = n] ≤ P[X = 1].

Solution. Both X = 1 and Y = n represent the event that there is exactly one success
in n trials. However, the event Y = n has the added restriction that the success must
come on the last trial, whereas the event X = 1 has no such restriction; the success can
occur in any of the n trials. Hence, the event Y = n is a subset of the event X = 1, thus
P[Y = n] ≤ P[X = 1], with equality only when n = 1.

∗ ∗ ∗ ∗ ∗

Problem 18. Serious delays on a certain railway line occurs at random, at an average
rate of one per week. Show that the probability of at least 4 serious delays occurring
during a particular 4-week period is 0.567, correct to 3 decimal places.

Taking a year to consist of thirteen 4-week periods, find the probability that, in a
particular year, there are at least ten of these 4-week periods during which at least 4
serious delays occur.
Given that the probability of at least n serious delays occurring in a period of 6 weeks

is greater than 0.795, find the largest possible integer value of n.

Solution. Let the number of serious delays in k weeks be Xk ∼ Po(k). We have

P[X4 ≥ 4] = 1− P[X4 ≤ 3] = 0.56653 = 0.567 (3 d.p.).

Let Y be the number of 4-week periods during which at least 4 serious delays occur.
Note that Y ∼ B(13, 0.56653). Hence,

P[Y ≥ 10] = 1− P[Y ≤ 9] = 0.115 (3 s.f.).

Consider P[X6 ≥ n] ≥ 0.795. Using G.C., the greatest value of n is 4.

∗ ∗ ∗ ∗ ∗

Problem 19. The demand for XO pies in a confectionary shop may be taken to follow
a Poisson distribution with a mean of 0.4 pies per hour. The shop opens for 5 days in a
week and does business for 8 hours per day.

(a) Find the probability that the demand for XO pies is at least 3 in a day.

(b) Find the probability that there is one day with demand for XO pies of at least 3,
and another two days with demand 0.

(c) Find the probability that there is at most one day with zero demand for XO pies in
a week.

(d) Given that the demand for XO pies is exactly 3 on a particular day, what is the
probability that this occurred within the first hour of business.
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Solution. Let the number of XO pies demanded in k hours be Xk ∼ Po(0.4k).

Part (a). P[X8 ≥ 3] = 1− P[X8 ≤ 2] = 0.620 (3 s.f.).

Part (b). Note that P[X8 = 0] = 0.40762. The required probability is

3C1 P[X8 ≥ 3]P[X8 = 0] = 0.00309.

Part (c). Let the number of days in a week where there is 0 demand for XO pies be
Y ∼ B(5, 0.40762). Then P[Y ≤ 1] = 0.985 (3 s.f.).

Part (d). If all three pies for the day were sold within the first hour of business, then no
pies were sold in the remaining seven hours. Hence, the required probability is

P[X1 = 3]P[X1 = 0]7

P[X8 = 3]
= 0.00195.

∗ ∗ ∗ ∗ ∗

Problem 20. Given the climate of the country and duration of transportation, the
probability of a strawberry from a particular orchard turning rotten is believed to be 0.15.
In a fruits wholesale centre where strawberries from that orchard are sold, they are packed
and sold in trays of 20.

(a) Show that the probability that there are at most 5 rotten strawberries in a tray is
0.933.

(b) Find, to 3 decimal places, the probability that there are exactly 3 rotten strawberries
in 2 randomly selected trays.

A cold desserts hawker bought 60 trays of strawberries from the wholesaler centre. Using
a suitable approximation, find the probability that there are at least 4 trays with more
than 5 rotten strawberries in each tray.

Solution. Let Xk be the number of rotten strawberries in k trays. We have Xk ∼
B(20k, 0.15).

Part (a). P[X1 ≤ 5] = 0.933 (3 s.f.).

Part (b). P[X2 = 3] = 0.0816 (3 s.f.).
Note that P[X1 > 5] = 1 − P[X1 ≤ 5] = 0.067308. Let Y be the number of trays with

more than 5 rotten strawberries. We can approximate Y using a Poisson distribution since
n = 60 is large and p = 0.067308 is small. We hence have Y ∼ Po(np) = Po(4.0385).
Then P[Y ≥ 4] = 1− P[Y ≤ 3] = 0.574 (3 s.f.).
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Self-Practice A14B

Problem 1. A crossword puzzle is published in The Times each day of the week, except
Sunday. A man is able to complete, on average, 8 out of 10 of the crossword puzzles.

(a) Find the expected value and the standard deviation of the number of completed
crossword puzzles in a given week.

(b) Show that the probability that he will complete at least 5 in a given week is 0.655.

(c) Given that he completes the puzzle on Monday, find the probability that he will
complete at least 4 in the rest of the week.

(d) Find the probability that, in a period of 4 weeks, he completes 4 or less in only one
of the 4 weeks.

∗ ∗ ∗ ∗ ∗

Problem 2. There is a lift on the ground floor of an old 50-storey building. This lift
serves only the first 25 floors with an average number of breakdowns of 2 per week. On the
25th floor, there is another lift serving the 26th to the 50th floor with an average number
of breakdowns of 0.5 per week, independent of the other lift. Find, correct to 3 decimal
places, the probability that

(a) both lifts do not break down in a particular week,

(b) there are not more than 2 breakdowns altogether in a particular day,

(c) in a period of 7 days, there are 6 days on which there are not more than 2 breakdowns
altogether.

∗ ∗ ∗ ∗ ∗

Problem 3. The centre pages of the ‘8 days’ magazine consist of 1 page of film and theatre
reviews and 1 page of classified advertisements. The number of misprints in the reviews
has a Poisson distribution with mean 2.3 and the number of misprints in the classified
section has a Poisson distribution with variance 1.7.
Find the probabilities that, on the centre pages, there will be

(a) no misprints,

(b) 5 misprints.

Given that there are 5 misprints in the centre pages, find the probability that 2 of them
occur in the classified section.

∗ ∗ ∗ ∗ ∗

Problem 4. The student resource centre has 4 rooms which can be booked for students’
activities in a day at a time. Requests of the booking of a room take place independently
with a mean of 4 requests per day.

(a) Find the probability that not all requests for the booking of a room can be met on
any particular day.

(b) On any particular day during which more than 2 requests are received for the booking
of a room, find the probability that all requests for the booking of a room can be
met on that day.
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(c) Find the probability that there are at most 3 days in a particular week (taking 1
week to be 5 schooling days) during which not all requests for the booking of a room
for that day can be met.

(d) Find the least number of rooms that the student resource centre should have so that,
on any particular day, the probability that a request for the booking of a room for
that day has to be refused is less than 0.05.

∗ ∗ ∗ ∗ ∗

Problem 5. A jeweller sells rubies and diamonds. The average number of rubies and
diamonds sold per week is 1.8 and 2.7 respectively.

(a) Find the probability that exactly two rubies are sold in a given week.

(b) Find the probability that exactly 4 diamonds are sold in a given two-week period.

(c) Find the probability that the total number of jewels sold in a given week is at least
4.

(d) Given that less than 3 jewels are sold in a given week, find the probability that the
number of rubies sold is more than the diamonds sold.

∗ ∗ ∗ ∗ ∗

Problem 6. The number of printing errors, Y , in a page of a book follows a Poisson
distribution with standard deviation σ. Given that 3P[Y = 2] = 16P[Y = 4], determine
the value of σ and hence state the mean of Y .

(a) The probability that there are no errors in k consecutive pages is less than 0.01.
Determine the least k value.

(b) For a book of 100 pages, find the probability that at least one page has at least four
errors.

∗ ∗ ∗ ∗ ∗

Problem 7. In order to be offered a scholarship, a candidate has to pass two rounds of
interview (it is assumed that all interviewers’ decisions are independent).
In the first round, there will be a panel of 10 interviewers and the probability of each

interviewer passing a candidate is 0.9. The candidate fails to qualify for the second round
if more than one interviewer decides not to pass him or her.

(a) Find the probability that a candidate passes the first round of interview.

In the second round, there will be a panel of 5 interviewers and the probability of each
interviewer passing a candidate is 0.8. The candidate is offered a scholarship only if all
interviews pass him or her in the second round.

(b) Show that the probability that the candidate is offered the scholarship is 0.241,
correct to three significant figures.

(c) There are n candidates going for the interviews. Find the smallest n such that there
is at least a 98% chance of 2 or more candidates being offered the scholarship.
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Problem 8. The two most common types of disciplinary offences in a particular boy
school is keeping long hair and failure to wear the school badge. The mean number of
disciplinary offences recorded per day involving long hair is 1.12. Assuming that each
school week consists of five school days, the mean number of disciplinary offences recorded
per school week involving failure to wear the school badge is 4.2. The number of cases for
each disciplinary offence is assumed to have an independent Poisson distribution.

(a) Find the probability that at most 9 cases of disciplinary offence are recorded in a
given school week.

(b) In a school week in which there are more than 7 cases of disciplinary offence involv-
ing long hair, find the probability that at most 9 cases of disciplinary offence are
recorded.

(c) Calculate the probability that on a Thursday in a particular school week, it is the
third day in the school week in which the discipline master caught at least 4 students
having long hair in a day (you may assume that Monday is the first day of school
for a school week).

(d) Explain why the Poisson distribution may not be a good model for the number of
disciplinary cases involving long hair, in a school year.

∗ ∗ ∗ ∗ ∗

Problem 9. In a small company, the employees send an average of 1.2 print jobs to the
colour print and α print jobs to the laser printer per day. It is assumed that the print jobs
are independent.

(a) Given that on 1 in 100 working days there are no print jobs for both printers, show
that α = 3.41 correct to 3 significant figures.

(b) Let E be the event that more than 3 print jobs were sent in on a working day. Find
P[E]. Hence, find the probability that the first occurrence of event E happens before
the 5th working day.

(c) A typical working day consists of 8 hours of work. Find the probability that more
than half of the total print jobs sent during a typical working day occurs within the
first hour of work, given that there was a total of 3 print jobs for the day.

∗ ∗ ∗ ∗ ∗

Problem 10. A firm investigated the number of employees suffering injuries whilst at
work. The results recorded below were obtained for a 52-week period:

Number of employees injured in a week 0 1 2 3 4 or more

Number of weeks 31 17 3 1 0

Give reasons why one might expect this distribution to approximate to a Poisson dis-
tribution. Evaluate the mean and variance of the data and explain why this gives further
evidence in favour of a Poisson distribution. Using the calculated value of the mean, find
the theoretical frequencies of a Poisson distribution for the number of weeks in which 0,
1, 2, 3, 4 or more employees were injured.
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Problem 11 ( ). The Entrepreneur Club is in charge of selling the school’s tee shirt.
Based on the sales record of the club, it was found that the monthly demand for tee shirt
size XS has a Poisson distribution with mean 2 and the monthly demand for tee shirt size
XXL has a Poisson distribution with mean 3. The club kept a monthly stock of 3 and 4
for tee shirt sizes XS and XXL respectively.

(a) Calculate the probability that there is more than one XS size tee shirt being sold in
a day, assuming there are 30 days in a month.

(b) Calculate the probability that the club will not meet the demand for either XS or
XXL tee shirts in a month.

(c) Find the most probable number of XXL tee shirts sold in a month.

(d) Determine the least number of stock needed each month for the XS tee shirts in
order to meet the demand with a probability of at least 0.95.
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Assignment A14B

Problem 1. In a school with many students, an average of 1 out of 5 students is sick in
a month.

(a) State, in this context, two conditions that must be met for the number of students
who are sick in a month to be well modelled by a binomial distribution. Explain
why each of these conditions may not be met.

For the remainder of this question, assume that these conditions are met.

(b) 25 students are randomly selected, one after another. Find the probability that the
last student selected is the fifth student who is sick in a month.

(c) Find the least value of n such that in a sample of n randomly selected students, the
probability that at least 6 are sick in a month is more than 0.95.

Solution.

Part (a). The students fall sick independently, e.g. there is no herd immunity to sickness,
nor does sickness spread among the students.

Part (b). Since the last (25th) student is the fifth student who is sick, there must only be
4 sick students in the 24 students sampled before. Hence, the required probability is

24C4

(
1

5

)4(
1− 1

5

)24−4

· 1
5
= 0.0392 (3 s.f.).

Part (c). Let X be the number of students that are sick. Then X ∼ B(n, 1/5). Note that
P[X ≥ 6] ≥ 0.95 is equivalent to P[X ≤ 5] ≤ 0.05. Using G.C., the least n that satisfies
this inequality is n = 50.

∗ ∗ ∗ ∗ ∗

Problem 2. A factory produced plastic cups. It is known that 10% of the cups have
cracks. For quality control purposes, the factory adopts two kinds of checks on the day’s
produce.

A: Multiple checks are performed. In each check, individual cups are randomly selected
and checked for cracks.

B: A random sample of 15 cups is first tested. The day’s produce is rejected if more
than four cups have cracks, and accepted if three or fewer have cracks. If exactly
four cups have cracks, another random sample of 10 cups will be tested. The day’s
produce is accepted if none of the cups in the second sample have cracks and rejected
otherwise.

(a) Find the probability that the first cracked cup appears before the 7th random check
in a day under Scheme A.

(b) Find the probability that the batch of cups is rejected under Scheme B.

Solution.

Part (a). Let X be the number of cups checked before the first cracked cup appears under
Scheme A. Then X ∼ Geo(1/10). Hence, the required probability is

P[X < 7] = P[X ≤ 6] = 0.469 (3 s.f.).

Part (b). Let Y and Z be the number of cracked cups in the first and second rounds of
Scheme B, respectively. Then Y ∼ B(15, 1/10) and Z ∼ B(10, 1/10).
There are two ways for the batch of cups to be rejected:
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1. Directly rejected in round 1 (Y > 4).

2. Proceeded to round 2 (Y = 4), and rejected in round 2 (Z ≥ 1).

The probability that the batch of cups is rejected is hence given by

P[Y > 4] + P[Y = 4]P[Z ≥ 1] = 0.0406 (3 s.f.).

∗ ∗ ∗ ∗ ∗

Problem 3. Floral Junior College faces two major disciplinary problems regarding their
students, namely, littering and unauthorized flower-plucking. On average, there are two
cases of littering per day and three cases of unauthorized flower-plucking per school week.
You may assume that a school week consists of 5 days. The two types of offences are
independent of each other and occur randomly.

(a) Find the probability that in a period of three consecutive days, there are at least 10
cases of littering or unauthorized flower-plucking.

(b) The school principal, Mrs Green, decides to activate the whole school to do a mass
clean-up once the total number of new cases of littering exceeds m. Find the least
value of m if the probability that the school is activated within the next three days
is less than 0.7.

Solution. Let Lk and Pk be the number of cases of littering and flower-plucking in a
period of k consecutive school days, respectively. Then Lk ∼ Po(2k) and Pk ∼ Po(3k/5).

Part (a). Since L3 + P3 ∼ Po(2(3) + 3(3)/5) = Po(7.8), the required probability is

P[L3 + P3 ≥ 10] = 1− P[L3 + P3 ≤ 9] = 0.259 (3 s.f.).

Part (b). The probability that the school is activated within the next three days is given
by P[L3 > m]. We thus consider the inequality P[L3 > m] < 0.7. Using G.C., the least m
is 5.

∗ ∗ ∗ ∗ ∗

Problem 4. In a sales campaign, a company gives each customer who purchases more
than one hundred dollars’ worth of goods a card with a picture of a film star on it. There
are 10 different pictures, one each of 10 different film stars. On any occasion, the card
received by any customer is equally likely to carry any one of the 10 pictures. Any customer
who collects a complete set of all the 10 pictures gets a reward.
Suppose a customer has already collected r different pictures where r = 1, 2, 3, . . . , 9.

Let Xr be the random variable denoting the additional number of cards that needs to be
collected by the customer until he gets a card that carries a different picture from his r
pictures.

(a) Find P[Xr = X], where x ∈ Z+ and state E[Xr].

(b) Prove that P[Xr+1 +Xr ≤ a | Xr = b] = P[Xr+1 ≤ a− b] where a > b. Deduce that

P[Xr+1 +Xr ≤ 4 | Xr = 2] = 1−
(
r+1
10

)2
.

(c) Let Y be the random variable denoting the total number of cards that needs to be
collected by a new customer until he obtains a complete set of 10 different picture
cards. By expressing Y in terms of Xr, find the value of E[Y ].
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Solution.

Part (a). Since the customer already has r different pictures, the probability of the next
card having a new picture is 1− r/10. Hence, Xr ∼ Geo(1− r/10), whence

P[Xr = X] =
[
1−

(
1− r

10

)]X−1 (
1− r

10

)
=
( r

10

)X−1
−
( r

10

)X

and

E[Xr] =
1

1− r/10
=

10

10− r
.

Part (b). Note that

P[Xr+1 +Xr ≤ a | Xr = b] =
P[Xr+1 +Xr ≤ a and Xr = b]

P[Xr = b]

=
P[Xr+1 ≤ a− b and Xr = b]

P[Xr = b]
.

Since the events Xr+1 ≤ a− b and Xr = b are independent, we get

P[Xr+1 +Xr ≤ a | Xr = b] =
P[Xr+1 ≤ a− b]P[Xr = b]

P[Xr = b]
= P[Xr+1 ≤ a− b] .

Taking a = 4 and b = 2,

P[Xr+1 +Xr ≤ 4 | Xr = 2] = P[Xr+1 ≤ 2] = 1−
[
1−

(
1− r + 1

10

)]2
= 1−

(
r + 1

10

)2

.

Part (c). The customer has 0 pictures at first. To get 1 picture, he simply collects one
card. Then, to get 2 different pictures, he collects another X1 cards. To get 3 different
pictures, he collects another X2 cards. This continues until he collects all 10 pictures.
Hence,

Y = 1 +X1 +X2 + · · ·+X9.

The expectation of Y is hence

E[Y ] = E[1 +X1 + · · ·+X9] = 1 +
9∑

r=1

E[Xr] = 1 +
9∑

r=1

10

10− r
= 29.3 (3 s.f.).



577

A15A Continuous Random Variables

Tutorial A15A

Problem 1. The continuous random variable X has probability density function given
by

f(x) =

{
k

1+x2 , −1 ≤ x ≤ 1,

0, otherwise.

Find the value of k and determine

(a) the mode of X;

(b) the expectation (mean) and variance of X;

(c) F , the cumulative density function of X and the median of X.

Solution. Since the sum of probabilities is 1, we have

1 =

∫ ∞

−∞
f(x) dx =

∫ 1

−1

k

1 + x2
dx = k [arctanx]1−1 =

π

2
k,

whence k = 2/π.

Part (a). From the graph of y = f(x), it is clear that f(x) attains a maximum at x = 0,
whence the mode of X is 0.

Part (b). Since f(x) is symmetric about x = 0, we clearly have E[X] = 0. Hence,

Var[X] = E
[
X2
]
=

∫ ∞

−∞
x2f(x) dx =

2

π

∫ 1

−1

x2

1 + x2
dx = 0.273 (3 s.f.).

Part (c). Note that

∫ x

−1
f(t) dt =

2

π

∫ x

−1

dt

1 + t2
=

2

π
[arctan t]x−1 =

2

π
arctanx+

1

2
.

Hence, F (x), the cdf of X, is given by

F (x) =





0, x < −1,
2
π arctanx+ 1

2 , −1 ≤ x ≤ 1,

1, x > 1.

Since f(x) is symmetric about x = 0, the median of X is 0.
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Problem 2. X is a continuous random variable, taking values in the interval 0 < x ≤ 1,
whose probability density function is given by f(x) = 2(1−x). Calculate the expectations
of X, 2X + 1, and of X3.

Solution. We have

E[X] =

∫ ∞

−∞
xf(x) dx =

∫ 1

0
2x(1− x) dx = 0.333 (3 s.f.).

E[2X + 1] =

∫ ∞

−∞
(2x+ 1)f(x) dx =

∫ 1

0
2(2x+ 1)(1− x) dx = 1.67 (3 s.f.).

E
[
X3
]
=

∫ ∞

−∞
x3f(x) dx =

∫ 1

0
2x3(1− x) dx = 0.1.

∗ ∗ ∗ ∗ ∗

Problem 3. The continuous random variable X has cumulative distribution function F
given by

F (x) =





0, x ≤ 0,√
x, 0 < x < 1,

1, x ≥ 1.

Find the median of X. The probability density function of X is f . Write down an
expression for f(x) for 0 < x < 1. Hence,

(a) show that E[X] = 1
3 ;

(b) find Var[X].

Show that the mean of
√
X and the median of

√
X are equal.

Solution. Let m be the median of X. Then

F (m) =
√
m =

1

2
=⇒ m =

1

4
.

Hence, 1/4 is the median of X.
Differentiating the cdf, we see that the pdf of X is given by

f(x) =

{
1

2
√
x
, 0 < x < 1,

0, otherwise.

Part (a). We have

E[X] =

∫ ∞

−∞
xf(x) dx =

∫ 1

0

x

2
√
x
dx =

1

2

[
2

3
x3/2

]1

0

=
1

3
.

Part (b). Note that

E
[
X2
]
=

∫ ∞

−∞
x2f(x) dx =

∫ 1

0

x2

2
√
x
dx =

1

2

[
2

5
x2/5

]1

0

=
1

5
.

Hence,

Var[X] = E
[
X2
]
− E[X]2 =

1

5
−
(
1

3

)2

=
4

45
.

Note that

E
[√

X
]
=

∫ ∞

−∞

√
xf(x) dx =

∫ 1

0

√
x

2
√
x
dx =

1

2
.
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Let s be the median of
√
X. Then

1

2
= P

[√
X < s

]
= P

[
X < s2

]
=

√
s2 = s.

Thus, both the mean and median of
√
X are equal to 1/2.

∗ ∗ ∗ ∗ ∗

Problem 4. The continuous random variable X has probability density function given
by

f(x) =





kx, 0 ≤ x ≤ 1,

kx2, 1 < x ≤ 2,

0, otherwise.

(a) Show that k = 6/17.

(b) Find the cumulative distribution function of X.

(c) Find, correct to two decimal places, the median, m, of X.

(d) Find, correct to two decimal places, P[|X −m| < 0.75].

Solution.

Part (a). Since the probabilities sum to 1, we have

1 =

∫ ∞

−∞
f(x) dx = k

∫ 1

0
x dx+ k

∫ 2

1
x2 dx = k

[
x2

2

]1

0

+ k

[
x3

3

]2

1

=
17

6
k,

whence k = 6/17.

Part (b). Let F be the cdf of X. For 0 ≤ x ≤ 1,

F (x) =

∫ x

0

6

17
t dt =

3

17
x2.

For 1 < x ≤ 2,

F (x) = F (1) +

∫ x

1

6

17
t2 dt =

3

17
+

2

17

(
x3 − 1

)
=

1

17

(
2x3 + 1

)
.

Thus, F is given by

F (x) =





0, x < 0,
3
17x

2, 0 ≤ x ≤ 1,
1
17

(
2x3 + 1

)
, 1 < x ≤ 2,

1, x > 2.

Part (c). By inspection, 1 < m ≤ 2. Hence,

1

2
= F (m) =

1

17

(
2m3 + 1

)
=⇒ m = 1.55 (2 d.p.).

Part (d). Note that |X −m| < 0.75 is equivalent to 0.8 < X < 2.3. Hence,

P[|X −m| < 0.75] = P[0.8 < X < 2.3] = F (2.3)− F (0.8) = 0.89 (2 d.p.).
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Problem 5. The continuous random variable X has probability density function defined
by

f(x) =





0, x < 0,

kx, 0 ≤ x ≤ 2,
16k
x3 , otherwise.

Calculate the value of k. Find the median value and the expectation of X.
Prove that the standard deviation of X is infinite.
Find the value of a such that P[X > a] = 0.005.
Find the cumulative distribution function of X and sketch its graph.

Solution. Since the sum of probabilities is 1, we have

1 =

∫ ∞

−∞
f(x) dx =

∫ 2

0
kx dx+

∫ ∞

2

16k

x3
dx =

[
kx2

2

]2

0

+

[−8k

x2

]∞

2

= 4k.

Hence, k = 1/4.
By inspection, the median of X is 2. The expectation of X is given by

E[X] =

∫ ∞

−∞
xf(x) dx =

∫ 2

0

x2

4
dx+

∫ ∞

2

4

x2
dx = 2.67 (3 s.f.).

Observe that E
[
X2
]
diverges to ∞:

E
[
X2
]
=

∫ ∞

−∞
x2f(x) dx =

∫ 2

0

x3

4
dx+

∫ ∞

2

4

x
dx >

∫ ∞

2

1

x
dx → ∞.

Hence, the standard deviation σ of X also diverges to ∞:

σ =
√

Var[X] =

√
E[X2]− E[X]2 >

√
E[X2] → ∞.

Let F be the cdf of X. We have F (x) = 0 for x < 0. For 0 ≤ x ≤ 2,

F (x) = F (0) +

∫ x

0

t

4
dt = 0 +

[
t2

8

]x

0

=
x2

8
.

For x > 2,

F (x) = F (2) +

∫ x

2

4

t3
dt =

22

8
+

[
− 2

t2

]x

2

= 1− 2

x2
.

Hence,

F (x) =





0, x < 0,
x2

8 , 0 ≤ x ≤ 2,

1− 2
x2 , x > 2.

2

1

0.5

O

x

F (x)
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Consider P[X > a] = 0.005, which is equivalent to P[X ≤ a] = 0.995. By inspection,
a > 2. Hence,

P[X ≤ a] = 1− 2

a2
= 0.995 =⇒ a = 20.

∗ ∗ ∗ ∗ ∗

Problem 6. The continuous random variable X has probability density function given
by

f(x) =





cx2, 0 ≤ x ≤ 2,

2c(4− x), 2 < x ≤ 4,

0, otherwise,

where c is a constant.

(a) Show that c = 0.15.

(b) Find the mean of X.

(c) Find the lower quartile of X.

(d) Find the probability that a single observation of X lies between the lower quartile
and the mean.

(e) Three independent observations of X are taken. Find the probability that one of the
observations is greater than the mean and the other two are less than the median
value of X.

Solution.

Part (a). Since the sum of probabilities is 1, we have

1 =

∫ ∞

−∞
f(x) dx =

∫ 2

0
cx2 dx+

∫ 4

2
2c(4− x) dx = c

[
x3

3

]2

0

+ 2c

[
4x− x2

2

]4

2

=
20

3
c,

whence c = 3/20 = 0.15.

Part (b). We have

E[X] =

∫ ∞

−∞
xf(x) dx =

∫ 2

0

3

20
x3 dx+

∫ 4

2

3

10
x(4− x) dx = 2.2.

Part (c). Let F be the cdf of X. Clearly, F (x) = 0 for x < 0. For 0 ≤ x ≤ 2,

F (x) = F (0) +

∫ x

0

3

20
t2 dt =

3

20

[
t3

3

]x

0

=
x3

20
.

For 2 < x ≤ 4,

F (x) = F (2) +

∫ x

2

3

10
(4− t) dt =

23

20
+

3

10

[
4t− t2

2

]x

2

=
−3x2 + 24x− 28

20
.

Finally, F (x) = 1 for x > 4. Thus,

F (x) =





0, x < 0,
1
20x

3, 0 ≤ x ≤ 2,
1
20(−3x2 + 24x− 28), 2 < x ≤ 4,

1, x > 4.
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Let l be the lower quartile of X. Then P[X < l] = 1
4 . By inspection, 0 ≤ l ≤ 2. Hence,

P[X < l] =
l3

20
=

1

4
=⇒ l =

3
√
5.

Part (d). We have

P
[

3
√
5 < X < 2.2

]
= F (2.2)− F

(
3
√
5
)
= 0.264 (3 s.f.).

Part (e). By definition, the probability that an observation of X is less than the median
value is 1/2. Hence, the required probability is simply

3C1 P[X > 2.2]

(
1

2

)2

= 3C1 [1− P[X < 2.2]]

(
1

2

)2

= 0.365 (3 s.f.).

∗ ∗ ∗ ∗ ∗

Problem 7. The cumulative distribution function of a continuous random variable X is
given by

F (x) =





0, x < −2,

k
(
4x− x3

3 + 16
3

)
, −2 ≤ x ≤ 2,

1, x > 2.

Find

(a) the value of k;

(b) the probability density function for X;

(c) the mean and variance of X.

Solution.

Part (a). Since F is continuous, we have F (2) = F (2+), i.e.

k

(
4(2)− 23

3
+

16

3

)
= 1 =⇒ k =

3

32
.

Part (b). Note that

d

dx

[
3

32

(
4x− x3

3
+

16

3

)]
=

3

32

(
4− x2

)
.

Hence,

f(x) =

{
3
32(4− x2), −2 ≤ x ≤ 2,

0, otherwise.

Part (c). Observe that xf(x) is an odd function (symmetric about x = 0). Hence,
E[X] = 0. Thus,

Var[X] = E
[
X2
]
=

∫ ∞

−∞
x2f(x) dx =

∫ 2

−2

3

32
x2
(
4− x2

)
dx = 0.8.
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Problem 8. A continuous random variable X has distribution function given by

F (x) =





0, x < 0,
1
12x

2, 0 ≤ x ≤ 3,

−1
4x

2 + 2x− 3, 3 < x ≤ 4,

1, x > 4.

(a) Show that the median is
√
6.

(b) Find the corresponding probability density function, and show that the mean is 7
3 .

(c) Find the value of k such that P[X < k] = P[3 < X < 4].

Solution.

Part (a). Let m be the median of X. By inspection, 0 ≤ m ≤ 3. Thus,

P[X < m] =
1

12
m2 =

1

2
=⇒ m =

√
6.

Part (b). Differentiating F , we get

f(x) =





x
6 , 0 ≤ x ≤ 3,

−x
2 + 2, 3 < x ≤ 4,

0, otherwise.

Hence,

E[X] =

∫ ∞

−∞
xf(x) dx =

∫ 3

0

x2

6
dx+

∫ 4

3
x
(
−x

2
+ 2
)
dx =

[
x3

18

]3

0

+

[
−x3

6
+ x2

]4

3

=
7

3
.

Part (c). Note that

P[3 < X < 4] = F (4)− F (3) = 1− 32

12
=

1

4
.

Hence, by inspection, 0 ≤ k ≤ 3. Thus,

P[X < k] =
k2

12
=

1

4
= P[3 < X < 4] =⇒ k =

√
3.

∗ ∗ ∗ ∗ ∗

Problem 9. The continuous random variable X has probability density function given
by

f(x) =

{
k

(x+1)4
, x ≥ 0,

0, x < 0,

where k is a constant.

(a) Show that k = 3, and find the cumulative distribution function. Find also the value
of x such that P[X ≤ x] = 7/8.

(b) Find E[X + 1], and deduce that E[X] = 1/2.

(c) By considering Var[X + 1], or otherwise, find Var[X].
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Solution.

Part (a). Note that ∫
1

(x+ 1)4
dx = − 1

3(x+ 1)3
.

Since the probabilities sum to 1,

1 =

∫ ∞

−∞
f(x) dx = k

∫ ∞

0

1

(x+ 1)4
dx = k

[
− 1

3(x+ 1)3

]∞

0

=
k

3
=⇒ k = 3.

Let F be the cdf of X. Clearly, F (x) = 0 for x < 0. For x ≥ 0, we have

F (x) = F (0) +

∫ x

0

3

(t+ 1)4
dt = 0 + 3

[
− 1

3(t+ 1)3

]x

0

= 1− 1

(x+ 1)3
.

Thus,

F (x) =

{
0, x < 0,

1− 1
(x+1)3

, x ≥ 0.

Consider P[X ≤ x] = 7/8:

P[X ≤ x] = 1− 1

(x+ 1)3
=

7

8
=⇒ x = 1.

Part (b). We have

E[X + 1] =

∫ ∞

−∞
(x+ 1)f(x) dx = 3

∫ ∞

0

1

(x+ 1)3
dx = 3

[
− 1

2(x+ 1)2

]∞

0

=
3

2
.

Thus,

E[X] = E[(X + 1)− 1] = E[X + 1]− E[1] =
3

2
− 1 =

1

2
.

Part (c). Consider E
[
(X + 1)2

]
:

E
[
(X + 1)2

]
=

∫ ∞

−∞
(x+ 1)2f(x) dx = 3

∫ ∞

0

1

(x+ 1)2
dx = 3

[
− 1

x+ 1

]∞

0

= 3.

Thus,

Var[X] = Var[X + 1] = E
[
(X + 1)2

]
− E[X + 1]2 = 3−

(
3

2

)2

=
3

4
.

∗ ∗ ∗ ∗ ∗

Problem 10. The probability that a randomly chosen flight from Stanston Airport is
delayed by more than x hours is 1

100(x − 10)2, x ∈ R, 0 ≤ x ≤ 10. No flights leave early,
and none is delayed for more than 10 hours. The delay, in hours, for a randomly chosen
flight is denoted by X.

(a) Find the median, m, of X, correct to three significant figures.

(b) Find the cumulative distribution function, F , of X and sketch the graph of F .

(c) Find the probability distribution function, f , of X and sketch the graph of f .

(d) Show that E[X] = 10/3.

A random sample of 2 flights is taken. Find the probability that both flights are delayed
by more than m hours, where m is the median of X.
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Solution.

Part (a). Note that

P[X > x] =

{
1

100(x− 10)2, 0 ≤ x ≤ 10,

0, otherwise.

Thus,
1

2
= P[X > m] =

1

100
(m− 10)2 =⇒ m = 2.93 (3 s.f.).

Note that we reject m = 17.1 since 0 ≤ m ≤ 10.

Part (b). We have

F (x) = P[X ≤ x] = 1− P[X > x] =





0, x < 0,

1− 1
100(x− 10)2, 0 ≤ x ≤ 10,

1, x > 10.

m 10

1

0.5

O

x

F (x)

Part (c). Differentiating F , we get

f(x) =

{
− 1

50(x− 10), 0 ≤ x ≤ 10,

0, otherwise.

10

0.2

O

x

f(x)
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Part (d). We have

E[X] =

∫ ∞

−∞
xf(x) dx = − 1

50

∫ 10

0
x(x− 10) dx = − 1

50

[
x3

3
− 5x2

]10

0

=
10

3
.

The required probability is

P[X > m]2 =

(
1

2

)2

=
1

4
.

∗ ∗ ∗ ∗ ∗

Problem 11. The continuous random variable X has a probability density function

f(x) =

{
2
π , 0 ≤ x ≤ π

2 ,

0, otherwise.

The random variable Y is defined by Y = cosX. Find E[Y ] , and show that Var[Y ] =
1
2 − 4

π2 . Find the median of Y .

Solution. We have

E[Y ] = E[cosX] =
2

π

∫ π/2

0
cos(x) dx =

2

π
[sinx]

π/2
0 =

2

π
.

Similarly,

E
[
Y 2
]
= E

[
cos2X

]
=

2

π

∫ π/2

0
cos2(x) dx =

2

π

∫ π/2

0

1 + cos(2x)

2
dx

=
1

π

[
x+

sin 2x

2

]π/2

0

=
1

2
.

Thus,

Var[Y ] = E
[
Y 2
]
− E[Y ]2 =

1

2
−
(
2

π

)2

=
1

2
− 4

π2
.

Let m be the median of Y . We have

1

2
= P[Y < m] = P[cosx < m] = P[x > arccosm] = 1− 2

π
arccosm,

whence m = cos(π/4) = 1/
√
2.

∗ ∗ ∗ ∗ ∗

Problem 12. A random variable X has probability density function

f(x) =

{
2
x2 , 1 ≤ x ≤ 2,

0, otherwise,

and the random variable Y is defined by Y = 4X3. Find

(a) the mean and variance of Y ;

(b) P[10 < Y < 20];

(c) the median of Y .
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Solution.

Part (a). We have

E[Y ] = E
[
4X3

]
=

∫ 2

1
8x dx =

[
4x2
]2
1
= 12

and

E
[
Y 2
]
= E

[
16X6

]
=

∫ 2

1
32x4 dx =

[
32

5
x5
]2

1

=
992

5
.

Thus,

Var[Y ] = E
[
Y 2
]
− E[Y ]2 =

992

5
− 122 =

272

5
.

Part (b). Note that

F (x) =





0, x < 1,

2− 2
x , 1 ≤ x ≤ 2,

1, x > 2.

Thus,

P[10 < Y < 20] = P
[
10 < 4X3 < 20

]
= P

[
3
√
5/2 < X <

3
√
5
]

= F
(

3
√
5
)
− F

(
3
√
5/2
)
= 0.304 (3 s.f.).

Part (c). Let m be the median of Y . We have

1

2
= P[Y < m] = P

[
4X3 < m

]
= P

[
X < 3

√
m/4

]
= 2− 2

3
√

m/4
.

Solving, we get m = 9.48 (3 s.f.).
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Assignment A15A

Problem 1. The continuous random variable X has probability density function given
by

f(x) =





a, 0 ≤ x ≤ 1,

b, 1 < x ≤ 3,

0, otherwise,

where a and b are constants.

(a) If the mean of X is 5/4, find a and b.

(b) Find the exact value of k such that P[X ≤ k] = 5/8.

Ten independent observations of X are taken, and the random variable R is the number
of observations such that X < 1/2. Find P[R > 4].

Solution.

Part (a). Since the probabilities must sum to 1,

1 =

∫ ∞

−∞
f(x) dx =

∫ 1

0
a dx+

∫ 3

1
bdx = a+ 2b. (1)

Since the mean of X is 5/4,

5

4
= E[X] =

∫ ∞

−∞
xf(x) dx =

∫ 1

0
axdx+

∫ 3

1
bxdx =

[
ax2

2

]1

0

+

[
bx2

2

]3

1

=
1

2
a+ 4b. (2)

Solving (1) and (2) simultaneously, we get a = 1/2 and b = 1/4.

Part (b). Let F (x) be the cdf of X. For x < 0, we have F (x) = 0. For 0 ≤ x ≤ 1,

F (x) = F (0) +

∫ x

0
f(t) dt = 0 +

∫ x

0

1

2
dt =

1

2
x.

For 1 < x ≤ 3,

F (x) = F (1) +

∫ x

1
f(t) dt =

1

2
+

∫ x

1

1

4
dt =

1

4
+

1

4
x.

For x > 3, we have F (x) = 1. Thus,

F (x) =





0, 0 < x,
1
2x, 0 ≤ x ≤ 1,
1
4 + 1

4x, 1 < x ≤ 3,

1, x > 3.

Note that F (1) = 1/2 < 5/8. Thus, k ∈ (1, 3]. Hence,

5

8
= P[X ≤ k] =

1

4
+

1

4
k =⇒ k =

3

2
.

Since P[X < 1/2] = F (1/2) = 1/4, it follows that R ∼ B(10, 1/4). Using G.C.,
P[R > 4] = 0.0781 (3 s.f.).

∗ ∗ ∗ ∗ ∗

Problem 2. The random variable X is the distance, in metres, that an inexperienced
tightrope walker has moved along a given tightrope before falling off. It is given that

P[X > x] = 1− 1

64
x3, 0 ≤ x ≤ 4.
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(a) Show that E[X] = 3.

(b) Find σ, the standard deviation of X.

(c) Show that P[|X − 3| < σ] = 69
80

√
3
5 .

Solution.

Part (a). Let F (x) be the cdf of X. Then

F (x) =





0, x < 0,
1
64x

3, 0 ≤ x ≤ 4,

1, x > 4.

Let f(x) be the pdf of X. Then

f(x) = F ′(x) =

{
3
64x

2, 0 ≤ x ≤ 4,

0, otherwise.

Thus,

E[X] =

∫ ∞

−∞
xf(x) dx =

∫ 4

0

3

64
x3 dx =

3

64

[
x4

4

]4

0

= 3.

Part (b). Note that

E
[
X2
]
=

∫ ∞

−∞
x2f(x) dx =

∫ 4

0

3

64
x4 dx =

3

64

[
x5

5

]4

0

=
48

5
.

Thus,

σ2 = Var[X] = E
[
X2
]
− E[X]2 =

48

5
− 32 =

3

5
=⇒ σ =

√
3

5
.

Part (c). We have

P[|X − 3| < σ] = P[3− σ < X < 3 + σ] = F (3 + σ)− F (3− σ)

=
1

64
(3 + σ)3 − 1

64
(3− σ)3 =

1

32
σ
(
27 + σ2

)
=

69

80

√
3

5
.

∗ ∗ ∗ ∗ ∗

Problem 3. In the triangle PQR, PR = 6 cm, QR = 10 cm and ∠PRQ = y radians,
where y is uniformly distributed on the interval from 0 to π/2. The area of triangle PQR
is A cm units2. Find the probability density function of A.

Solution. Since Y ∼ U(0, π/2), its cdf is given by

ΦY (y) =





0, y < 0,
2
πy, 0 ≤ y ≤ π

2 ,

1, y > π
2 .

Since

A =
1

2
(PR)(QR) sinPRQ =

1

2
(6)(10) sin y = 30 sin y,

we have
FA(a) = P[A < a] = P[30 sin y < a] = P

[
y < arcsin

a

30

]
.
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Hence,

FA(a) =





0, arcsin a
30 < 0,

2
π arcsin a

30 , 0 ≤ arcsin a
30 ≤ π

2 ,

1, arcsin a
30 > π

2 .

=





0, a < 0
2
π arcsin a

30 , 0 ≤ a ≤ 30,

1, a > 30.

Since
d

da

2

π
arcsin

a

30
=

2

π

1√
1− (a/30)2

1

30
=

2

π
√
302 − a2

,

the pdf of A is given by

fA(a) = F ′
A(a) =

{
2

π
√
302−a2

, 0 ≤ a < 30,

0, otherwise.
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Tutorial A15B

Problem 1. A continuous random variable X has a uniform distribution over the interval
[0, n]. Write down E[X] and show that Var[X] = 1

12n
2. Denoting the expectation and

standard deviation by µ and σ respectively, evaluate P[|X − µ| < σ].

Solution. We have X ∼ U(0, n). Hence, E[X] = n/2. Note that X has pdf

f(x) =

{
1
n , 0 ≤ x ≤ n,

0, otherwise.

Thus,

E
[
X2
]
=

∫ ∞

−∞
x2f(x) dx =

∫ ∞

0

x2

n
dx =

[
x3

3n

]n

0

=
n2

3
,

whence

Var[X] = E
[
X2
]
− E[X]2 =

n2

3
−
(n
2

)2
=

n2

12
.

Thus,

σ =
√
Var[X] =

n

2
√
3
.

Note that X has cdf

F (x) =





0, x < 0,
x
n , 0 ≤ x ≤ n,

1, x > n.

Thus,

P[|X − µ| < σ] = P[µ− σ < X < µ+ σ] =
µ+ σ

n
− µ− σ

n
=

2σ

n
=

1√
3
.

∗ ∗ ∗ ∗ ∗

Problem 2. The continuous random variable X has probability density function defined
by

f(x) =

{
ke−λx, x ≥ 0,

0, otherwise,

where k and λ are positive constants.

(a) Show that k = λ.

(b) Show that E[X] = 1/λ.

(c) Find Var[X].

(d) Find the median of X.

The random variable X represents the lifetime in hours of a particular brand of torch
battery. Show that the probability that a particular battery lasts at least twice as long as
the mean lifetime is e−2. Find, to three decimal places, the probability that the lifetime
of a particular battery lies between the median and mean lifetimes.
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Solution.

Part (a). Since probabilities sum to 1,

1 =

∫ ∞

−∞
f(x) dx =

∫ ∞

0
ke−λx dx =

[−ke−λx

λ

]∞

0

=
k

λ
=⇒ k = λ.

Part (b). We have

E[X] =

∫ ∞

−∞
xf(x) dx =

∫ ∞

0
λxe−λx dx =

[
−xe−λx − 1

λ
e−λx

]∞

0

=
1

λ
.

Part (c). We have

E
[
X2
]
=

∫ ∞

−∞
x2f(x) dx =

∫ ∞

0
λx2e−λx dx

=
[
−x2e−λx

]∞
0

+
2

λ

∫ ∞

0
λxe−λx dx =

2

λ
E[X] =

2

λ2
.

Thus,

Var[X] = E
[
X2
]
− E[X]2 =

2

λ2
−
(
1

λ

)2

=
1

λ2
.

Part (d). Let F be the cdf of X. For x ≥ 0,

F (x) =

∫ x

0
f(t) dt =

∫ x

0
λe−λt dt =

[
−e−λt

]x
0
= 1− e−λx.

Let m be the median. Then

1

2
= F (m) = 1− e−λm =⇒ m =

ln 2

λ
.

∗ ∗ ∗ ∗ ∗

Problem 3. Given that X ∼ N(21.5, 7), evaluate

(a) P[18.7 < X ≤ 24.5]

(b) P[X < 21.5]

(c) P[X ≥ 23]

(d) P[|X − 21.5| < 6]

(e) P[|X − 21.5| > 4.5]

Solution.

Part (a). P[18.7 < X ≤ 24.5] = 0.727 (3 s.f.).

Part (b). P[X < 21.5] = 0.5.

Part (c). P[X ≥ 23] = 1− P[X < 23] = 0.285 (3 s.f.).

Part (d). P[|X − 21.5| < 6] = P[15.5 < X < 27.5] = 0.977 (3 s.f.).

Part (e). P[|X − 21.5| > 4.5] = 1− P[17 < X < 26] = 0.0890 (3 s.f.).
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Problem 4. If X ∼ N(33, 10), find the value (or range of values) of a such that

(a) P[X < a] = 0.14

(b) P[X > a] = 0.5

(c) P[X ≥ a] > 0.2

Find the value (or range of values) of c such that

(a) P[Z < c] = 0.86

(b) P[|Z| > c] = 0.05

(c) P[|Z| ≤ c] < 0.7

Solution. Using G.C.,

Part (a). P[X < a] = 0.14 =⇒ a = 29.6.

Part (b). P[X > a] = 0.5 =⇒ a = 33.

Part (c). P[X ≥ a] > 0.2 =⇒ a < 35.7.

Part (d). P[Z < c] = 0.86 =⇒ c = 1.08.

Part (e). P[|Z| > c] = 0.05 =⇒ P[Z > c] = 0.025 =⇒ c = 1.96.

Part (f). P[|Z| ≤ c] < 0.7 =⇒ P[0 ≤ Z ≤ c] < 0.35 =⇒ P[Z ≤ c] < 0.85 =⇒ c <
1.04.

∗ ∗ ∗ ∗ ∗

Problem 5. The continuous random variable X has a uniform distribution over the
interval 0 ≤ x ≤ 1. Write down E[X] and Var[X]. The random variable Y is defined by
Y = e−X . By considering P[Y ≤ y], obtain the cumulative density function of Y . Hence,
find E[Y ] and Var[Y ], leaving your answers correct to 2 decimal places.

Solution. Since XU(0, 1), we clearly have E[X] = 0.5 and Var[X] = 1
12 .

Since

FX(x) =





0, x < 0,

x, 0 ≤ x ≤ 1,

1, x > 1,

we have

FY (y) = P[Y ≤ y] = P
[
e−X ≤ y

]
= P[X ≥ − ln y] = 1− P[X ≤ − ln y]

=





1, − ln y < 0,

1 + ln y, 0 ≤ − ln y ≤ 1,

0, − ln y > 1,

=





1, y > 1,

1 + ln y, e−1 ≤ y ≤ 1,

0, y < e−1.

Differentiating, we obtain the pdf of y:

fY (y) =

{
1
y , e−1 ≤ y ≤ 1,

0, otherwise.

Thus,

E[Y ] =

∫ ∞

−∞
yfY (y) dy =

∫ 1

e−1

1 dy = 0.63212 = 0.63 (2 d.p.).
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Also, we have

E
[
Y 2
]
=

∫ ∞

−∞
y2fY (y) dy =

∫ 1

e−1

y dy = 0.43233.

Thus,
Var[Y ] = E

[
Y 2
]
− E[Y ]2 = 0.63212− 0.432332 = 0.03 (2 d.p.).

∗ ∗ ∗ ∗ ∗

Problem 6. A semicircular arc, with centre O and radius a, is drawn with AB as
diameter. A point Q is taken at random on this arc, such that the angle BOQ = θ has
the rectangular distribution between 0 and π. N is the point on the line segment AB such
that QN is perpendicular to AB.

(a) Calculate, in terms of a, the mean and standard deviation of the length of QN .

(b) Find the probability that QN is longer than a/2.

Solution.

Part (a). Note that θ has pdf

f(θ) =

{
1
π , 0 ≤ θ ≤ π,

0, otherwise.

Since QN = a sin θ, we have

E[QN ] =

∫ π

0
(a sin θ)

(
1

π

)
dθ =

a

π
[− cos θ]π0 =

2a

π
.

Further,

E
[
QN2

]
=

∫ π

0
(a sin θ)2

(
1

π

)
dθ =

a2

π

∫ π

0

1− cos 2θ

2
dt =

a2

2π

[
θ − sin 2θ

2

]π

0

=
a2

2
.

Thus,

Var[QN ] = E
[
QN2

]
− E[QN ]2 =

a2

2
−
(
2a

π

)2

=
a2

π2

π2 − 8

2
.

The standard deviation σ of QN is thus

σ =
√

Var[QN ] =
a

π

√
π2 − 8

2
.

Part (b). Observe that if QN > a/2, then sin θ > 1/2, whence π/6 < θ < 5π/6. Since θ
is uniformly distributed, we have

P
[
QN >

a

2

]
=

5π/6− π/6

π
=

2

3
.

∗ ∗ ∗ ∗ ∗

Problem 7. The object distance U and the image distance V for a concave mirror are
related to the focal distance f by the formula

1

u
+

1

v
=

1

f
,

where f is a constant. U is a random variable uniformly distributed over the interval
(2f, 3f). Show that V is distributed with probability density function

f

(v − f)2

and state the range of corresponding values for V . Obtain the mean and median of V .



Tutorial A15B 595

Solution. Since U ∼ U(2f, 3f), we have u− f > 0 and

FU (u) =





0, u < 2f,
u
f − 2, 2f ≤ u ≤ 3f,

1, u > 3f.

Note also that
1

u
+

1

v
=

1

f
=⇒ v =

uf

u− f
.

Thus,

FV (v) = P[V < v] = P
[

uf

u− f
< v

]
= P

[
u >

vf

v − f

]
= 1− P

[
u <

vf

v − f

]

=





1, vf
v−f < 2f,

3− v
v−f , 2f ≤ vf

v−f ≤ 3f,

0, vf
v−f > 3f,

=





1, v > 2f,

3− v
v−f ,

3
2f ≤ v ≤ 2f,

0, v < 3
2f.

Differentiating, we obtain the pdf of V :

fV (v) = F ′
V (v) =

{
f

(v−f)2
, 3

2f ≤ v ≤ 2f,

0, otherwise.

The range of V is hence [32f, 2f ].
We have

E[V ] =

∫ ∞

−∞
vfV (v) dv =

∫ 2f

3f/2

vf

(v − f)2
dv.

Consider the substitution w = v − f . The integral transforms as

E[V ] =

∫ f

f/2

(w + f)f

w2
dw =

∫ f

f/2

(
f

w
+

f2

w2

)
dw =

[
f lnw − f2

w

]f

f/2

= f + f ln 2.

Let m be the median. We have

1

2
= FV (m) = 3− m

m− f
=⇒ m =

5f

3
.

∗ ∗ ∗ ∗ ∗

Problem 8. The lifetime, T hours, of a certain kind of lamp has probability density
function

f(t) =

{
1
ae

−t/b, t ≥ 0,

0, otherwise,

where a and b are positive constants. Show that a = b.
Given that 42.6% of lamps have a lifetime longer than 2000 hours, calculate the common

value of a and b, correct to 3 significant figures.
Find the (cumulative) distribution function of T and hence prove that

P[T > t+ c | T > c] = P[T > t] ,

where t ≥ 0 and c is a positive constant.
Three of the lamps are fitted in a laboratory. One of the lamps is turned on end is still

working 200 hours later. At this time the other two lamps are turned on. Calculate the
probability that after a further 480 hours
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(a) all three lamps are working,

(b) just one lamp is working.

Solution. Since probabilities sum to 1,

1 =

∫ ∞

−∞
f(t) dt =

∫ ∞

0

1

a
e−t/b dt =

[
− b

a
e−t/b

]∞

0

=
b

a
=⇒ a = b.

Note that the cdf of T is given by

F (t) =

{
0, t < 0,

1− e−t/a, t ≥ 0.

We are given that P[T > 2000] = 0.426. Thus,

0.574 = P[T ≤ 2000] = 1− e−2000/a =⇒ a = 2340 (3 s.f.).

Note that P[T > t] = e−t/a. Thus,

P[T > t+ c | T > c] =
P[T > t+ c and T > c]

P[T > c]

=
P[T > t+ c]

P[T > c]
=

e−(t+c)/a

e−c/a
= e−t/a = P[T > t]

Part (a). The probability that all three lamps are working is given by

[P[T > 480]]3 =
(
e−480/2340

)3
= 0.540 (3 s.f.).

Part (b). The probability that only one lamp is working is

3C1 P[T > 480] [1− P[T < 480]]2 = 3e−480/2340
(
1− e−480/2340

)2
= 0.0840.

∗ ∗ ∗ ∗ ∗

Problem 9. The working life, T , in hours, of a drill used in tunnelling machinery is a
random variable with probability density function defined as

f(t) =

{
µe−µt, t > 0,

0, otherwise,

where µ is a positive constant.

(a) If the mean life is 20 hours, show that µ = 0.05.

(b) Drilling is planned to take place continuously for one six-hour shift each day. If a
new drill is used for each shift, what is the probability that it will fail during the
shift?

(c) How long should the shift be to yield a probability of 0.8 for the drill not to fail?

(d) If a drill fails while in use, half an hours’ drilling time is lost while it is repaired, but
if it fails during the last hour of the shift, drilling is abandoned for the day. The cost
of any time loss during shifts is at a rate of $10,000 per hour. Find the expected
cost per six-hour shift of lost drilling time. (Ignore the possibility of a replacement
drill also failing during the shift.)
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Solution.

Part (a). We have

20 = E[T ] =
∫ ∞

−∞
tf(t) dt =

∫ ∞

0
µte−µt dt =

[
−te−µt − 1

µ
e−µt

]∞

0

=
1

µ
=⇒ µ = 0.05.

Part (b). Note that the cdf of T is given by

F (t) =

{
0, t ≤ 0,

1− e−t/20, t > 0.

Thus, the probability that the drill fails during the six-hour shift is

P[T < 6] = 1− e−6/20 = 0.259 (3 s.f.).

Part (c). Let t be the required time. Then

P[T ≥ t] = 0.8 =⇒ P[T < t] = 0.2 =⇒ 1− e−t/20 = 0.2 =⇒ t = 4.46.

Thus, the shift should be 4.46 hours long.

Part (d). Let W1 be the time wasted (measured in hours) in the first 5 hours of the shift,
and let W2 be the time wasted (measured in hours) in the last hour of the shift.

We have

E[W1] =
1

2
P[T < 5] =

1

2

(
1− e−5/20

)
= 0.11059961 (8 d.p.).

Now consider W2. Let t ∈ [5, 6] be the total number of hours elapsed. If the drill fails
at time t, then the rest of the day is wasted, i.e. 6− t hours are wasted. This gives

E[W2] =

∫ 6

5
(6− t)P[T < t] dt =

∫ 6

5
(6− t)

e−t/20

20
dt = 0.01914954 (8 d.p.).

Thus, the total expected time wasted is

E[W1] + E[W2] = 0.11059961 + 0.01914954 = 0.129749 (6 s.f.).

The expected cost due to wasted time is hence 10000 · 0.129749 = $1297.49.

∗ ∗ ∗ ∗ ∗

Problem 10. The lifetime, T years, before a particular type of washing machine breaks
down may be taken to have the probability density function f given by

f(t) =

{
ate−bt, t > 0,

0, otherwise,

where a and b are positive constants. It may be assumed that, if n is a positive integer,
∫ ∞

0
tne−bt dt =

n!

bn+1
.

(a) Records show that the mean of T is 1.5. Show that b = 4/3 and find the value of a.

(b) Find Var[T ].

(c) Calculate P[T < 1.5]. State, giving a reason, whether this value indicates that the
median of T is smaller than the mean of T or greater than the mean of T .
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Solution.

Part (a). Since probabilities sum to 1,

1 =

∫ ∞

−∞
f(t) dt =

∫ ∞

0
ate−bt dt = a

1!

b1+1
=

a

b2
=⇒ a = b2. (1)

Since the mean of T is 1.5,

1.5 =

∫ ∞

−∞
tf(t) dt =

∫ ∞

0
at2e−bt dt = a

2!

b2+1
=

2a

b3
=⇒ a =

3

4
b3. (2)

Solving (1) and (2) simultaneously, we get a = 16/9 and b = 4/3.

Part (b). Note that

E
[
T 2
]
=

∫ ∞

−∞
t2f(t) dt =

∫ ∞

0
at3e−bt dt = a

3!

b3+1
=

6a

b4
=

6(16/9)

(4/3)4
=

27

8
.

Thus,

Var[T ] = E
[
T 2
]
− E[T ]2 =

27

8
− 1.52 =

9

8
.

Part (c). We have

P[T < 1.5] =

∫ 1.5

−∞
f(t) dt =

∫ 1.5

0

16

9
te−4t/3 dt = 0.594.

Thus, P[T < µ] = 0.594 > 0.5 = P[T < m], whence the median m is smaller than the
mean µ.

∗ ∗ ∗ ∗ ∗

Problem 11. X and Y are continuous random variables having independent normal dis-
tributions. The means of X and Y are 10 and 12 respectively, and the standard deviations
are 2 and 3 respectively. Find

(a) P[Y < 10],

(b) P[Y < X],

(c) P[4X + 5Y > 90],

(d) the value of a such that P[X1 +X2 > a] = 1/4, where X1 and X2 are independent
observations of X.

Solution. Note that X ∼ N(10, 4) and Y ∼ N(12, 9).

Part (a). P[Y ≤ 10] = 0.252 (3 s.f.).

Part (b). Note that Y −X ∼ N(12− 10, 4 + 9) = N(10, 13). Thus,

P[Y < X] = P[Y −X < 0] = 0.290 (3 s.f.).

Part (c). Note that 4X + 5Y ∼ N
(
4(10) + 5(12), 42(4) + 52(9)

)
= N(100, 289). Thus,

P[4X + 5Y > 90] = 0.722 (3 s.f.).

Part (d). Note that X1 +X2 ∼ N(2(10), 2(4)) = N(20, 8). Thus,

P[X1 +X2 > a] =
1

4
=⇒ a = 21.9 (3 s.f.).
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Problem 12. The weights of Sunny brand oranges are normally distributed with mean µ
grams and standard deviation σ grams respectively. An inspection of a shipment of Sunny
brand oranges shows that 37% of the oranges have weights exceeding 379 grams and 40%
of the oranges have weights between 366 grams and 379 grams. Find µ and σ.
Three oranges are selected at random. Find the probability that one orange has weight

exceeding 379 grams and two oranges have weights between 366 grams and 379 grams.

Solution. Let W g be the weight of a Sunny brand orange. We are given

P[W > 379] = 0.37 =⇒ P[W ≤ 379] = 1− 0.37 = 0.63.

Normalizing this, we get

z =
x− µ

σ
=⇒ 0.33185 =

379− µ

σ
=⇒ µ+ 0.33185σ = 379. (1)

We are also given

P[366 < W < 379] = 0.40 =⇒ P[W ≤ 366] = 1− P[W > 366] = 1− (0.40 + 0.37) = 0.23.

Normalizing this, we get

z =
x− µ

σ
=⇒ −0.73885 =

366− µ

σ
=⇒ µ− 0.73885σ = 366. (2)

Solving (1) and (2) simultaneously, we get µ = 375 (3 s.f.) and σ = 12.1 (3 s.f.).
The required probability is given by

3C1 P[W > 379] [P[366 < W < 379]]2 = 3(0.37)(0.40)2 = 0.178 (3 s.f.).

∗ ∗ ∗ ∗ ∗

Problem 13. A shopper buys two kinds of vegetables in a shop. The mass of potatoes
and the mass of onions bought are modelled as having independent normal distributions
with the following means and standard deviations.

Mean Standard deviation

Mass of potatoes 3 kg 0.2 kg

Mass of onions 1 kg 0.05 kg

The price of potatoes is 50 cents a kilogram and the price of onions is $1.20 a kilogram.

(a) Find the mean of the total cost of the vegetables and show that the standard devi-
ation of the total cost is $0.117, correct to 3 significant figures.

(b) Find the probability that the total cost of the vegetables lies between $2.50 and
$2.80.

Solution.

Part (a). Let the random variables P kg and O kg be the mass of potatoes and onions
respectively. We have P ∼ N

(
3, 0.22

)
and O ∼ N

(
1, 0.052

)
.

Let the random variable T = 0.50P + 1.20O be the total cost of the vegetables. Then

T ∼ N
(
0.50(3) + 1.20(1), 0.502

(
0.202

)
+ 1.202

(
0.052

))
= N(2.7, 0.0136).

Thus, the mean of the total cost of the vegetables is $2.7 and the standard deviation is√
0.0136 = $0.117.
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Part (b). P[2.50 < T < 2.80] = 0.761 (3 s.f.).

∗ ∗ ∗ ∗ ∗

Problem 14. It is given that X ∼ N
(
µ, σ2

)
and P[X < 1] = P[X > 9]. Write down the

value of µ. It is also given that 2P[X < 2] = P[X < 8]. Find σ.
Three observations of X are taken. Determine the probability that two will be more

than 7 and the other will be between 3 and 5 inclusive.

Solution. Clearly, µ = 5. Using G.C., σ = 6.96 (3 s.f.).
The required probability is

3C1 [P[X > 7]]2 P[3 ≤ X ≤ 5] = 0.0508 (3 s.f.).

∗ ∗ ∗ ∗ ∗

Problem 15. The thickness in cm of a mechanics textbook is a random variable with the
distribution N

(
2.5, 0.12

)
.

(a) The mean thickness of n randomly chosen mechanics textbooks is denoted by M
cm. Given that P

[
M > 2.53

]
= 0.0668, find the value of n.

The thickness in cm of a statistics textbook is a random variable with the distribution
N
(
2.0, 0.082

)
.

(b) Calculate the probability that 21 mechanics textbooks and 24 statistics textbooks
will fit onto a bookshelf of length 1 m. State clearly the mean and variance of any
normal distribution you use in your calculation.

(c) Calculate the probability that the total thickness of 4 statistics textbooks is less
than three times the thickness of 1 mechanics textbook. State clearly the mean and
variance of any normal distribution you use in your calculation.

(d) State an assumption needed for your calculations in parts (ii) and (iii).

Solution.

Part (a). Note that

M =
M1 +M2 + · · ·+Mn

n
∼ N

(
2.5,

0.12

n

)
.

Using G.C.,
P
[
M > 2.53

]
= 0.0668 =⇒ n = 25.

Part (b). Let the random variable T cm be the total length of 21 mechanics and 24
statistics textbooks. Then

T ∼ N
(
21(2.5) + 24(2.0), 21

(
0.12

)
+ 24

(
0.082

))
= N(100.5, 0.3636).

Thus, the probability that the textbooks will fit on the shelf is

P[T < 100] = 0.203 (3 s.f.).

Part (c). Let the random variable D cm be the difference between the total thickness of
4 statistics textbooks and 3 times the thickness of 1 mechanics textbook. Then

D = S1 + · · ·+ S4 − 3M = N
(
4(2.0)− 3(2.5), 4

(
0.082

)
+ 32

(
0.12

))
= N(0.5, 0.1156).



Tutorial A15B 601

The required probability is thus

P[D < 0] = 0.0707 (3 s.f.).

Part (d). The thickness of the mechanics and statistics textbooks are independent of each
other.

∗ ∗ ∗ ∗ ∗

Problem 16. The lengths of metal rods in a box are normally distributed with mean 1.3
m and variance 0.7 m2.

(a) Find the greatest length l for which the probability that a randomly chosen metal
rod is shorter than l m is less than 0.3.

(b) Eight metal rods are chosen at random. Determine the probability that at least
three are longer than 1.4 m.

(c) A random sample of 100 metal rods is selected. Find the expected number of metal
rods with lengths that are between 1.2 m and 1.6 m.

Solution.

Part (a). Let the random variable L be the length of a metal rod. Then L ∼ N(1.3, 0.7).
Hence, if P[L < l] < 0.3, then l < 0.861, whence the largest possible l is 0.861 m.

Part (b). Let the number of rods longer than 1.4 m be X. Note that P[L > 1.4] = 0.45243.
Thus, X ∼ B(8, 0.45243), and

P[X ≥ 3] = 1− P[X ≤ 2] = 0.784 (3 s.f.).

Part (c). Let the number of rods whose lengths are between 1.2 m and 1.6 m be Y . Note
that P[1.2 < L < 1.6] = 0.18761. Thus, Y ∼ B(100, 0.18761), whence

E[Y ] = (100)(0.18761) = 18.8 (3 s.f.).

∗ ∗ ∗ ∗ ∗

Problem 17. An ice-cream shop provides two types of paper cups, regular or large, for
its customers. Each customer picks a cup according to his appetite and fills it with ice-
cream of flavours of his choice. The mass of each cup together with its ice-cream content
is measured at the cashier with a weighing machine, and the customer is charged at a rate
of $2 per 100g measured.

Let X and Y be the respective mass, in grams, of the regular and large cups with
their ice-cream content. It is found that both X and Y independently follows a normal
distribution, with parameters given in the table below:

Mean Standard Deviation

X 200 30

Y 350 60

A family of six, consisting of a couple and four boys, enter the ice-cream shop. The
couple decides to share ice-cream in a large cup and each of the boys independently takes
a regular cup of ice-cream.
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(a) Find the probability that one of the boys pay more than $5 for his regular cup of
ice-cream and the other three pay less than $4 each.

(b) Find the probability that the total cost of the children’s regular cups of ice-cream
exceeds twice that of the parents’ large cup of ice-cream.

The mass, in grams, of an empty regular cup is known to follow a normal distribution
with mean 30g and standard deviation 5g. The ice-cream content, in grams, in a regular
cup also follows independently a normal distribution.
Find, with adequate justification, the variance of the ice-cream content in a regular

cup.

Solution. We have X ∼ N
(
200, 302

)
and Y ∼ N

(
350, 602

)
.

Part (a). Note that a price of $5 corresponds to a mass of 250 g, while a price of $4
corresponds to a mass of 200 g. The required probability is thus

4C1 P[X > 250] (P[X < 200])3 = 0.0239 (3 s.f.).

Part (b). Note that the difference in cost D has distribution

D = X1 + · · ·+X4 − 2Y ∼ N
(
4(200)− 2(350), 4

(
302
)
+ 22

(
602
))

= N(100, 18000).

Thus, the required probability is

P[D > 0] = 0.772 (3 s.f.).

The variance of the total mass is the sum of the variance of the mass of ice-cream and
the variance of the mass of the empty cup. Thus, the variance of the mass of ice-cream is
302 − 52 = 875 g.
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Assignment A15B

Problem 1. P is a fixed point on the circumference of a circle, centre O, and radius r.
Q is a point on the circumference such that ∠POQ = θ, where θ is a random variable
with a rectangular distribution in [0, 2π). Find the mean and median values for the length
of the shorter arc PQ. The length of the chord PQ is X. Find E[X] and show that
Var[X] = 2r2

(
1− 8

π2

)
. Find also P

[
X > r

√
3
]
.

Solution. Let L be the length of the shorter arc PQ. Observe that

L =

{
rθ, 0 ≤ θ < π,

r (2π − θ) , π ≤ θ < 2π.

Note also that θ has probability density function

fΘ(θ) =

{
1
2π , 0 ≤ θ < 2π,

0, otherwise.

Thus,

E[L] =
∫ π

0

rθ

2π
dθ +

∫ 2π

π

r (2π − θ)

2π
dθ =

r

2π

[
θ2

2

]π

0

+
r

2π

[
2πθ − θ2

2

]π

0

=
πr

2
.

Now consider the cdf of L:

FL(l) = P[L < l] = P[rθ < l] + P[r (2π − θ) < l]

= P[θ < l/r] + P[θ > 2π − l/r] =
l

2πr
+

l

2πr
=

l

πr
.

Let m be the median of L. Then

FL(m) =
1

2
=⇒ m

πr
=

1

2
=⇒ m =

πr

2
.

Thus, both the mean and median values of the shorter arc PQ are πr/2.
Note that X = 2r sin(θ/2). Thus,

E[X] = 2rE
[
sin

θ

2

]
= 2r

∫ 2π

0
sin

(
θ

2

)
1

2π
dθ =

2r

π

[
− cos

θ

2

]2π

0

=
4r

π
.

We also have

E
[
X2
]
= 4r2 E

[
sin2

θ

2

]
= 4r2

∫ 2π

0
sin2

(
θ

2

)
1

2π
dθ

=
2r2

π

∫ 2π

0

1− cos θ

2
dθ =

r2

π
[θ − sin θ]2π0 = 2r2.

Hence,

Var[X] = E
[
X2
]
− E[X]2 = 2r2 −

(
4r

π

)2

= 2r2
(
1− 8

π2

)
.

Observe that

2r sin
θ

2
= X > r

√
3 =⇒ sin

θ

2
>

√
3

2
=⇒ θ ∈

(
2π

3
,
4π

3

)
.

Since θ is uniform on [0, 2π),

P
[
X > r

√
3
]
=

4π/3− 2π/3

2π − 0
=

1

3
.
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Problem 2. The continuous random variable X has the exponential distribution whose
probability density function is given by

f(x) =

{
µe−µx, x ≥ 0,

0, otherwise,

where µ is a positive constant. Television sets are hired out by a rental company. The
time in months, X, between major repairs has the above exponential distribution with
µ = 0.05.

(a) Find, to 3 significant figures, the probability that a television set hired out by the
company will not require a major repair for at least a two-year period.

(b) The company agreed to replace any sets for which the time between major repairs
is less than M months, where M is a whole number. Given that the company does
not want to have to replace more than one set in 5, find the set of possible values of
M .

Solution.

Part (a).

P[X > 24] =

∫ ∞

24
0.05e−0.05x dx = 0.301 (3 s.f.).

Part (b).

P[X < M ] ≤ 1

5
=⇒ P[X ≥ M ] ≥ 4

5
=⇒ e−0.05M ≥ 4

5
.

Using G.C., M ∈ {1, 2, 3, 4}.
∗ ∗ ∗ ∗ ∗

Problem 3. An examination is marked out of 100. It is taken by a large number of
candidates. The mean mark, for all candidates, is 72.1, and the standard deviation is
15.2. Give a reason why a normal distribution, with this mean and standard deviation,
would not give a good approximation to the distribution of marks.

Solution. Let X be the marks scored by a candidate. Then X ∼ N
(
72.1, 15.22

)
. Note

that P[0 ≤ X ≤ 100] = 0.967. Assuming no candidate receives a negative score, 3.32% of
candidates are not accounted for under a normal distribution model.

∗ ∗ ∗ ∗ ∗

Problem 4. The weights of boys in a certain age group are normally distributed, with
mean 52 kg and standard deviation σ kg. The weights of girls in the same age group are
normally distributed, with mean µ kg and standard deviation 5 kg. On average, 1 in 25
randomly chosen boys weighs less than 45 kg; and 2 in 25 randomly chosen girls weigh
more than 49 kg.

(a) Find the values of µ and σ.

(b) Find the probability that the weight of two randomly chosen boys is more than thrice
the weight of a randomly chosen girl.

(c) Find the probability that the mean weight of 10 girls chosen is less than 41 kg.

Solution. Let B kg be the weight of a boy, and let G kg be the weight of a girl. We have
B ∼ N

(
52, σ2

)
and G ∼ N

(
µ, 52

)
.
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Part (a). Since P[B < 45] = 1/25, using G.C., we obtain σ = 4. Since P[G > 49] = 2/25,
using G.C., we have µ = 42.

Part (b). Let T = B1 + B2 − 3G. Then T ∼ N
(
2(52)− 3(42), 2

(
42
)
+ 32

(
52
))

=
N(−22, 257). Thus, the required probability is

P[T > 0] = 0.0850 (3 s.f.).

Part (c). Let G = 1
10(G1 + · · · + G10). Then G ∼ N

(
42, 52/10

)
. Hence, the required

probability is
P
[
G < 41

]
= 0.264 (3 s.f.).
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A16 Sampling

Tutorial A16

Problem 1. In a country, 75% of the population have height exceeding 1.50 m and 10%
have height exceeding 1.90 m. Assuming a normal distribution of heights, show that the
height exceeded by 20% of the population is 1.81 m, correct to 3 significant figures.
A random sample of 80 people is taken from the population. Find the probability that

the sample mean exceeds 1.69 m.

Solution. Let the random variable H m be the height of a person. Let H ∼ N
(
µ, σ2

)
.

We are given that P[H > 1.50] = 0.75 and P[H > 1.90] = 0.10. Standardizing,

1.50− µ

σ
= −0.6745 and

1.90− µ

σ
= 1.2816.

Solving, we get µ = 1.6379 and σ = 0.2045. Thus,

P[H > h] = 0.20 =⇒ h = 1.81 (3 s.f.).

Let H = 1
80(H1 + · · ·+H80). Then H ∼ N

(
1.6379, 1

80(0.2045)
2
)
. Hence,

P
[
H > 1.69

]
= 0.0113 (3 s.f.).

∗ ∗ ∗ ∗ ∗

Problem 2. A factory produces packets of peanuts. The mass of peanuts in a packet has
mean 605 g and standard deviation 6 g. A sample of sixty packets is chosen. Find the
probability that the mean mass of peanuts in a packet from this sample is between 600 g
and 606 g. State the assumptions that you have made.

Solution. Let M g be the mean mass of a packet of peanuts in a sample. Assuming M
follows a normal distribution (since the size of a sample, 60 packets, is large), we have
M ∼ N

(
605, 62

)
. Thus,

P
[
600 < M < 606

]
= 0.902 (3 s.f.).

∗ ∗ ∗ ∗ ∗

Problem 3. A beekeeper sells jars of honey which are labelled, ”Total weight: 300 grams”.
She takes a random sample of 10 filled jars and records the weight, x grams, of each filled
jar. Her results are summarized below, with x denoting the sample mean.

∑
x = 3030,

∑
(x− x)2 = 148.

Calculate unbiased estimates of the mean µ, and the variance σ2, of the weight, X grams
of a jar of honey.
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Solution. We have

x =
1

n

∑
x =

3030

10
= 303 g,

and

s2 =
1

n− 1

∑
(x− x)2 =

148

10− 1
= 16.4 g2.

∗ ∗ ∗ ∗ ∗

Problem 4. A large multinational company has 100,000 employees based in several
different countries. To celebrate the 90th anniversary of the founding of the company, the
Chief Executive wishes to invite a representative sample of 90 employees to a party, to be
held at the company’s Headquarters in Singapore. Explain how simple random sampling
could be carried out to choose the 90 employees.

Solution. Assign a unique number to each of the 100,000 employees. For each employee,
place a corresponding numbered ball in a bag. Draw 90 balls from the bag, without
replacement, at random. The numbers on the balls identify the chosen employees.

∗ ∗ ∗ ∗ ∗

Problem 5. The mass of an abalone of a certain grade follows a normal distribution with
mean 180 g and standard deviation 14.2 g.

(a) Find the probability that the mean mass of a sample of sixty abalones chosen at
random differs from the population mean mass by more than 2g.

(b) This grade of abalones is priced at 450 dollars per kilogram. A customer orders five
abalones. Find the probability that the customer ends up paying an average of more
than 84 dollars per abalone.

Solution. Let the random variable M i g be the mean mass of an abalone in a sample of
i abalones. Note that M i ∼ N

(
180, 14.22/n

)
.

Part (a). P
[∣∣M60 − 180

∣∣ < 2
]
= P

[
178 < M60 < 182

]
= 0.725 (3 s.f.).

Part (b). P
[
450
1000M5 > 84

]
= P

[
M5 >

560
3

]
= 0.147 (3 s.f.).

∗ ∗ ∗ ∗ ∗

Problem 6. The random variable X has the distribution N(1, 20).

(a) Given that P[X < a] = 2P[X > a], find a.

(b) A random sample of n observations of X is taken. Given that the probability that
the sample mean exceeds 1.5 is at most 0.01, find the possible values of n.

Solution.

Part (a). Using G.C., a = 2.93.

Part (b). Let X = 1
n(X1 + . . . Xn). Then X ∼ N(1, 20/n). Consider P

[
X > 1.5

]
≤ 0.01.

Using G.C., n ≥ 433.

∗ ∗ ∗ ∗ ∗

Problem 7. The random variable X has a Poisson distribution with mean 4. The random
variable X is the mean of a random sample of 100 values of X. By using a suitable
approximation, find P

[
X < 3.5

]
. The random variable Y has a binomial distribution with

mean 4 and variance 3. The random variable Y is the mean of a random sample of 60
values of Y . By using a suitable approximation, find P

[
Y −X > 0.5

]
.
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Solution. Let X = 1
100(X1 + · · · + X100). Since the sample size (100) is large, by the

Central Limit Theorem, X ∼ N(4, 4/100). Thus, P
[
X < 3.5

]
= 0.00621.

Let Y = 1
60(Y1 + · · · + Y60). Since the sample size (60) is large, by the Central Limit

Theorem, Y ∼ N(4, 3/60). Thus, Y −X ∼ N(4− 4, 4/100 + 3/60) = N(0, 0.09). Thus,

P
[
Y −X > 0.5

]
= 0.0478 (3 s.f.).

∗ ∗ ∗ ∗ ∗

Problem 8. The continuous random variable X has E[X] = 0 and Var[X] = 4/5. The
random variable Y is defined by Y = aX + b, where a and b are positive constants. It is
given that E[Y ] = 50 and Var[Y ] = 80. Find a and b.

A random sample consists of 160 independent observations of Y . Find an approximate
value for the probability that the sample sum lies between 7840 and 8080.

Solution. Note that

50 = E[Y ] = E[aX + b] = aE[X] + b = b,

and

80 = Var[Y ] = Var[aX + b] = a2Var[X] = a2
(
4

5

)
=⇒ a2 = 100 =⇒ a = 10.

Note that we reject a = −10 since a is positive.
Let Σ = Y1 + · · ·+ Y160. Since the sample size (160) is large, Σ ∼ N(160(50), 160(80)).

Thus,
P[7840 < Σ < 8080] = 0.682 (3 s.f.).

∗ ∗ ∗ ∗ ∗

Problem 9. The speeds of 120 randomly selected cars are measured as they pass a camera
on a motorway. Denoting the speed by x km per hour, the results are summarized by

∑
(x− 100) = −221,

∑
(x− 100)2 = 4708.

Suggest a reason why, in this context, the given data is summarized in terms of (x−100)
rather than x.
Giving your answers correct to 2 places of decimals, find unbiased estimates of the

population mean and variance.
If another sample of 50 cars is chosen, estimate the probability that mean speed of the

50 cars is at least 100 km per hour. State one assumption and one approximation used in
obtaining this estimate.

Solution. The given data may be summarized in terms of (x − 100) because the speed
limit is 100 km/h.
Note that

∑
x =

∑
(x− 100) + 100n = −221 + 100(120) = 11779

and

∑
x2 =

∑
(x− 100)2 + 200

∑
x− 1002n

= 4708 + 200(11779)− 1002(120) = 1160508.
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Thus,

x =
1

n

∑
x =

11779

120
= 98.16 (2 d.p.)

and

s2 =
1

n− 1

[∑
x2 − 1

n

(∑
x
)2]

=
1

120− 1

[
1160508− 117792

120

]
= 36.14 (2 d.p.).

Let X km/h be the mean speed of the 50 cars. Assuming that the speeds of the cars
are independent, by the Central Limit Theorem, we can approximate X using a normal
distribution: X ∼ N(98.16, 36.14/50). Hence,

P
[
X > 100

]
= 0.0152 (3 s.f.).

∗ ∗ ∗ ∗ ∗

Problem 10. 100p% of all insurance agents from a large insurance company, Avila, have
an advanced diploma in insurance (ADI), where p < 0.5. A sample of 10 agents from Avila
is obtained. It is given that the number of insurance agents with ADI in this sample can
be modelled by a binomial distribution.

(a) It is given that the probability that 5 of the agents in this sample have an ADI each
is 0.12294, correct to 5 decimal places. Show that p satisfies an equation of the form
p(1− p) = k for some real constant k to be determined, and hence find the value of
p correct to 2 decimal places.

(b) Suppose instead that p = 0.24 and forty samples of 10 Avila insurance agents each
are obtained. Find the probability that the average number of insurance agents with
ADI of the forty samples is between 2.3 and 2.5.

(c) Explain, stating a reason, how increasing the number of samples of 10 Avila insurance
agents each will affect your answer in part (b).

Solution.

Part (a). Let X be the number of insurance agents with an ADI in a sample. Then
X ∼ B(10, p). Since P[X = 5] = 0.12294, we have

(
10

5

)
p5(1− p)5 = 0.12294 =⇒ p(1− p) = 5

√
0.12294(

10
5

) = 0.217600.

Thus, k = 0.217600. Solving for p, we get p = 0.32 or p = 0.68, which we reject since
p < 0.5.

Part (b). Taking p = 0.24, we have

µ = np = 2.4 and σ2 = np(1− p) = 1.824.

Let X = 1
40(X1 + · · · + X40). Since the sample size (40) is large, X ∼ N(2.4, 1.824/40).

Hence,
P
[
2.3 < X < 2.5

]
= 0.360 (3 s.f.).

Part (c). As the number of samples increases, the variance of X will decrease. The
distribution of X becomes more concentrated around 2.4, hence P

[
2.3 < X < 2.5

]
will

tend to 1.

∗ ∗ ∗ ∗ ∗

Problem 11. In a certain country there are 100 professional football clubs, arranged in
4 divisions. There are 22 clubs in Division One, 24 in Division Two, 26 in Division Three
and 28 in Division Four.
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(a) Alice wishes to find out about approaches to training by clubs in Division One, so
she sends a questionnaire to the 22 clubs in Division One. Explain whether these 22
clubs form a sample or a population.

(b) Dilip wishes to investigate the facilities for supporters at the football clubs, but does
not want to obtain the detailed information necessary from all 100 clubs. Explain
how he should carry out this investigation, and why he should do the investigation
in this way.

(c) Find the number of different possible samples of 20 football clubs, with 5 clubs
chosen from each division.

Solution.

Part (a). The 22 clubs form a population because she is studying the entire group relevant
to her research question (training in Division One clubs).

Part (b). Let k be the number of clubs Dilip wishes to investigate. Assign each club a
unique number. For each club, place a corresponding numbered ball in a bag. Draw k
balls from the bag, without replacement, at random. The numbers on the balls identify
the clubs that Dilip should investigate.

Part (c). The required number is

22C5
24C5

26C5
28C5 = 7.24× 1018.
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Assignment A16

Problem 1. Alice receives “like” notifications from her Facebook friends at random, with
an average of one “like” received over two days. Taking a year as 52 weeks, find the
probabilities that in a year,

(a) there are not more than 2 weeks in which she receives 6 “like” notices in a week,

(b) the mean number of “like” notices received per week is at least 4 by the use of a
suitable approximation.

Solution. Let L be the number of “likes” received in a week. Then L ∼ Po
(
7
2

)
.

Part (a). Note that P[L = 6] = 0.077098 (5 s.f.). Let W be the number of weeks in a year
in which Alice receives 6 “likes”. Then W ∼ B(52, 0.077098). The required probability is
hence P[W ≤ 2] = 0.225 (3 s.f.).

Part (b). Let L = 1
52 (L1 + · · ·+ L52). Since the sample size (52) is large, by the Cen-

tral Limit Theorem, L ∼ N
(
7
2 ,

1
52

7
2

)
approximately. The required probability is hence

P
[
L ≥ 4

]
= 0.0270 (3 s.f.).

∗ ∗ ∗ ∗ ∗

Problem 2. The mass of doughnuts produced in a doughnut factory is found to have
mean 150 g and standard deviation 60 g.

(a) Find the probability that the mean mass of a random sample of 200 doughnuts is
between 145 g and 160 g. Give a reason why it is not necessary to assume that the
mass of doughnuts is normally distributed.

(b) Find the least value of n such that the probability that the mean mass of a sample
of n doughnuts is greater than 140 g is greater than 0.8.

Solution. Let M g be the mass of a doughnut.

Part (a). Let Mk = 1
200 (M1 + · · ·+Mk). Since the sample size (200) is large, by the

Central Limit Theorem, M200 ∼ N
(
150, 602/200

)
approximately. Hence, the required

probability is
P
[
145 < M200 < 160

]
= 0.871 (3 s.f.).

The Central Limit Theorem applies to any distribution, so long as n is large. Hence,
M need not be normally distributed.

Part (b). Suppose n is large. Then by the Central Limit Theorem, Mn ∼ N
(
150, 602/n

)

approximately. Consider P
[
Mn > 140

]
> 0.8. Using G.C., the least n is 26, which is

large.

∗ ∗ ∗ ∗ ∗

Problem 3. A pharmaceutical company created a new drug to treat a particular illness.
The patients experienced weight loss due to the side effects of the new drug. A random
sample of 50 individuals was selected and the weight loss by each individual, x kg, is
recorded and summarized as follows:

∑
(x− 5) = 120 and

∑
(x− 5)2 = 2500.

(a) Describe how the company can obtain the random sample of 50 individuals.

(b) Calculate unbiased estimates of µ, the population mean, and σ2, the population
variance.
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(c) Estimate the probability that the mean weight loss by fifty randomly chosen patients
who took the new drug is greater than 7 kg.

Solution.

Part (a). Assign each patient a unique positive integer. Using a random number generator,
obtain 50 distinct positive integers. The patients assigned to these numbers are then
sampled.

Part (b). Note that

∑
(x− 5) = 120 =⇒

∑
x = 120 + 50(5) = 370

and ∑
(x− 5)2 =

∑(
x2 − 10x+ 25

)
= 2500 =⇒

∑
x2 = 4950.

Hence,

x =
1

n

∑
x = 7.4 and s2 =

1

n− 1

[∑
x2 − 1

n

(∑
x
)2]

= 45.152 (5 s.f.).

Let W kg be the mean weight loss by 50 randomly chosen patients. Since the sample size
(50) is large, by the Central Limit Theorem, W ∼ N(7.4, 45.152). Hence, the required
probability is P

[
W ≥ 7

]
= 0.524 (3 s.f.).
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A17 Confidence Intervals

Tutorial A17

Problem 1. The weights of 4-month-old pigs are known to be normally distributed with
standard deviation 4 kg. A new diet is suggested and a sample of 25 pigs given this new
diet have an average weight of 30.42 kg. Determine a 99% confidence interval for the mean
weight of 4-month-old pigs that are fed this diet.

Solution. Let X kg be the weight of a pig. We are given that x = 30.42. Hence,
X ∼ N

(
30.42, 42/25

)
. Using G.C., a 99% confidence interval for µ is (28.4, 32.5).

∗ ∗ ∗ ∗ ∗

Problem 2. A firm produces a type of car types called Standard. A random sample
of 150 Standard types is examined, and the lifetimes (in thousands of kilometres) are
summarized by ∑

x = 2850,
∑

(x− x)2 = 1931.04.

(a) Obtain the unbiased estimates of the mean and variance of the lifetimes of Standard
tyres.

(b) Calculate a 97% confidence interval for the mean lifetime of Standard tyres.

Solution.

Part (a). We have

x =
1

n

∑
x =

1

150
(2850) = 19

and

s2 =
1

n− 1

∑
(x− x)2 =

1

150− 1
(1931.04) = 12.96.

Part (b). By the Central Limit Theorem, X ∼ N(19, 12.96). Using G.C., a 97% confidence
interval for µ is (18.4, 19.6).

∗ ∗ ∗ ∗ ∗

Problem 3. The 95% confidence interval for the mean length of life, in hours, of a
particular brand of light bulb is (1023.3, 1101.7). It is known that standard deviation of
the length of life in the brand of light bulb is σ. This interval is based on results from a
random sample of 36 light bulbs. Find a 99% confidence interval for the mean length of
life of this brand of light bulb, assuming the length of life is normally distributed.

Solution. Note that

x =
1107.7− 1023.3

2
+ 1023.3 = 1065.5.

Hence,

x+ z0.975
σ√
n
= 1107.7 =⇒ σ =

(1101.7− x)
√
n

z0.975
= 110.8.

Thus, using G.C., a 99% confidence interval for µ is (1020, 1110).
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Problem 4. A coin is chosen at random from a population of recently produced coins.
The discrete random variable X is the age, in years, of the coin. The population mean of
X is denoted by µ, the population standard deviation is denoted by σ, and the population
proportion for which X ≤ 1 is denoted by p. A random sample of 120 independent
observations of X was taken, and the results can be summarized as follows.

Age (x) 0 1 2 3 4 5

Frequency (f) 14 26 24 23 17 19

(a) Calculate unbiased estimates of µ, σ2 and p.

(b) Find a symmetric 95% confidence interval for µ.

(c) It is desired to find a symmetric 95% confidence interval for µ, of width 0.2, using a
random sample of n coins. Estimate the smallest possible value for n.

(d) Find a 95% confidence interval for p.

Solution.

Part (a). Using G.C., we have x = 2.5, s2 = 2.6387 and ps = (14 + 26)/120 = 1/3.

Part (b). By the Central Limit Theorem, X ∼ N(2.5, 2.6387/n) approximately. Taking
n = 120, using G.C., a 95% confidence interval for µ is (2.21, 2.79).

Part (c). We require

z0.975
s√
n
≤ 0.2

2
= 0.1 =⇒ n ≥

(z0.975s
0.1

)2
= 1013.6.

Thus, the least n is 1014.

Part (d). Using G.C., a 95% confidence interval for p is (0.249, 0.418).

∗ ∗ ∗ ∗ ∗

Problem 5.

(a) X is the mean of a large random sample of size n1 from a population with mean µ1

and variance σ2
1. Y is the mean of a large random sample of size n2 from a population

with mean µ2 and variance σ2
2. State the sampling distribution of

(
Y −X

)
, giving

its mean and variance.

(b) Buildrite and Constructall are two building firms. The amount, X thousand dollars,
paid to Buildrite by each 100 randomly chosen customers is summarized by

∑
x =

160,
∑

x2 = 265.

(i) Find an approximate 99.8% confidence interval for the mean amount paid per
customer to Buildrite.

The amount paid to Constructall by each customer was Y thousand dollars. Based
on a random sample of 200 customers, unbiased estimates of the mean and variance
of Y were 1.8 and 0.3216 respectively.

(ii) Find, to the nearest dollar, an approximate 90% confidence interval for the
value by which the mean amount paid per customer to Constructall exceeds
that paid to Buildrite.

Solution.

Part (a). By the Central Limit Theorem, X ∼ N
(
µ1, σ

2
1/n1

)
and Y ∼ N

(
µ2, σ

2
2/n2

)
, it

follows that Y −X ∼ N
(
µ2 − µ1, σ

2
1/n1 + σ2

2/n2

)
.
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Part (b).

Part (b)(i). We have

x =
1

n

∑
x =

1

100
(160) = 1.6

and

σ2
x =

1

n− 1

[∑
x2 − 1

n

(∑
x
)2]

=
1

100− 1

[
265− 1

100
(160)2

]
= 0.0909 (3 s.f.).

Thus, by the Central Limit Theorem, X ∼ N(1.6, 0.0909) approximately. Hence, using
G.C., a 99.8% confidence interval for µx is (1.507, 1.693). In dollars, this is (1507, 1693).

Part (b)(ii). By the Central Limit Theorem, Y ∼ N(1.8, 0.3216/200). Hence,

Y −X ∼ N

(
1.8− 1.6,

0.0909

100
+

0.3216

200

)
= N(0.2, 0.002517).

Using G.C., a 90% confidence interval for µy − µx is (0.117− 0.283). In dollars, this is
(117, 283).

∗ ∗ ∗ ∗ ∗

Problem 6. The speed at which a baseball is thrown, x km/h, is measured at the instant
that it leaves the pitcher’s hand. To join a particular baseball club, a pitcher has to be
able to throw balls at 140 km/h. The results for 10 randomly chosen through by a young
pitcher on a cool day are summarized by

∑
(x− 128) = 7.9,

∑
(x− 128)2 = 338.4.

Assuming that these results are observations from a normal distribution, obtain unbiased
estimates of the mean and variance of this distribution, and obtain a symmetric 99.5%
confidence interval for the mean, and explain in context what it means. Can the young
pitcher throw balls at 140 km/h on average?

Solution. Note that
∑

(x− 128) = 7.9 =⇒
∑

x = 1287.9

and
∑

(x− 128)2 =
∑(

x2 − 256x+ 1282
)
= 338.4 =⇒

∑
x2 = 166200.8.

Thus,

x =
1

n

∑
x = 128.79 and s2 =

1

n− 1

[∑
x2 − 1

n

(∑
x
)2]

= 36.907.

Since X follows a normal distribution and the sample size is small,

X − µ

S/
√
n

∼ t(n− 1).

Using G.C., a symmetric 99.5% confidence interval for µ is (122, 136). This means that
we are 99.5% confident that the interval 122 – 136 km/h contains the average speed of a
baseball thrown by the young pitcher. Hence, on average, the young pitcher cannot throw
balls at 140 km/h.

∗ ∗ ∗ ∗ ∗

Problem 7. Ten students independently performed an experiment to estimate the value
of π. Their results were:

3.12, 3.16, 2.94, 3.33, 3.00, 3.11, 3.50, 2.81, 3.02, 3.10.
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(a) Calculate the unbiased estimates of the population mean and variance.

(b) Stating any necessary assumption, calculate a 95% confidence interval for π based
on these data, giving your answer to two decimal places.

(c) Estimate the minimum number of results that would be needed if it is required that
the width of the resulting 95% confidence interval be at most 0.02.

Solution.

Part (a). Using G.C., x = 3.109 and s2 = 0.038032.

Part (b). Assuming that X follows a normal distribution, we have

X − µ

S/
√
n

∼ t(n− 1).

Using G.C., a 95% confidence interval for π is (2.97, 3.25).

Part (c). We require

t0.975
s√
n
≤ 0.02

2
= 0.01 =⇒ n ≥

(
t0.975s

0.01

)2

= 1946.2.

Thus, the least n needed is 1947.

∗ ∗ ∗ ∗ ∗

Problem 8.

(a) In a market research survey 25 people out of a random sample of 100 from a certain
area said that they used a particular brand of soap. Find a 97% confidence interval
for the proportion of people in the area who use this brand of soap.

(b) A research lab published an article about this brand of soap, reporting it contains
ingredients that is beneficial to one’s health. A new survey was conducted, and a
97% confidence interval was found to be (0.450, 0.620). Comment, with reference
to the confidence interval computed in (a), whether the proportion of people in the
area who use this brand of soap has changed after the research article was published.

Solution.

Part (a). We have ps = 25/100 = 1/4. Using G.C., a 97% confidence interval for p is
(0.156, 0.344).

Part (b). Since (0.156, 0.344) ∩ (0.450, 0.620) = ∅, there is sufficient evidence at a 97%
confidence level that the mean has changed.

∗ ∗ ∗ ∗ ∗

Problem 9. Based on previous records, it is known that p, the proportion of workers
supporting the Thunder party, is about 40% in the last election. For this coming election, a
market research organization intends to interview a random sample of n voters, and wishes
to ensure that the probability is about 0.8 that its sample estimate of the proportion of
Thunder voters lies within two percentage points of the sample percentage. Assuming
that all voters interviewed do reveal which party they support, what is the least sample
size the organization should take?

Solution. For large n, by the Central Limit Theorem, Ps ∼ N(ps, ps(1− ps)/n). Given
ps = 0.40, for an 80% confidence interval with error less than 0.02, we require

z0.9

√
ps(1− ps)

n
≤ 0.02 =⇒ n ≥

(
z0.9
√
ps(1− ps)

0.02

)2

= 985.4.

Hence, the least n needed is 986.



Assignment A17 617

Assignment A17

Problem 1. The proportion of letters sent by first-class post which are delivered on the
next working day after they are posted is p. In order to obtain an estimate of p, 1000
letters were posted at randomly chosen times and places, and their times of arrivals were
recorded. It was found that 900 were delivered on the next working day after posting.
Calculate a 99.5% confidence interval for p.
Explain briefly what a 99.5% confidence interval means in this context.
Subsequently, it is proposed to conduct a larger trial to obtain a more precise estimate

of p. Estimate the least number of letters to be posted in order for the value of p to be
determined to within ±0.005 with 99.9% confidence.

Solution. By the Central Limit Theorem, Ps ∼ N(p, p(1− p)/n) approximately. From
the given sample, we have ps = 900/1000 and n = 1000. Using G.C., a 99.5% confidence
interval for p is (0.87337, 0.92663).

We can say at a 99.5% confidence interval that the interval (0.87337, 0.92663) contains
the proportion of letters delivered on the next working day.
For the width to be within ±0.005, we must have

z0.9995

√
p(1− p)

n
≤ 0.005.

Using our estimate ps = 900/1000, by G.C., we have n ≥ 38979.2. Thus, at least 38980
letters should be posted.

∗ ∗ ∗ ∗ ∗

Problem 2.

(a) A research firm conducted a survey to determine the mean amount students spent
on drinks during a week. A sample of 60 students revealed that

∑
(x− 18) = 388,

∑
(x− 18)2 = 2550,

where x is the amount a student spent on drinks during a week.

(i) Find the unbiased estimates of the population mean and variance, correct to 3
decimal places.

(ii) Estimate the sample size if it is intended that the resulting 94% confidence
interval for the population mean should have a width of 0.18.

(iii) Based on the sample size found in (a)(ii), if a confidence interval has width
greater than 0.18, should the confidence level be higher or lower than 94%?
Justify your answer.

(b) A random sample of 50 Year 6 H2 Mathematics preliminary examination scripts are
marked, and the passing rate is 60%. The 95% confidence interval for the passing
rate of all Year 6 H2 Mathematics candidates sitting for the preliminary examination
is (a%, b%). Calculate the values of a and b.

Asked to explain the meaning of this interval, a student states that “95% of the Year
6 classes has a passing rate between a% and b% in their H2 Mathematics preliminary
examination.” Is this statement correct? State your reason.
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Solution.

Part (a).

Part (a)(i). We have

x =
1

n

∑
x =

1

n

∑
(x− 18) + 18 = 24.467 (3 d.p.)

and

s2 =
1

n− 1

[∑
(x− 18)2 − 1

n

(∑
(x− 18)

)2]
= 0.694 (3 d.p.).

Part (a)(ii). Since the sample size (60) is large, by the Central Limit Theorem,

X ∼ N
(
x, s2

)
= N(24.467, 0.694)approximately.

For the width to be 0.18, we must have

z0.97

√
s2

n
≤ 0.18

2
= 0.09.

Using G.C., we have n ≥ 303.0796. Thus, the sample size should be approximately 304.

Part (a)(iii). The higher the confidence level, the longer the width. Hence, if the confidence
interval has a width greater than 0.18, the confidence level should be larger than 94%.

Part (b). By the Central Limit Theorem, Ps ∼ N(p, p(1− p)/n) approximately. From the
sample, ps = 0.60 and n = 50. Using G.C., a 95% confidence interval for p is (0.464, 0.736).
Hence, a = 46.4 and b = 73.6.

His statement is incorrect. The confidence interval does not say anything about the
distribution of passes within a class.
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Problem 1. For the scenario described below, set up the null and alternative hypotheses
required in testing the various claims for (a), (b) and (c). Write the concluding statement
for the following cases: (i) H0 is rejected, or (ii) H0 is not rejected.
The Health Ministry claimed that the average weight of babies born last year is 3 kg.

Test at 10% significance level whether

(a) the average weight of babies born last year differs from the claim.

(b) the Health Ministry has overstated the average weight.

(c) the Health Ministry has understated the average weight.

Solution.

Part (a). Let H0: µ = 3, H1: µ ̸= 3.

Part (a)(i). We reject H0 and conclude there is sufficient evidence at the 10% significance
level that there is a change in the weight of babies born last year.

Part (a)(ii). We do not reject H0 and conclude there is insufficient evidence at the 10%
significance level that there is a change in the weight of babies born last year.

Part (b). Let H0: µ = 3, H1: µ < 3.

Part (b)(i). We reject H0 and conclude there is sufficient evidence at the 10% significance
level that there is a decrease in the weight of babies born last year.

Part (b)(ii). We do not reject H0 and conclude there is insufficient evidence at the 10%
significance level that there is decrease in the weight of babies born last year.

Part (c). Let H0: µ = 3, H1: µ > 3.

Part (c)(i). We reject H0 and conclude there is sufficient evidence at the 10% significance
level that there is an increase in the weight of babies born last year.

Part (c)(ii). We do not reject H0 and conclude there is insufficient evidence at the 10%
significance level that there is an increase in the weight of babies born last year.

∗ ∗ ∗ ∗ ∗

Problem 2. A random variable X is known to have a normal distribution with variance
36. The mean of the distribution ofX is denoted by µ. A random sample of 50 observations
of X has mean 23.8. Test, at 2% significance level, the null hypothesis µ = 22 against the
alternative hypothesis µ > 22.

Solution. Let H0: µ = 22, H1: µ > 2. We perform a 1-tail test at 2% significance level.
Under H0, X ∼ N(22, 36/50). From the sample, x = 23.8. Using G.C., the p-value is
0.0169, which is less than the significance level of 2%. Thus, we reject H0 and conclude
there is sufficient evidence at 2% significance level that µ > 22.

∗ ∗ ∗ ∗ ∗

Problem 3. A random sample of 10 observations of a normal variable X has mean x,
where

x = 4.344 and
∑

(x− x)2 = 0.8022.
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Carry out a 2-tail test, at the 5% level of significance, to test whether the mean of X is
4.58. State your null and alternative hypotheses clearly.

Solution. Let H0: µ = 4.58, H1: m ̸= 4.58. We perform a 2-tail test at 5% significance
level. Under H0,

X − µ

S/
√
10

∼ t(9).

From the sample, x = 4.344 and

s2 =
1

9

∑
(x− x)2 = 0.089133 (5 s.f.).

Using G.C., the p-value is 0.0339, which is less than the significance level of 5%. Thus, we
reject H0 and conclude there is sufficient evidence at 5% significance level that µ ̸= 4.58.

∗ ∗ ∗ ∗ ∗

Problem 4. The mean of a normally distributed random variable X is denoted by µ, and
it is given that the population variance is 15. A sample of 50 random observations of X
is taken, and the results are summarized by

∑
x = 527.1.

(a) Carry out a 2-tail test of the null hypothesis µ = 9.5, at the 5% significance level.

(b) Carry out an appropriate 1-tail test of the null hypothesis µ = 11.5 at the 5%
significance level. State your alternative hypothesis clearly, with explanation.

Solution.

Part (a). Let H0: µ = 9.5, H1: µ ̸= 9.5. We perform a 2-tail test at 5% significance level.
Under H0, X ∼ N(9.5, 15/50). From sample,

x =
1

50

∑
x = 10.542 (5 s.f.).

Using G.C., the p-value is 0.0571, which is greater than the significance level of 5%. Thus,
we do not reject H0 and conclude there is insufficient evidence at 5% significance level that
µ ̸= 9.5.

Part (b). Let H0: µ = 11.5. Since x = 10.542 < 11.5, the alternative hypothesis H1is
µ < 11.5. We perform a 1-tail test at 5% significance level. Under H0, X ∼ N(11.5, 15/50).
Using G.C., the p-value is 0.0401, which is less than the significance level of 5%. Thus, we
reject H0 and conclude there is sufficient evidence at 5% significance level that µ < 11.5.

∗ ∗ ∗ ∗ ∗

Problem 5. ‘Brilliant’ fireworks are intended to burn for 40 seconds. A random sample
of 50 ‘Brilliant’ fireworks is taken. Each firework in the sample is ignited and the burning
time, x seconds, is measured. The results are summarized by

∑
(x− 40) = −27,

∑
(x− 40)2 = 167.

(a) Test, at the 5% level of significance, whether the mean burning time of ‘Brilliant’
fireworks differs from 40 seconds.

(b) Suggest a reason why, in this context, the given data is summarized in terms of
(x− 40) rather than x.

(c) State, with a reason, whether, in using the above test, it is necessary to assume that
the burning times of ‘Brilliant’ fireworks have a normal distribution.
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(d) State what you understand by the expression ‘at the 5% level of significance’ in the
context of the question.

(e) Explain what is meant by critical region of the test conducted in (c) in the context
of the question. State the critical region.

Solution.

Part (a). Let H0: µ = 40, H1: µ ̸= 40. We perform a 2-tail test at 5% significance level.
Under H0, by the Central Limit Theorem, X ∼ N

(
40, σ2/50

)
approximately. From the

sample,

x =
1

50

∑
(x− 40) + 40 = 39.46

and

s2 =
1

49

[∑
(x− 40)2 − 1

50

(∑
(x− 40)

)2]
= 3.1106.

Thus, X ∼ N(40, 3.1106/50) approximately. Using G.C., the p-value is 0.0303, which is less
than the significance level of 5%. Thus, we reject H0 and conclude that there is sufficient
evidence at 5% significance level that the mean burning time of ‘Brilliant’ fireworks differs
from 40 seconds.

Part (b). The claimed mean burning time is 40 seconds.

Part (c). No. Because the sample size (50) is large, the Central Limit Theorem ensures
that X approximately follows a normal distribution, regardless of the distribution of X.

Part (d). There is a 5% chance of rejecting H0 given that the mean burning time of
‘Brilliant’ fireworks is actually 40 seconds.

Part (e). The critical region is the set of values of x that leads to rejecting H0. Using
G.C., the critical region is x < 39.138 or x > 40.862.

∗ ∗ ∗ ∗ ∗

Problem 6. A coin is chosen at random from a population of recently produced coins.
The discrete random variableX is the age, in years, of the coin. The population mean ofX
is denoted by µ, and the population standard deviation is denoted by σ. A random sample
of 150 independent observations of X was taken, and the results can be summarized as
follows.

Age (x) 0 1 2 3 4 5

Frequency (f) 24 36 31 23 17 19

(a) Explain what is meant by random sample in context of the question.

(b) Calculate unbiased estimates of µ and σ2.

(c) What do you understand by the term unbiased estimate?

(d) A one-tail test to test µ = 2 against µ > 2 is carried out. Find the smallest
significance level of the test at which the claim µ > 2 is supported.

Solution.

Part (a). Each recently-produced coin has an equal and independent chance of being
selected for observation.

Part (b). Using G.C., x = 2.2 and s2 = 1.6142 = 2.60.

Part (c). An unbiased estimate is an estimate of a population parameter such that the
expected value of the estimator is equal to the true value of the parameter.
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Part (d). Let H0: µ = 2, H1: µ > 2. Under H0, by the Central Limit Theorem,
X ∼ N(2, 2.60/150) approximately. Using G.C., the p-value is 0.0646. Thus, 6.46% is the
smallest significance level that results in the rejection of H0.

∗ ∗ ∗ ∗ ∗

Problem 7. A random sample of 90 batteries, used in a particular model of mobile phone,
is tested and the ‘standby-time’, x hours which is normally distributed, is measured. The
results are summarized by

∑
x = 3040.8 and

∑
x2 = 115773.66.

Test, at the 1% significance level, whether the mean standby-time is less than 36.0 hours.
In a test at the 5% significance level, it is found that there is significant evidence that

the population mean talk-time is less than 5 hours.
Using only this information, and giving a reason in each case, state whether each of the

following statements is (i) necessarily true, (ii) necessarily false, or (iii) neither necessary
true nor necessarily false.

(a) There is significant evidence at the 10% significance level that the population mean
talk-time is less than 5 hours.

(b) There is significant evidence at the 5% significance level that the population mean
talk-time is not 5 hours.

The manufacturer changed the production method of the batteries. It took a sample
of 100 batteries, and obtained a 95% confidence interval for the mean standby-time of
(36.2, 37.4).

(c) Without further computation, explain if the mean standby-time of the batteries have
changed from 36.0 hours.

Solution. Let H0: µ = 36.0, H1: µ < 36.0. We perform a 1-tail test at 1% significance
level. From the sample,

x =
1

90

∑
x = 33.787 (5 s.f.)

and

s2 =
1

89

[∑
x2 − 1

90

(∑
x
)2]

= 146.46 (5 s.f.).

Under H0, X ∼ N(36.0, 146.46/90) approximately. Using G.C., the p-value is 0.0414,
which is greater than the significance level of 1%. Thus, we do not reject H0 and conclude
there is insufficient evidence at 1% significance level that the mean standby-time is less
than 36.0 hours.

Part (a). It is necessarily true. The higher the significance level, the larger the critical
region.

Part (b). It is neither necessarily true nor necessarily false. If the p-value is less than
2.5%, H0 would be rejected under a 2-tail test. However, if the p-value is between 2.5%
and 5%, H0 would not be rejected.

Part (c). Since the 95% confidence interval (36.2, 37.4) does not contain µ = 36.0, under
a 2-tail test at 5% significance level, we can reject H0. Thus, there is sufficient evidence
at a 5% significance level that the mean standby-time of the batteries has changed from
36.0 hours.
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Problem 8. In a factory, the time in minutes for an employee to install an electronic
component is a normally distributed continuous random variable T . The standard devi-
ation of T is 5.0 and under ordinary conditions, the expected value of T is 38.0. After
background music is introduced into the factory, a sample of n components is taken and
the mean time for randomly chosen employees to install them is found to be t minutes. A
test is carried out, at the 5% significance level, to determine whether the mean time taken
to install a component has been reduced.

(a) State appropriate hypotheses for the test, defining any symbols you use.

(b) Given that n = 50, state the set of values of t for which the result of the test would
be to reject the null hypothesis.

(c) It is given instead that t = 37.1 and the result of the test is that the null hypothesis
is not rejected. Obtain an inequality involving n, and hence find the set of values
that n can take.

Solution.

Part (a). Let µ = E[T ]. The hypotheses are H0: µ = 38.0, H1: µ < 38.0.

Part (b). We perform a 1-tail test at 5% significance level. Under H0, T ∼ N
(
38.0, 5.02/50

)
.

Normalizing,
T − 38.0

5.0/
√
50

∼ N(0, 1).

For the null hypotheses to be rejected, we must have

t− 38.0

5.0/
√
50

≤ z0.05.

Thus, t < 36.8. Further, t > 0, so 0 < t < 36.8.

Part (c). We perform a 1-tail test at 5% significance level. Under H0, T ∼ N
(
38.0, 5.02/n

)
.

Normalizing,
T − 38.0

5.0/
√
n

∼ N(0, 1).

For the null hypotheses to be rejected, we must have

37.1− 38.0

5.0/
√
n

≤ z0.05.

Thus, 1 ≤ n ≤ 83. The set of values that n can take is thus {n ∈ Z : 1 ≤ n ≤ 83}.
∗ ∗ ∗ ∗ ∗

Problem 9. A motoring magazine editor believes that the figures quoted by car manu-
facturers for distances travelled per litre of fuel are too high. He carries out a survey into
this by asking for information by readers. For a certain model of car, 8 readers reply with
the following data, measured in km per litre.

14.0 12.5 11.0 11.0 12.5 12.6 15.6 13.2.

(a) Calculate unbiased estimates of the population mean and variance.

The manufacturer claims that this model of car will travel 13.8 km per litre on average.

(b) Stating two assumptions, carry out a t-test of the magazine editor’s belief at the 5%
significance level.
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(c) Explain the meaning of p-value in the context of the question.

Solution.

Part (a). Using G.C., x = 12.8, s2 = 1.5184582 = 2.3057.

Part (b). Let the random variable X be the distance travelled per litre, measured in
km. We assume that X is normally distributed, and that the information provided by the
readers are truthful. Let H0: µ = 13.8, H1: µ < 13.8. We perform a 1-tail test at 5%
significance level. Under H0,

X − 13.8

2.3057/
√
8
∼ t(7).

Using G.C., the p-value is 0.0524, which is greater than the significance level of 5%. Thus,
we do not reject H0 and conclude there is insufficient evidence at 5% significance level that
the model of car travels less than 13.8 km per litre.

Part (c). There is a 5.24% chance of obtaining a sample mean less than 12.8.

∗ ∗ ∗ ∗ ∗

Problem 10. A company supplies sugar in small packets. The mass of sugar in one packet
is denoted by X grams. The masses of a random sample of 9 packets are summarized by

∑
x = 86.4 and

∑
x2 = 835.82.

(a) Calculate unbiased estimates of the mean and variance of X.

The mean mass of sugar in a packet is claimed to be 10 grams. The company directors
want to know whether the sample indicates that this claim is over-stated.

(b) Stating a necessary assumption, carry out a t-test at the 5% significance level. Ex-
plain why the Central Limit Theorem does not apply in this context.

(c) Suppose now that the population variance of X is known, and the assumption made
in part (b) is still valid. What change would there be in carrying out the test? You
do not have to carry out the test.

Solution.

Part (a). We have

x =
1

9

∑
x = 9.6

and

s2 =
1

8

[∑
x2 − 1

9

(∑
x
)2]

= 0.81.

Part (b). Assume that X is normally distributed. Let H0: µ = 10 and H1: µ < 10. We
perform a 1-tail test at 5% significance level. Under H0,

X − 10√
0.81/9

∼ t(8).

Using G.C., the p-value is 0.110, which is greater than the significance level of 5%. Thus,
we do not reject H0 and conclude there is insufficient evidence at 5% significance level that
the mean mass of sugar per packet is less than 10g.

The Central Limit Theorem does not apply here as the sample size, 10, is too small.
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Part (c). If the population variance of X is known, we will use a z-test instead of a t-test
to calculate the p-value.

∗ ∗ ∗ ∗ ∗

Problem 11. The number of minutes that the 0815 bus arrives late at my local bus stop
has a normal distribution; the mean number of minutes the bus is late has been 4.3. A
new company takes over the service, claiming the punctuality will be improved. After the
new company takes over, a random sample of 10 days is taken and the number of minutes
that the bus is late is recorded. The sample mean is t minutes and the sample variance
is k2 minutes2. A test is to be carried out at the 10% level of significance to determine
whether the mean number of minutes late has been reduced.

(a) State appropriate hypothesis for the test, defining any symbols that you use.

(b) Given that k2 = 3.2, find the set of values of t for which the result of the test would
be that the null hypothesis is not rejected.

(c) Given instead that t = 4.0, find the set of values of k2 for which the result of the
test would be to reject the null hypothesis.

Solution.

Part (a). Let T be the number of minutes that the bus is late. Let µ = E[T ]. The
hypotheses are H0: µ = 4.3, H1: µ < 4.3.

Part (b). We perform a 1-tail test at 10% significance level. Note that the sample variance
s2 is given by

s2 =
n

n− 1
k2 =⇒ s2

n
=

(
k

3

)2

.

Under H0,
T − 4.3

k/3
∼ t(9).

To not reject H0, we require
t− 4.3

k/3
> t0.10.

Solving, we get t > 3.48. Thus, the set of values that t can take on is

{
t ∈ R : t > 3.48

}
.

Part (c). We perform a 1-tail test at 10% significance level. Under H0,

T − 4.3

k/3
∼ t(9).

To reject H0, we require
4.0− 4.3

k/3
≤ t0.10.

Solving, we get 0 ≤ k ≤ 0.651. Thus, the set of values that k2 can take on is

{
k2 ∈ R : 0 < k2 ≤ 0.423

}
.
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Assignment A18A

Problem 1. The manufacturers of an electric water heater claim that their heaters will
heat 500 litres of water from a temperature of 10◦C to a temperature of 35◦C in, on
average no longer than 12 minutes. In order to test their claim, 14 randomly chosen
heaters are bought and the times (x minutes) to heat 500 litres of water from 10◦C to
35◦C are measured. Correct to 1 decimal place, the results are as follows:

13.2, 12.2, 11.4, 14.5, 11.6, 12.9, 12.4, 10.3, 12.3, 11.8, 11.0, 13.0, 12.1, 12.6.

Stating an assumption necessary for validity, test the manufacturers’ claim at a 10%
significance level.

Solution. Let X min be the amount of time taken by a heater to heat 500 litres of water
from 10◦C to 35◦C. Let µ min be the mean time taken. Let H0: µ = 12 and H1: µ > 12.
We perform a one-tail test at 10% significance level. Assuming X is normally distributed,
under H0,

X − 12

S/
√
14

∼ t(13).

From the sample, x = 12.246 min and s = 1.0315 min. Using G.C., the p-value is 0.204,
which is greater than the 10% significance level. Thus, we do not reject H0 and conclude
there is insufficient evidence at a 10% significance level that the mean amount of time
taken is greater than 12 min.

∗ ∗ ∗ ∗ ∗

Problem 2. The mass of vegetables in a randomly chosen bag has a normal distribution.
The mass of the contents of a bag is supposed to be 10 kg. A random sample of 80 bags
is taken and the mass of the contents of each bag, x grams, is measured. The data is
summarized by

∑
(x− 10000) = −2510 and

∑
(x− 10000)2 = 2010203.

Test, at the 5% significance level, whether the mean mass of the contents of a bag is less
than 10 kg. Explain, in the context of the questions, the meaning of ‘at the 5% significance
level’, and the meaning of ‘p-value’.

Solution. Let X g be the mass of vegetables in a bag, and let µ g be the mean mass of
vegetables in a bag. Let H0: µ = 10000 and H1: µ < 10000. We perform a one-tail test at
5% significance level. From sample,

x = 10000 +
1

80
(−2510) = 9968.63 g

and

s2 =
1

80− 1

[
2010203− 1

80
(−2510)2

]
= 24449 g2.

Under H0,

X ∼ N

(
10000,

24449

80

)
approximately.

Using G.C., the p-value is 0.0364, which is less than the 5% significance level. Thus, we
reject H0 and conclude there is sufficient evidence at a 5% significance level that the mean
mass of vegetables in a bag is less than 10 kg.

‘at the 5% significance level’ means there is a 5% chance that we reject H0 when the
mean mass of vegetables in a bag is actually 10 kg. ‘p-value’ is the lowest significance level
needed to reject H0.
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Tutorial A18B

Problem 1. A machine assesses the life of a ball-point pen by measuring the length of
a continuous line drawn using the pen. A random sample of 80 pens of brand A have a
total writing length of 96.84 km. A random sample of 75 pens of brand B have a total
writing length of 93.75 km. Assuming that the standard deviation of the writing length
of a single pen is 0.25 km for both brands, test at the 5% level, whether the mean writing
lengths of the two brands differ significantly.

Solution. Let XA km and XB km be the total writing length of Brand A and Brand B
pens respectively. Let µA = E[XA] and µB = E[XB].

Let H0: µA − µB = 0 and H1: µA − µB ̸= 0. We perform a two-tail two-sample z-test
at 5% significance level. Under H0,

XA −XB ∼ N

(
0, 0.252

(
1

80
+

1

75

))
.

From the sample,

xA =
96.84

80
= 1.2105 and xB =

93.75

75
= 1.25.

Using G.C., the p-value is 0.326, which is greater than the 5% significance level. Thus,
we do not reject H0 and conclude there is insufficient evidence at the 5% significance level
that the mean writing lengths of the two brands differ significantly.

∗ ∗ ∗ ∗ ∗

Problem 2. I have two alternative routes to work. The times taken on the 8 randomly
chosen occasions that I use route 1 are summarized by

∑
x = 182 and

∑
x2 = 4202, while

the times taken on the 12 randomly chosen occasions that I take route 2 are summarized
by
∑

y = 238 and
∑

y2 = 5108, with time being measured in minutes. Determine whether
there is significant evidence, at the 5% level, of a difference in the mean times taken on
the two routes. State any assumptions needed.

Solution. Let H0: µX −µY = 0 and H1: µX −µY ̸= 0. We perform a two-tail two-sample
t-test at 5% significance level. Assuming that X and Y are normally distributed and have
a common variance, under H0,

X − Y

sp
√
1/8 + 1/12

∼ t(8 + 12− 2) = t(18).

From the sample,

x =
1

8
(182) = 22.75, y =

1

12
(238) = 19.833.

Also,

s2X =
1

8− 1

[
4202− 1

8
(182)2

]
= 8.7857, s2Y =

1

12− 1

[
5108− 1

12
(238)2

]
= 35.242.
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Thus, the pooled variance is

s2p =
(8− 1) (8.7857) + (12− 1) (35.242)

8 + 12− 2
= 24.953.

Using G.C., the p-value is 0.217, which is greater than the 5% significance level. Thus,
we do not reject H0 and conclude that there is insufficient evidence at the 5% significance
level that there is a difference in the mean times taken on the two routes.

∗ ∗ ∗ ∗ ∗

Problem 3. In an experiment, twelve pairs of plants were positioned close to each other
in various different locations in a large greenhouse. One plant in each pair was given
fertilizer in April and the other in May. The yields are given below.

Pair 1 2 3 4 5 6 7 8 9 10 11 12

April 344 307 339 256 398 267 256 407 335 381 300 388

May 315 289 317 277 363 258 283 385 269 355 275 363

Test at 5% significance level whether the mean yield in April is at least 30 more than
the mean yield in May. State any assumptions needed.

Solution. Let D = April yield − May yield. Let H0: µD = 30 and H1: µD > 30.
We perform a one-tail paired-sample t-test at 5% significance level. Assuming that D is
normally distributed, under H0,

D − 30

SD/
√
12

∼ t(11).

From the sample, d = 19.083 and sD = 24.347. Using G.C. the p-value is 0.926, which
is greater than the 5% significance level. Thus, we do not reject H0 and conclude there
is insufficient evidence at 5% significance level that the mean yield in April is at least 30
more than the mean yield in May.

∗ ∗ ∗ ∗ ∗

Problem 4. A school teacher decides to test the effectiveness of using a computer-based
lesson to teach trigonometry. The teacher selects and pairs students of equal ability. One
student from each pair is randomly chosen and assigned to a control group that receives the
standard lesson, while the other student in the pair is then assigned to the experimental
group that receives the computer-based lesson. On completion of the course, students in
both groups sat for the same test to evaluate their learning outcomes. The test consists
of multiple-choice questions, and is administered and marked online. The marks are given
in the table below.

Pair 1 2 3 4 5 6 7 8 9 10

Control 70 65 70 79 72 60 53 50 72 91

Experiment 89 80 72 72 91 65 60 65 70 88

(a) Find the largest value of significance level, α, at which it could not be rejected that
there is no difference in the two methods. State any assumption(s) necessary for the
test to be valid.

(b) At the 10% significance level it is to be concluded that the experimental group scores
higher than the control group by more than k marks. Find the values of k.
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Solution.

Part (a). Let D = experiment score−control score. Let H0: µD = 0 and H1: µD ̸= 0. We
perform a two-tail paired-sample t-test. Assuming that D is normally distributed, under
H0, our test statistic is

D

SD/
√
10

∼ t(9).

From the sample, d = 7 and sD = 9.5568. Using G.C., the p-value is 0.0457. Thus, the
largest value of α to not reject H0 is 0.0457.

Part (b). Let H0: µD = k and H1: µD > k. We perform a one-tail paired-sample t-test at
the 10% significance level. Assuming that D is normally distributed, under H0, our test
statistic is

D − k

SD/
√
10

∼ t(9).

The observed test statistic is thus

7− k

9.5568/
√
10

= 2.3163− 0.33089k.

For H0 to be rejected, we require

2.3163− 0.33089k > t0.9 =⇒ k <
2.3163− t0.9

0.33089
= 2.82.

∗ ∗ ∗ ∗ ∗

Problem 5. Two cyclists cycled to work every weekday and recorded the times (in
minutes) that they took each day.

The records for one randomly chosen week is as follows, where Cyclist 1 took x minutes
and Cyclist 2 took y minutes:

∑
(x− x)2 = 90.5,

∑
y = 160.6,

∑
y2 = 5244.8.

Assuming that the variances of the times they took each day are the same, find an unbiased
estimate for the common variance.
During another randomly chosen week, the times (in minutes) that they took is recorded

as follows:

Cyclist 1 (x) 30.1 21.9 34.1 33.8 c

Cyclist 2 (y) 31.7 30.5 40.1 30.2 28.1

The missing data is denoted by c.
Based on the second set of data, the hypothesis that the mean time of the two cyclists

does not differ is not rejected at 5% significance level. Find the range of values of c. State
any assumptions needed for your test to be valid.

Solution. Their individual sample variances are given by

s2X =
1

n− 1

∑
(x− x)2 =

1

5− 1
(90.5) = 22.625

and

s2Y =
1

n− 1

[∑
y2 − 1

n

(∑
y
)2]

=
1

5− 1

[
5244.8− 1

5
(160.6)2

]
= 21.582.
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Thus, the pooled variance is

s2p =
s2X + s2Y

2
=

22.625 + 21.582

2
= 22.104.

Let H0: µX − µY = 0 and H1: µX − µY ̸= 0. We perform a two-tail two-sample t-test
at a 5% significance level. Assuming the pooled variance is the same, and that X and Y
are normally distributed, under H0, our test statistic is

T =
X − Y

Sp

√
1/5 + 1/5

∼ t(5 + 5− 2) = t(8).

From the sample,

x− y =
119.9 + c

5
− 32.12 =

c

5
− 8.14.

Our observed test statistic is thus

t =
x− y

sp
√

1/5 + 1/5
=

c/5− 8.14√
22.104

√
2/5

= 0.067261c− 2.7375.

For the null hypothesis to not be rejected, we must have

t0.025 < 0.067261c− 2.7375 < t0.975.

Solving for c, we get

6.42 =
t0.025 + 2.7375

0.067261
< c <

t0.975 + 2.7375

0.067261
= 74.9.

∗ ∗ ∗ ∗ ∗

Problem 6. Due to the differences in environment, the masses of a certain species of
small amounts are believed to be greater in Region A than in Region B. It is known that
the masses in both regions are normally distributed, with masses in Region A having a
standard deviation of 0.004 kg and masses in Region B having a standard deviation of
0.09 kg. To test the theory, random samples are taken: 60 animals from Region A had a
mean of 3.03 kg and 50 animals from Region B had a mean mass of 3.00 kg. Test at the
1% significance level, whether the animals of this species in Region A have a greater mean
mass than those in Region B.

Will your conclusion be affected if we do not have the information that the masses of
the animals are normally distributed? Explain your answer.

Solution. Let X kg and Y kg represent the mass of the animal in Regions A and B
respectively. Let H0: µx−µy = 0 and H1: µx−µy > 0. We perform a one-tail two-sample
z-test at 1% significance level. Under H0,

X − Y ∼ N

(
0,

0.042

60
+

0.092

50

)
.

From the sample, x = 3.03 and y = 3.00. Using G.C., the p-value is 0.0145, which is
greater than the 1% significance level. Thus, we do not reject H0 and conclude there is
insufficient evidence at 1% significance level that the animals of this species in Region A
have a greater mean mass than those in Region B.
The conclusion will not be affected. This is because the sizes of both samples are large,

so the test statistics will be approximately the same by the Central Limit Theorem.
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Assignment A18B

Problem 1. A lorry is transporting a large number of red apples. As it passes over a
bump in the road 10 apples fall off its back. The masses (in g) of the fallen apples are
summarized by ∑

(x− 100) = 23.7,
∑

(x− 100)2 = 1374.86.

(a) Treating the fallen apples as being a random sample, determine a symmetric 99%
confidence interval for the mean mass of a red apple, stating any assumptions that
you have made.

(b) A two-tailed test of the null hypothesis H0: µx = 116, where µx is the population
mean mass of red apples, is to be carried out at the 5% level of significance. Using
the confidence interval obtained in (i), state the conclusion of the test.

On its return down the road the lorry is carrying a large number of green apples. When
it passes over the bump 15 green apples fall off its back and are collected. The masses (in
g) of these apples are summarized by

∑
(y − 110) = −73.2,

∑
(y − 110)2 = 2114.33.

(c) Assuming that the distribution of the masses of green apples has the same variance
as that for the red apples, and that the fallen apples constitute a random sample,
obtain a pooled estimate of the common variance.

(d) Carry out an appropriate test on the data, using a 10% significance level, on whether
the two distributions have the same mean. State any further assumptions needed
for the test to be valid.

Solution.

Part (a). Let X g be the mass of a red apple. Let µX = E[X]. From the sample,

x = 100 +
23.7

10
= 102.37 and s2X =

1

10− 1

(
1374.86− 23.72

10

)
= 146.52.

Assuming that X is normally distributed, a 99% confidence interval is (89.93, 114.81).

Part (b). Since 116 /∈ (89.93, 114.81), at a 1% significance level, we can reject H0. Thus,
at a 5% significance level, we also reject H0.

Part (c). Let Y g be the mass of a green apple. Let µY = E[Y ]. From the sample,

y = 110 +
−73.2

15
= 105.12 and s2Y =

1

15− 1

(
2114.33− (−73.2)2

15

)
= 125.51.

Let the pooled variance be s2p. Then

s2p =
(10− 1)s2X + (15− 1)s2Y

10 + 15− 2
= 133.73.

Part (d). Let H0: µX − µY = 0 and H1: µX − µY ̸= 0. Assuming that X and Y are
independently and normally distributed, we perform a 2-tail 2-sample t-test at the 10%
significance level. Under H0,

X − Y

sp

√
1
10 + 1

15

∼ t(10 + 15− 2) = t(23).
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Using G.C., the p-value is 0.566, which is greater than our 10% significance level. We thus
do not reject H0 and conclude there is insufficient evidence at the 10% significance level
that the two distributions have different means.

∗ ∗ ∗ ∗ ∗

Problem 2. The thickness of plaque (measured in mm) in the carotid artery of 10
randomly selected patients with mild atherosclerotic disease were measured. Two mea-
surements are taken: thickness before treatment with vitamin E (x) and after two years
of taking vitamin E daily (y). The readings are given below.

X 0.66 0.72 0.85 0.62 0.54 0.63 0.64 0.67 0.73 0.68

Y 0.60 0.65 0.79 0.63 0.59 0.55 0.64 0.70 0.68 0.64

The medical research team is interested on whether taking vitamin E daily for two years
will reduce the thickness of plaque.
Explain which test the medical research team should use. Carry out a suitable test at

the 5% level of significance, stating the necessary assumptions.

Solution. They should use a 1-tail paired-sample t-test since the observations are taken
from the same patients.
Let D = Y −X. We perform a 1-tail paired-sample t-test at the 5% significance level,

assuming that D is normally distributed. Our hypotheses are H0: µD = 0 and H1: µD < 0.
From the sample, d = −0.027 and sD = 0.0457. Under H0,

D

sD/
√
10

∼ t(9).

Using G.C., the p-value is 0.0473, which is less than our significance level of 5%. Thus, we
reject H0 and conclude there is sufficient evidence at the 5% significance level that taking
vitamin E daily for two years will reduce thickness of plaque.

∗ ∗ ∗ ∗ ∗

Problem 3. A supermarket get its supplies of potatoes from two different suppliers, A
and B. The weights, x and y grams of random samples of potatoes from supplier A and
B respectively are summarized as follows.

Supplier A: Sample size n1 = 100,
∑

x = 10313,
∑

x2 = 1072660.

Supplier B: Sample size n2 = 85,
∑

y = 8982,
∑

y2 = 956540.

(a) Test, at the 5% level of significance, whether the potatoes supplied by the two
suppliers have the same mean weight.

(b) State 2 changes you would need to make to the test statistic if both sample sizes are
small.

Solution.

Part (a). We perform a 2-tail 2-sample z-test at the 5% significance level. Our hypotheses
are H0: µX − µY = 0 and H1: µX − µY ̸= 0. From the sample,

x =
10313

100
= 103.13 and s2X =

1

100− 1

(
1072660− 103132

100

)
= 91.720,

and

y =
8982

85
= 105.67 and s2Y =

1

85− 1

(
956540− 89822

85

)
= 88.176.
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Under H0,

X − Y ∼ N

(
0,

91.720

100
+

88.176

85

)
approximately.

Using G.C., the p-value is 0.0692, which is greater than our significance level of 5%. Thus,
we do not reject H0and conclude there is insufficient evidence at the 5% significance level
that the potatoes supplied by the two suppliers have different mean weight.

Part (b). The test statistic would follow a t-distribution, and would use a pooled vari-
ance.
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A18C Hypothesis Testing - Goodness of Fit
and Independence

Tutorial A18C

Problem 1. The positioning of nests in shrubs was noted for a species of birds.

Nest position N NE E SE S SW W NW

Number of nests 65 73 67 51 47 45 45 48

Using a 5% significance level, test the hypothesis that the birds have no directional
preference in positioning their nests.

Solution. Let H0: data consistent with (discrete) uniform distribution, and H1: data
inconsistent with uniform distribution. We take a 5% level of significance.
Under H0, the observed and expected frequencies are

Nest position N NE E SE S SW W NW

Oi 65 73 67 51 47 45 45 48

Ei 55.125 55.125 55.125 55.125 55.125 55.125 55.125 55.125

Our test statistic is
∑

(Oi − Ei)
2/Ei ∼ χ2

8−1 = χ2
7, so our p-value is 0.0228, which is

less than our significance level of 5%. Thus, we reject H0 and conclude there is sufficient
evidence at the 5% level of significance that the birds have a directional preference in
positioning their nests.

∗ ∗ ∗ ∗ ∗

Problem 2. When a tetrahedral dice is thrown, the number landing face down counts
as the score. Four such dice are thrown 200 times and the number of fours obtained are
shown.

Number of fours 0 1 2 3 4

Frequency 20 47 83 41 9

(a) Use a χ2 test at the 5% level to test whether the dice are fair, that is, a B(4, 1/4)
model is appropriate.

(b) Use the data to estimate a value for p, the probability that the score from a tetra-
hedral die is 4. Test at the 5% level whether a B(4, p) model is appropriate.

Solution.

Part (a). Let H0: data is consistent with B(4, 1/4), and H1: data is inconsistent with
B(4, 1/4). We take a 5% level of significance.

Under H0, the observed and expected frequencies are

Number of fours 0 1 2 3 4

Oi 20 47 83 41 9

Ei 63.281 84.375 42.187 9.375 0.7812
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Since the expected frequency in the last columns is less than 5, we group the last two
columns together. Our test statistic is hence

∑
(Oi − Ei)

2/Ei ∼ χ2
4−1 = χ2

3, giving a
p-value of 3.60× 10−52, which is less than our significance level of 5%. Thus, we reject H0

and conclude there is sufficient evidence at the 5% level of significance that a B(4, 1/4)
model is not appropriate.

Part (b). Note that

p̂ =
x

n
=

1.86

4
= 0.465.

Let H0: data is consistent with B(4, 0.465), and H1: data is inconsistent with B(4, 0.465).
We take a 5% level of significance.

Under H0, the observed and expected frequencies are

Number of fours 0 1 2 3 4

Oi 20 47 83 41 9

Ei 16.385 56.964 74.267 43.033 9.3507

Since we estimated p̂ using x, our test statistic is
∑

(Oi −Ei)
2/Ei ∼ χ2

5−2 = χ2
3, giving

a p-value of 0.299, which is larger than our significance level of 5%. Thus, we do not reject
H0 and conclude there is sufficient evidence at the 5% level of significance that a B(4, p)
model is appropriate.

∗ ∗ ∗ ∗ ∗

Problem 3. The accident rates, taken over a twelve-month period, for the workers in a
particular company, classified by age, are given in the following table.

Age (years) 18-25 26-40 41-50 Over 50 Total

At least one accident 112 156 75 77 420

No accidents 175 267 179 228 849

Total 287 423 254 305 1269

Show that the data provides evidence, at the 0.1% significance level, that age and
accident rate are not independent. Comment on the relation between age and accident
rate.

Solution. Let H0: age and accident rate are independent, and H1: age and accident rate
are dependent. We perform a χ2 independence test at a 0.1% level of significance. Our
test statistic is

∑
(Oi − Ei)

2/Ei ∼ χ2
(2−1)(4−1) = χ2

3. Under H0, our p-vale is 6.31× 10−4,

which is less than our significance level of 0.1%. Thus, we reject H0 and conclude there
is sufficient evidence, at the 0.1% level of significance, that age and accident rate are not
independent.
From the data, the older workers are, the less likely they get into an accident, possibly

because older workers have been working for a longer period of time, hence they have more
experience when it comes to safety.

∗ ∗ ∗ ∗ ∗

Problem 4. A random variable X is equally likely to take each integer value from 1 to n
inclusive. In a random sample of N observations, the value of r is obtained Or times for
r = 1, 2, . . . , n. Show that the calculated χ2 statistics for these data can be expressed in
the form

n

N

n∑

r=1

O2
r −N.
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The table shows the monthly figures for road deaths occurring in a certain country over
a 12-month period.

Month Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov

Deaths 326 356 301 292 279 286 285 298 308 284 291 303

(a) Show that at the 5% significance level, these monthly figures conform to a uniform
distribution.

(b) Partition the data in four groups of consecutive months, starting on December,
March, June and September respectively. Show that there is evidence, at 5% sig-
nificance level, of a seasonal variation and describe it. State what might cause the
variation.

Solution. Note that

Er = P[X1 = r] + · · ·+ P[XN = r] = N P[X = r] =
N

n
.

Hence,

χ2 =

n∑

r=1

(Or − Er)
2

Er
=

n∑

r=1

(Or −N/n)2

N/n
=

n

N

n∑

r=1

(
O2

r −
2N

n
Or +

N2

n2

)
.

Since
∑

Or = N , we have

χ2 =
n

N

n∑

r=1

O2
r −

n

N
· 2N

n
·N +

n

N
· n · N

2

n2
=

n

N

n∑

r=1

O2
r −N.

Part (a). Let H0: data is consistent with uniform distribution, and H1: data is inconsistent
with uniform distribution. We take a 5% level of significance.
Our test statistic is

∑
(Or − Er)

2/Er ∼ χ2
12−1 = χ2

11. Under H0, this evaluates to

n

N

n∑

r=1

O2
r −N =

12

3609
(1090553)− 3609 = 17.111,

which gives a p-value of 0.10464, which is greater than our 5% level of significance. Thus,
we do not reject H0 and conclude there is sufficient evidence at a 5% significance level that
these monthly figures conform to a uniform distribution.

Part (b). Grouping by season, we get

Month Dec – Feb Mar – May Jun – Aug Sep – Nov

Deaths 983 857 891 878

Let H0: data is consistent with uniform distribution, and H1: data is inconsistent with
uniform distribution. We take a 5% level of significance.
Our test statistic is

∑
(Or − Er)

2/Er ∼ χ2
4−1 = χ2

3. Under H0, this evaluates to

n

N

n∑

r=1

O2
r −N =

4

3609
(3265503)− 3609 = 10.288,

which gives a p-value of 0.0358, which is less than our 5% level of significance. Thus, we
reject H0 and conclude there is sufficient evidence at a 5% significance level that there is
a seasonal variation, which peaks during winter (Dec – Feb). This could be due to shorter
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days in winter, which leads to lower visibility and hence more car accidents, resulting in
more deaths.

∗ ∗ ∗ ∗ ∗

Problem 5.

(a) The random variable X has a normal distribution with mean 5 and standard devi-

ation 3. The random variable Y is given by Y =
(
X−5
3

)2
. State the distribution of

Y , giving the value of any associated parameter. By considering the distribution of
Y and X, use two methods to find P[Y < 1.35].

(b) A wine store wished to investigate whether there was an association between the sex
of customers and their preference for red or white wine. During one week, 200 of
the store’s customers were questioned. The results are shown in the table.

Red White No preference Total

Male 59 37 26 122

Female 25 40 13 78

Total 84 77 39 200

Stating any necessary assumption, test at the 5% significance level whether there
is an association between the sex of a customer and wine preference. Show in your
working the contribution to the test statistic in each cell of the table.

Solution.

Part (a). Note that (X − 5)/3 ∼ N(0, 1). Hence, Y = Z2 ∼ χ2
1.

Using the distribution of Y , we have P[Y < 1.35] = 0.755. Alternatively, using the
distribution of (X − 5)/3 = Z, we have

P[Y < 1.35] = P
[
Z2 < 1.35

]
= P

[
−
√
1.35 < Z <

√
1.35

]
= 0.755.

Part (b). Let H0: sex of a customer and wine preference are independent, and H1: sex
of a customer and wine preference are dependent. We take a 5% level of significance.
We assume that the data comes from a random sample and are representative of the
population.
Under H0, the expected frequencies are given by

Red White No preference

Male 51.24 46.97 23.79

Female 32.76 30.03 15.21

Hence, the contributions are

Red White No preference

Male 1.1752 2.1163 0.2053

Female 1.8381 3.3101 0.32111

Our test statistic is
∑

(Oi−Ei)
2/Ei ∼ χ2

(2−1)(3−1) = χ2
2, which gives a p-value of 0.0113,

which is less than the 5% significance level. Thus, we reject H0 and conclude there is
sufficient evidence at a 5% significance level that there is an association between the sex
of a customer and wine preference.
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Problem 6. During the Second World War, records of the number of V-2 rockets launched
by the Germans and their exact point of impact in South London were recorded. The
rockets were launched from Germany and did not have sophisticated guidance systems.
The particular part of the city studied was divided into 576 regions each having an area
of 0.25 km2. The table gives the number of regions experiencing x hits.

x 0 1 2 3 4 5 Total

Frequency 229 211 93 35 7 1 576

Give reasons why these data might be expected to fit a Poisson distribution. Test the
above data at 1% significance level for a goodness of fit to a Poisson distribution with
mean 0.95, listing the expected frequencies.
An important factory covered two neighbouring regions. It was estimated that two

direct hits would cripple the factory. Find the probability that it was crippled.

Solution. Since the rockets do not have sophisticated guidance systems, the rocket strikes
effectively form a Poisson process, with each region having an equal probability of being
struck by each rocket.

Let H0: data is consistent with Po(0.95), and H1: data is inconsistent with Po(0.95).
Under H0, the expected frequencies are given by

x 0 1 2 3 4 5

Oi 229 211 93 35 7 1

Ei 222.76 211.62 100.52 31.832 7.5601 1.4364

Since the last column has an expected frequency of less than 5, we combine it with the
second-last column. Our test statistic is hence

∑
(Oi −Ei)

2/Ei ∼ χ2
5−1 = χ2

4, which gives
a p-value of 0.884, which is greater than our level of significance of 1%. Thus, we do not
reject H0 and conclude there is sufficient evidence at the 1% level of significance that the
data is consistent with a Poisson distribution with mean 0.95.

Note that X1 +X2 ∼ Po(0.95 + 0.95) = Po(1.9), so the desired probability is

P[X1 +X2 ≥ 2] = 1− P[X1 +X2 ≤ 1] = 0.566.

∗ ∗ ∗ ∗ ∗

Problem 7. A meteorologist conjectures that, at a certain location, the rainfall (x mm)
on June 30th may be regarded as an observation from the exponential distribution with
probability density function given by

f(x) = λe−λx,

where x ≥ 0. Show that E[X] = 1/λ.
It is known that during the 25-year period 1992 to 2016, a total of 260 mm of rain fell

on June 30th.

(a) Find an estimate for the value of λ. Hence, show that the probability that more
than 20 mm of rain will fall at this location on June 30th, 2017 is 0.146.

The individual rainfall measurements on June 30th for the period 1961 to 1985 are
summarized in the table below.

Rainfall (x mm) x ≤ 4 4 < x ≤ 9 9 < x ≤ 16 x > 16

Number of days 10 5 6 4
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(b) Using your estimate of λ obtained above as the true value, test the goodness of fit
of the exponential distribution to the data, using a 5% significance level.

Solution. We have

E[X] =

∫ ∞

0
xf(x) dx =

∫ ∞

0
xe−λx dx =

[
−xe−λx − 1

λ
e−λx

]∞

0

=
1

λ
.

Part (a). Note that

λ =
1

x
=

1

25/260
=

5

52
.

Hence, the desired probability is

P[X > 20] = e−
5
52

(20) = 0.146.

Part (b). Let H0: data is consistent with Exp(5/52), and H1: data is inconsistent with
Exp(5/52). We take a 5% level of significance.

Under H0, the expected frequencies are

Rainfall (x mm) x ≤ 4 4 < x ≤ 9 9 < x ≤ 16 x > 16

Oi 10 5 6 4

Ei 7.9822 6.4956 5.1545 5.3678

Our test statistic is
∑

(Oi−Ei)
2/Ei ∼ χ2

4−1 = χ2
3, which gives a p-value of 0.719, which

is greater than the 5% significance level. Thus, we do not reject H0 and conclude there is
sufficient evidence at a 5% significance level that the data is consistent with Exp(5/52).

∗ ∗ ∗ ∗ ∗

Problem 8. The following table shows the number of participants who received Gold,
Silver and Bronze awards in a telematch.

Gold Silver Bronze Total

Male 50 s 120

Female

Total 100 100 300

Copy and complete the missing entries in the observed frequency table. Construct in
similar form, the expected frequency table for a χ2 test that the gender of the participant
is independent of the type of awards. State your hypotheses clearly. Show that χ2 =
1
12

(
s2 − 70s+ 1300

)
. What is the range of s that leads to the rejection of the hypothesis

at 2.5% of significance?

Solution. The complete observed frequency table is

Gold Silver Bronze Total

Male 50 s 70− s 120

Female 50 100− s 30 + s 180

Total 100 100 100 300

Let H0: gender and type of award are independent, and H1: gender and type of award
are dependent. Under H0, the expected frequency table is
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Gold Silver Bronze Total

Male 40 40 40 120

Female 60 60 60 180

Total 100 100 100 300

Hence, the test statistic is

χ2 =
∑ (Oi − Ei)

2

Ei
=

25

6
+

(
1

40
+

1

60

)(
(s− 40)2 + (30− s)2

)
=

s2 − 70s+ 1300

12
.

To reject H0 at a 2.5% significance level, we require χ2 ≥ 7.3778, so s ≤ 31 or s ≥ 39.
But both s and 70 − s must be positive integers, so we ultimately have 0 ≤ s ≤ 31 or
39 ≤ s ≤ 70.

∗ ∗ ∗ ∗ ∗

Problem 9. A large international company employs university graduates having Class I,
II or III degrees. After one year’s employment, the performance of 250 of their graduates
was assessed. It was found that 32 were graded A (high), 140 were graded B (average) and
the rest were graded C (below average). Of these 250 graduates, 30 had Class I degrees,
150 had Class II degrees and the rest had Class III degrees.

(a) Assuming that performance grade and degree class are independent, draw up a table
showing the expected frequencies of each performance grade for each degree class.
Explain why, in this case, two rows, or two columns, must be combined in order for
a χ2 test of independence to be applied.

(b) Of the graduates with Class I degrees, 8 were graded A and 14 were graded B. Of
those with Class II degrees, 21 were graded A and 90 were graded B. The rest were
each graded C. Using the data for all 250 graduates, test, at the 5% significance level,
whether performance grade and degree class are independent. State any assumptions
necessary for the validity of your test.

Solution.

Part (a). Let H0: performance grade and degree class are independent, and H1: perfor-
mance grade and degree class are dependent.
From the given data, we can construct the expected frequency table under H0:

Class I Class II Class III Total

A 3.84 19.2 8.96 32

B 16.8 84 39.2 140

C 9.36 46.8 21.84 78

Total 30 150 70 250

Since the expected frequency of a Class I degree, performance grade A graduate is less
than 5, two rows or two columns must be combined for a χ2 test to be applied.

Part (b). Combining the rows corresponding to performance grades A and B, the expected
frequency table becomes

Class I Class II Class III Total

A/B 20.64 103.2 48.16 172

C 9.36 46.8 21.84 78

Total 30 150 70 250
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Further, from the given data, the observed frequency table is

Class I Class II Class III Total

A/B 22 111 39 172

C 8 39 31 78

Total 30 150 70 250

We take a 5% significance level and assume that the graduates were randomly hired and
are thus representative of the population.
Our test statistic is

∑
(Oi−Ei)

2/Ei ∼ χ2
(2−1)(3−1) = χ2

2, which gives a p-value of 0.0206,

which is less than our significance level of 5%. Thus, we reject H0 and conclude there is
sufficient evidence at a 5% significance level that performance grade and degree class are
not independent.
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Assignment A18C

Problem 1. For a long time, experts have been trying to explain the complex relations
and interactions between leaders and other members in an organization. A study was
carried out to investigate the relevance of a leader’s gender in adopting a specific leadership
style. A survey was given to a random sample of 79 people holding leadership positions
from various organizations and institutions. Their responses to the questionnaire served to
identify their dominant leadership style. The results are given in the following contingency
table.

Authoritarian Democratic Laissez-faire

Male 12 22 9

Female 20 13 3

Carry out a test for the independence of the two factors, gender and the dominant
leadership style.
Discuss what the test indicates about the association, if any, between the two factors.

You should refer to the p-value for your test and the largest two contributions to the test
statistic.

Solution. Our hypotheses are H0: gender and dominant leadership style are indepen-
dent, H1: gender and dominant leadership style are dependent. Under H0, the expected
frequencies are

Authoritarian Democratic Laissez-faire

Male 17.418 19.051 6.5316

Female 14.582 15.949 5.4684

The test statistic is
∑

(Oi − Ei)
2/Ei ∼ χ2

2. Using G.C., the p-value is 0.034269. The
individual contributions to the test statistic are

Authoritarian Democratic Laissez-faire

Male 1.6853 0.4565 0.9328

Female 2.0131 0.5453 1.1142

The largest two contributions come from the authoritarian leadership style.
The small p-value indicates that the two factors are associated. Further, the large

contributions from the authoritarian leadership style indicates that fewer people identify
with the authoritarian leadership style than expected.

∗ ∗ ∗ ∗ ∗

Problem 2.

(a) After the implementation of the Electronic Road Pricing Scheme, a survey was con-
ducted where the number of vehicles passing the gantry point at Pan-Island Express-
way in each period of 20 seconds was recorded. The results for 100 periods are as
follows:

Number of vehicles in the period 0 1 2 3 4 5

Frequency 24 36 28 8 3 1

(i) Calculate the mean number of vehicles per period. Perform a goodness of fit
test, at the 5% level of significance to determine whether the data could be a
sample from a Poisson distribution.
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(ii) How would the above test change if it were specified as a Po(1.33) distribution
instead?

(b) A survey of 100 families, known to be regular television viewers, was undertaken.
They were asked which of the two channels they watched most during an average
week. A summary of their replies is given in the following table, together with the
region in which they lived.

Region North South East West

Channel 5 10 17 10 + a 23− a

Channel 8 5 8 20− a 7 + a

To test the hypothesis that there is no association between the channel watched
most and the region, show that the χ2 statistic in terms of a can be simplified as

χ2 =
10a2 − 130a+ 479

36
.

Find the set of values of a that would result in the assumption not being rejected at
the 5% level of significance.

Solution.

Part (a).

Part (a)(i). From the data, x = 1.33. Our hypotheses are H0: data consistent with
Po(1.33) and H1: data inconsistent with Po(1.33). We take a 5% level of significance.

Under H0, the expected frequencies are

x 0 1 2 3 4 ≥ 5

Ei 26.448 35.175 23.392 10.370 3.4481 1.1667

The last two columns have expected frequencies less than 5, so we combine the last three
columns. The test statistic is

∑
(Oi − Ei)

2/Ei ∼ χ2
2. Using G.C., the p-value is 0.417,

which is greater than our 5% significance level. Hence, we do not reject H0 and conclude
there is insufficient evidence at the 5% level that the data is inconsistent with Po(1.33).

Part (a)(ii). The degrees of freedom would be 4 − 1 = 3, hence the test statistic would
follow a χ2

3 distribution instead.

Part (b). Our hypotheses are H0: most watched channel and region are independent, H1:
most watched channel and region are dependent. Under H0, the expected frequencies are

Region North South East West

Channel 5 9 15 18 18

Channel 8 6 10 12 12

The test statistic is

∑ (Oi − Ei)
2

Ei
=

(10− 9)2

9
+

(5− 6)2

6
+

(17− 15)2

15
+

(8− 10)2

10

+
(10 + a− 18)2

18
+

(20− a− 12)2

12
+

(23− a− 18)2

18
+

(7 + a− 12)2

12

=
17

18
+

(
1

18
+

1

12

)[
(a− 8)2 + (a− 5)2

]

=
10a2 − 130a+ 479

36
.
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The critical value for a 5% level of significance is 7.815. Hence, to not reject H0, we require

10a2 − 130a+ 479

36
≤ 7.815 =⇒ 1.76 ≤ a ≤ 11.2.

Since a is an integer, the required range of values of a is 2 ≤ a ≤ 11.

∗ ∗ ∗ ∗ ∗

Problem 3. The proportions of blood types A, B, AB and O in the population of a
country are p1, p2, p3, p4 respectively, where

∑4
i=1 pi = 1. In order to test whether the

population of a city in the country conforms to these figures, a random sample of size n
is selected and the numbers of people with blood types A, B, AB and O are found to be
a, b, c and d respectively.

(a) Show that the χ2 statistic for a goodness of fit test simplifies to

χ2 =
a2

np1
+

b2

np2
+

c2

np3
+

d2

np4
− n.

(b) It is given that p1 = p4, p2 = 3p3 and the values of a, b, c, d are 26, 19, 10 and 45
respectively. Denoting the common value of p1 and p4 by p, show that

χ2 =
2701

100p
+

661

75 (1− 2p)
− 100.

Hence, find the value of p0 of p for which this value of χ2 is a minimum.

(c) Carry out the goodness of fit test at the 10% significance level, with p = p0.

(d) State, giving your reason, the conclusion of your test for values of p other than p0.

(e) Using the values of a, b, c and d in (b), construct a 95% confidence interval for the
proportion of people in the country with blood type A.

(f) Discuss one advantage and one disadvantage of finding a 95% confidence interval
instead of a 99% confidence interval.

Solution.

Part (a). The test statistic is

χ2 =
∑ (Oi − Ei)

2

Ei
=
∑(

O2
i

Ei
− 2Oi + Ei

)
=
∑(

O2
i

Ei

)
− 2n+ n

=
a2

np1
+

b2

np2
+

c2

np3
+

d2

np4
− n.

Part (b). Note that p1 + p2 + p3 + p4 = 1. Hence,

p2 =
3 (1− 2p)

4
and p3 =

1− 2p

4
.

The test statistic is thus

χ2 =
262

100p
+

192

100
(
3(1−2p)

4

) +
102

100
(
1−2p
4

) +
452

100p
− 100 =

2701

100p
+

661

75 (1− 2p)
− 100.

Using G.C., the minimum value of χ2 is 6.47259, occurring when p = p0 = 0.35615.
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Part (c). Our hypotheses are H0: data consistent with proportions p1, p2, p3, p4, and
H1: data inconsistent with proportions p1, p2, p3, p4. We take a level of significance of
10%. The test statistic is

∑
(Oi − Ei)

2/Ei ∼ χ2
3. From (c), the value of the test statistic

is 6.47259, but the critical value for a 10% significance level is 6.2514. Hence, we reject
H0 and conclude there is sufficient evidence at the 10% level that the data is inconsistent
with the proportions p1, p2, p3, p4.

Part (d). Because χ2 already attains a minimum at p = p0, the value of the test statistic
for all other values of p will remain greater than the critical value of 6.2514m hence leading
to a rejection of H0 at the 10% significance level.

Part (e). A 95% confidence interval is (0.17403, 0.34597).

Part (f). An advantage is that the interval will be smaller and hence more precise. A
disadvantage is that we must accept a lower level of confidence.
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B1 Graphs and Transformations I

Tutorial B1A

Problem 1. Without using a calculator, sketch the following graphs and determine their
symmetries.

(a) y = x2 + 5

(b) y = 2x− x3

(c) y = x2 − 4x+ 3

Solution.

Part (a).

5

O

x

y y = x2 + 5

Symmetry: x = 0.

Part (b).

O

x

y y = 2x− x3

Symmetry: (0, 0).
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Part (c).

1 3

3

(2,−1)

O

x

y y = x2 − 4x+ 3

Symmetry: x = 2.

∗ ∗ ∗ ∗ ∗

Problem 2. Sketch the following curves. Indicate using exact values, the equations of
any asymptotes and the coordinates of any intersection with the axes.

(a) y = 1
2x+1

(b) y = 3x
x−2

(c) y = x2+x−6
2x−2

Solution.

Part (a).

1

x = −1
2

O

x

y y = 1
2x+1
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Part (b).

x = 2

y = 3

O

x

y y = 3x
x−2

Part (c).

−3 2

3

x = 1

y = 1
2x+ 1

O

x

y
y = x2+x−6

2x−2

∗ ∗ ∗ ∗ ∗

Problem 3. Sketch the following graphs

(a) x2 + 2x+ 2y + 4 = 0

(b) y2 = x− 9

(c) y2 = (x− 2)4 + 5

(d) y = tan
(
1
2x
)
, −2π ≤ x ≤ 2π

Solution.

Part (a).

−2
(
−1,−3

2

)
O

x

y x2 + 2x+ 2y + 4 = 0
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Part (b).

9O

x

y y2 = x− 9

Part (c).

−4.58

4.58
(2, 2.24)

(2,−2.24)

O

x

y y2 = (x− 2)4 + 5

Part (d).

2ππ−π−2π O

x

y y = tan(x)

∗ ∗ ∗ ∗ ∗

Problem 4. Sketch the following curves. Indicate using exact values, the equations of
any asymptotes and the coordinates of any intersection with the axes.

(a) y = 1−3x
2x−1

(b) y = ax
x−a , a < 0
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(c) y = − b(x+3a)
x+a , a, b > 0

Solution.

Part (a).

1
3

−1

x = 1
2

y = −3
2

O

x

y y = 1−3x
2x−1

Part (b).

x = a

y = a
O

x

y y = ax
x−a

Part (c).

−3a

−3b

x = −a

y = −b

O

x

y
y = − b(x+3a)

x+a
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Problem 5. Sketch the following curves and find the coordinates of any turning points
on the curves.

(a) y = x+ 2 sinx, 0 ≤ x ≤ 2π

(b) y = x
lnx , x > 0, x ̸= 1

(c) y = xe−x

(d) y = xe−x2

Solution.

Part (a).

(
2
3π, 3.83

)

(
4
3π, 2.46

)

O

x

y y = x+ 2 sinx

Part (b).

x = 1

(e, e)

O

x

y y = x
lnx

Part (c).

(
1, 1e
)

O

x

y y = xe−x
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Part (d).

(
1√
2
, 1√

2e

)

(
− 1√

2
,− 1√

2e

)

O

x

y
y = xe−x2

∗ ∗ ∗ ∗ ∗

Problem 6. The equation of a curve C is y = 1 + 6
x−3 − 24

x+3 .

(a) Explain why y = 1 and x = 3 are asymptotes to the curve.

(b) Find the coordinates of the points where C meets the axes.

(c) Sketch C.

Solution.

Part (a). As x → ±∞, y → 1. Hence, y = 1 is an asymptote to C. As x → 3±, y → ±∞.
Hence, x = 3 is an asymptote to C.

Part (b). When x = 0, y = −9. When y = 0, x = 9. Hence, C meets the axes at (0,−9)
and (9, 0).

Part (c).

9

−9

x = 3x = −3

O

x

y y = 1 + 6
x−3 − 24

x+3

∗ ∗ ∗ ∗ ∗

Problem 7. The curve C has equation y = ax2+bx
x+2 , where x ̸= −2. It is given that C has

an asymptote y = 1− 2x.

(a) Show (do not verify) that a = −2 and b = −3.

(b) Using an algebraic method, find the set of values that y can take.
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(c) Sketch C, showing clearly the positions of any axial intercept(s), asymptote(s) and
stationary point(s).

(d) Deduce that the equation x4+2x3+2x2+3x = 0 has exactly one real non-zero root.

Solution.

Part (a).

y =
ax2 + bx

x+ 2
=

(ax+ b− 2a)(x+ 2)− 2(b− 2a)

x+ 2
= ax+ b− 2a− 2(b− 2a)

x+ 2
.

Since C has an asymptote y = 1− 2x, we have a = −2 and b− 2a = 1, whence b = −3.

Part (b).

y =
−2x2 +−3x

x+ 2
=⇒ y(x+ 2) = −2x2 − 3x =⇒ 2x2 + (3 + y)x+ 2y = 0.

For all values that y can take on, there exists a solution to 2x2+(3+y)x+2y = 0. Hence,
∆ ≥ 0.

(3 + y)2 − 4(2)(2y) ≥ 0 =⇒ y2 − 10y + 9 ≥ 0 =⇒ (y − 1)(y − 9) ≥ 0.

y
91

+ − +

Thus, {y ∈ R : y ≤ 1 or y ≥ 9}.
Part (c).

−3
2

x = −2

y = 1− 2x

O

x

y
y = −2x2−3x

x+2

Part (d). Observe that

x4 + 2x3 + 2x2 + 3x = 0 =⇒ x3(x+ 2) = −2x2 − 3x =⇒ x3 =
−2x2 − 3x

x+ 2
.

This motivates us to plot y = x3 and y = −2x2−3x
x+2 on the same graph.
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−3
2

x = −2

y = 1− 2x

O

x

y
y = −2x2−3x

x+2

y = x3

We thus see that y = x3 intersects y = −2x2−3x
x+2 twice, with one intersection point being

the origin. Thus, there is only one real non-zero root to x4 + 2x3 + 2x2 + 3x = 0.

∗ ∗ ∗ ∗ ∗

Problem 8. The curve C is defined by the equation y = x
x2−5x+4

.

(a) Write down the equations of the asymptotes.

(b) Sketch C, indicating clearly the axial intercept(s), asymptote(s) and turning point(s).

(c) Find the positive value k such that the equation x
x2−5x+4

= kx has exactly 2 distinct
real roots.

Solution.

Part (a). As x → ±∞, y → 0. Hence, y = 0 is an asymptote. Observe that x2 − 5x+4 =
(x− 1)(x− 4). Hence, x = 1 and x = 4 are also asymptotes.

Part (b).

x = 1 x = 4

(2, 1)
O

x

y y = x
x2−5x+4

Part (c). Note that x = 0 is always a root of x
x2−5x+4

= kx. We thus aim to find the
value of k such that x

x2−5x+4
= kx has only one non-zero root.

We observe that if k > 0, y = kx will intersect with y = x
x2−5x+4

at least twice: before
x = 1 and after x = 4. In order to have only one non-zero root, we must force the
intersection point that comes before x = 1 to be at the origin (0, 0). Hence, k is tangential
to C at (0, 0), thus giving k = dC/dx|x=0.

k =
dC

dx

∣∣∣∣
x=0

=
d

dx

(
x

x2 − 5x+ 4

)∣∣∣∣
x=0

=
3x2 − 10x+ 4

(x2 − 5x+ 4)2

∣∣∣∣
x=0

=
1

4
.
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Tutorial B1B

Problem 1. Without using a calculator, sketch the following graphs of conics.

(a) y2 − 4x = 12

(b) (x+ 1)2 + y2 = 4

(c) (x−3)2

9 + y2

2 = 1

(d) 4x2 + y2 = 4

(e) 8y2 − 2x2 = 16

Solution.

Part (a).

−3

√
12

−
√
12

O

x

y y2 − 4x = 12

Part (b).

−3 1

√
3

−
√
3

(3,
√
2)

(3,−
√
2)

O

x

y (x+ 1)2 + y2 = 4
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Part (c).

6

(3,
√
2)

(3,−
√
2)

O

x

y (x−3)2

9 + y2

2 = 1

Part (d).

−1 1

2

−2

O

x

y 4x2 + y2 = 4

Part (e).

√
2

−
√
2

y = 1
2x

y = −1
2x

O

x

y 8y2 − 2x2 = 16
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Problem 2. Sketch the curves defined by the following parametric equations, indicating
the coordinates of any intersection with the axes.

(a) x = 3t2, y = 2t3

(b) x = cos2 t, y = sin3 t, 0 ≤ t ≤ π
2

Solution.

Part (a).

O

x

y x = 3t2, y = 2t3

Part (b).

1

π
2

O

x

y x = cos2 t, y = sin3 t



Tutorial B1B 661

Problem 3. Without using a calculator, sketch the following graphs of conics.

(a) y2 + 4y + x = 0

(b) x2 + y2 − 4x− 4y = 0

(c) x2 + 4y2 − 2x− 24y + 33 = 0

(d) 4x2 − y2 − 8x+ 4y = 1

(e) x = −
√
17− y2

Solution.

Part (a).

−4

(4,−2)

O

x
y y2 + 4y + x = 0

Part (b).

4

4

(2, 2) 2
√
2

O

x

y (x+ 1)2 + y2 = 4
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Part (c).

6

(1, 4)

(1, 2)

(−2, 3) (4, 3)

O

x

y x2 + 4y2 − 2x− 24y + 33 = 0

Part (d).

y = 2x

y = −2x+ 4

(
1
2 , 2
) (

3
2 , 2
)

O

x

y 4x2 − y2 − 8x+ 4y = 1

Part (e).

−
√
17

−
√
17

√
17

O

x

y
x = −

√
17− y2

∗ ∗ ∗ ∗ ∗

Problem 4. Sketch the curves defined by the following parametric equations. Find also
their respective Cartesian equations.

(a) x = 4t+ 3, y = 16t2 − 9, t ∈ R

(b) x = t2, y = 2 ln t, t ≥ 1
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(c) x = 1 + 2 cos θ, y = 2 sin θ − 1, 0 ≤ θ ≤ π
2

(d) x = t2, y = 2
t , t ̸= 0

Solution.

Part (a).

6O

x

y x = 4t+ 3, y = 16t2 − 9

Since x = 4t+ 3, we have t = 1
4(x− 3). Thus, y = 16

(
1
4(x− 3)

)2 − 9 = (x− 3)2 − 9.

Part (b).

1O

x

y x = t2, y = 2 ln t

Since x = t2 and t ≥ 1 > 0, we have t =
√
x. Thus, y = 2 ln(t) = 2 ln(

√
x) = ln(x).

Part (c).

(1, 1)

(3,−1)

O
x

y x = 1 + 2 cos θ, y = 2 sin θ − 1
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We have 2 cos θ = x− 1 and 2 sin θ = y+ 1. Squaring both equations and adding them,
we obtain 4 cos2 θ+4 sin2 θ = (x−1)2+(y+1)2, which simplifies to (x−1)2+(y+1)2 = 4.

Part (d).

O
x

y x = t2, y = 2
t

Since x = t2, we have t = ±√
x. Hence, y = ± 2√

x
.

∗ ∗ ∗ ∗ ∗

Problem 5. The curve C1 has equation y = x−2
x+2 . The curve C2 has equation x2

6 + y2

3 = 1.

(a) Sketch C1 and C2 on the same diagram, stating the exact coordinates of any points
of intersections with the axes and the equations of any asymptotes.

(b) Show algebraically that the x-coordinates of the points of intersection of C1 and C2

satisfy the equation 2(x− 2)2 = (x+ 2)2
(
6− x2

)
.

(c) Use your calculator to find these x-coordinates.

Another curve is defined parametrically by

x =
√
6 cos θ, y =

√
3 sin θ, −π ≤ θ ≤ π.

(d) Find the Cartesian equation of this curve and hence determine the number of roots

to the equation
√
3 sin θ =

√
6 cos θ−2√
6 cos θ+2

for −π ≤ θ ≤ π.

Solution.

Part (a).

−
√
6

√
6−

√
3

√
3

x = −2

y = 1

O

x

y x−2
x+2
x2

6 + y2

3 = 1



Tutorial B1B 665

Part (b). From C1, we have y(x+ 2) = x− 2. Hence,

y2(x+ 2)2 = (x− 2)2.

From C2, we have x2 + 2y2 = 6. Hence,

y2 =
6− x2

2
.

Putting both equations together, we have

(x− 2)2 =

(
6− x2

)
(x+ 2)2

2
=⇒ 2(x− 2)2 =

(
6− x2

)
(x+ 2)2.

Part (c). The x-coordinates are x = −0.515 or x = 2.45.

Part (d). Since x =
√
6 cos θ and y =

√
3 sin θ, we have x2 = 6 cos2 θ and 2y2 = 6 sin2 θ.

Adding both equations together, we have

x2 + 2y2 = 6 cos2 θ + 6 sin2 θ = 6 =⇒ x2

6
+

y2

3
= 1.

This is the equation that gives C1. We further observe that the equation
√
3 sin θ =√

6 cos θ−2√
6 cos θ+2

simplifies to y = x−2
x+2 . This is the equation that gives C2. Since there are two

intersections between C1 and C2, there are thus two roots to the equation
√
3 sin θ =√

6 cos θ−2√
6 cos θ+2

.
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Self-Practice B1

Problem 1. The equations of the curves C1 and C2 are given by y = 2x+1
x−3 and 3(x −

1)2 + 4y2 = 12 respectively. Sketch C1 and C2 on the same diagram, stating the exact
coordinates of any points of intersection with the axes and the equations of any asymp-
totes.

∗ ∗ ∗ ∗ ∗

Problem 2. The curve C has equation y = x2−4x
x2−9

.

(a) Express y in the form P + Q
x−3 + R

x+3 , where P , Q and R are constants.

(b) Sketch C, showing clearly the asymptotes and the coordinates of the points of inter-
section with the axes.

∗ ∗ ∗ ∗ ∗

Problem 3. The curve C has the equation y = x2+px−q
x+r . It is given that C has a vertical

asymptote at x = −3 and intersects the x-axis at x = −2 and x = 1.

(a) Determine the values of p, q and r.

(b) State the equation of other asymptote(s).

(c) Prove, using an algebraic method, that y cannot lie between two values which are
to be determined.

(d) Hence, sketch C, labelling clearly the axial intercepts, asymptotes and the coordi-
nates of any turning points.

(e) Deduce the number of roots of the equation 3x4 + 3x3 − 6x2 − x− 3 = 0.

∗ ∗ ∗ ∗ ∗

Problem 4. The curve C has equation y2 = 5x2 + 4.

(a) Sketch C, indicating clearly the axial intercepts, the equations of the asymptotes
and the coordinates of the stationary points.

(b) Hence by inserting a suitable graph, determine the range of values of h, where h is
a positive constant, such that the equation 5x2 + 4 = h2

(
1− x2

)
has no real roots.

∗ ∗ ∗ ∗ ∗

Problem 5. The curve C has equation y = mx2+2x+m
x , where m is a non-zero constant.

(a) Find the range of values of m for C to cut the x-axis at two distinct points.

(b) For m = 1
2 , find the equations of the asymptotes of C.

(c) Hence, sketch the curve C for m = 1
2 : indicating clearly the asymptotes, any turning

points and axial intercepts.

(d) By drawing a sketch of another suitable curve in the same diagram as your sketch
of C, deduce the number of real roots of the equation x2 + 4x+ 1 = −2xex.
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Problem 6. The curve C1 has equation (x−1)2

4 = y2

9 + 4.
Sketch C1, making clear the main relevant features, and state the set of values that x

can take.
Another curve C2 is defined by the parametric equations

x =
2

t2 + 1
, y = 3

√
t ln t, t > 1.

Use a non-graphical method to determine the set of possible values of x. Sketch the curve
C2, labelling all axial intercepts and asymptotes (if any) clearly.
Hence, without solving the equation, state the number of real roots to the equation

9

(
2

t2 + 1
− 1

)2

= 4
(
3
√
t ln t

)2
+ 144,

explaining your reason(s) clearly.
Given that k > 0, state the smallest integer value of k such that the equation

9

(
2

t2 + 1
+ k − 1

)2

= 4
(
3
√
t ln t

)2
+ 144,

has exactly one real root which is positive.

∗ ∗ ∗ ∗ ∗

Problem 7 ( ).

(a) An ellipse of equation x2

a2
+ y2

b2
= 1, where 0 < b < a, has two points called foci

F1(−c, 0) and F2(c, 0). The definition of the ellipse is such that for every point P on
the ellipse, the sum of the distance of P to F1 and F2 is always a constant k.

(i) By considering a suitable point on the ellipse, determine the value of k in terms
of a and/or b.

(ii) By considering another suitable point on the ellipse, find c in terms of a and b.

(b) A hyperbola with equation (y − h)2 − 1 = 1
4(x − k)2 has y = 1

2x + 3
2 as one of its

asymptotes, and the point (1, 3) is on the hyperbola. Find the values of h and k.
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Assignment B1A

Problem 1. Sketch clearly labelled diagrams of each of the following curves, giving exact
values of axial intercepts, stationary points and equations of asymptotes, if any.

(a) y + x2 = 2x− 4

(b) y = 3x−4
2x−1

Solution.

Part (a).

−4 (1,−3)

O

x

y y + x2 = 2x− 4

Part (b).

4
3

4

x = 1
2

y = 3
2

O

x

y y = 3x−4
2x−1

∗ ∗ ∗ ∗ ∗

Problem 2. On separate diagrams, sketch the graphs of

(a) y = x2−a2

x2 , a > 0

(b) y = x−1
2x(x+3)

Indicate clearly the coordinates of axial intercepts, stationary points and equations of
asymptotes, if any.
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Solution.

Part (a).

−a a

y = 1

O

x

y
y = x2−a2

x2

Part (b).

1

x = −3

(
−1, 12

)

(
3, 1

18

)

O

x

y y = x−1
2x(x+3)

∗ ∗ ∗ ∗ ∗

Problem 3. The curve C has equation y = ax2+bx−2
x+4 , where a and b are constants. It is

given that y = 2x− 5 is an asymptote of C.

(a) Find the values of a and b.

(b) Sketch C.

(c) Using an algebraic method, find the set of values that y cannot take.

(d) By drawing a sketch of another suitable curve in the same diagram as your sketch of C
in part (b), deduce the number of distinct real roots of the equation x3+6x2+3x−2 =
0.

Solution.

Part (a). Since y = 2x − 5 is an asymptote of C, ax2+bx−2
x+4 can be expressed in the form

2x− 5 + k
x+4 , where k is a constant.

ax2 + bx− 2

x+ 4
= 2x−5+

k

x+ 4
=⇒ ax2+bx−2 = (2x−5)(x+4)+k = 2x2+3x−20+k.

Comparing coefficients of x2, x and constant terms, we have a = 2, b = 3 and k = 18.
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Part (b).

1
2

x = −4

(−1,−1)

(−7,−25)

y =
2x−

5

O x

y
y = 2x2+3x−2

x+4

y = −x2

Part (c).

y =
2x2 + 3x− 2

x+ 4
=⇒ (x+ 4)y = 2x2 + 3x− 2 =⇒ 2x2 + (3− y)x− (2 + 4y) = 0.

For values that y cannot take on, there exist no solutions to 2x2+(3− y)x− (2+4y) = 0.
Hence, ∆ < 0. Hence,

(3− y)2 − 4(2) (−(2 + 4y)) < 0 =⇒ y2 + 26y + 25 < 0 =⇒ (y + 25)(y + 1) < 0.

y
−1−25

+ − +

Thus, the set of values that y cannot take is {y ∈ R : − 25 < y < −1}.
Part (d).

x3 + 6x2 + 3x− 2 = 0 =⇒ x3 + 4x2

x+ 4
+

2x2 + 3x− 2

x+ 4
= x2 +

2x2 + 3x− 2

x+ 4
= 0

=⇒ 2x2 + 3x− 2

x+ 4
= −x2.

Plotting y = −x2 on the same digram, we see that there are 3 intersections between y = x2

and C. Hence, there are 3 distinct real roots to x3 + 6x2 + 3x− 2 = 0.
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Assignment B1B

Problem 1. Without using a calculator, sketch the graphs of the conics in parts (a), (b)
and c.

(a) 3x2 + 2y2 = 6

(b) x2 + y2 + 4x− 2y − 20 = 0

(c) 4(y − 1)2 − x2 = 4

State a transformation that will transform the graph of (a) to a circle with centre (0, 0)
and radius

√
3.

Solution.

Part (a).

√
2−

√
2

√
3

−
√
3

O

x

y 3x2 + 2y2 = 6

Part (b).

(−2, 1)

5

O

x

y x2 + y2 + 4x− 2y − 20 = 0
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Part (c).

−2

y
=
1
2
x
− 1

y
= − 1

2 x−
1

O

x

y 4(y − 1)2 − x2 = 4

The transformation is x 7→
√

2
3x.

∗ ∗ ∗ ∗ ∗

Problem 2. The curve C has parametric equations

x = t2 + 4t, y = t3 + t2.

Sketch the curve for −2 ≤ t ≤ 1, stating the axial intercepts.

Solution.

−3

(−4, 4)

(5, 2)

O

x

y x = t2 + 4t, y = t3 + t2



673

B2 Graphs and Transformations II

Tutorial B2

Problem 1.

A(0, 1)

B(1, 0)

C(2, 1)

D(3, 0)

O

x

y y = f(x)

The graph of y = f(x) is shown here. The points A, B, C and D have coordinates
(0, 1), (1, 0), (2, 1) and (3, 0) respectively. Sketch, separately, the graphs of

(a) y = f(2x)

(b) y = f(x+ 3)

(c) y = 1− f(x)

(d) y = 3f
(
x
2 − 1

)

stating, in each case, the coordinates of the points corresponding to A, B, C and D.

Solution.

Part (a).

A(0, 1)

B
(
1
2 , 0
)

C(1, 1)

D
(
3
2 , 0
)

O

x

y y = f(2x)
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Part (b).

A(−3, 1)

B(−2, 0)

C(−1, 1)

D(0, 0)

O

x

y y = f(x+ 3)

Part (c).

A(0, 0)

B(1, 1)

C(2, 0)

D(3, 1)

O x

y y = 1− f(x)

Part (d).

A(2, 3)

B(4, 0)

C(6, 3)

D(8, 0)
O

x

y y = 3f
(
x
2 − 1

)

∗ ∗ ∗ ∗ ∗

Problem 2. Sketch, on a single clear diagram, the graphs of

(a) y = x2

(b) y = (x+ a)2

(c) y = b(x+ a)2
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(d) y = b(x+ a)2 + c

Assume constants a > 0, c > 0 and b > 1.

Solution.

−a

a2

ba2

ba2 + c

(c,−a)

O

x

y y = x2

y = (x+ a)2

y = b(x+ a)2

y = b(x+ a)2 + c

∗ ∗ ∗ ∗ ∗

Problem 3. The graph below has equation y = f(x). It has asymptotes y = 1 and y = 0,
a maximum point at D(1, 2), a minimum point at A(−2,−1), cuts the x-axis at B(−1.0)
and cuts the y-axis at C(0, 1).

A(−2,−1)

B(−1, 0)

C(0, 1)

D(1, 2)

y = 1

O

x

y y = f(x)

Sketch on separate diagrams the graphs of the following curves, labelling each curve
clearly, indicating the horizontal asymptotes and showing the coordinates of the points
corresponding to the points A, B, C and D.

(a) y = f(x+ 1)

(b) y = f
(
x
2

)

(c) y = 2f(x)− 2

Find the number of solutions to the equation f(x) = af(x) where a ≥ 2.
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Solution.

Part (a).

A(−3,−1)

B(−2, 0)

C(−1, 1)

D(0, 2)

y = 1

O

x

y y = f(x+ 1)

Part (b).

A(−4,−1)

B(−2, 0)

C(0, 1)

D(2, 2)

y = 1

O

x

y y = f
(
x
2

)

Part (c).

A(−2,−4)

B(−1,−2)

C(0, 0)

D(1, 2)

y = −2
O

x

y y = 2f(x)− 2

All points with a y-coordinate of 0 are invariant under the transformation f(x) 7→ af(x).
Since there is only one such point (B(−1, 0)), there is only 1 solution to the equation
f(x) = af(x), where a ≥ 2.
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Problem 4. The curve with equation y = x2 is transformed by a translation of 2 units
in the positive x-direction, followed by a stretch with scale factor 1

2 parallel to the y-axis,
followed by a translation of 6 units in the negative y-direction. Find the equation of the
new curve in the form y = f(x) and the exact coordinates of the points where this curve
crosses the x- and y-axes.

Solution.

y = x3 y = (x− 2)3

2y = (x− 2)32(y + 6) = (x− 2)3

x 7→ x− 2

y 7→ 2y

y 7→ y + 6

Hence, y = 1
2(x− 2)3 − 6

When x = 0, y = −10. When y = 0, x = 2 + 3
√
12. Thus, the curve crosses the x-axis

at (2 + 3
√
12, 0) and the y-axis at (0,−10).

∗ ∗ ∗ ∗ ∗

Problem 5. Find the values of the constants A and B such that x2−4x
(x−2)2

= A+ B
(x−2)2

for

all values of x except x = 2.
Hence, state a sequence of transformations by which the graph of y = x2−4x

(x−2)2
may be

obtained from the graph of y = 1
x2 .

Solution.
x2 − 4x

(x− 2)2
=

(x− 2)2 − 4

(x− 2)2
= 1 +

−4

(x− 2)2
.

Thus, A = 1 and B = −4.

y =
1

x2
y =

1

(x− 2)2
y =

4

(x− 2)2

y =
−4

(x− 2)2
y = 1 +

−4

(x− 2)2

x 7→ x− 2 y 7→ 1
4y

y 7→ −y

y 7→ y − 1

1. Translate the curve 2 units in the positive x-direction.

2. Stretch the curve with a scale factor of 4 parallel to the y-axis.

3. Reflect the curve about the x-axis.

4. Translate the curve 1 unit in the positive y-direction.

∗ ∗ ∗ ∗ ∗

Problem 6. The transformations A, B, C and D are given as follows:

• A: A reflection about the y-axis.

• B: A translation of 2 units in the positive x-direction.

• C: A scaling parallel to the y-axis by a factor of 3.
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• D: A translation of 1 unit in the positive y-direction.

A curve undergoes the transformations A, B, C and D in succession, and the equation
of the resulting curve is y = 3

√
2− x+ 1. Determine the equation of the curve before the

transformations were effected.

Solution.

A : x 7→ −x =⇒ A−1 : x 7→ −x

B : x 7→ x− 2 =⇒ B−1 : x 7→ x+ 2

C : y 7→ 1

3
y =⇒ C−1 : y 7→ 3y

D : y 7→ y − 1 =⇒ D−1 : y 7→ y + 1

y = 3
√
2− x+ 1

y + 1 = 3
√
2− x+ 1

3y + 1 = 3
√
2− x+ 1

3y + 1 = 3
√
2− (x+ 2) + 1

3y + 1 = 3
√
2− (−x+ 2) + 1

D−1

C−1

B−1

A−1

Thus, the original curve has equation y =
√
x.

∗ ∗ ∗ ∗ ∗

Problem 7.

(−1,−2)

y = 2

x = 2

O

x

y y = f(x)

The diagram shows the graph of y = f(x). The curve passes through the origin and has
minimum point (−1,−2). The asymptotes are x = 2, y = 0 and y = 2.
Sketch, on separate diagrams, the graphs of
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(a) y = f(x− 1)

(b) y = f(|x|)

(c) y = f(|x− 1|)

(d) y = |f(x)|

(e) y = 1
f(x)

Solution.

Part (a).

−1

−2

y = 2

x = 3

O

x

y y = f(x− 1)

Part (b).

y = 2

x = 2x = −2

O

x

y y = f(|x|)

Part (c).

1−1

−2

y = 2

x = 3x = −3

O x

y y = f(|x− 1|)
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Part (d).

(−1, 2)y = 2

x = 2

O

x

y y = |f(x)|

Part (e).

2
(−1,−1

2)

y = 1
2

O

x

y y = 1/f(x)

∗ ∗ ∗ ∗ ∗

Problem 8.

y = bx+ c
(d, e)

(f, g)
O

x

y y = f(a− x)

The graph of y = f(a−x) is shown in the figure, where a > 0. The curve has asymptotes
x = 0, y = bx+ c, a minimum point at (d, e) and a maximum point at (f, g).
Given a > d, sketch separately, the graphs of

(a) y = f(x)

(b) y = f(|x|)
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(c) y = 1
f(x)

Solution.

Part (a).

x = a

(a− d, e)

(a− f, g)O

x

y y = f(x)

Equation of asymptote: y = b(a− x) + c

Part (b).

x = ax = −a

(d− a, e) (a− d, e)

(f − a, g) (a− f, g)O

x

y y = f(|x|)

Equation of asymptotes: y = b(a+ x) + c, y = b(a− x) + c

Part (c).

a

(a− d, 1e )

(a− f, 1g )

O

x

y y = 1/f(x)
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Problem 9. A curve C1 is defined by the parametric equations

x = t(t+ 2), y = 2(t+ 1).

(a) Find the axial intercepts of the curve.

(b) Sketch C1.

(c) A curve C2 is defined by the parametric equations x = t(t+ 2), y = t+ 1. Describe
a geometrical transformation which maps C1 to C2. Hence, sketch the curve C2 in
the same diagram as C1.

(d) Show that the Cartesian equation of the curve C1 is given by y2 = 4(x+ 1).

Solution.

Part (a). Consider x = 0. Then t(t+2) = 0, whence t = 0 or t = −2. When t = 0, y = 2.
When t = −2, y = −2. Hence, the curve intercepts the y-axis at (0, 2) and (0,−2).
Consider y = 0. Then t = −1, whence x = −1. Hence, the curve intercepts the x-axis

at (−1, 0).

Part (b).

−1

2

−2

1

−1
O

x

y C1

C2

Part (c). Scale by a factor of 1
2 parallel to the y-axis.

Part (d).
y2 = (2(t+ 1))2 = 4(t2 + 2t+ 1) = 4(t(t+ 1) + 1) = 4(x+ 1).
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Self-Practice B2

Problem 1. Show that the equation y = 2x+7
x+2 can be written as y = A + B

x+2 , where
A and B are constants to be found. Hence, state a sequence of transformations which
transform the graph of y = 1

x to the graph of y = 2x+7
x+2 .

Sketch the graph of y = 2x+7
x+2 , giving the equations of any asymptotes and the coordi-

nates of any points of intersection with the x- and y-axes.

∗ ∗ ∗ ∗ ∗

Problem 2. The diagram shows the curve with equation y = f(x). The curve passes
through the origin, and has asymptotes x = a and y = b, where a and b are positive
constants.

y = b

x = a

O

x

y y = f(x)

Figure 35.1

On separate diagrams, draw sketches of the graphs of

(a) y = f(x+ a)− b,

(b) y = 1/f(x),

showing clearly the axial intercepts and asymptotes (if any).

∗ ∗ ∗ ∗ ∗

Problem 3. The curves C1 and C2 are given by the equations x2 + y2 = 1 and x2 − 2x+
9y2 = a respectively, where a is a real constant. The curve C2 cuts the x-axis at the origin
O and is symmetrical about the line x = b, as shown in the diagram below.
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x = b

O
x

y C2

Figure 35.2

(a) Determine the values of a and b.

(b) Describe clearly a sequence of transformations that maps C1 onto C2.

∗ ∗ ∗ ∗ ∗

Problem 4. It is given that the curve y = f(x), where f(x) = ax+b
2x+c , where a, b, c are

constants, has an asymptote x = 1
2 . The point A with coordinates (2, 53) lies on the curve.

The tangent to the curve at A has gradient 2
9 .

(a) Write down the value of c.

(b) Show that a = 4 and b = −3.

(c) Sketch the graph of y = f(x), showing clearly all the asymptotes and the exact
coordinates of the intersection with the axes.

(d) Describe a sequence of three transformations which transforms the graph y = 2+ 1
x

to y = f(x).

∗ ∗ ∗ ∗ ∗

Problem 5. The curve whose equation is (x−3)2

22
+ y2

32
= 1 undergoes, in succession, the

following transformations:

A : A translation of magnitude 1 unit in the direction of the x-axis.

B : A reflection in the y-axis.

C : A scaling parallel to the y-axis by a scale factor of k.

(a) Find the equation of the resulting curve.

(b) State the value of k for which the resulting curve takes on the shape of a circle.

∗ ∗ ∗ ∗ ∗

Problem 6. The diagram shows the graph of y = f(x).
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5
x = −2 x = 2

y = 2

A(−3, 0) B(3, 0)

C

D(6, 4)

O

x

y y = f(x)

On separate diagrams, sketch the graphs of

(a) y = f(4x+ 3),

(b) y = 1/f(x).

In each case, state the equations of any asymptotes and the coordinates of the points
corresponding to A, B, C and D where appropriate.

∗ ∗ ∗ ∗ ∗

Problem 7. A curve C1 is defined parametrically by

x =
2

t− 1
, y =

4

t+ 1
, t ̸= ±1.

Sketch a clearly labelled diagram of C1.
Describe a sequence of geometrical transformations which maps C1 to C2 defined by

x =
1

1− t
, y =

4

t+ 1
, t ̸= ±1.

Sketch C3, which is the reciprocal function of C1, stating the equations of any asymptotes
and any points of intersection with the axes.

∗ ∗ ∗ ∗ ∗

Problem 8 ( ). The curve of y = x2

4−x undergoes two transformations. The result-

ing curve whose equation is y = (x−a)2

10−bx has stationary points A(1, 0) and B(9,−8), and
asymptotes x = 5 and y = cx+ d, where a, b, c and d are constants.

y = cx+ d

x = 5

A

B

O

x

y y = (x− a)2/(10− bx)
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(a) Show that a = 1, and find the values of b, c and d.

(b) Describe the sequence of transformations undergone by the graph of y = x2

4−x to

attain that of y = (x−a)2

10−bx , where a and b are the values found in (a).



Assignment B2 687

Assignment B2

Problem 1.

A(0, 1)

B(−1, 2)

C(−3, 0) O

x

y y = f(x)

The diagram shows the graph of y = f(x). The points A, B and C have coordinates
(0, 1), (−1, 2) and (−3, 0) respectively. Sketch, separately, the graphs of

(a) y = f(−x)

(b) y = 3− 2f(x)

(c) y = 3f
(
x
2 + 1

)

showing in each case the coordinates of the points corresponding to A, B and C.

Solution.

Part (a).

A(0, 1)

B(1, 2)

C(3, 0)O

x

y y = f(−x)

Part (b).

A(0, 1)

B(−1, 2)

C(−3, 3)

O

x

y y = 3− 2f(x)
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Part (c).

A(−2, 3)

B(−4, 6)

C(−8, 0) O

x

y y = 3f(x2 − 1)

∗ ∗ ∗ ∗ ∗

Problem 2.

−1 2

(−3
4 , 3)

(1, 2)

O

x

y y = f(x)

The curve shown is the graph of y = f(x). The x-axis is a tangent at the origin and
at (2, 0). The curve has two maximum points at

(
−3

4 , 3
)
and (1, 2). On two separate

diagrams, sketch the graphs of the following equations. Show clearly the shapes of the
graphs where they meet the x-axis and any asymptotes.

(a) y = 1
f(x) , x ̸= −1, 0, 2

(b) y = f(|x|)
Solution.

Part (a).

(−3
4 ,

1
3)

(1, 12)

x = −1 x = 2

O x

y y = 1
f(x)
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Part (b).

−2 2

(−1, 2) (1, 2)

O

x

y y = f(|x|)

∗ ∗ ∗ ∗ ∗

Problem 3. A graph with equation y = f(x) undergoes transformation A followed by
transformation B where A and B are described as follows:

• A: a translation of 1 unit in the positive direction of the x-axis

• B: a scaling parallel to the x-axis by a factor 1
2

The resulting equation is y = 4x2 − 4x+ 1. Find the equation y = f(x).

Solution. Note that

A : x 7→ x− 1 =⇒ A−1 : x 7→ x+ 1

B : x 7→ 2x =⇒ B−1 : x 7→ 1

2
x.

Hence,

y = 4x2 − 4x+ 1

y = 4

(
1

2
x

)2

− 4

(
1

2
x

)
+ 1

y = 4

[
1

2
(x+ 1)

]2
− 4

[
1

2
(x+ 1)

]
+ 1

B−1

A−1

Observe that y simplifies to

y = 4

[
1

2
(x+ 1)

]2
−4

[
1

2
(x+ 1)

]
+1 = (x+1)2−2(x+1)+1 = x2+2x+1−2x−2+1 = x2.
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B3 Functions

Tutorial B3

Problem 1. Sketch the following graphs and determine whether each graph represents a
function for the given domain.

(a) y =
√
9− x2, −3 ≤ x ≤ 3

(b) x = (y − 4)2, y ∈ R

Solution.

Part (a).

−3 3

3

O

x

y
y =

√
9− x2

y =
√
9− x2 passes the vertical line test for −3 ≤ x ≤ 3 and is hence a function.

Part (b).

16

4

O

x

y x = (y − 4)2

x = (y− 4)2 does not pass the vertical line test for y ∈ R and is hence not a function.
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Problem 2. Sketch the graph and find the range for each the following functions.

(a) g : x 7→ x2 − 4x+ 2, 1 < x ≤ 5

(b) h : x 7→ |2x− 3| , x < 3

Solution.

Part (a).

2 +
√
2

(1,−1)

(5, 7)

(2,−2)

O
x

y y = g(x)

From the graph, Rg = [−2, 7).

Part (b).

3
2

3
(3, 3)

O

x

y y = h(x)

From the graph, Rh = [ 0,∞).
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Problem 3. For each of the following functions, sketch its graph and determine if the
function is one-one. If it is, find its inverse in a similar form.

(a) g : x 7→ |x| − 2, x ∈ R

(b) h : x 7→ x2 + 2x+ 5, x ≤ −2

Solution.

Part (a).

−2 2

−2

O

x

y y = g(x)

y = g(x) does not pass the horizontal line test. Hence, g is not one-one.

Part (b).

(−2, 5)

O

x

y y = h(x)

y = h(x) passes the horizontal line test. Hence, h is one-one.
Note that y = h(x) =⇒ x = h−1(y). Now consider y = h(x).

y = h(x) = x2 + 2x+ 5 = (x+ 1)2 + 4 =⇒ x = −1±
√

y − 4.

Since x ≤ −2, we reject x = −1 +
√
y − 4. Note that Dh−1 = Rh = [5,∞). Hence,

h−1 : x 7→ −1−
√
x− 4, x ≥ 5.
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Problem 4. The function f is defined by

f : x 7→ x+
1

x
, x ̸= 0.

(a) Sketch the graph of f and explain why f−1 does not exist.

(b) The function h is defined by h : x 7→ f(x), x ∈ R, x ≥ α, where α ∈ R+. Find the
smallest value of α such that the inverse function of h exists.

Using this value of α,

(c) State the range of h.

(d) Express h−1 in a similar form and sketch on a single diagram, the graphs of h and
h−1, showing clearly their geometrical relationship.

Solution.

Part (a).

y = x
(−1,−2)

(1, 2)

O x

y y = f(x)

y = f(x) does not pass the horizontal line test. Hence, f is not one-one. Hence, f−1

does not exist.

Part (b). Consider f ′(x) = 0 for x > 0.

f ′(x) = 1− 1

x2
= 0 =⇒ x2 = 1 =⇒ x = 1.

Note that we reject x = −1 since x > 0.
Looking at the graph of y = f(x), we see that f(x) achieves a minimum at x = 1.

Hence, f is increasing for all x ≥ 1. Thus, the smallest value of α is 1.

Part (c). Note f(1) = 2. Hence, from the graph, Rh = [2,∞).

Part (d). Note that y = h(x) =⇒ x = h−1(y). Now consider y = h(x).

y = x+
1

x
=⇒ xy = x2 + 1 =⇒ x2 − yx+ 1 = 0 =⇒ x =

1

2

(
y ±

√
y2 − 4

)
.

Note that f(2) = 5
2 . Since 2 = 1

2

(
5
2 +

√(
5
2

)2 − 4

)
and 2 ̸= 1

2

(
5
2 −

√(
5
2

)2 − 4

)
, we

reject x = 1
2(y −

√
y2 − 4). Since Df−1 = Rf = [2,∞), we thus have

h−1 : x 7→ 1

2

(
x+

√
x2 − 4

)
, x ≥ 2.
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Problem 5. The function f is defined as follows:

f : x 7→ x3 + x− 7, x ∈ R.

(a) By using a graphical method or otherwise, show that the inverse of f exists.

(b) Solve exactly the equation f−1(x) = 0. Sketch the graph of f−1 together with the
graph of f on the same diagram.

(c) Find, in exact form, the coordinates of the intersection point(s) of the graphs of f
and f−1.

(d) Given that the gradient of the tangent to the curve with equation y = f−1(x) is 1
4

at the point with x = p, find the possible values of p.

Solution.

Part (a).

−7

O

x

y y = f(x)

y = f(x) passes the horizontal line test. Hence, f is one-one. Thus, f−1 exists.

Part (b). We have
f−1(x) = 0 =⇒ x = f(0) = −7.

−7

−7y
=
x

O x

y y = f(x)

y = f−1(x)

Part (c). Let (α, β) be the coordinates of the intersection between f(x) and f−1. From
the graph, we see that α = β, hence f(α) = α. Hence,

f(α) = α3 + α− 7 = α =⇒ α3 = 7 =⇒ α =
3
√
7.

The coordinates are thus
(

3
√
7, 3

√
7
)
.
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Part (d). Note that

[f−1(x)]′ =
1

f ′(f−1(x))
.

Evaluating at x = p, we obtain

1

4
=

1

f ′(f−1(x))

∣∣∣∣
x=p

=⇒ f ′(f−1(x))
∣∣
x=p

= 4.

Since f ′(x) = 3x2 + 1,

3f−1(p)2 + 1 = 4 =⇒ f−1(p)2 = 1 =⇒ f−1(p) = ±1.

Case 1 : f−1(p) = 1. Then p = f(1) = −5.
Case 2 : f−1(p) = −1. Then p = f(−1) = −9.
Hence, p = −5 or p = −9.

∗ ∗ ∗ ∗ ∗

Problem 6. The functions g and h are defined as follows:

g : x 7→ ln(x+ 2) , x ∈ (−1, 1)

h : x 7→ x2 − 2x− 1, x ∈ R+

(a) Sketch, on separate diagrams, the graphs of g and h.

(b) Determine whether the composite function gh exists.

(c) Give the rule and domain of the composite function hg and find its range.

(d) The image of a under the composite function hg is -1.5. Find the value of a.

Solution.

Part (a).

−1

ln 2

(1, ln 3)

O

x

y y = g(x)

1 +
√
2−1

(1,−2)

O x

y y = h(x)
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Part (b). Observe that Rh = [−2,∞) and Dg = (−1, 1). Hence, Rh ⊈ Dg. Thus, gh does
not exist.

Part (c).
hg(x) = h(ln(x+ 2)) = ln(x+ 2)2 − 2 ln(x+ 2)− 1.

Also note that Dhg = Dg = (−1, 1). Hence,

hg : x 7→ ln(x+ 2)2 − 2 ln(x+ 2)− 1, x ∈ (−1, 1).

Observe that h is decreasing on the interval (0, 1] and increasing on the interval [1,∞).
Note that Rg = (0, ln 3). Hence,

Rhg = [−2,max {h(0), h(ln 3)}) = [−2,−1).

Part (d). Note that h(x) = (x − 1)2 − 2. Hence, h−1(x) = 1 +
√
x+ 2 (we reject

h−1(x) = 1−
√
x+ 2 since Rh−1 = Dh = R+). Also note that g−1 = ex − 2. Thus,

hg(a) = −1.5 =⇒ g(a) = h−1(−1.5) = 1 +
√
−1.5 + 2 = 1 +

1√
2

=⇒ a = g−1

(
1 +

1√
2

)
= e

1+ 1√
2 − 2.

∗ ∗ ∗ ∗ ∗

Problem 7. The functions f and g are defined as follows:

f : x 7→ 3− x, x ∈ R

g : x 7→ 4

x
, x ∈ R, x ̸= 0

(a) Show that the composite function fg exists and express the definition of fg in a
similar form. Find the range of fg.

(b) Find, in similar form, g2 and g3, and deduce g2017.

(c) Find the set of values of x for which g(x) = g−1(x).

Solution.

Part (a). Note that Rg = R \ {0} and Dg = R. Hence, Rg ⊆ Dg. Thus, fg exists.

fg(x) = f

(
4

x

)
= 3− 4

x
.

Observe that Dfg = Dg = R \ {0}. Thus,

fg : x 7→ 3− 4

x
, x ∈ R \ {0} .

Since 4
x can take on any value except 0, then fg(x) = 3− 4

x can take on any value except
3. Thus,

Rfg = R \ {3} .
Part (b). We have

g2(x) = g

(
4

x

)
=

4

4/x
= x.
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Hence,
g2 : x 7→ x, x ∈ R \ {0} .

We have

g3(x) = g(g2(x)) = g(x) =
4

x
.

Hence,

g3 : x 7→ 4

x
, x ∈ R \ {0} .

Thus,

g2017 = g2016(g(x)) =
(
g2
)1008 ◦ g(x) = g(x) =

4

x
.

Hence,

g2017 : x 7→ 4

x
, x ∈ R \ {0} .

Part (c). Note that g(x) = g−1(x) =⇒ g2(x) = x. From the definition of g2(x), we know
that g2(x) = x for all x in Dg2 . Hence, the solution set is R \ {0}.

∗ ∗ ∗ ∗ ∗

Problem 8. The function f is defined by

f(x) =

{
2x+ 1, 0 ≤ x < 2

(x− 4)2 + 1, 2 ≤ x < 4.

It is further given that f(x) = f(x+ 4) for all real values of x.

(a) Find the values of f(1) and f(5) and hence explain why f is not one-one.

(b) Sketch the graph of y = f(x) for −4 ≤ x < 8.

(c) Find the range of f for −4 ≤ x < 8.

Solution.

Part (a). We have
f(1) = 2(1) + 1 = 3

and
f(5) = f(1 + 4) = f(1) = 3.

Since f(1) = f(5), but 1 ̸= 5, f is not one-one.

Part (b).

−4 −2 2 4 6 8

1
(−4, 1) (8, 1)

y = 5

O

x

y y = f(x)
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Part (c). From the graph, Rf = [1, 5].

∗ ∗ ∗ ∗ ∗

Problem 9.

(a) The function f is given by f : x 7→ 1 +
√
x for x ∈ R+.

(i) Find f−1(x) and state the domain of f−1.

(ii) Find f2(x) and the range of f2.

(iii) Show that if f2(x) = x then x3 − 4x2 + 4x − 1 = 0. Hence, find the value
of x for which f2(x) = x. Explain why this value of x satisfies the equation
f(x) = f−1(x).

(b) The function g, with domain the set of non-negative integers, is given by

g(n) =





1, n = 0

2 + g
(
1
2n
)
, n even

1 + g(n− 1), n odd

(i) Find g(4), g(7) and g(12).

(ii) Does g have an inverse? Justify your answer.

Solution.

Part (a).

Part (a)(i). Let y = f(x). Then x = f−1(y).

y = f(x) = 1 +
√
x =⇒ √

x = y − 1 =⇒ x = (y − 1)2.

Hence, f−1(x) = (x− 1)2.
Observe that Df−1 = Rf = (1,∞). Thus, Df−1 = (1,∞).

Part (a)(ii). We have

f2(x) = f(1 +
√
x) = 1 +

√
1 +

√
x.

Observe that
√

1 +
√
x > 1. Hence, 1 +

√
1 +

√
x > 1 + 1 = 2, whence Rf2 = (2,∞).

Part (a)(iii). Note that f2(x) = x =⇒ 1+
√

1 +
√
x = x, whence x satisfies the recursion

1 +
√
x = x. Hence,

1 +
√
x = x =⇒ √

x = x− 1 =⇒ x = x2 − 2x+ 1 =⇒ x2 − 3x+ 1 = 0.

We can manipulate this to form the desired cubic equation:

0 = x
(
x2 − 3x+ 1

)
−
(
x2 − 3x+ 1

)
= x3 − 4x2 + 4x− 1.

Solving the initial quadratic equation yields x = 1
2

(
3±

√
5
)
. Observe that 3−

√
5

2 < 2

and 3+
√
5

2 > 2. Thus, the sole solution is x = 3+
√
5

2 .
Consider f(x) = f−1(x). Applying f on both sides of the equation, we have f2(x) =

f(x). Since x = 3+
√
5

2 satisfies f2(x) = f(x), it also satisfies f(x) = f−1(x).
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Part (b).

Part (b)(i). We have

g(4) = 2 + g(2) = 2 + 2 + g(1) = 4 + 1 + g(0) = 5 + 1 = 6,

g(7) = 1 + g(6) = 1 + 2 + g(3) = 3 + 1 + g(2) = 4 + (g(4)− 2) = 2 + 6 = 8,

and
g(12) = 2 + g(6) = 2 + (g(7)− 1) = 1 + 8 = 9.

Part (b)(ii). Consider g(5) and g(6).

g(5) = 1 + g(4) = 1 + 6 = 7, g(6) = g(7)− 1 = 8− 1 = 7.

Since g(5) = g(6), but 5 ̸= 6, g is not one-one. Hence, g−1 does not exist.
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Self-Practice B3

Problem 1. Functions f and g are defined by

f : x 7→ 3x− 2

x+ 1
, x ∈ R, x ̸= −1,

g : x 7→ 3x+ 4, x ∈ R.

(a) Find f−1(x) and state the domain and range of f−1.

(b) Express in similar form, the functions g2 and gf .

(c) Find the value of x for which (gf)−1(x) = 0.

Solution.

Part (a). Let y = f(x). Then

y =
3x− 2

x+ 1
=⇒ xy + y = 3x− 2 =⇒ x =

y + 2

3− y
.

Thus, f−1(x) = (x+ 2)/(3− x). Further, Df−1 = R \ {3} and Rf−1 = R \ {−1}.
Part (b). We have

g2(x) = 3 (3x+ 4) + 4 = 9x+ 16

and

gf(x) = 3

(
3x− 2

x+ 1

)
+ 4 =

13x− 2

x+ 1
,

so

g2 : x 7→ 9x+ 16, x ∈ R,

gf : x 7→ 13x− 2

x+ 1
, x ∈ R, x ̸= −1.

Part (c). We have (gf)−1(x) = 0, so x = gf(0) = −2.

∗ ∗ ∗ ∗ ∗

Problem 2. The function f is defined by

f : x 7→ 2− (x− 1)2, x ≤ 1.

(a) Sketch the graphs of y = f(x), y = f−1(x) and y = f−1f(x) on a single diagram.

(b) If f(β) = f−1(β), find the values of the constant p and q such that

β2 − pβ + q = 0.

(c) Define f−1 in a similar form.
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Solution.

Part (a).

(1, 2)

(2, 1)(1, 1)

−1 1

−1

1

O

x

y y = x

y = f(x)

y = f−1(x)

y = f−1f(x)

Part (b). Graphically, we see that the intersection points of y = f(β) and y = f−1(β) lie
on the line y = x. It thus suffices to solve f(β) = β, from which we gather

2− (β − 1)2 = β =⇒ β2 − β − 1 = 0,

so p = 1 and q = −1.

Part (c). Let y = f(x). Then

y = 2− (x− 1)2 =⇒ (x− 1)2 = 2− y =⇒ x− 1 = ±
√
2− y =⇒ x = 1±

√
2− y.

Since x ≤ 1, we take the negative branch, for

f−1 : x 7→ 1−
√
2− x, x ≤ 2.

∗ ∗ ∗ ∗ ∗

Problem 3. The function f is defined by f : x 7→ cos πx
2 , x ∈ R, −2 < x ≤ 0.

(a) Sketch the graph of y = f(x) indicating clearly the coordinates of all axial intercepts
and end points.

(b) Show that f−1 exists, and find its rule and domain.

The function g is defined by g : x 7→ (2x+ 1)2/3, x ∈ R, −2 < x ≤ 2.

(c) Find the set of values of x such that g(x) ≥ f(x)

(d) Explain clearly why gf exists. Hence, find the range of gf .
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Solution.

Part (a).

(0, 1)

(−2,−1)

−1 O

x

y y = f(x)

Part (b). For all constants k, the line y = k and y = f(x) has at most one intersection
point. Hence, y = f(x) passes the horizontal rule test, so it is one-one and thus invertible,
i.e. f−1 exists.

Let y = f(x). Then

y = cos
πx

2
=⇒ πx

2
= arccos y =⇒ x =

2

π
arccos y.

Note further that Df−1 = Rf = [−1, 1], so

f−1 : x 7→ 2

π
arccosx, −1 ≤ x ≤ 1.

Part (c). Using G.C., we see that the solution set is

{x ∈ R | −2 < x ≤ 0.673 or x = 0} .

Part (d). Since Rf = (−1, 1] and Dg(−2, 2], we have Rf ⊆ Dg, thus gf exists.

∗ ∗ ∗ ∗ ∗

Problem 4. Functions f andg are defined by:

f : x 7→ x2 + c, x ≤ 2,

g : x 7→ 5 +
3

x
, x ≥ k,

where c, k are positive constants and c > k.

(a) Show that g−1 exists.

(b) Find g−1 in similar form, expressing its domain in terms of k.

(c) Determine whether each of the two functions, fg and gf , exists. Where it exists,
express the composite function in similar form and state its range.

Solution.

Part (a). Let x1, x2 ∈ Dg such that g(x1) = g(x2). Then

5 +
3

x1
= 5 +

3

x2
=⇒ 3

x1
=

3

x2
=⇒ x1 = x2,

so g(x) is one-one and thus invertible, i.e. g−1 exists.
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Part (b). Let y = g(x). Then

y = 5 +
3

x
=⇒ 3

x
= y − 5 =⇒ x

3
=

1

y − 5
=⇒ x =

3

y − 5
.

Note also that for x ≥ k,

5 < 5 +
3

x
≤ 5 +

3

k
,

so

g−1 : x 7→ 3

x− 5
, 5 < x ≤ 5 +

3

k
.

Part (c). Note that Df = (−∞, 2], Rf = [c,∞), Dg = [k,∞), and Rg = (5, 5 + 3/k].
Since Rg ̸⊆ Df , the composite function fg does not exist. However, because c > k, we

have Rf ⊆ Dg, so gf exists and is given by

gf : x 7→ 5 +
3

x2 + c
, x ≤ 2.

Its range is (5, 5 + 3/c].

∗ ∗ ∗ ∗ ∗

Problem 5 ( ). Functions f and g are defined such that

f : x 7→ arccos
(
x2
)
, −1 ≤ x ≤ 1,

g : x 7→ x3 + 1, x ∈ R.

(a) Explain why the composite function fg does not exist.

The function h is defined such that h(x) = g(x) and the domain of h is a ≤ x ≤ 0. It is
given that a = −5/4.

(b) Find the range of fh in exact form.

(c) Determine all the possible value(s) of x that satisfies g−1(x2) = 2. Hence, explain
why h−1(x2) = 2 has no solution.

Solution.

Part (a). Note that Df = [−1, 1] and Rg = R, hence Rg ̸⊆ Df , so the function fg does
not exist.

Part (b). Note that

fh(x) = arccos
((

x3 + 1
)2)

,

where −5/4 ≤ x ≤ 0.

-1−5
4

π
2

O

x

y y = fh(x)
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From the graph of y = fh(x), we see that the maximum is attained when x = −1,
where y = arccos 0 = π/2. Meanwhile, the minimum is attained when x = 0, where
y = arccos1 = 0. Thus, Rfh = [0, π/2].

Part (c). We have

g−1(x2) = 2 =⇒ x2 = g(2) = 9 =⇒ x = ±3.

h−1(x2) = 2 has no solution since 2 /∈ Dh−1 = Rh = [−5/4, 0].
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Assignment B3

Problem 1. Functions f and g are defined as follows:

f : x 7→ (x− 3)2 + 6, x ∈ R, x ≤ 2

g : x 7→ ln(x− 2) , x ∈ R, x > 3

(a) Show that f−1 exists and define f−1 in a similar form.

(b) Sketch, on the same diagram, the graphs of f , f−1 and ff−1.

(c) Find fg and gf if they exist, and find their ranges (where applicable).

Solution.

Part (a). Note that f ′ = 2(x− 3) < 0 for all x ≤ 2. Thus, f is strictly decreasing. Since
f is also continuous, f is one-one. Thus, f−1 exists.

Let y = f(x) =⇒ x = f−1(y).

y = f(x) = (x− 3)2 + 6 =⇒ x = 3±
√
y − 6.

Since x < 3, we reject x = 3 +
√
y − 6. Lastly, observe that Df−1 = Rf = [f(2),∞) =

[7,∞). Thus,
f−1 : x 7→ 3−

√
x− 6, x ∈ R, x ≥ 7.

Part (b).

15

15

(2, 7)

(7, 2)

(7, 7)

O

x

y y = f(x)

y = f−1(x)

y = ff−1(x)

Part (c). Note that Rg = (0,∞) and Df = (−∞, 2]. Hence, Rg ⊈ Df . Thus, fg does not
exist. Note that Rf = [7,∞) and Dg = (3,∞). Hence, Rf ⊆ Dg. Thus, gf exists.

Since lnx is a strictly increasing function, we have that g is also strictly increasing.
Hence, Rgf = [ln(7− 2) ,∞) = [ln 5,∞).

∗ ∗ ∗ ∗ ∗

Problem 2. The function f is defined as follows:

f : x 7→ 1

x2 − 1
, x ∈ R, x ̸= −1, x ̸= 1.

(a) Sketch the graph of y = f(x).

(b) If the domain of f is further restricted to x ≥ k, state with a reason the least value
of k for which the function f−1 exists.
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In the rest of the question, the domain of f is x ∈ R, x ̸= −1, x ̸= 1, as
originally defined.

The function g is defined as follows:

g : x 7→ 1

x− 3
, x ∈ R, x ̸= 2, x ̸= 3, x ̸= 4.

(c) Find the range of fg.

Solution.

Part (a).

−1

x = 1x = −1

O

x

y y = f(x)

Part (b). If the domain of f is further restricted to x ≥ 0, f would pass the horizontal
line test, whence f−1 would exist. Hence, min k = 0.

Part (c). Observe that Rg = R \ {g(2), g(4)} = R \ {−1, 1}. Hence, Rfg = Rf =
R \ (−1, 0 ].

∗ ∗ ∗ ∗ ∗

Problem 3. The function f is defined by

f : x 7→ x

x2 − 1
, x ∈ R, x ̸= −1, x ̸= 1.

(a) Explain why f does not have an inverse.

(b) The function f has an inverse if the domain is restricted to x ≤ k. State the largest
value of k.

The function g is defined by

g : x 7→ lnx− 1, x ∈ R, 0 < x < 1.

(c) Find an expression for h(x) for each of the following cases:

(i) gh(x) = x

(ii) hg(x) = x2 + 1

Solution.

Part (a). Observe that f(1/2) = −2/3 and f(−2) = −2/3. Hence, f(1/2) = f(−2). Since
1/2 ̸= −2, f is not one-one. Thus, f does not have an inverse.

Part (b). Clearly, max k = 0.
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Part (c).

Part (c)(i). Note that gh(x) = x =⇒ h(x) = g−1(x). Hence, consider y = g(x) =⇒ x =
h(y).

y = g(x) = lnx− 1 =⇒ lnx = y + 1 =⇒ x = ey+1.

Hence, h(x) = ex+1.

Part (c)(ii). Let h = h2 ◦h1 such that h1g(x) = x =⇒ h1(x) = g−1(x) =⇒ h1(x) = ex+1.
Then

hg(x) = x2 + 1 =⇒ h2h1g(x) = x2 + 1 =⇒ h2(x) = x2 + 1.

Hence, h(x) = h2h1(x) = h2(e
x+1) =

(
ex+1

)2
+ 1 = e2x+2 + 1.
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B4 Differentiation

Tutorial B4

Problem 1. Evaluate the following limits.

(a) lim
x→5

(6x+ 7)

(b) lim
x→1

x3−1
1−x

(c) lim
x→∞

3x
2x2−5

Solution.

Part (a).
lim
x→5

(6x+ 7) = 6(5) + 7 = 37.

Part (b).

lim
x→1

x3 − 1

1− x
= lim

x→1

(x− 1)
(
x2 + x+ 1

)

1− x
= lim

x→1
−
(
x2 + x+ 1

)
= −(12 + 1 + 1) = −3.

Part (c).

lim
x→∞

3x

2x2 − 5
= lim

x→∞
3

2x− 5/x
.

Note that as x → ∞, 2x− 5
x → ∞. Hence, lim

x→∞
1

2x−5/x = 0.

∗ ∗ ∗ ∗ ∗

Problem 2. Differentiate the following with respect to x from first principles.

(a) 3x+ 4

(b) x3

Solution.

Part (a).

d

dx
(3x+ 4) = lim

h→0

[3(x+ h) + 4]− [3x+ 4]

h
= lim

h→0

3h

h
= lim

h→0
3 = 3.

Part (b).

d

dx
x3 = lim

h→0

(x+ h)3 − x3

h
= lim

h→0

3hx2 + 3h2x+ h3

h
= lim

h→0

(
3x2 + 3hx+ h2

)
= 3x2.
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Problem 3. Differentiate each of the following with respect to x, simplifying your answer.

(a)
(
x2 + 4

)2 (
2x3 − 1

)

(b) x2√
4−x2

(c)
√
1 +

√
x

(d)
(

x3−1
2x3+1

)4

Solution.

Part (a).

d

dx

(
x2 + 4

)2 (
2x3 − 1

)
=
(
2x3 − 1

) [
4x
(
x2 + 4

)]
+
(
x2 + 4

)2 (
6x2
)

= 2x
(
x2 + 4

) [
2
(
2x3 − 1

)
+ 3x

(
x2 + 4

)]
= 2x

(
x2 + 4

) (
7x3 + 12x− 2

)
.

Part (b).

d

dx

x2√
4− x2

=

√
4− x2 (2x)− x2

(
−2x

2
√
4−x2

)

4− x2
=

2x
(
4− x2

)
+ x3

(4− x2)3/2
=

x
(
8− x2

)

(4− x2)3/2
.

Part (c).
d

dx

√
1 +

√
x =

1

2
√
1 +

√
x
· 1

2
√
x
=

1

4
√

x(1 +
√
x)

.

Part (d). Note that

x3 − 1

2x3 + 1
=

1

2

(
2x3 − 2

2x3 + 1

)
=

1

2

(
1− 3

2x3 + 1

)
=

1

2
− 3

2

(
1

2x3 + 1

)
.

Hence,

d

dx

x3 − 1

2x3 + 1
=

d

dx

[
1

2
− 3

2

(
1

2x3 + 1

)]
= −3

2

[ −6x2

(2x3 + 1)2

]
=

9x2

(2x3 + 1)2
.

Thus,

d

dx

(
x3 − 1

2x3 + 1

)4

= 4

(
x3 − 1

2x3 + 1

)3
9x2

(2x3 + 1)2
=

36x2
(
x3 − 1

)3

(2x3 + 1)5
.

∗ ∗ ∗ ∗ ∗

Problem 4. Using a graphing calculator, find the derivative of e2x

x2+1
when x = 1.5.

Solution.
d

dx

(
e2x

x2 + 1

)∣∣∣∣
x=1.5

= 6.66.

∗ ∗ ∗ ∗ ∗

Problem 5. Find the derivative with respect to x of

(a) cosx◦

(b) cot
(
1− 2x2

)
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(c) tan3(5x)

(d) secx
1+tanx

Solution.

Part (a).
d

dx
cosx◦ =

d

dx
cos
( π

180
x
)
= − π

180
sin
( π

180
x
)
.

Part (b).
d

dx
cot
(
1− 2x2

)
= 4x csc

(
1− 2x2

)
.

Part (c).
d

dx
tan3(5x) = 15 tan2(5x) sec2(5x).

Part (d). Note that

secx

1 + tanx
=

1

sinx+ cosx
=

1√
2 sin(x+ π/4)

=
1√
2
csc
(
x+

π

4

)
.

Hence,

d

dx

secx

1 + tanx
=

d

dx

1√
2
csc
(
x− π

4

)
= − 1√

2
csc
(
x+

π

4

)
cot
(
x+

π

4

)
.

∗ ∗ ∗ ∗ ∗

Problem 6. Find the derivative with respect to x of

(a) y = e1+sin 3x

(b) y = x2e
1
x

(c) y = ln
(

1−x√
1+x2

)

(d) y = ln(2x)
x

(e) y = log2(3x
4 − ex)

(f) y = 3ln sinx

(g) y = a2 loga x

(h) y = 3

√
ex(x+1)
x2+1

, x > 0

Solution.

Part (a).
dy

dx
=

d

dx
e1+sin 3x = 3e1+sin 3x cos(3x) .

Part (b).

dy

dx
=

d

dx
x2e1/x = −x2

(
−e1/x

x2

)
+ e1/x(2x) = e1/x(2x− 1).
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Part (c). Note that

y = ln

(
1− x√
1 + x2

)
= ln(1− x)− 1

2
ln
(
1 + x2

)
.

Hence,

dy

dx
=

d

dx

[
ln(1− x)− 1

2
ln
(
1 + x2

)]
= − 1

1− x
− x

1 + x2
= − 1 + x

(1− x) (1 + x2)
.

Part (d).
dy

dx
=

d

dx

ln(2x)

x
=

x
(
1
x

)
− ln(2x) (1)

x2
=

1− ln(2x)

x2
.

Part (e). Note that
y = log2

(
3x4 − ex

)
=⇒ 2y = 3x4 − ex.

Implicitly differentiating with respect to x,

2y ln 2 · dy
dx

= 12x3 − ex =⇒ dy

dx
=

12x3 − ex

2y ln 2
=

12x3 − ex

(3x4 − ex) ln 2
.

Part (f). Note that

y = 3ln sinx =⇒ log3 y =
ln y

ln 3
= ln sinx =⇒ ln y = ln 3 ln sinx.

Implicitly differentiating with respect to x,

1

y
· dy
dx

= ln 3
(cosx
sinx

)
= ln 3 · cotx =⇒ dy

dx
= ln 3 · y cotx = ln 3 · cot(x) · 3ln sinx.

Part (g). Observe that

y = a2 loga x = aloga x2
= x2 =⇒ dy

dx
=

d

dx
x2 = 2x.

Part (h). Note that

y =
3

√
ex(x+ 1)

x2 + 1
=⇒

(
x2 + 1

)
y3 = ex(x+ 1).

Implicitly differentiating with respect to x,

(
x2 + 1

)(
3y2 · dy

dx

)
+ y3 (2x) = ex + (x+ 1)ex =⇒ dy

dx
=

ex(x+ 2)− 2xy3

3 (x2 + 1) y2
.

Now observe that

ex(x+ 2)

3 (x2 + 1) y2
=

ex(x+ 1)(x+ 2)

3 (x2 + 1) (x+ 1)y2
=

y3(x+ 2)

3(x+ 1)y2
= y

(
x+ 2

3(x+ 1)

)
.

Thus,

dy

dx
= y

(
x+ 2

3(x+ 1)

)
− y

(
2x

3 (x2 + 1)

)
=

1

3
3

√
ex(x+ 1)

x2 + 1

(
x+ 2

x+ 1
− 2x

x2 + 1

)
.



712 B4 Differentiation

Problem 7. Find the derivative with respect to x of

(a) arccos
(

x
10

)

(b) arctan
(

1
1−x

)

(c) arcsin(tanx)

Solution.

Part (a).
d

dx
arccos

x

10
= − 1

10
√
1−

(
x
10

)2 = − 1√
100− x2

.

Part (b).

d

dx
arctan

(
1

1− x

)
=

1

1 +
(

1
1−x

)2
(

1

(1− x)2

)
=

1

(1− x)2 + 1
.

Part (c).
d

dx
arcsin(tanx) =

sec2 x

1− tan2 x
.

∗ ∗ ∗ ∗ ∗

Problem 8. Find an expression for dy/dx in terms of x and y.

(a) (y − x)2 = 2a(y + x), where a is a constant

(b) y2 = e2xy + xex

(c) y = xy

(d) sinx cos y = 1
2

Solution.

Part (a). Implicitly differentiating with respect to x,

(y − x)

(
dy

dx
− 1

)
= a

(
dy

dx
+ 1

)
=⇒ dy

dx
=

a+ y − x

y − x− a
.

Part (b). Implicitly differential with respect to x,

2y · dy
dx

=

(
e2x

dy

dx
+ 2ye2x

)
+ (xex + ex) =⇒ dy

dx
=

ex (2yex + x+ 1)

2y − e2x
.

Part (c). Note that
y = xy =⇒ ln y = y lnx.

Implicitly differentiating with respect to x,

1

y
· dy
dx

=
y

x
+ lnx · dy

dx
=⇒ dy

dx
=

y/x

1/y − lnx
=

y2

x− xy lnx
.

Part (d). Note that

sinx cos y =
1

2
=⇒ cos y =

1

2
cscx.
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Implicitly differentiating with respect to x,

− sin y · dy
dx

= −1

2
cscx cotx =⇒ dy

dx
=

cscx cotx

2 sin y
.

∗ ∗ ∗ ∗ ∗

Problem 9. It is given that x and y satisfy the equation

arctanx+ arctan y + arctan(xy) =
7

12
π.

(a) Find the exact value of y when x = 1.

(b) Express d
dx arctan(xy) in terms of x, y and y′.

(c) Show that, when x = 1, y′ = −1
3 − 1

2
√
3
.

Solution.

Part (a). Substituting x = 1 into the given equation,

1

4
π + 2arctan y =

7π

12
=⇒ arctan y =

π

6
=⇒ y =

1√
3
.

Part (b).
d

dx
arctan(xy) =

xy′ + y

1 + (xy)2
.

Part (c). Differentiating the given equation with respect to x,

1

1 + x2
+

y′

1 + y2
+

xy′ + y

1 + (xy)2
= 0.

Substituting x = 1,

1

2
+

3y′

4
+

3

4

(
y′ +

1√
3

)
= 0 =⇒ y′ =

2

3

(
− 3

4
√
3
− 1

2

)
= − 1

2
√
3
− 1

3
.

∗ ∗ ∗ ∗ ∗

Problem 10. Find dy/dx for

(a) x = 1
1+t2

, y = t
1+t2

(b) x = 1
2(e

t − e−t), y = 1
2(e

t + e−t)

(c) x = a sec θ, y = a tan θ

(d) x = e3θ cos(3θ) , y = e3θ sin(3θ)

Solution.

Part (a). Observe that y = xt. Hence,

dy

dx
= x

(
dt

dx

)
+ t = x

(
dx

dt

)−1

+ t =
1

1 + t2

(
− 2t

(1 + t2)2

)−1

+ t =
t2 − 1

2t
.
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Part (b).
dy

dx
=

dy/dt

dx/dt
=

1
2

(
et − e−t

)
1
2 (e

t + e−t)
=

et − e−t

et + e−t
.

Part (c). Recall that tan2 θ + 1 = sec2 θ. Hence, y2 + a2 = x2. Implicitly differentiating
with respect to x, we have

2y · dy
dx

= 2x =⇒ dy

dx
=

x

y
=

a sec θ

a tan θ
= csc θ.

Part (d).
dy

dx
=

dy/d(3θ)

dx/d(3θ)
=

e3θ cos 3θ + e3θ sin 3θ

−e3θ sin 3θ + e3θ cos 3θ
=

cos 3θ + sin 3θ

cos 3θ − sin 3θ
.

∗ ∗ ∗ ∗ ∗

Problem 11. A curve is defined by the parametric equation

x = 120t− 4t2, y = 60t− 6t2.

Find the value of dy/dx at each of the points where the curve cross the x-axis.

Solution. The curve crosses the x-axis when y = 0:

y = 60t− 6t2 = 6t(10− t) = 0.

Hence, t = 0 or t = 10. Now, consider the derivative with respect to x of the curve.

dy

dx
=

dy/dt

dx/dt
=

60− 12t

120− 8t
.

Case 1 : t = 0.
dy

dx

∣∣∣∣
t=0

=
60− 12(0)

120− 8(0)
=

1

2
.

Case 2 : t = 10.
dy

dx

∣∣∣∣
t=10

=
60− 12(10)

120− 8(10)
= −3

2
.

∗ ∗ ∗ ∗ ∗

Problem 12. A curve has parametric equations x = 2t − ln(2t) , y = t2 − ln t2, where
t > 0. Find the value of t at the point on the curve at which the gradient is 2.

Solution.
dy

dx
=

dy/dt

dx/dt
=

2t− 2/t

2− 1/t
=

2t2 − 2

2t− 1
.

Consider dy/dx = 2.

dy

dx
=

2t2 − 2

2t− 1
= 2 =⇒ t2 − 1

2t− 1
= 1 =⇒ t2 − 1 = 2t− 1 =⇒ t2 − 2t = t(t− 2) = 0.

Hence, t = 0 or t = 2. Since t > 0, we reject t = 0. Thus, t = 2.
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Problem 13. If y = ln
(
sin3 2x

)
, find dy

dx and prove that 3d2y
dx2 +

(
dy
dx

)2
+ 36 = 0.

Solution.
dy

dx
=

6 sin2 2x cos 2x

sin3 2x
= 6 cot 2x.

Hence,
d2y

dx2
= −12 csc2 2x = −12

(
1 + cot2 2x

)
= −12− 1

3

(
dy

dx

)2

.

Thus, we clearly have

3
d2y

dx2
+

(
dy

dx

)2

+ 36 = 0.

∗ ∗ ∗ ∗ ∗

Problem 14. Given that y = earcsin(2x), show that
(
1− 4x2

) d2y
dx2 − 4xdy

dx = 4y. Differen-

tiate this result further to obtain a differential equation for d3y
dx3 .

Solution. Note that
y = earcsin(2x) =⇒ ln y = arcsin(2x) .

Implicitly differentiating with respect to x,

1

y
· dy
dx

=
2√

1− 4x2
=⇒ dy

dx
=

2y√
1− 4x2

.

Implicitly differentiating with respect to x once again,

d2y

dx2
=

√
1− 4x2

(
2 · dy

dx

)
− 2y

(
−4x√
1−4x2

)

1− 4x2
.

Now observe that

2
√

1− 4x2 · dy
dx

+ 4x

(
2y√

1− 4x2

)
= 4y + 4x · dy

dx
.

Hence,
(
1− 4x2

) d2y
dx2

= 4y + 4x · dy
dx

=⇒
(
1− 4x2

) d2y
dx2

− 4x · dy
dx

= 4y.

Implicitly differentiating with respect to x once again,

(
1− 4x2

) d3y
dx3

− 8x · d
2y

dx2
− 4

(
x · d

2y

dx2
+

dy

dx

)
= 4 · dy

dx
.

Rearranging,
(
1− 4x2

) d3y
dx3

− 12x · d
2y

dx2
− 8 · dy

dx
= 0.
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Self-Practice B4

Problem 1. Differentiate each of the following with respect to x, simplifying your answer.

(a) x2−2x
(x+2)2

,

(b) x
(
x3 + 1

)1/3
,

(c) cotx cscx,

(d)
(
sin3 x

)
(sin 3x),

(e) arctan
√
x,

(f) arcsin
√
1− x2,

(g) y = e2x

1+ex ,

(h) y = ln 4
x2 ,

(i) y = 3x.

Solution.

Part (a). We have

d

dx

x2 − 2x

(x+ 2)2
=

(x+ 2)2 (2x− 2)−
(
x2 − 2x

)
[2(x+ 2)]

(x+ 2)4
=

2 (3x− 2)

(x+ 2)3
.

Part (b). We have

d

dx
x
(
x3 + 1

)1/3
=
(
x3 + 1

)1/3
+ x

[
1

3

(
x3 + 1

)−2/3 · 3x2
]
=

2x3 + 1

(x3 + 1)2/3
.

Part (c). We have

d

dx
cotx cscx =

(
− csc2 x

)
(cscx) + (cotx) (− cscx cotx)

= − cscx
(
csc2 x+ cot2 x

)

=
1 + cos2 x

sin3 x
.

Part (d). We have

d

dx
sin3 x sin 3x =

(
sin3 x

)
(3 cos 3x) +

(
3 sin2 x cosx

)
(sin 3x)

= 3 sin2 x (sinx cos 3x+ cosx sin 3x)

= 3 sin2 x sin 4x.

Part (e). We have

d

dx
arctan

√
x =

1

1 + (
√
x)

2 · 1

2
√
x
=

1

2
√
x (1 + x)

.

Part (f). We have

d

dx
arctan

√
1− x2 =

1√
1−

(√
1− x2

)2 · −2x

2
√
1− x2

= − x

|x|
√
1− x2

.
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Part (g). We have

dy

dx
=

(1 + ex)
(
2e2x

)
− (ex)

(
e2x
)

(1 + ex)2
=

e2x (2 + ex)

(1 + ex)2
.

Part (h). Note that y = ln
(
4/x2

)
= ln 4− 2 lnx. Hence,

dy

dx
= −2

x
.

Part (i). Taking logarithms, we get ln y = x ln 3. Implicitly differentiating with respect to
x, we obtain

1

y

dy

dx
= ln 3 =⇒ dy

dx
= y ln 3 = 3x ln 3.

∗ ∗ ∗ ∗ ∗

Problem 2. Find an expression for dy
dx in terms of x and y.

(a) x3 + y3 + 3xy − 1 = 0,

(b) yx = x.

Solution.

Part (a). Implicitly differentiating with respect to x, we obtain

3x2 + 3y2
dy

dx
+ 3x

dy

dx
+ 3y = 0 =⇒ dy

dx
= −x2 + y

x+ y2
.

Part (b). Taking logarithms, we have x ln y = lnx. Implicitly differentiating with respect
to x,

x

(
1

y

dy

dx

)
+ ln y =

1

x
=⇒ dy

dx
=

(
1

x
− ln y

)
y

x
=

y (1− lnx)

x2
.

∗ ∗ ∗ ∗ ∗

Problem 3. It is given that, at any point on the graph of y = f(x), dy
dx =

√
1 + y3.

(a) Show that d2y
dx2 = 3

2y
2.

(b) Find the expressions for d3y
dx3 and d4y

dx4 in terms of y and dy
dx .

Solution.

Part (a). Differentiating with respect to x,

d2y

dx2
=

3y2

2
√
1 + y3

dy

dx
=

3y2

2
√
1 + y3

(√
1 + y3

)
=

3y2

2
.

Part (b). Differentiating once more with respect to x, we see that

d3y

dx3
=

3

2
(2y)

dy

dx
= 3y

dy

dx
.

Differentiating again, we have

d4y

dx4
= 3y

d2y

dx2
+ 3

(
dy

dx

)2

= 3y

(
3

2
y2
)
+ 3

(
dy

dx

)2

=
9y3

2
+ 3

(
dy

dx

)2

.
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Problem 4. Given that y = e
√
1+x, show that

4(1 + x)
d2y

dx2
+ 2

dy

dx
= y.

Solution. Note that
dy

dx
= e

√
1+x 1

2
√
1 + x

=
y

2
√
1 + x

.

Differentiating once more, we find that

d2y

dx2
=

(
2
√
1 + x

)
y′ −

(
1/
√
1 + xy

)

4 (1 + x)
.

Rearranging, we get the desired result:

4 (1 + x)
d2y

dx2
= 2

√
1 + x

dy

dx
− y√

1 + x
= y − 2

dy

dx
.

∗ ∗ ∗ ∗ ∗

Problem 5.

(a) A curve has parametric equations x = t/(1 + t), y = ln cos t, where t ̸= −1, π/2.
Find dy/dx in terms of t.

(b) A curve has equation arcsin y + xey = 3x. Find dy/dx in terms of x and y.

Solution.

Part (a). Note that

dx

dt
=

(1 + t)− t

(1 + t)2
=

1

(1 + t)2
and

dy

dt
= − sin t

cos t
= − tan t.

Thus,
dy

dx
=

dy/dt

dx/dt
=

− tan t

(1 + t)−2
= − (1 + t)2 tan t.

Part (b). Implicitly differentiating with respect to x,

y′√
1− y2

+ xeyy′ + ey = 3 =⇒ dy

dx
=

3− ey

(1− y2)−1/2 + xey
=

(3− ey)
√
1− y2

1 + xey
√

1− y2
.

∗ ∗ ∗ ∗ ∗

Problem 6.

(a) Differentiate x−2x3

lnx with respect to x.

(b) Given that 0 < x < π
2 , show that d

dx arcsin(cosx) = k, where k is a real constant to
be determined.

(c) Given that exy =
(
1 + y2

)2
, find dy

dx in terms of x and y, simplifying your answer.
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Solution.

Part (a). We have

d

dx

x− 2x3

lnx
=

lnx
(
1− 6x2

)
− (1/x)

(
x− 2x3

)

ln2 x
=

(
1− 6x2

)
lnx− 1 + 2x2

ln2 x
.

Part (b). We have

d

dx
arcsin cosx = − sinx√

1− cos2 x
= −sinx

sinx
= −1.

Part (c). Taking logarithms, we have

xy = 2 ln
(
1 + y2

)
.

Implicitly differentiating with respect to x,

xy′ + y = 2

(
2y · y′
1 + y2

)
=⇒ dy

dx
=

y
4y

1+y2
− x

=
y
(
1 + y2

)

4y − x (1 + y2)
.

∗ ∗ ∗ ∗ ∗

Problem 7. It is given that y = ln sin
(
π
4 + x

)
. Show that

d2y

dx2
+

(
dy

dx

)2

+ 1 = 0.

Solution. It suffices to show that

d2y

du2
+

(
dy

du

)2

+ 1 = 0,

where u = π/4 + x. Indeed, we have y = ln sinu, so

dy

du
=

cosu

sinu
= cotu and

d2y

du2
= − csc2 u,

so
d2y

du2
+

(
dy

du

)2

+ 1 = − csc2 u+ cot2 u+ 1 = − csc2 u+ csc2 u = 0.

∗ ∗ ∗ ∗ ∗

Problem 8.

(a) Differentiate the following with respect to x, giving your answers as single fractions.

(i) ln x√
1−2x

,

(ii) 1
arccos(x2)

.

(b) The variables x and y are related by

exy
2
= y

(
x2 + 2ex

)
.

Find the value of dy
dx when x = 0 and y = 1

2 .
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Solution.

Part (a).

Part (a)(i). We have

d

dx
ln

x√
1− 2x

=

√
1− 2x

x
·
√
1− 2x− x

(
− 2

2
√
1−2x

)

1− 2x
=

1− x

x (1− 2x)
.

Part (a)(ii). We have

d

dx

1

arccos(x2)
=

(
− 1

[arccos(x2)]2

)(
− 1√

1− (x2)2

)
(2x) =

2x√
1− x4 [arccos(x2)]2

.

Part (b). Implicitly differentiating with respect to x, we get

exy
2 (

y2 + 2xy · y′
)
= y′

(
x2 + 2ex

)
+ y (2x+ 2ex) .

At (0, 1/2), we have
1

4
= 2y′ + 1 =⇒ y′ = −3

8
.
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Assignment B4

Problem 1. Differentiate the following with respect to x.

(a) ln x3√
1+x2

(b) arctan
(
x2

2

)

(c) e2x secx

Solution.

Part (a).

ln
x3√
1 + x2

= 3 lnx− 1

2
ln
(
1 + x2

)
=⇒ d

dx

(
ln

x3√
1 + x2

)
=

3

x
− x

1 + x2
.

Part (b).
d

dx
arctan

(
x2

2

)
=

x

1 + x4/4
=

4x

4 + x4
.

Part (c).

d

dx
e2x secx = e2x (secx tanx) + secx

(
2e2x

)
= e2x secx (tanx+ 2) .

∗ ∗ ∗ ∗ ∗

Problem 2. Find the gradient of the curve x3 + xy2 = 5y at the point where x = 1 and
0 < y < 1, leaving your answer to 3 significant figures.

Solution. Substituting x = 1 into the given equation,

y2 − 5y + 1 = 0 =⇒ y =
5±

√
21

2
.

Since 0 < y < 1, we reject y = 1
2

(
5 +

√
21
)
and take y = 1

2

(
5−

√
21
)
= 0.20871 (5 s.f.).

Implicitly differentiating the given equation,

3x2 + 2xy · y′ + y2 = 5y′ =⇒ y′ =
3x2 − y2

5− 2xy
.

Substituting x = 1 and y = 0.20871 into the above equation,

y′ =
3(1)2 − (0.20871)2

2(1)(0.20871)− 5
= 0.664 (3 s.f.).

Hence, the gradient of the curve is 0.664.

∗ ∗ ∗ ∗ ∗

Problem 3. A curve C has parametric equations

x = sin3 θ, y = 3 sin2 θ cos θ, 0 ≤ θ ≤ π

2
.

Show that dy/dx = a cot θ + b tan θ, where a and b are values to be determined.
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Solution. Note that

dx

dθ
= 3 sin2 θ cos θ,

dy

dθ
= 3

(
2 sin θ cos2 θ − sin3 θ

)
.

Hence,

dy

dx
=

dy/dθ

dx/dθ
=

3
(
2 sin θ cos2 θ − sin3 θ

)

3 sin2 θ cos θ
=

2 cos θ

sin θ
− sin θ

cos θ
= 2 cot θ − tan θ.

Thus, a = 2 and b = −1.
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B5 Applications of Differentiation

Tutorial B5A

Problem 1. The equation of a curve is y = 2x3 + 3x2 + 6x + 4. Find dy/dx and hence
show that y is increasing for all real values of x.

Solution.
dy

dx
= 6x2 + 6x+ 6 = 6

(
x+

1

2

)2

+
18

4
.

For all x ∈ R, we have
(
x+ 1

2

)2 ≥ 0. Hence, dy/dx > 0. Thus, y is increasing for all real
values of x.

∗ ∗ ∗ ∗ ∗

Problem 2. Find, by differentiation, the x-coordinates of all the stationary points on the
curve y = x3

(x+1)2
stating, with reasons, the nature of each point.

Solution.

y =
x3

(x+ 1)2
=⇒ (x+ 1)2y = x3 =⇒ y′(x+ 1)2 + 2y(x+ 1) = 3x2.

For stationary points, y′ = 0. Thus,

2y(x+ 1) =
2x3

x+ 1
= 3x2 =⇒ 2x3 − 3x2(x+ 1) = x2 (−x− 3) = 0.

Hence, x = 0 or x = −3.

x 0− 0 0+ (−3)− −3 (−3)+

dy/dx +ve 0 +ve +ve 0 -ve

By the first derivative test, there is a stationary point of inflexion at x = 0 and a
maximum point at x = −3.

∗ ∗ ∗ ∗ ∗

Problem 3. Differentiate f(x) = 8 sin(x/2) − sinx − 4x with respect to x and deduce
that f(x) < 0 for x > 0.

Solution.

f ′(x) = 4 cos
x

2
− cosx− 4 = 4 cos

x

2
−
(
2 cos2

x

2
− 1
)
− 4 = −2

(
cos

x

2
− 1
)2

− 1.

Observe that for all x ∈ R,
(
cos x

2 − 1
)2 ≥ 0. Hence, f ′(x) < 0 for all real values of x.

Thus, f(x) is strictly decreasing on R.
Note that f(0) = 0. Since f(x) is strictly decreasing, for all x > 0, f(x) < f(0) = 0.

∗ ∗ ∗ ∗ ∗

Problem 4. Sketch the graphs of the derivative functions for each of the graphs of the
following functions below. In each graph, the point(s) labelled in coordinate form are
stationary points.
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(a)

(2, 2)

O

x

y

(b)

(−1,−2)

(1, 2)

y
=
x

O

x

y

(c)

(2, 3)

y = 2

x = −1

O

x

y

(d)

−a

(a2 ,−a)
(−2a,−a

2 )

x = a

O

x

y
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Solution.

Part (a).

2O

x

y

Part (b).

−1 1

y = 1

O

x

y

Part (c).

2

x = −1

O

x

y



726 B5 Applications of Differentiation

Part (d).

−2a a
2

x = a

O

x

y

∗ ∗ ∗ ∗ ∗

Problem 5.

(a) Given that y = ax
√
x+ 2 where a > 0, find dy/dx, expressing your answer as a

single algebraic fraction. Hence, show that the curve y = ax
√
x+ 2 has only one

turning point, and state its coordinates in exact form.

(b) Sketch the graph of y = f ′(x), where f(x) = ax
√
x+ 2, where a > 0.

Solution.

Part (a).
dy

dx
= a

(
x

2
√
x+ 2

+
2(x+ 2)

2
√
x+ 2

)
=

a(3x+ 4)

2
√
x+ 2

.

Consider the stationary points of y = ax
√
x+ 2. For stationary points, dy/dx = 0.

dy

dx
=

a(3x+ 4)

2
√
x+ 2

= 0 =⇒ a(3x+ 4) = 0.

Since a > 0, we have 3x+ 4 = 0, whence x = −4/3.

x (−4/3)− −4/3 (−4/3)+

dy/dx -ve 0 +ve

Hence, by the first derivative test, there is a turning point (minimum point) at x = −4/3.
Thus, y = ax

√
x+ 2 has only one turning point.

Substituting x = −4/3 into y = ax
√
x+ 2, we see that the coordinate of the turning

point is (−4
3 ,−4a

3

√
2
3).
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Part (b).

−4
3

√
2a

x
=

−
2

O

x

y y = f ′(x)

∗ ∗ ∗ ∗ ∗

Problem 6. A particle P moves along the x-axis. Initially, P is at the origin O. At time
t s, the velocity is v ms−1 and the acceleration is a ms−2. Below is the velocity-time graph
of the particle for 0 ≤ t ≤ 25.

15 25

(11, 5)

(21,−4)

O
t

v

(a) Describe the motion of the particle for 0 ≤ t ≤ 25.

(b) Sketch the acceleration-time graph of the particle P .

Solution.

Part (a). From t = 0 to t = 11, P speeds up and reaches a top speed of 5 ms−1. From
t = 11 to t = 15, P slows down. At t = 15, P is instantaneously at rest. From t = 15 to
t = 21, P speeds up and moves in the opposite direction, reaching a top speed of 4 ms−1.
From t = 21 to t = 25, P slows down. At t = 25, P is instantaneously at rest.
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Part (b).

11 15 21 25
O

t

v

∗ ∗ ∗ ∗ ∗

Problem 7. The function f defined by f(x) = lnx − 2 (x− 1/2), where x ∈ R, x > 0.
Find f ′(x) and show that the function is decreasing for x > 1/2. Hence, show that for
x > 1/2, 2 (x− 1/2)− lnx > ln 2.

Solution. Observe that f ′(x) = 1/x− 2 < 0 for x > 1/2. Thus, f(x) is decreasing for all
x > 1/2. Since f(1/2) = − ln 2, it follows that

(
∀x >

1

2

)
: − ln 2 = f(1/2) > f(x) = lnx− 2

(
x− 1

2

)
=⇒ 2

(
x− 1

2

)
− lnx > ln 2.
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Tutorial B5B

Problem 1. The equation of a closed curve is (x+ 2y)2 + 3(x− y)2 = 27.

(a) Show, by differentiation, that the gradient at the point (x, y) on the curve may be
expressed in the form dy

dx = y−4x
7y−x .

(b) Find the equations of the tangents to the curve that are parallel to

(i) the x-axis,

(ii) the y-axis.

Solution.

Part (a). Implicitly differentiating the given equation,

(x+ 2y)
(
1 + 2y′

)
+ 3(x− y)(1− y′) = (−x+ 7y)y′ + 4x− y = 0 =⇒ y′ =

y − 4x

7y − x
.

Part (b).

Part (b)(i). When the tangent to the curve is parallel to the x-axis, y′ = 0, whence y = 4x.
Substituting y = 4x into the given equation,

(9x)2 + 3(−3x)2 = 27 =⇒ 108x2 = 27 =⇒ x2 =
1

4
=⇒ x = ±1

2
=⇒ y = ±2.

The equations of the tangents are hence y = ±2.

Part (b)(ii). When the tangent to the curve is parallel to the y-axis, y′ is undefined. Hence,
7y − x = 0 =⇒ x = 7y. Substituting x = 7y into the given equation,

(9y)2 + 3(6y)2 = 27 =⇒ 189y2 = 27 =⇒ y2 =
1

7
=⇒ y = ± 1√

7
=⇒ x = ±

√
7.

The equations of the tangents are hence x = ±
√
7.

∗ ∗ ∗ ∗ ∗

Problem 2. A piece of wire of length 8 cm is cut into two pieces, one of length x cm,
the other of length (8 − x) cm. The piece of length x cm is bent to form a circle with
circumference x cm. The other piece is bent to form a square with perimeter (8− x) cm.
Show that, as x varies, the sum of the areas enclosed by these two pieces of wire is a
minimum when the radius of the circle is 4

4+π cm.

Solution. Let the radius of the circle be r cm. Then we have x = 2πr =⇒ r = x/2π.
Let the side length of the square be s cm. Then we have 8 − x = 4s =⇒ s = 2 − x/4.
Let the total area enclosed by the circle and the square be A(x).

A(x) = πr2 + s2 = π
( x

2π

)2
+
(
2− x

4

)2
=

(
1

4π
+

1

16

)
x2 − x+ 4.

Consider the stationary points of A(x). For stationary points, A′(x) = 0.

A′(x) =
(

1

2π
+

1

8

)
x− 1 = 0 =⇒ x =

1
1
2π + 1

8

=
8π

4 + π
.

x
(

8π
4+π

)−
8π
4+π

(
8π
4+π

)+

dA/dx −ve 0 +ve
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Hence, by the first derivative test, the minimum value of A(x) is achieved when x = 8π
4+π ,

whence

r =
1

2π
· 8π

4 + π
=

4

4 + π
cm.

∗ ∗ ∗ ∗ ∗

Problem 3. A spherical balloon is being inflated in such a way that its volume is increasing
at a constant rate of 150 cm3s−1. At time t seconds, the radius of the balloon is r cm.

(a) Find dr/dt when r = 50.

(b) Find the rate of increase of the surface area of the balloon when its radius is 50 cm.

Solution. Let the volume of the balloon be V (r) = 4
3πr

3 cm3.

Part (a). Note that dV
dt = 150 and dV

dr = 4πr2.

dr

dt
=

dr/dV

dt/dV
=

dV/dt

dV/dr
=

150

4πr2
=

75

2πr2
.

Evaluating dr
dt at r = 50,

dr

dt

∣∣∣∣
r=50

=
75

2π · 502 =
3

200π
.

Part (b). Let the surface area of the balloon be A(r) = 4πr2. Observe that dA
dr = 8πr.

dA

dt
=

dA

dr
· dr
dt

=⇒ dA

dt

∣∣∣∣
r=50

= (8π · 50)
(

3

200π

)
= 6.

Thus, the rate of increase of the surface area of the balloon when its radius is 50 cm is 6
cm/s.

∗ ∗ ∗ ∗ ∗

Problem 4. A curve has parametric equations x = 5 sec θ, y = 3 tan θ, where −1
2π < θ <

1
2π. Find the exact coordinates of the point on the curve at which the normal is parallel
to the line y = x.

Solution. Observe that x2 = 25 sec2 θ and 25
9 y

2 = 25 tan2 θ. Using the identity tan2 θ +
1 = sec2 θ, we get

25

9
y2 + 25 = x2. (∗)

Implicitly differentiating with respect to x, we get

25

9
y · y′ = x.

Since the normal is parallel to y = x, the tangent is parallel to y = −x, whence y′ = −1.
Thus,

y = − 9

25
x.

Substituting y = − 9
25x into (∗),

25

9

(
− 9

25
x

)2

+ 25 = x2 =⇒ 16

25
x2 = 25 =⇒ 4

5
x = ±5 =⇒ x = ±25

4
.

Observe that for −π/2 < θ < π/2, x = 5 sec θ ≥ 5. We thus take x = 25/4, whence
y = −9/4. The coordinate of the required point is thus (25/4,−9/4).
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Problem 5. The parametric equations of a curve are

x = t2, y =
2

t
.

(a) Find the equation of the tangent to the curve at the point (p2, 2/p), simplifying your
answer.

(b) Hence, find the coordinates of the points Q and R where this tangent meets the x-
and y-axes respectively.

(c) The point F is the mid-point of QR. Find a Cartesian equation of the curve traced
by F as p varies.

Solution.

Part (a). Observe that dx/dt = 2t and dy/dt = −2/t2. Hence,

dy

dx
=

dy/dt

dx/dt
=

−2/t2

2t
= − 1

t3
.

Using the point-slope formula, the tangent to the curve at (p2, 2/p) is given by the equation

y − 2

p
= − 1

p3
(
x− p2

)
=⇒ y =

3

p
− 1

p3
x.

Part (b). Consider the case where y = 0:

0 =
3

p
− 1

p3
x =⇒ x = 3p2 =⇒ Q

(
3p2, 0

)
.

Consider the case where x = 0:

y =
3

p
=⇒ R

(
0,

3

p

)
.

Part (c). Note that

F =

(
3

2
p2,

3

2p

)
.

As p varies, F traces a curve given by the parametric equations x = 3p2/2, y = 3/2p.
Hence,

p2 =
2

3
x =

9

4y2
=⇒ y2 =

27

8x
.

∗ ∗ ∗ ∗ ∗

Problem 6.

y

x
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A new flower-bed is being designed for a large garden. The flower-bed will occupy a
rectangle x m by y m together with a semicircle of diameter x m, as shown in the diagram.
A low wall will be built around the flowerbed. The time needed to build the wall will be
3 hours per metre for the straight parts and 9 hours per metre for the semicircular part.
Given that a total time of 180 hours is taken to build the wall, find, using differentiation,
the values of x and y which give a flower-bed of maximum area.

Solution. Observe that the length of the straight parts is (2y+ x) m, while the length of
the semicircular part is 1

2πx m. Since a total time of 180 hours is taken to build the wall,

3(2y + x) + 9

(
1

2
πx

)
= 180 =⇒ 4y + 2x+ 3πx = 120 =⇒ x =

120− 4y

2 + 3π
.

Differentiating with respect to y, we get x′ = −4/(2 + 3π). Let A(y) be the total area
enclosed by the garden, in m2. Observe that

A(y) = xy +
1

2
π
(x
2

)2
= xy +

π

8
x2.

Consider the stationary points of A(y). For stationary points, A′(y) = 0.

A′(y) =
(
x′y + x

)
+

π

4
x · x′ = 0.

Substituting in our values of x and x′, we get

[
y

(
− 4

2 + 3π

)
+

120− 4y

2 + 3π

]
+

[
π

4

(
120− 4y

2 + 3π

)(
− 4

2 + 3π

)]
= 0.

Using G.C., we get y = 12.6 (3 s.f.), whence x = 6.09 (3 s.f.).

∗ ∗ ∗ ∗ ∗

Problem 7.

r

h

A model of a concert hall is made up of three parts.

• The roof is modelled by the curved surface of a hemisphere of radius r cm.

• The walls are modelled by the curved surface of a cylinder of radius r cm and height
h cm.

• The floor is modelled by a circular disc of radius r cm.

The three parts are joined together as shown in the diagram. The model is made of
material of negligible thickness.

(a) It is given that the volume of the model is a fixed value k cm3, and the external
surface area is a minimum. Use differentiation to find the values of r and h in terms
of k. Simplify your answers.
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(b) It is given instead that the volume of the model is 200 cm3 and its external surface
area is 180 cm2. Show that there are two possible values of r. Given also that r < h,
find the value of r and the value of h.

Solution.

Part (a). Let the volume of the model be V cm3. Then

V =
1

2

(
4

3
πr3
)
+ πr2h = k =⇒ h =

k

πr2
− 2

3
r. (1)

Let the external surface area of the model be A cm2. Then

A =
4πr2

2
+ 2πrh+ πr2 = 3πr2 + 2πr

(
k

πr2
− 2

3
r

)
=

5π

3
r2 +

2k

r
. (2)

Consider the stationary points of A. For stationary points, dA/dr = 0.

dA

dr
=

10π

3
r − 2k

r2
= 0 =⇒ r3 =

3k

5π
=⇒ r =

3

√
3k

5π
.

r 3

√
3k
5π

−
3

√
3k
5π

3

√
3k
5π

+

dA/dr −ve 0 +ve

Hence, by the first derivative test, A is at a minimum when r = 3

√
3k
5π .

Substituting r3 = 3k
5π into (1),

2

3
π

(
3k

5π

)
+ πr2h =

2

5
k + πr2h = k =⇒ r2h =

3k

5π
= r3 =⇒ h = r =

3

√
3k

5π
.

Part (b). From (2), we have

5π

3
r2 +

2(200)

r
= 180 =⇒ πr3 − 108r + 240 = 0.

Let f(r) = πr3−108r+240. Consider the stationary points of f(r). For stationary points,
f ′(r) = 0.

f ′(r) = 3πr2 − 108 = 0 =⇒ r2 =
36

π
=⇒ r = ± 6√

π
.

Since f(r) is a cubic with two turning points, it follows that there is exactly one root in
each of the following three intervals:

(
−∞,− 6√

π

)
,

(
− 6√

π
,

6√
π

)
,

(
6√
π
,∞
)
.

We now show that the root in the interval
(
− 6√

π
, 6√

π

)
is positive. Since f(r) has a positive

leading coefficient, it must be decreasing in the interval
(
− 6√

π
, 6√

π

)
. Since f(0) = 240 > 0,

the root in said interval must be positive. Hence, f(r) = 0 has two positive roots. Using
G.C., the roots are r = 3.04 and r = 3.72. From (1), we know that

h =
200

πr2
− 2

3
r.

When r = 3.04, h = 4.88 > r. When r = 3.72, h = 2.12 < r. Thus, given that r < h, we
have r = 3.04 and h = 4.88.
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Problem 8.

4 m

6 m

1 m

y
θ

A movie screen on a vertical wall is 6 m high and 4 m above the horizontal floor. A boy
who is standing at x m away from the wall has eye level at 1 m above the floor as shown
in the diagram.
The viewing angle of the boy at that position is θ and the angle of elevation of the

bottom of the screen is y.

(a) Express y in terms of x.

(b) By expressing θ in terms of x or otherwise, find the stationary value of θ, giving
your answers in exact form. Determine if the value is a maximum or minimum
value, showing your working clearly.

Solution.

Part (a). Observe that tan y = 3/x, whence y = arctan(3/x).

Part (b). Observe that tan(y + θ) = 9/x. Hence,

tan(y + θ) =
tan y + tan θ

1− tan y tan θ
=

3/x+ tan θ

1− (3/x) tan θ
=

3 + x tan θ

x− 3 tan θ
=

9

x
=⇒ tan θ =

6x

x2 + 27
.

Hence,

θ = arctan

(
6x

x2 + 27

)
.

Differentiating with respect to x,

dθ

dx
=

1

1 +
(

6x
x2+27

)2

[
6
(
x2 + 27

)
− 6x(2x)

(x2 + 27)2

]
=

−6x2 + 162

36x2 + (x2 + 27)2
.

For stationary points, dθ/dx = 0. Hence,

−6x2 + 162 = 0 =⇒ x2 = 27 =⇒ x = ±3
√
3.

Since x > 0, we only take x = 3
√
3. Thus,

θ = arctan

(
6
(
3
√
3
)

27 + 27

)
= arctan

(
1√
3

)
=

π

6
.

x 3
√
3
−

3
√
3 3

√
3
+

dθ/dx +ve 0 −ve
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Thus, by the first derivative test, θ = π
6 is a maximum value.

∗ ∗ ∗ ∗ ∗

Problem 9.

r

h

θ

The diagram shows a right inverted cone of radius r, height h and semi-vertical angle
θ, which is inscribed in a sphere of radius 1 unit.

Prove that r2 = 2h− h2.

(a) As r and h varies, determine the exact maximum volume of the cone.

(b) Show that h = 2 cos2 θ. The volume of the cone is increasing at a rate of 6 unit3/s
when h = 3

2 . Determine the rate of change of θ at this instant, leaving your answer
in an exact form.

Solution. Consider the following diagram of the cone and sphere.

r

h

θ

O

(r, h)(r, h)

Let the origin be the tip of the cone. Since the sphere has radius 1 unit, the circle is
given by the equation x2 + (y − 1)2 = 1. Since the point (r, h) lies on the circle,

r2 + (h− 1)2 = 1 =⇒ r2 = 2h− h2. (∗)

Part (a). Implicitly differentiating (∗) with respect to r,

2r = 2 · dh
dr

− 2h · dh
dr

=⇒ dh

dr
=

r

1− h
.

Let the volume of the cone be V (r) units3. Then

V (r) =
1

3
πr2h =

1

3
π
(
2h− h2

)
h =

1

3
π
(
2h2 − h3

)
.

Differentiating V (r) with respect to r,

V ′(r) =
1

3
π

(
4h · dh

dr
− 3h2 · dh

dr

)
=

1

3

(
πrh

1− h

)
(4− 3h).
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Consider the stationary values of V (r). For stationary values, V ′(r) = 0, whence h = 4/3.
Substituting this into (∗), we obtain

r2 = 2

(
4

3

)
−
(
4

3

)2

=
8

9
=⇒ r =

√
8

9
.

Note that we reject r = −
√
8/9 as r > 0.

r
√

8/9
− √

8/9
√
8/9

+

V ′(r) +ve 0 −ve

Hence, the maximum volume is achieved when r =
√
8/9. Note that

V

(√
8

9

)
=

1

3
π

(
8

9

)(
4

3

)
=

32

81
π.

The maximum volume of the cone is hence 32π/81 units3.

Part (b). From the diagram, we have

cos θ =
h√

r2 + h2
=⇒ 2 cos2 θ =

2h2

r2 + h2
=

2h2

2h− h2 + h2
= h.

Observe that

V =
π

3

(
2h2 − h3

)
=

π

3

(
8 cos4 θ − 8 cos6 θ

)
=

8π

3

(
cos4 θ − cos6 θ

)
.

Differentiating with respect to θ, we get

dV

dθ
=

8π

3

(
−4 cos3 θ sin θ + 6 cos5 θ sin θ

)
=

16π

3
cos3 θ sin θ

(
−2 + 3 cos2 θ

)
.

Since 2 cos2 θ = h = 3/2, we clearly have θ = π/6. Thus,

dV

dθ

∣∣∣∣
h=3/2

=
16π

3
cos3

π

6
sin

π

6

(
−2 + 3 cos2

π

6

)
=

√
3π

4
.

Hence,
dθ

dt

∣∣∣∣
h=3/2

=

(
dθ

dV
· dV
dt

)∣∣∣∣
h=3/2

=
6√
3π/4

=
8
√
3

π
.

θ is thus increasing at a rate of 8
√
3/π radians per second when h = 3

2 .

∗ ∗ ∗ ∗ ∗

Problem 10.

45◦

A hollow cone of semi-vertical angle 45◦ is held with its axis vertical and vertex down-
wards. At the beginning of an experiment, it is filled with 390 cm3 of liquid. The liquid
runs out through a small hole at the vertex at a constant rate of 2 cm3/s.
Find the rate at which the depth of the liquid is decreasing 3 minutes after the start of

the experiment.
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Solution. Consider the following diagram.

45◦
h

r

Let the volume of liquid be V = 1
3πr

2h cm3. From the diagram, we have r = h. Thus,

V =
1

3
πh3.

Differentiating V with respect to h,

dV

dh
=

1

3
π · 3h2 = πh2.

Let t be the time since the start of the experiment in seconds. Consider dh/dt.

dh

dt
=

dh

dV
· dV
dt

=

(
dh

dV

)−1 dV

dt
=

−2

πh2
.

When t = 180, there is 390− 180(2) = 30 cm3 of liquid left in the cone. Thus,

V =
1

3
πh3 = 30 =⇒ h3 =

90

π
=⇒ h =

3

√
90

π
.

Evaluating dh/dt at t = 180,

dh

dt

∣∣∣∣
t=180

=
−2

π
(

3

√
90
π

)2 = −0.0680 (3 s.f.).

Thus, the depth of the liquid is decreasing at a rate of 0.0680 cm/s 3 minutes after the
start of the experiment.

∗ ∗ ∗ ∗ ∗

Problem 11. A particle is projected from the origin O, and it moves freely under gravity
in the x-y plane. At time t s after projection, the particle is at the point (x, y) where
x = 30t and y = 20t− 5t2, with x and y measured in metres.

(a) Given that the particle passes through two points A and B which are at a distance
15 m above the x-axis, find the time taken for the particle to travel from A to B.
Find also the distance AB.

(b) It is known that the particle always travels in a direction tangential to its path.
Show that, when x = 10, the particle is travelling at an angle of arctan(5/9) above
the horizontal.

The speed of the particle is given by

√(
dx
dt

)2
+
(
dy
dt

)2
. Find the speed of the particle

when x = 10.

(c) Show that the equation of trajectory is y = 2
3x− 1

180x
2.
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Solution.

Part (a). Consider y = 15.

y = 20t− 5t2 = 15 =⇒ t2 − 4t+ 3 = (t− 1)(t− 3) = 0.

Hence, t = 1 or t = 3. Thus, the particle takes 3− 1 = 2 seconds to travel from A to B.
Note that x = 30 when t = 1, and x = 90 when t = 3. Hence, A(30, 15) and B(90, 15),

whence AB = 60 m.

Part (b). Note that dx/dt = 30 and dy/dt = 20− 10t. Thus,

dy

dx
=

dy/dt

dx/dt
=

20− 10t

30
=

2− t

3
.

When x = 10, t = 1/3. Evaluating dy
dx at t = 1/3,

dy

dx

∣∣∣∣
t= 1

3

=
2− 1/3

3
=

5

9
.

Hence, the line tangent to the curve at x = 10 has gradient 5/9. Thus, the particle is
travelling at an angle of arctan(5/9) above the horizontal when x = 10.
Note that

√(
dx

dt

)2

+

(
dy

dt

)2
∣∣∣∣∣∣
t= 1

3

=

√
302 +

(
20− 10

3

)2

= 34.3 (3 s.f.).

Hence, the particle is travelling at a speed of 34.3 m/s when x = 10.

Part (c). Note that t = x/30. Hence,

y = 20t− 5t2 = 20
( x

30

)
− 5

( x

30

)2
=

2

3
x− 1

180
x2.
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Self-Practice B5A

Problem 1. It is given that f(x) = x2−2x
ex .

Find the range of values of x for which the curve y = f(x) is concave upward. Hence,
sketch the graph of y = f(x), indicating clearly the equations of any asymptotes and the
coordinates of any stationary points and any intersections with the axes.

∗ ∗ ∗ ∗ ∗

Problem 2. It is given that x and y satisfy the equation

y4 − ln
y2

4
= x4 − 6x2, y > 0.

(a) Show that dy
dx =

2xy(x2−3)
2y4−1

.

(b) Hence, obtain the possible exact value(s) of dy
dx when y = 2.

∗ ∗ ∗ ∗ ∗

Problem 3. The diagram below shows the graph of y = g(x). The graph has a minimum
point at (0, 2) and a maximum point at (3, 12). The equations of the asymptotes are x = 1,
y = 0 and y = −2x.

2

2

y = −2x x = 1

(
3, 12
)

O

x

y y = g(x)

(a) State the interval(s) on which g is

(i) increasing;

(ii) increasing and concave upward.

(b) Sketch y = g′(x), showing clearly the equations of the asymptotes and the coordi-
nates of the turning points and axial intercepts, where applicable.

∗ ∗ ∗ ∗ ∗

Problem 4. The diagram below shows the graph of y = f(x). It cuts the axes at the
points (0, 1), (1.5, 0) and (3, 0). It has a minimum point at (2.5,−0.5). The horizontal,
vertical and oblique asymptotes are y = 0, x = 7a and y = −x + a respectively, where a
is a positive constant.
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1.5 3

1

y = −x+ a

x = 7a

(2.5,−0.5)

O

x

y y = f(x)

On separate diagrams, sketch the graphs of

(a) y = 1
f(x) ,

(b) y = f ′(x),

showing clearly the axial intercepts, the stationary points and the equations of the asymp-
totes where applicable.

∗ ∗ ∗ ∗ ∗

Problem 5 ( ). The graph of y = |f(x)| is shown in the diagram, with a maximum
point (4, a), and x = 0 and x = 6 are tangents to both graphs.

6

y
=
−
x
+
2

y
=
x
−
2

(4, a)

O

x

y y = |f(x)|

It is given that the graph of the continuous function f has only one oblique asymptote,
and that f ′(1) > 0 and f ′(7) < 0.
Sketch the graph of y = f ′(x), showing clearly the stationary point(s), the asymptote(s)

and the intercept(s), if any.
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Self-Practice B5B

Problem 1. Find the coordinates of the points on the curve 3x2 + xy+ y2 = 33 at which
the tangent is parallel to the x-axis.

∗ ∗ ∗ ∗ ∗

Problem 2. Given the equation x1/2 + y1/2 = k1/2, where k is a constant,

(a) show that the equation of the tangent at the point (p, q) is given by

y = −
√

q

p
x+ q +

√
pq.

(b) Hence or otherwise, prove that the sum of the x and y-intercepts of any tangent line
to the curve x1/2 + y1/2 = k1/2 is constant and equal to k.

∗ ∗ ∗ ∗ ∗

Problem 3. A curve C is defined by the parametric equations x = t2(t+ 1), y = 4t− 5,
t ≥ 0.

(a) Find the equation of the tangent to the curve C at the point where y = −5.

(b) Find the equation of the normal to the curve C when t = 2 and hence show that
this normal does not intersect the curve C again.

∗ ∗ ∗ ∗ ∗

Problem 4. A curve C has parametric equations

x = t+
1

t
, y = t− 1

t
.

(a) The point P on the curve has parameter p. Show that the equation of the tangent
at P is

(
p2 + 1

)
x−

(
p2 − 1

)
y = 4p.

(b) The tangent at P meets the line y = x at the point A and the line y = −x at the
point B. Show that the area of triangle OAB is independent of p, where O is the
origin.

(c) Find a Cartesian equation of C. Sketch C, giving the coordinates of any points
where C crosses the x- and y-axes and the equations of any asymptotics.

∗ ∗ ∗ ∗ ∗

Problem 5. The diagram shows two circles, of radii 1 and 3, each with centre O. The
angle between the lines OAC and OBD is θ radians. The region R is bounded by the
minor arc AB and the lines AC, CD and DB.
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A B

C D

O

θ1

3

(a) Find the area of R.

(b) Find the value of θ for which the area of R is greatest.

(c) Find the greatest value of θ which ensures that the whole line segment CD lies
between the two circles.

∗ ∗ ∗ ∗ ∗

Problem 6. A company manufactures closed hollow cylindrical cans of cross-sectional
radius r cm2 and height h cm. A can is made of two different materials. Its top and base
cost 0.09 cents per cm2 and its curved surface costs 0.06 cents per cm2 to manufacture.
Show that the radius of the cheapest can of volume 300 cm3 is 3

√
a/π, where a is a

constant to be determined.

∗ ∗ ∗ ∗ ∗

Problem 7. A hemispherical goldfish tank with radius 15 cm (as shown in the figure
above) was initially filled with water. The tank has a defect and water is leaking at a
constant rate of 20 cm3 per min. The volume of water in the tank is given by V =
π
3

(
45h2 − h3

)
where h is the depth of water at the centre of the tank in cm. Show that r,

the radius of the water surface in cm, is given by r =
√
30h− h2.

h

r

15

Given that the minimum depth of water needed for the goldfish to survive is 5 cm, find,
at this instant,

(a) the rate of change of the depth of water, and

(b) the rate of decrease of the radius of the water surface.

∗ ∗ ∗ ∗ ∗

Problem 8. A circular cylinder is expanding in such a way that, at time t seconds, the
height of the cylinder is y cm and the area of the cross-section is 1

3y
2 cm2. At the instant
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when y = 3 cm, the height is increasing at a rate of 0.5 cm/s. Find the rate of increase,
at this instant, of:

(a) the area of the cross-section of the cylinder,

(b) the volume of the cylinder.

∗ ∗ ∗ ∗ ∗

Problem 9. Two variables u and v are connected by the relation 1
u + 1

v = 1
f , where f is

a constant.
Given that u and v both vary with time, t, find an equation connecting du

dt ,
dv
dt , u and

v. Given also that u is decreasing at a constant rate of 2 cm per second and that f = 10
cm, calculate the rate of increase of v when u = 50 cm.

∗ ∗ ∗ ∗ ∗

Problem 10. In the diagram, O and A are fixed points 1000 m apart on horizontal
ground. The point B is vertically above A, and represents a balloon which is ascending
at a steady rate of 2 ms−1. The balloon is being observed from a moving point P on the
line OA.

A

B

PO

θ

At time t = 0, the balloon is at A and the observer is at O. The observation point P
moves towards A with steady speed 6 ms−1. At time t, the angle APB is θ radians.
Show that

dθ

dt
=

500

t2 + (500− 3t)2
.

∗ ∗ ∗ ∗ ∗

Problem 11 ( ). The normal to the rectangular hyperbola xy = c2 at the point
P (cp, c/p), p > 0, meets the curve again at the point Q.

(a) Determine the coordinates of Q.

(b) Prove that PQ2 = 3OP 2 +OQ2.
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Assignment B5A

Problem 1.

(a) Show, algebraically, that the derivative of the function

ln(1 + x)− 2x

x+ 2

is never negative.

(b) Hence, show that ln(1 + x) ≥ 2x
x+2 when x ≥ 0.

Solution. Let

f(x) = ln(1 + x)− 2x

x+ 2
= ln(1 + x)− 2 +

4

x+ 2
.

Part (a).

f ′(x) =
1

1 + x
− 4

(x+ 2)2
=

x2

(1 + x)(x+ 2)2
.

Given that ln(1 + x) is defined, it must be that 1 + x > 0. We also know that x2 ≥ 0 and
(x+ 2)2 ≥ 0. Hence, f ′(x) ≥ 0 for all x in the domain of f and is thus never negative.

Part (b). Note that f(0) = 0. Since f ′(x) ≥ 0 for all x ≥ 0,

ln(1 + x)− 2x

x+ 2
= f(x) ≥ f(0) = 0 =⇒ ln(1 + x) ≥ 2x

x+ 2
.

∗ ∗ ∗ ∗ ∗

Problem 2. The equation of a curve is y = ax2− 2bx+ c, where a, b and c are constants,
with a > 0.

(a) Using differentiation, find the coordinates of the turning point on the curve, in terms
of a, b and c. State whether it is a maximum point or a minimum point.

(b) Given that the turning point of the curve lies on the line y = x, find an expression
for c in terms of a and b. Show that in this case, whatever the value of b, c ≥ −1/4a.

(c) Find the numerical values of a, b and c when the curve passes through the point
(0, 6) and has a turning point at (2, 2).

Solution.

Part (a). For stationary points, dy/dx = 0. Hence,

dy

dx
= 2ax− 2b = 0 =⇒ x =

b

a
=⇒ y = a

(
b

a

)2

− 2b

(
b

a

)
+ c = −b2

a
+ c.

Since a > 0, the graph of y is concave upwards. Thus, there is a maximum point at(
b
a ,− b2

a + c
)
.

Part (b). Since the turning point
(

b
a ,− b2

a + c
)
lies on the line y = x,

b

a
= −b2

a
+ c =⇒ c =

b+ b2

a
=

(b+ 1/2)2 − 1/4

a
.

Since (b+ 1/2)2 ≥ 0, it follows that c ≥ −1/4a.



Assignment B5A 745

Part (c). Since the curve passes through (0, 6), it is obvious to see that c = 6. Furthermore,

since the curve has a turning point at (2, 2), we know that b
a = 2 and − b2

a + c = 2. Hence,

−b2

a
= 2− c = −4 =⇒ b

(
b

a

)
= 4 =⇒ b = 2 =⇒ a = 1.

Thus, a = 1, b = 2, and c = 6.

∗ ∗ ∗ ∗ ∗

Problem 3. The diagram below shows the graph of y = f(x). Sketch the graph of
y = f ′(x).

2

(3, 3)

y = 2

x = 1

O

x

y y = f(x)

Solution.

3

x = 1

O

x

y y = f ′(x)
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Problem 4. The curve C has equation

x− y = (x+ y)2.

It is given that C has only one turning point.

(a) Show that 1 + dy
dx = 2

2x+2y+1 .

(b) Hence, or otherwise, show that d2y
dx2 = −

(
1 + dy

dx

)2
.

(c) Hence, state, with a reason, whether the turning point is a maximum or a minimum.

Solution.

Part (a). Implicitly differentiating the given equation,

1− dy

dx
= 2(x+ y)

(
1 +

dy

dx

)
=⇒ dy

dx
=

1− (2x+ 2y)

2x+ 2y + 1
=⇒ 1 +

dy

dx
=

2

2x+ 2y + 1
.

Part (b). Implicitly differentiating the above equation,

d2y

dx2
= −

2
(
2 + 2 · dy

dx

)

(2x+ 2y + 1)2
= −

(
2

2x+ 2y + 1

)2(
1 +

dy

dx

)
= −

(
1 +

dy

dx

)3

.

Part (c). For turning points, dy/dx = 0. Hence, d2y/dx2 = −1 < 0. Thus, the turning
point is a maximum.
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Assignment B5B

Problem 1. Sketch the curve with parametric equations

x = 3t, y =
3

t
.

The point P on the curve has parameter t = 2. The normal at P meets the curve again
at the point Q.

(a) Show that the normal at P has equation 2y = 8x− 45.

(b) Find the value of t at Q.

Solution.

O

x

y x = 3t, y = 3
t

Part (a). Consider dy/dx.

dy

dx
=

dy/dt

dx/dt
=

−3/t2

3
= − 1

t2
.

Hence, the tangent to the curve has gradient −1/t2, whence the normal to the curve has
gradient −1

−1/t2
= t2. Thus, the normal to the curve at P has gradient 22 = 4. Note that

P has coordinates (6, 3/2). Using the point-slope formula, the normal at P has equation

y − 3

2
= 4(x− 6) =⇒ 2y = 8(x− 6) + 3 = 8x− 45.

Part (b). Observe that

x = 3t =⇒ t =
x

3
=⇒ y =

3

x/3
=

9

x
.

Substituting y = 9/x into the equation of the normal at P ,

2

(
9

x

)
= 8x− 45 =⇒ 8x2 − 45x− 18 = (x− 6)(8x+ 3) = 0.

Hence, the x-coordinate of Q is −3/8 (note that we reject x = 6 since that corresponds to
P ). Thus, t = −1/8 at Q.
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Problem 2.

y

x

A pond with a constant depth of 1 m is being designed for a park. The pond comprises
a rectangle x m by y m and two semicircles of diameter y m, as shown in the diagram.
The cost to build a boundary around the pond is $30 per metre for straight parts and $60
per metre for the semicircular parts. Given that the budget for the boundary is fixed at
$6000, using differentiation or otherwise, find in terms of π, the exact values of x and y
which give the pond a maximum volume.

Solution. Observe that the total length of the straight parts is 2x m and the total length
of the semicircular parts is πy m. Hence,

30(2x) + 60(πy) = 6000 =⇒ x+ πy = 100 =⇒ x = 100− πy.

Let V (y) m3 be the volume of the pond.

V (y) = π
(y
2

)2
+ xy =

π

4
y2 + (100− πy) y = −3π

4
y2 + 100y.

Consider the stationary points of V (y). For stationary points, V ′(y) = 0.

V ′(y) = −3π

2
y + 100 = 0 =⇒ y =

200

3π
.

y
(
200
3π

)− 200
3π

(
200
3π

)+
V ′(y) +ve 0 −ve

By the first derivative test, the maximum volume of the pond is achieved when y =
200/3π. Thus, x = 100− πy = 100/3.

∗ ∗ ∗ ∗ ∗

Problem 3. A circular cylinder is expanding in such a way that, at time t seconds, the
length of the cylinder is 20x cm and the area of the cross-section is x cm2. Given that,
when x = 5, the area of the cross-section is increasing at a rate of 0.025 cm2s−1, find the
rate of increase at this instant of

(a) the length of the cylinder,

(b) the volume of the cylinder,

(c) the radius of the cylinder.
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Solution. Let A = x cm2 be the cross-sectional area of the cylinder. Then

dA

dt
=

dA

dx
· dx
dt

=
dx

dt

and
dA

dt

∣∣∣∣
x=5

= 0.025.

Part (a). Let L = 20x cm be the length of the cylinder. Then

dL

dt
= 20 · dx

dt
=⇒ dL

dt

∣∣∣∣
x=5

= 20 (0.025) = 0.5.

Thus, the length of the cylinder is increasing at a rate of 0.5 cm/s.

Part (b). Let V = AL = 20x2 cm3 be the volume of the cylinder. Then

dV

dt
= 40x · dx

dt
=⇒ dV

dt

∣∣∣∣
x=5

= 40(5)(0.025) = 5.

Thus, the volume of the cylinder is increasing at a rate of 5 cm3/s.

Part (c). Let R cm be the radius of the cylinder. Observe that

πR2 = A = x =⇒ R =

√
x

π
=

√
x√
π
.

Hence,

dR

dt
=

1√
π
· 1

2
√
x
· dx
dt

=⇒ dR

dt

∣∣∣∣
x=5

=
1√
π

(
1

2
√
5

)
(0.025) = 0.00315 (3 s.f.).

Thus, the radius of the cylinder is increasing at a rate of 0.00315 cm/s.

∗ ∗ ∗ ∗ ∗

Problem 4. The curve C has equation 2−y = x. The point A on C has x-coordinate a
where a > 0. Show that dy

dx = − 1
a ln 2 at A and find the equation of the tangent to C at A.

Hence, find the equation of the tangent to C which passes through the origin.
The straight line y = mx intersects C at 2 distinct points. Write down the range of

values of m.

Solution. Observe that

2−y = x =⇒ y = − log2 x = − lnx

ln 2
=⇒ dy

dx
= − 1

x ln 2
.

At A, x = a. Hence,
dy

dx
= − 1

a ln 2
.

Also, we clearly have A(a,− ln a/ ln 2). Using the point-slope formula, the tangent to C
at A has equation

y −
(
− ln a

ln 2

)
= − 1

a ln 2
(x− a) =⇒ y = − x

a ln 2
+

1− ln a

ln 2
.

Consider the straight line y = mx that is tangent to C and passes through the origin.

0 = − 0

a ln 2
+

1− ln a

ln 2
=⇒ 1− ln a = 0 =⇒ a = e.

Hence, the equation of the tangent to C that passes through the origin is

y = − x

e ln 2
.

Consider the graph of 2−y = x.
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O
x

y 2−y = x
y = − x

e ln 2

Hence, m ∈ (−1/e ln 2, 0).
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Tutorial B6

Problem 1.

(a) Given that f(x) = ecosx, find f(0), f ′(0) and f ′′(0). Hence, write down the first two
non-zero terms in the MacLaurin series for f(x). Give the coefficients in terms of e.

(b) Given that g(x) = tan
(
2x+ 1

4π
)
, find g(0), g′(0) and g′′(0). Hence, find the first

three terms in the MacLaurin series of g(x).

Solution.

Part (a). Note that

f ′(x) = −ecosx sinx = −f(x) sinx =⇒ f ′′(x) = −f(x) cosx− f ′(x) sinx.

Evaluating f(x), f ′(x) and f ′′(x) at 0,

f(0) = e, f ′(0) = 0, f ′′(0) = −e.

Hence,

f(x) =
e

0!
+

0

1!
x+

−e

2!
x2 = e− e

2
x2 + · · · .

Part (b). Note that

g′(x) = 2 sec2
(
2x+

π

4

)
= 2

(
1 + tan2

(
2x+

π

4

))
= 2 + 2g2(x) =⇒ g′′(x) = 4g(x)g′(x).

Evaluating g(x), g′(x) and g′′(x) at 0,

g(x) = 1, g′(x) = 4, g′′(x) = 16.

Hence,

g(x) =
1

0!
+

4

1!
x+

16

2!
x2 + · · · = 1 + 4x+ 8x2 + · · · .

∗ ∗ ∗ ∗ ∗

Problem 2. Find the first three non-zero terms of the MacLaurin series for the following
in ascending powers of x. In each case, find the range of values of x for which the series
is valid.

(a) (1+3x)4√
1+2x

(b) sin 2x
2+3x
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Solution.

Part (a). Observe that

(1 + 3x)4 = 1 + 4(3x) + 6(3x)2 + · · · = 1 + 12x+ 54x2 + · · ·

and

(1 + 2x)−
1
2 = 1 +

(
−1

2

)
(2x) +

(
−1

2

) (
−3

2

)

2!
(2x)2 + · · · = 1− x+

3

2
x2 + · · · .

Thus,

y =
(1 + 3x)4√

1 + 2x
=
(
1 + 12x+ 54x2 + · · ·

)(
1− x+

3

2
x2 + · · ·

)

=

(
1− x+

3

2
x2
)
+
(
12x− 12x2

)
+
(
54x2

)
+ · · · = 1 + 11x+

87

2
x2 + · · · .

Note that the series is valid only when

|2x| < 1 =⇒ −1

2
< x <

1

2
.

Part (b). Note that

sin 2x = 2x− (2x)3

3!
+ · · · = 2x− 4

3
x3 + · · ·

and

1

2 + 3x
=

1

2

(
1 +

3x

2

)−1

=
1

2

[
1− 3x

2
+

(
3x

2

)2

−
(
3x

2

)3

+ · · ·
]

=
1

2
− 3

4
x+

9

8
x2 − 27

16
x3 + · · · .

Thus,

sin 2x

2 + 3x
=

(
2x− 4

3
x3 + · · ·

)(
1

2
− 3

4
x+

9

8
x2 − 27

16
x3 + · · ·

)

=

(
x− 3

2
x2 +

9

4
x3
)
+

(
−2

3
x3
)
+ · · · = x− 3

2
x2 +

19

12
x3 + · · · .

The series is only valid when

∣∣∣∣
3

2
x

∣∣∣∣ < 1 =⇒ −2

3
< x <

2

3
.

∗ ∗ ∗ ∗ ∗

Problem 3. Find the MacLaurin series of ln(1 + cosx), up to and including the term in
x4.

Solution. Let y = ln(1 + cosx). Then

y = ln(1 + cosx) =⇒ ey = 1 + cosx.
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Implicitly differentiating repeatedly with respect to x,

eyy′ = − sinx =⇒ ey
[(
y′
)2

+ y′′
]
= − cosx =⇒ ey

[(
y′
)3

+ 3y′y′′ + y′′′
]
= sinx

=⇒ ey
[(
y′
)4

+ 3
(
y′′
)2

+ 6
(
y′
)2

y′′ + 4y′y′′′ + y(4)
]
= cosx.

Evaluating the above at x = 0, we get

y(0) = ln 2, y′(0) = 0, y′′(0) = −1

2
, y′′′(0) = 0, y(4)(0) = −1

4
.

Thus,

ln(1 + cosx) = ln 2 +
−1/2

2!
x2 +

−1/4

4!
x4 + · · · = ln 2− 1

4
x2 − 1

96
x4 + · · · .

∗ ∗ ∗ ∗ ∗

Problem 4.

(a) Find the first three terms of the MacLaurin series for ex(1 + sin 2x).

(b) It is given that the first two terms of this series are equal to the first two terms in
the series expansion, in ascending powers of x, of

(
1 + 4

3x
)n
. Find n and show that

the third terms in each of these series are equal.

Solution.

Part (a). Observe that

ex = 1 + x+
x2

2
+ · · ·

and
1 + sin 2x = 1 + 2x+ · · · .

Hence,

ex (1 + sin 2x) =

(
1 + x+

x2

2
+ · · ·

)
(1 + 2x+ · · ·)

= (1 + 2x) +
(
x+ 2x2

)
+

(
x2

2

)
+ · · · = 1 + 3x+

5

2
x2 + · · · .

Part (b). Note that

(
1 +

4

3
x

)n

= 1 + n

(
4

3
x

)
+

n(n− 1)

2

(
4

3
x

)2

+ · · · = 1 +
4n

3
x+

8n(n− 1)

9
x2 · · · .

Comparing the second terms of both series, we get

4n

3
= 3 =⇒ n =

9

4
.

Thus, the third term of (1 + 4
3x)

n is

8(94)(
9
4 − 1)

9
x2 =

5

2
x2.

Hence, the third terms in each of these series are equal.
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Problem 5.

(a) Show that the first three non-zero terms in the expansion of
(

8
x3 − 1

)1/3
in ascending

powers of x are in the form a
x + bx2 + cx5, where a, b and c are constants to be

determined.

(b) By putting x = 2
3 in your result, obtain an approximation for 3

√
26 in the form of a

fraction in its lowest terms.

A student put x = 6 into the expansion to obtain an approximation of 3
√
26. Com-

ment on the suitability of this choice of x for the approximation of 3
√
26.

Solution.

Part (a). We have

(
8

x3
− 1

) 1
3

=
2

x

(
1− x3

8

) 1
3

=
2

x

[
1 +

1

3

(
−x3

8

)
+

(
1
3

) (
1
3 − 1

)

2

(
−x3

8

)2

+ · · ·
]

=
2

x

(
1− x3

24
− x6

576
+ · · ·

)
=

2

x
− x2

12
− x5

288
+ · · · .

Part (b). Evaluating the above equation at x = 2/3,

3
√
26 ≈

(
8

(2/3)3
− 1

)1/3

=
2

2/3
− (2/3)2

12
− (2/3)5

288
=

6479

2187
.

Observe that the validity range for the series is

∣∣∣∣−
x3

8

∣∣∣∣ < 1 =⇒ −2 < x < 2.

Since 6 is outside this range, it is not an appropriate choice.

∗ ∗ ∗ ∗ ∗

Problem 6. Let f(x) = ex sinx.

(a) Sketch the graph of y = f(x) for −3 ≤ x ≤ 3.

(b) Find the series expansion of f(x) in ascending powers of x, up to and including the
term in x3.

Denote the answer to part (b) by g(x).

(c) On the same diagram, sketch the graph of y = f(x) and y = g(x). Label the two
graphs clearly.

(d) Find, for −3 ≤ x ≤ 3, the set of values of x for which the value of g(x) is within
±0.5 of the value of f(x).
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Solution.

Part (a).

O

x

y y = ex sinx

Part (b). Observe that

ex = 1 + x+
x2

2
+

x3

6
+ · · ·

and

sinx = x− x3

6
+ · · · .

Thus,

ex sinx =

(
1 + x+

x2

2
+

x3

6
+ · · ·

)(
x− x3

6
+ · · ·

)

=

(
x− x3

6

)
+
(
x2
)
+

(
x3

2

)
+ · · · = x+ x2 +

x3

3
+ · · · .

Part (c).

O

x

y y = f(x)

y = g(x)

Part (d). Using G.C., {x ∈ R : −1.96 ≤ x ≤ 1.56}.
∗ ∗ ∗ ∗ ∗

Problem 7. It is given that y = 1/(1 + sin 2x). Show that, when x = 0, d2y/dx2 = 8.
Find the first three terms of the MacLaurin series for y.

(a) Use the series to obtain an approximate value for
∫ 0.1
−0.1 y dx, leaving your answer as

a fraction in its lowest terms.
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(b) Find the first two terms of the MacLaurin series for dy/dx.

(c) Write down the equation of the tangent at the point where x = 0 on the curve
y = 1/(1 + sin 2x).

Solution. Differentiating with respect to x, we get

y′ = − 2 cos 2x

(1 + sin 2x)2
= −2y2 cos 2x.

Differentiating once more, we get

y′′ = −2
(
−2y2 sin 2x+ 2y · y′ cos 2x

)
.

Evaluating the above at x = 0, we obtain

y(0) = 1, y′(0) = −2, y′′(0) = 8.

Hence,
1

1 + sin 2x
=

1

0!
+

−2

1!
x+

8

2!
x2 + · · · = 1− 2x+ 4x2 + · · · .

Part (a).

∫ 0.1

−0.1
y dx ≈

∫ 0.1

−0.1

(
1− 2x+ 4x2

)
dx =

[
x− x2 +

4

3
x3
]0.1

−0.1

=
76

275
.

Part (b).

y′ =
d

dx

(
1− 2x+ 4x2 + · · ·

)
= −2 + 8x+ · · · .

Part (c). Using the point-slope formula,

y − 1 = −2(x− 0) =⇒ y = −2x+ 1.

∗ ∗ ∗ ∗ ∗

Problem 8. It is given that y = earcsin 2x.

(a) Show that (1− 4x2)d
2y

dx2 − 4xdy
dx = 4y.

(b) By further differentiating this result, find the MacLaurin series for y in ascending
powers of x, up to an including the term in x3.

(c) Hence, find an approximation value of eπ/2, by substituting a suitable value of x in
the MacLaurin series for y.

(d) Suggest one way to improve the accuracy of the approximated value obtained.

Solution.

Part (a). Note that
y = earcsin(2x) =⇒ ln y = arcsin(2x) .

Implicitly differentiating with respect to x,

1

y
· dy
dx

=
2√

1− 4x2
=⇒ dy

dx
=

2y√
1− 4x2

.
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Implicitly differentiating with respect to x once again,

d2y

dx2
=

√
1− 4x2

(
2 · dy

dx

)
− 2y

(
−4x√
1−4x2

)

1− 4x2
.

Now observe that

2
√

1− 4x2 · dy
dx

+ 4x

(
2y√

1− 4x2

)
= 4y + 4x · dy

dx
.

Hence,
(
1− 4x2

) d2y
dx2

= 4y + 4x · dy
dx

=⇒
(
1− 4x2

) d2y
dx2

− 4x · dy
dx

= 4y.

Part (b). Implicitly differentiating with respect to x once again,

(
1− 4x2

) d3y
dx3

− 8x · d
2y

dx2
− 4

(
x · d

2y

dx2
+

dy

dx

)
= 4 · dy

dx
.

Rearranging,
(
1− 4x2

) d3y
dx3

− 12x · d
2y

dx2
− 8 · dy

dx
= 0.

Evaluating the above equations at x = 0, we get

y(0) = 1, y′(0) = 2, y′′(0) = 4, y′′′(0) = 16.

Hence,

y =
1

0!
+

2

1!
x+

4

2!
x2 +

16

3!
x3 + · · · = 1 + 2x+ 2x2 +

8

3
x3 + · · · .

Part (c). Consider y = eπ/2.

y = arcsin 2x = eπ/2 =⇒ x =
1

2
sin

π

2
=

1

2
.

Substituting x = 1/2 into the MacLaurin series for y,

eπ/2 ≈ 1 + 2

(
1

2

)
+ 2

(
1

2

)2

+
8

3

(
1

2

)3

=
17

6
.

Part (d). More terms of the MacLaurin series of y could be considered.

∗ ∗ ∗ ∗ ∗

Problem 9. The curve y = f(x) passes through the point (0, 1) and satisfies the equation
dy
dx = 6−2y

cos 2x .

(a) Find the MacLaurin series of f(x), up to and including the term in x3.

(b) Using standard results given in the List of Formulae (MF27), express 1−sinx
cosx as a

power series of x, up to and including the term in x3.

(c) Using the two power series you have found, show to this degree of approximation,
that f(x) can be expressed as a(tan 2x− sec 2x) + b, where a and b are constants to
be determined.
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Solution.

Part (a). Note that

y′ =
6− 2y

cos 2x
=⇒ y′ cos 2x = 6− 2y.

Implicitly differentiating with respect to x,

−2y′ sin 2x+ y′′ cos 2x = −2y′.

Implicitly differentiating once more,

−2
(
y′′ sin 2x+ 2y′ cos 2x

)
+
(
y′′′ cos 2x− 2y′′ sin 2x

)
= −2y′′

Hence,
y(0) = 1, y′(0) = 4, y′′(0) = −8, y′′′(0) = 32,

whence

f(x) =
1

0!
x+

4

1!
x+

−8

2!
x2 +

32

3!
x3 + · · · = 1 + 4x− 4x2 +

16

3
x3 + · · · .

Part (b). Note that

1

cosx
≈
(
1− x2

2

)−1

≈ 1 +
x2

2
.

Hence,
1− sinx

cosx
≈
(
1− x+

x3

6

)(
1 +

x2

2

)
= 1− x+

x2

2
− x3

3
+ · · · .

Part (c). Note that
1− sinx

cosx
= secx− tanx.

Hence,

a(tan 2x− sec 2x) + b ≈ −a

[
1− 2x+

(2x)2

2
− (2x)3

3

]
+ b

= a

(
−1 + 2x− 2x2 +

8

3
x3
)
+ b = a

(
−3

2
+

f(x)

2

)
+ b = −3

2
a+ b+

a

2
f(x).

Thus,
a

2
f(x)− 3

2
a+ b ≈ a(tan 2x− sec 2x) + b.

In order to obtain an approximation for f(x), we need a
2 = 1 and −3

2a + b = 0, whence
a = 2 and b = 3.

∗ ∗ ∗ ∗ ∗

Problem 10. Given that x is sufficiently small for x3 and higher powers of x to be
neglected, and that 13 − 59 sinx = 10(2 − cos 2x), find a quadratic equation for x and
hence solve for x.

Solution. Note that

13− 59 sinx = 10 (2− cos 2x) = 10
[
2−

(
1− 2 sin2 x

)]
= 10 + 20 sin2 x.

Thus,
20 sin2 x+ 59 sinx− 3 = (20 sinx− 1)(sinx+ 3) = 0,

whence sinx = 1/20. Note that we reject sinx = −3 since |sinx| ≤ 1. Since x is sufficiently
small for x3 and higher powers of x to be neglected, sinx ≈ x. Thus, x ≈ 1/20.
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Problem 11. In triangle ABC, angle A = π/3 radians, angle B = (π/3+ x) radians and
angle C = (π/3− x) radians, where x is small. The lengths of the sides BC, CA and AB
are denoted by a, b and c respectively. Show that b− c ≈ 2ax/

√
3.

Solution. By the sine rule,
a

sinA
=

b

sinB
=

c

sinC
.

Hence,

b = a

(
sinB

sinA

)
=

2a√
3
sinB, c = a

(
sinC

sinA

)
=

2a√
3
sinC.

Thus,

b− c =
2a√
3
(sinB − sinC) =

2a√
3

[
sin
(π
3
+ x
)
− sin

(π
3
− x
)]

=
2a√
3

[
2 sinx cos

π

3

]
=

2a√
3
sinx.

Since x is small, sinx ≈ x. Hence,

b− c ≈ 2ax√
3
.

∗ ∗ ∗ ∗ ∗

Problem 12. D’Alembert’s ratio test states that a series of the form
∑∞

r=0 ar converges

when limn→∞
∣∣∣an+1

an

∣∣∣ < 1, and diverges when limn→∞
∣∣∣an+1

an

∣∣∣ > 1. When limn→∞
∣∣∣an+1

an

∣∣∣ =
1, the test is inconclusive. Using the test, explain why the series

∑∞
r=0

xr

r! converges for
all real values of x and state the sum to infinity of this series, in terms of x.

Solution. Let an = xn

n! and consider limn→∞
∣∣an+1

n

∣∣.

lim
n→∞

∣∣∣an+1

n

∣∣∣ = lim
n→∞

∣∣∣∣
xn+1

(n+ 1)!

/xn

n!

∣∣∣∣ = lim
n→∞

∣∣∣∣
xn+1

xn
· n!

(n+ 1)!

∣∣∣∣ = lim
n→∞

∣∣∣∣
x

n+ 1

∣∣∣∣ = 0.

Since limn→∞
∣∣an+1

n

∣∣ < 1 for all x ∈ R, it follows by D’Alembert’s ratio test that
∑∞

r=0
xr

r!
converges for all real values of x. The sum to infinity of the series in question is ex.
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Self-Practice B6

Problem 1. Express 6x+4
(1−2x)(1+3x2)

in partial fractions. Hence, find the coefficients of x5

and x6 in the expansion, in ascending powers of x, of 6x+4
(1−2x)(1+3x2)

.

Solution. Let
6x+ 4

(1− 2x)(1 + 3x2)
=

A

1− 2x
+

Bx+ C

1 + 3x2
,

where A, B and C are constants to be determined. Using the cover-up rule, we immediately
get

A =
6(1/2) + 4

1 + 3(1/2)2
= 4.

Clearing denominators, we get

6x+ 4 = 4
(
1 + 3x2

)
+ (Bx+ C) (1− 2x) = (12− 2B)x2 (B − 2C)x+ (4 + C) .

Comparing coefficients, we have B = 6 and C = 0. Hence,

6x+ 4

(1− 2x)(1 + 3x2)
=

4

1− 2x
+

6x

1 + 3x2
.

Note that

4

1− 2x
= · · ·+ (2x)5 + (2x)6 + · · · = 4

[
· · ·+ 128x5 + 256x6 + . . .

]

and
6x

1 + 3x2
= 6x

[
· · ·+

(
−3x2

)2
+ . . .

]
= · · ·+ 54x5 + . . . .

Hence,
6x+ 4

(1− 2x)(1 + 3x2)
= · · ·+ 182x5 + 256x6 + . . . .

∗ ∗ ∗ ∗ ∗

Problem 2. If x is so small that terms in xn, n ≥ 3, can be neglected and 3+ax
3+bx = (1−x)1/3,

find the values of a and b. Hence, find an approximation for 3
√
0.96 in the form p

q , where
p and q are integers.

Solution. Rearranging,

3 + ax = (3 + bx)(1− x)1/3 = (3 + bx)

(
1− x

3
− x2

9

)
= 3 + (b− 1)x− b+ 1

3
x2.

Comparing coefficients, we have a = −2 and b = −1. Thus,

3− 2x

3− x
= (1− x)1/3.

Substituting x = 0.04, we get

3
√
0.96 =

3− 2(0.04)

3− 0.04
=

73

74
.

∗ ∗ ∗ ∗ ∗

Problem 3. Given that y = tan
(
1
2 arctanx

)
, show that

(
1 + x2

) dy
dx

=
1

2

(
1 + y2

)
.

By differentiating this result twice, show that, up to and including the term in x3, the
Maclaurin series for tan

(
1
2 arctanx

)
is 1

2x− 1
8x

3.



Self-Practice B6 761

Solution. Note that arctan y = 1
2 arctanx. Differentiating with respect to x,

y′

1 + y2
=

1

2
· 1

1 + x2
=⇒

(
1 + x2

)
y′ =

1

2

(
1 + y2

)
.

Differentiating with respect to x,
(
1 + x2

)
y′′ + 2xy′ = yy′.

Differentiating once more,
(
1 + x2

)
y′′′ + 4xy′′ + 2y′ = y · y′′ +

(
y′
)2

.

When x = 0, we get

y(0) = 0, y′(0) =
1

2
, y′′(0) = 0, y′′′(0) = −3

4
.

Thus,

y = tan

(
1

2
arctanx

)
=

1

2
x+

−3/4

3!
x3 =

1

2
x− 1

8
x3.

∗ ∗ ∗ ∗ ∗

Problem 4. Given that cos y =
√

1− 1
4e

x and 0 < y < π
2 , show that sin(2y) dy

dx = 1
4e

x.

By further differentiation of this result, find the Maclaurin series for y, up to and including
the term in x2, leaving your answer in exact form. Deduce the equation of the tangent to

the curve y = arccos
√
1− 1

4e
x at x = 0.

Solution. Rearranging, we get

cos2 y = 1− 1

4
ex.

Differentiating with respect to x,

−2 cos y sin y · y′ = −1

4
ex =⇒ sin(2y) y′ =

1

4
ex.

Differentiating once more,

sin(2y) y′′ + 2 cos(2y)
(
y′
)2

=
1

4
ex.

When x = 0, we get

y(0) =
π

6
, y′(0) =

1

2
√
3
, y′′(0) =

1

3
√
3
.

Thus,

y = arccos

√
1− 1

4
ex =

π

6
+

(
1

2
√
3

)
x+

(
1

3
√
3

)(
x2

2

)
+ · · · = π

6
+

x

2
√
3
+

x2

6
√
3
+ . . . .

The equation of the tangent at x = 0 is simply

y =
π

6
+

x

2
√
3
.

∗ ∗ ∗ ∗ ∗

Problem 5. By expressing sin
(
π
3 + 2x

)
in terms of sin 2x and cos 2x, show that

sin
(π
3
+ 2x

)
≈

√
3

2
+ x−

√
3x2

if x is sufficiently small. Hence, by using a suitable value of x, estimate the value of sin π
9 ,

giving your answer to 3 significant figures.
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Solution. By the angle-sum formula,

sin
(π
3
+ 2x

)
= sin

π

3
cos 2x+ cos

π

3
sin 2x =

√
3

2
cos 2x+

1

2
sin 2x.

For sufficiently small x, we have sinx ≈ x and cosx = 1− x2/2. Hence,

sin
(π
3
+ 2x

)
≈

√
3

2

(
1− (2x)2

2

)
+

1

2
(2x) =

√
3

2
+ x−

√
3x2.

Consider π/3 + 2x = π/9. Clearly x = −π/9. Substituting this into the above approxi-
mation, we get

sin
π

9
≈

√
3

2
+
(
−π

9

)
−
√
3
(
−π

9

)2
= 0.306 (3 s.f.).

∗ ∗ ∗ ∗ ∗

Problem 6 ( ). Consider the infinite series 1
1! +

4
2! +

7
3! +

10
4! + . . . .

(a) If the series continues with the same pattern, find an expression for the nth term.

(b) By rewriting the infinite series in terms of sigma notation and using the standard
series for ex, show that the series evaluates to e + 2.

Solution.

Part (a). The nth term is given by 3n−2
n! , where n ≥ 1.

Part (b). The infinite series is given by

∞∑

n=1

3n− 2

n!
= 3

∞∑

n=1

n

n!
− 2

∞∑

n=1

1

n!

= 3
∞∑

n=1

1

(n− 1)!
− 2

(
1 +

∞∑

n=1

1

n!

)
+ 2

= 3
∞∑

n=0

1

n!
− 2

∞∑

n=0

1

n!
+ 2

= 3e− 2e + 2 = e + 2.
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Problem 7 ( ). Find the function represented by each of the following series by express-
ing it as a sum or difference of two standard series.

(a) f(x) = 2 + x+ x3

3! +
2x4

4! + x5

5! +
x7

7! +
2x8

8! + . . . , x ∈ R.

(b) g(x) = (a + b)x − a2+b2

2 x2 + a3+b3

3 x3 − a4+b4

4 x4 + . . . , where a and b are positive
constants such that − 1

a < x ≤ 1
a and −1

b < x ≤ 1
b .

Solution.

Part (a). Observe that f(x) is defined for all x ∈ R. This suggests that f(x) is composed
of ex, cosx and sinx. Also observe that the powers of 2, 6, 10, . . . are missing. This
suggests that we are adding cosx to ex:

f(x) = 2 + x+
x3

3!
+

2x4

4!
+

x5

5!
+

x7

7!
+

2x8

8!
+ . . .

=

(
1 + x+

x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+

x6

6!
+

x7

7!
+

x8

8!
+ . . .

)

+

(
1− x2

2!
+

x4

4!
− x6

6!
+

x8

8!
+ . . .

)

= ex + cosx.

Part (b). We can easily separate g(x) as follows:

g(x) = (a+ b)x− a2 + b2

2
x2 +

a3 + b3

3
x3 − a4 + b4

4
x4 + . . .

=

(
ax− (ax)2

2
+

(ax)3

3
− (ax)4

4
+ . . .

)
+

(
bx− (bx)2

2
+

(bx)3

3
− (bx)4

4
+ . . .

)

= ln(1 + ax) + ln(1 + bx) .
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Assignment B6

Problem 1. Expand (1 + 2x)−
1
3 , where |x| < 1

2 , as a series of ascending powers of x, up
to an including the term in x2, simplifying the coefficients.
By choosing x = 1

14 , find an approximate value of 3
√
7 in the form p

q , where p and q are
to be determined.
Using your calculator, calculate the numerical value of 3

√
7. Compare this value to the

approximate value found, and with reference to the value of x chosen, comment on the
accuracy of your approximation.

Solution.

(1 + 2x)−1/3 = 1− 1

3
(2x) +

(
−1

3

) (
−1

3 − 1
)

2
(2x)2 + · · · = 1− 2

3
x+

8

9
x2 + · · · .

Substituting x = 1/14,

[
1 + 2

(
1

14

)]−1/3

=
3
√
7

2
≈ 1− 2

3

(
1

14

)
+

8

9

(
1

14

)2

=
422

441

=⇒ 3
√
7 ≈ 844

441
= 1.9138 (5 s.f.).

Since 3
√
7 = 1.9129 (5 s.f.), the approximation is accurate.

∗ ∗ ∗ ∗ ∗

Problem 2. In the triangle ABC, AB = 1, BC = 3 and angle ABC = θ radians. Given
that θ is a sufficiently small angle, show that

AC ≈ (4 + 3θ2)
1
2 ≈ a+ bθ2

for constants a and b to be determined.

Solution. By the cosine rule,

AC2 = AB2 +BC2 − 2(AB)(BC) cosABC = 12 + 32 − 2(1)(3) cos θ = 10− 6 cos θ.

Since θ is sufficiently small, cos θ ≈ 1− θ2/2. Hence,

AC2 ≈ 10− 6

(
1− θ2

2

)
= 4 + 3θ2

=⇒ AC =
(
4 + 3θ2

)1/2
= 2

(
1 +

3θ2

4

)1/2

≈ 2

[
1 +

1

2

(
3θ2

4

)]
= 2 +

3θ2

4
.

Hence, a = 2 and b = 3
4 .

∗ ∗ ∗ ∗ ∗

Problem 3. Given that y = ln secx, show that

(a) d3y
dx3 = 2 d2y

dx2
dy
dx

(b) the value of d4y
dx4 when x = 0 is 2.

Write down the MacLaurin series for ln secx up to and including the term in x4. By
substituting x = π

4 , show that ln 2 ≈ π2

16 + π4

1536 .
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Solution.

Part (a). Note that

y = ln secx = − ln cosx =⇒ e−y = cosx.

Implicitly differentiating with respect to x,

−y′e−y = − sinx =⇒ y′ = tanx.

Differentiating repeatedly,

y′′ = sec2 x =⇒ y′′′ = 2 sec2 x tanx.

Thus,
y′′′ = 2 sec2 x tanx = 2y′′ · y′.

Part (b). Implicitly differentiating the above differential equation,

y(4) = 2
[
y′′′ · y′ +

(
y′′
)2]

.

Evaluating the above equations at x = 0, we see that

y(0) = 0, y′(0) = 0, y′′(0) = 1, y(3)(0) = 0, y(4)(0) = 2.

We have

ln secx =
x2

2
+

x4

12
+ · · · .

Substituting x = π/4,

ln sec
π

4
=

1

2
ln 2 ≈ 1

2

(π
4

)2
+

1

12

(π
4

)4
=

π2

32
+

π4

3072
=⇒ ln 2 ≈ π2

16
+

π4

1536
.
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Tutorial B7

Problem 1. Find

(a)
∫

1√
3−2x

dx

(b)
∫

1
3−2x dx

(c)
∫

1
3−2x2 dx

(d)
∫

1√
3−2x2

dx

(e)
∫

x√
3−2x2

dx

(f)
∫

1
3+4x+2x2 dx

Solution.

Part (a). Consider the substitution u = 3− 2x.

∫
1√

3− 2x
dx = −

∫
1

2
√
u
du = −√

u+ C = −
√
3− 2x+ C.

Part (b). Consider the substitution u = 3− 2x.

∫
1

3− 2x
dx = −1

2

∫
1

u
du = −1

2
ln |u|+ C = −1

2
ln |3− 2x|+ C.

Part (c).

∫
1

3− 2x2
dx =

1

2

∫
1

3/2− x2
dx =

1

2

(
1

2
√
3/2

)
ln

(√
3/2 + x√
3/2− x

)
+ C

=
1

2
√
6
ln

(√
3 +

√
2x√

3−
√
2x

)
+ C.

Part (d).

∫
1√

3− 2x2
dx =

1√
2

∫
1√

3/2− x2
dx =

1√
2
arcsin

(
x√
3/2

)
+ C

=

√
2

2
arcsin

(√
6x

3

)
+ C.

Part (e). Consider the substitution u = 3− 2x2.

∫
x√

3− 2x2
dx = −1

2

∫
1

2
√
u
du = −

√
u

2
+ C = −

√
3− 2x2

2
+ C.
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Part (f).

∫
1

3 + 4x+ 2x2
dx =

1

2

∫
1

(x+ 1)2 + 1/2
dx =

1

2

(
1√
1/2

)
arctan

(
x+ 1

1/
√
1/2

)
+ C

=
arctan

(√
2(x+ 1)

)
√
2

+ C.

∗ ∗ ∗ ∗ ∗

Problem 2. Find

(a)
∫

sec2 3x
tan 3x dx

(b)
∫
cos(3x+ α) dx, where α is a constant

(c)
∫
cos2 3x dx

(d)
∫
e1−2x dx

Solution.

Part (a).

d

dx
tan 3x = 3 sec2 3x =⇒

∫
sec2 3x

tan 3x
dx =

1

3

∫
3 sec2 3x

tan 3x
dx =

ln tan 3x

3
+ C.

Part (b).

∫
cos(3x+ α) dx =

sin(3x+ α)

3
+ C

Part (c). Recall that

cos2 θ =
1 + cos 2θ

2
=⇒ cos2 3x =

1 + cos 6x

2
.

Thus,

∫
cos2 3x dx =

1

2

∫
(1 + cos 6x) dx =

1

2

(
x+

sin 6x

6

)
+ C =

x

2
+

sin 6x

12
+ C.

Part (d).
d

dx
e1−2x = −2e1−2x =⇒

∫
e1−2x dx = −1

2
e1−2x + C.

∗ ∗ ∗ ∗ ∗

Problem 3. Find

(a)
∫
2x

√
3x2 − 5 dx

(b)
∫

x2−1√
x3−3x

dx

(c)
∫
sinx

√
cosx dx

(d)
∫
e2x
(
1− e2x

)4
dx
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Solution.

Part (a). Consider the substitution u = 3x2 − 5.

∫
2x
√
3x2 − 5 dx =

1

3

∫ √
udu =

1

3

(
2

3
u3/2

)
+ C =

2

9

(
3x2 − 5

)3/2
+ C.

Part (b). Consider the substitution u = x3 − 3x:

∫
x2 − 1√
x3 − 3x

dx =
2

3

∫
du

2
√
u
=

2

3

√
u+ C =

2

3

√
x3 − 3x+ C.

Part (c). Consider the substitution u = cosx.

∫
sinx

√
cosx dx = −

∫ √
udu = −2

3
u3/2 + C = −2

3
cos3/2 x+ C.

Part (d). Consider the substitution u = 1− e2x.

∫
e2x(1− e2x)4 dx = −1

2

∫
u4 du = −1

2

(
u5

5

)
+ C = −

(
1− e2x

)5

10
+ C.

∗ ∗ ∗ ∗ ∗

Problem 4. Find

(a)
∫

1√
x(1−√

x)
dx

(b)
∫

3x
x+3 dx

(c)
∫

sinx+cosx
sinx−cosx dx

Solution.

Part (a). Consider the substitution u = 1−√
x.

∫
1√

x(1−√
x)

dx = −2

∫
1

u
du = −2 ln |u|+ C = −2 ln

∣∣1−√
x
∣∣+ C.

Part (b). ∫
3x

x+ 3
dx =

∫ (
3− 9

x+ 3

)
dx = 3x− 9 ln |x+ 3|+ C.

Part (c). Consider the substitution u = sinx− cosx.

∫
sinx+ cosx

sinx− cosx
dx =

∫
1

u
du = ln |u|+ C = ln |sinx− cosx|+ C.

∗ ∗ ∗ ∗ ∗

Problem 5. Find

(a)
∫

e−
√
x√

x
dx

(b)
∫
(sinx)(cosx)(ecos 2x) dx



Tutorial B7 769

Solution.

Part (a). Consider the substitution u = −√
x.

∫
e−

√
x

√
x

dx = −2

∫
eu du = −2eu + C = −2e−

√
x + C.

Part (b). Consider the substitution u = cos 2x.

∫
(sinx)(cosx)(ecos 2x) dx =

1

2

∫
ecos 2x sin 2x dx = −1

4

∫
eu du

= −eu

4
+ C = −ecos 2x

4
+ C.

∗ ∗ ∗ ∗ ∗

Problem 6. Find

(a)
∫
tan2 2x dx

(b)
∫

1
1+cos 2t dt

(c)
∫
sin
(
5
2θ
)
cos
(
1
2θ
)
dθ

(d)
∫
tan4 x dx

Solution.

Part (a). ∫
tan2 2x dx =

∫ (
sec2 2x− 1

)
dx =

tan 2x

2
− x+ C.

Part (b). Note that
1

1 + cos 2t
=

1

1 + (2 cos2 t− 1)
=

sec2 t

2
.

Hence, ∫
1

1 + cos 2t
dt =

1

2

∫
sec2 t dt =

tan t

2
+ C.

Part (c). By the product-to-sum identity,

sin

(
5θ

2

)
cos

(
θ

2

)
=

sin 3θ + sin 2θ

2
.

Hence,

∫
sin

(
5

2
θ

)
cos

(
1

2
θ

)
dθ =

1

2

∫
(sin 3θ + sin 2θ) dθ = −cos 3θ

6
− cos 2θ

4
+ C

Part (d). Note that ∫
tan2 x dx = tanx− x+ C

and ∫
tan2 x sec2 x dx =

tan3 x

3
+ C.
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Hence,

∫
tan4 x dx =

∫
tan2 x

(
sec2 x− 1

)
dx =

∫ (
tan2 x sec2 x− tan2

)
dx

=
tan3 x

3
− tanx+ x+ C

∗ ∗ ∗ ∗ ∗

Problem 7. Find

(a)
∫

1
4x2+2x+10

dx

(b)
∫

x2

1−x2 dx

(c)
∫

1√
3+2x−x2

dx

Solution.

Part (a).

∫
1

4x2 + 2x+ 10
dx = 4

∫
1

(4x+ 1)2 + 39
dx = 4

(
1

4

)(
1√
39

)
arctan

(
4x+ 1√

39

)
+ C

=
1√
39

arctan

(
4x+ 1√

39

)
+ C.

Part (b). ∫
x2

1− x2
dx =

∫ (
1

1− x2
− 1

)
dx =

1

2
ln

(
1 + x

1− x

)
− x+ C.

Part (c).

∫
1√

3 + 2x− x2
dx =

∫
1√

22 − (x− 1)2
dx = arcsin

(
x− 1

2

)
+ C.

∗ ∗ ∗ ∗ ∗

Problem 8. Evaluate the following without the use of graphic calculator:

(a)
∫ 2π/3
π/3 4 cot x

2 csc
2 x

2 dx

(b)
∫ 4
0

x+2√
2x+1

dx

(c)
∫ 1
0

2
(1+x)(1+x2)

dx

(d)
∫ −2
−4

x3+2
x2−1

dx

Solution.

Part (a).

∫ 2
3
π

1
3
π

4 cot
x

2
csc2

x

2
dx = −4

∫ 2
3
π

1
3
π

cot
x

2

(
− csc2

x

2

)
dx = −8

[
tan2(x/2)

2

] 2
3
π

1
3
π

=
32

3
.
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Part (b). Consider the substitution u = 2x+ 1.

∫ 4

0

x+ 2√
2x+ 1

dx =
1

2

∫ 4

0

(√
2x+ 1 +

3√
2x+ 1

)
dx

=
1

4

∫ 9

1

(√
u+

3√
u

)
du =

1

4

[
u3/2

3/2
+

3u1/2

1/2

]9

1

=
22

3
.

Part (c). Note that

∫ 1

0

x

1 + x2
dx =

1

2

∫ 1

0

2x

1 + x2
dx =

1

2

[
ln
∣∣1 + x2

∣∣]1
0
=

ln 2

2
.

Thus,

∫ 1

0

2

(1 + x)(1 + x2)
dx =

∫ 1

0

(
1

1 + x
+

1

1 + x2
− x

1 + x2

)
dx

= [ln |1 + x|]10 + [arctanx]10 −
1

2
ln 2 = ln 2 +

π

4
− 1

2
ln 2 =

1

2
ln 2 +

π

4
.

Part (d).

∫ −2

−4

x3 + 2

x2 − 1
dx =

∫ −2

−4

(
x+

3/2

x− 1
− 1/2

x+ 1

)
dx =

[
x2

2
+

3

2
ln |x− 1| − 1

2
ln |x+ 1|

]−2

−4

= −6 + 2 ln 3− 3

2
ln 5.

∗ ∗ ∗ ∗ ∗

Problem 9. Using the given substitution, find

(a)
∫

x
(2x+3)3

dx [u = 2x+ 3]

(b)
∫

1
ex+4e−x dx [u = ex]

(c)
∫ √

2
0

√
4− y2 dy [y = 2 sin θ]

(d)
∫ π/2
0

1
1+sin θ dθ

[
t = tan θ

2

]

Solution.

Part (a). Using the substitution u = 2x+ 3,

∫
x

(2x+ 3)3
dx =

1

4

∫
u− 3

u3
dx =

1

4

∫ (
1

u2
− 3

u3

)
du =

1

4

(
u−1

−1
− 3u−2

−2

)
+ C

=
3

8
(2x+ 3)−2 − 1

4
(2x+ 3)−1 + C.

Part (b). Using the substitution u = ex,

∫
1

ex + 4e−x
dx =

∫
ex

e2x + 4
dx =

∫
1

u2 + 4
du

=
1

2
arctan

(u
2

)
+ C =

1

2
arctan

(
ex

2

)
+ C.
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Part (c). Using the substitution y = 2 sin θ,

∫ √
2

0

√
4− y2 dy = 2

∫ π/4

0
cos θ

√
4− 4 sin2 θ dθ = 4

∫ π/4

0
cos θ

√
1− sin2 θ dθ

= 4

∫ π/4

0
cos2 θ dθ = 4

∫ π/4

0

1 + cos 2θ

2
dθ = 2

[
θ +

sin 2θ

2

]π/4

0

= 1 +
π

2
.

Part (d). Consider the substitution t = tan θ
2 . Then

θ = 2arctan t =⇒ dθ =
2

1 + t2
dt

and

sin θ = sin(2 arctan t) = 2 sin(arctan t) cos(arctan t) = 2

(
t√

1 + t2

)(
1√

1 + t2

)
=

2t

1 + t2
.

Hence,

∫ π/2

0

1

1 + sin θ
dθ =

∫ 1

0

2/(1 + t2)

1 + 2t/(1 + t2)
du =

∫ 1

0

2

(t+ 1)2
dt = 2

[
− 1

t+ 1

]1

0

= 1.

∗ ∗ ∗ ∗ ∗

Problem 10. Find

(a)
∫
ln(2x+ 1) dx

(b)
∫
x arctan(x2) dx

(c)
∫
e−2x cos 2x dx

(d)
∫ 2
0 x2e−x dx

Solution.

Part (a). Consider the substitution u = 2x+ 1.

∫
ln(2x+ 1) dx =

1

2

∫
lnudu.

Integrating by parts,

D I

+ lnu 1
− 1/u u

Thus,

∫
ln(2x+ 1) dx =

1

2

(
u lnu−

∫
u

(
1

u

)
du

)
=

u lnu− u

2
+ C

=
(2x+ 1) ln(2x+ 1)− (2x+ 1)

2
+ C = x ln(2x+ 1) +

ln(2x+ 1)

2
− x+ C.

Part (b). Consider the substitution u = x2.

∫
x arctan(x2) dx =

1

2

∫
arctanudu.
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Integrating by parts,

D I

+ arctanu 1
− 1/(1 + u2) u

Thus,

∫
x arctan(x2) dx =

1

2

(
u arctanu−

∫
u

1 + u2
du

)
=

1

2

[
u arctanu− ln

(
1 + u2

)

2

]
+ C

=
x2 arctanx2

2
− ln

(
1 + x4

)

4
+ C.

Part (c). Let

I =

∫
e−2x cos 2x dx.

Integrating by parts, we have

D I

+ e−2x cos 2x
− −2e−2x sin(2x) /2
+ 4e−2x − cos(2x) /4

Thus,

I =
e−2x sin 2x

2
− e−2x cos 2x

2
− I =⇒ I =

e−2x (sin 2x− cos 2x)

4
+ C.

Part (d). Integrating by parts, we get

D I

+ x2 e−x

− 2x −e−x

+ 2 e−x

− 0 −e−x

Thus, ∫ 2

0
x2e−x dx =

[
−x2e−x − 2xe−x − 2e−x

]2
0
= 2− 10e−2.

∗ ∗ ∗ ∗ ∗

Problem 11.

(a) Show that d
dx ln(secx+ tanx) = secx.

(b) Find
∫
x sinx dx.

(c) Find the exact value of
∫ π/4
0 (x sinx) ln(secx+ tanx) dx.
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Solution.

Part (a).

d

dx
ln(secx+ tanx) =

secx tanx+ sec2 x

secx+ tanx
= secx

(
tanx+ secx

secx+ tanx

)
= secx.

Part (b). Integrating by parts,

D I

+ x sinx
− 1 − cosx
+ 0 − sinx

Hence, ∫
x sinx dx = −x cosx+ sinx+ C.

Part (c). Integrating by parts,

D I

+ ln(secx+ tanx) x sinx
− secx −x cosx+ sinx

Thus,
∫ π/4

0
(x sinx) ln(secx+ tanx) dx

= [ln(secx+ tanx) (−x cosx+ sinx)]
π/4
0 −

∫ π/4

0
(−x+ tanx) dx

=

[
ln(secx+ tanx) (−x cosx+ sinx)− x2

2
− ln |cosx|

]π/4

0

=

√
2

2

(
1− π

4

)
ln
(√

2 + 1
)
+

π2

32
− ln 2

2

∗ ∗ ∗ ∗ ∗

Problem 12.

(a) Use the fact that 7 cosx − 4 sinx = 3
2(cosx + sinx) + 11

2 (cosx − sinx) to find the

exact value of
∫ π/2
0

7 cosx−4 sinx
cosx+sinx dx.

(b) Use integration by parts to find the exact value of
∫ e
1 (lnx)

2 dx.

Solution.

Part (a). Note that

7 cosx− 4 sinx

cosx+ sinx
=

1

2

(
3(cosx+ sinx) + 11(cosx− sinx)

cosx+ sinx

)
=

3

2
+

11

2

(
cosx− sinx

cosx+ sinx

)
.

Thus,
∫ π/2

0

7 cosx− 4 sinx

cosx+ sinx
dx =

1

2

∫ π/2

0

(
3 + 11 · cosx− sinx

cosx+ sinx

)
dx

=

[
3x

2
+

11

2
ln |cosx+ sinx|

]π/2

0

=
3π

4
.
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Part (b). Integrating by parts,

D I

+ (lnx)2 1

− 2 lnx
x x

Thus,

∫ e

1
(lnx)2 dx =

[
x(lnx)2

]e
1
− 2

∫ e

1
lnx dx =

[
x(lnx)2 − 2 (x lnx− x)

]e
1
= e− 2.

∗ ∗ ∗ ∗ ∗

Problem 13.

(a) Solve the inequality x2 + 2x− 3 < 0.

(b) Without using the graphing calculator, evaluate

(i)
∫ 4
−4

∣∣x2 + 2x− 3
∣∣ dx

(ii)
∫ 2
0 x
∣∣x2 + 2x− 3

∣∣ dx

Solution.

Part (a).

x2 + 2x− 3 = (x+ 1)2 − 4 < 0 =⇒ (x+ 1)2 < 4 =⇒ −2 < x+ 1 < 2 =⇒ −3 < x < 1.

Part (b).

Part (b)(i). Let F (x) =
∫ (

x2 + 2x− 3
)
dx = 1

3x
3 + x2 − 3x+ C. Then,

∫ 4

−4

∣∣x2 + 2x− 3
∣∣ dx

=

∫ −3

−4

∣∣x2 + 2x− 3
∣∣ dx+

∫ 1

−3

∣∣x2 + 2x− 3
∣∣ dx+

∫ 4

1

∣∣x2 + 2x− 3
∣∣ dx

=

∫ −3

−4
x2 + 2x− 3 dx−

∫ 1

−3
x2 + 2x− 3 dx+

∫ 4

1
x2 + 2x− 3 dx

=
[
F (−3)− F (−4)

]
−
[
F (1)− F (−3)

]
+
[
F (4)− F (1)

]
= 40.

Part (b)(ii). Let F (x) =
∫
x
(
x2 + 2x− 3

)
dx = 1

4x
4 + 2

3x
3 − 3

2x
2 + C. Then,

∫ 2

0
x
∣∣x2 + 2x− 3

∣∣ dx

=

∫ 1

0
x
∣∣x2 + 2x− 3

∣∣ dx+

∫ 2

1
x
∣∣x2 + 2x− 3

∣∣ dx

= −
∫ 1

0
x(x2 + 2x− 3) dx+

∫ 2

1
x(x2 + 2x− 3) dx

= −
[
F (1)− F (0)

]
+
[
F (2)− F (1)

]
=

9

2
.
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Problem 14. The indefinite integral
∫ P (x)

x3+1
dx, where P (x) is a polynomial in x, is

denoted by I.

(a) Find I when P (x) = x2.

(b) By writing x3 + 1 = (x + 1)
(
x2 +Ax+B

)
, where A and B are constants, find I

when

(i) P (x) = x2 − x+ 1

(ii) P (x) = x+ 1

(c) Using the results of parts (a) and (b), or otherwise, find I when P (x) = 1.

Solution.

Part (a). ∫
x2

x3 + 1
dx =

1

3

3x2

x3 + 1
dx =

ln
∣∣x3 + 1

∣∣
3

+ C.

Part (b).
x3 + 1 = (x+ 1)

(
x2 − x+ 1

)
.

Part (b)(i).

∫
x2 − x+ 1

x3 + 1
dx =

∫
x2 − x+ 1

(x+ 1) (x2 − x+ 1)
dx =

∫
1

x+ 1
dx = ln |x+ 1|+ C.

Part (b)(ii).

∫
x+ 1

x3 + 1
dx =

∫
x+ 1

(x+ 1) (x2 − x+ 1)
dx =

∫
1

x2 − x+ 1
dx =

∫
1

(x− 1/2)2 + 3/4
dx

=
1√
3/4

arctan

(
x− 1/2√

3/4

)
+ C =

2√
3
arctan

(
2x− 1√

3

)
+ C.

Part (c). Observe that 1 = 1
2

[(
x2 − x+ 1

)
− x2 + (x+ 1)

]
. Hence,

∫
1

x3 + 1
dx =

1

2

(∫
x2 − x+ 1

x3 + 1
dx−

∫
x2

x3 + 1
dx+

∫
x+ 1

x3 + 1
dx

)

=
1

2

[
ln |x+ 1| − ln

∣∣x3 + 1
∣∣

3
+

2√
3
arctan

(
2x− 1√

3

)]
+ C

=
1

2
ln |x+ 1| − ln

∣∣x3 + 1
∣∣

6
+

1√
3
arctan

(
2x− 1√

3

)
+ C.
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Self-Practice B7

Problem 1. Find

(a)
∫
tan
(
π
6 − 3x

)
dx,

(b)
∫
tanx sec4 x dx,

(c)
∫

1
x2+3x+2

dx,

(d)
∫
cos 3x

2 cos 5x
2 dx,

(e)
∫

2
x lnx2 dx,

(f)
∫
xe−x2

dx.

Solution.

Part (a).

∫
tan
(π
6
− 3x

)
dx = −1

3

∫
−3 tan

(π
6
− 3x

)
dx = −1

3
ln
∣∣∣sec

(π
6
− 3x

)∣∣∣+ C.

Part (b). ∫
tanx sec4 x dx =

∫
(secx tanx) sec3 x dx =

sec4 x

4
+ C.

Part (c).

∫
1

x2 + 3x+ 2
dx =

∫ (
1

x+ 1
− 1

x+ 2

)
dx = ln |x+ 1|− ln |x+ 2|+C = ln

∣∣∣∣
x+ 1

x+ 2

∣∣∣∣+C.

Part (d).

∫
cos

3x

2
cos

5x

2
dx =

∫
(cos 4x+ cosx) dx =

sin 4x

8
+

sinx

2
+ C.

Part (e). ∫
2

x lnx2
dx =

∫
1/x

lnx
dx = ln |lnx|+ C.

Part (f). ∫
xe−x2

dx = −1

2

∫
−2xe−x2

dx = −1

2
e−x2

+ C.

∗ ∗ ∗ ∗ ∗

Problem 2. Using the substitution x = tan θ, find the exact value of
∫ 1
0

1−x2

(1+x2)2
dx.

Solution. Note that 1 + x2 = 1 + tan2 θ = sec2 θ. Hence,

∫ 1

0

1− x2

(1 + x2)2
dx =

∫ π/4

0

1− tan2 θ

sec4 θ

(
sec2 θ dθ

)
=

∫ π/4

0

1− tan2 θ

sec2 θ
dθ.

Using trigonometric identities to simplify the integrand, we get

∫ π/4

0

1− tan2 θ

sec2 θ
dθ =

∫ π/4

0
cos 2θ dt =

[
1

2
sin 2θ

]π/4

0

=
1

2
.
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Problem 3. State the derivative of sinx2. Hence, find
∫
x3 cosx2 dx.

Solution. We have
d

dx
sinx2 = 2x cosx2.

Consider the substitution u = sinx2. Using the above result, we have

∫
x2 cosx2 dx =

1

2

∫ (
2x cosx2

)
x2 dx =

1

2

∫
arcsinudu.

Integrating by parts, we get

1

2

(
u arcsinu−

∫
u√

1− u2
du

)
.

The integral is fairly simple to evaluate:

∫
u√

1− u2
= −1

2

∫ −2u√
1− u2

du = −
√

1− u2 + C.

Thus,

∫
x3 cosx2 dx =

1

2

(
x2 sinx2 +

√
1− sin2 x2

)
+ C =

1

2

(
x2 sinx2 + cosx2

)
+ C.

∗ ∗ ∗ ∗ ∗

Problem 4. Find the exact value of p such that
∫ 1
0

1
4−x2 dx =

∫ 1/2p
0

1√
1−p2x2

dx.

Solution. Using standard integration results, the LHS evaluates to

∫ 1

0

1

4− x2
dx =

[
1

4
ln

2 + x

2− x

]1

0

=
1

4
ln 3.

Meanwhile, under the substitution u = px, the RHS evaluates as

∫ 1/2p

0

1√
1− p2x2

dx =
1

p

∫ 1/2

0

1√
1− u2

du =
1

p
[arcsinu]

1/2
0 =

π

6p
.

Equating the two, we get
1

4
ln 3 =

π

6p
=⇒ p =

2π

3 ln 3
.



Self-Practice B7 779

Problem 5.

(a) Find
∫

x+3√
4x−x2

dx.

(b) If x = 4 cos2 θ + 7 sin2 θ, show that 7− x = 3 cos2, and find a similar expression for
x− 4. By using the substitution x = 4 cos2 θ + 7 sin2 θ, evaluate

∫ 7
4

1√
(x−4)(7−x)

dx.

Solution.

Part (a). Note that
∫

x+ 3√
4x− x2

dx = −1

2

∫ −2x− 6√
4x− x2

dx = −1

2

∫ −2x− 4√
4x− x2

dx+ 5

∫
1√

4x− x2
dx.

Also note that 4x− x2 = 4− (x− 2)2. Hence,
∫

x+ 3√
4x− x2

dx = −1

2

∫ −2x− 4√
4x− x2

dx+ 5

∫
1√

4− (x− 2)2
dx,

which we can easily evaluate as
∫

x+ 3√
4x− x2

dx = −
√
4x− x2 + 5arcsin

x− 2

2
+ C.

Part (b). Clearly,

x = 4 cos2 θ + 7 sin2 θ = 7
(
cos2 θ + sin2 θ

)
− 3 cos2 θ = 7− 3 cos2,

whence 7− x = 3 cos2 θ as desired. Similarly,

x = 4
(
cos2 θ + sin2 θ

)
+ 3 sin2 θ = 4 + 3 sin2 θ,

whence x− 4 = 3 sin2 θ.
Under the substitution u = 4 cos2 θ + 7 sin2 θ, the integral transforms as

∫ 7

4

1√
(x− 4)(7− x)

dx =

∫ π/2

0

6 cos θ sin θ√
(3 cos2 θ)

(
3 sin2 θ

) dθ = 2

∫ π/2

0
dθ = π.

∗ ∗ ∗ ∗ ∗

Problem 6. Express x2+x+28
(1−x)(x2+9)

in partial fractions. Hence, show that
∫ 3
0

x2+x+28
(1−x)(x2+9)

dx =
π
12 − 2 ln 2.

Solution. Let
x2 + x+ 28

(1− x)(x2 + 9)
=

A

1− x
+

Bx+ C

x2 + 9
,

where A, B and C are constants to be determined. By the cover-up rule, we immediately
get

A =
1 + 1 + 28

12 + 9
= 3.

Clearing denominators, we get

x2 + x+ 28 = 3
(
x2 + 9

)
+ (Bx+ C) (1− x) = (3−B)x2 + (B − C)x+ (27 + C) .

Comparing coefficients, we get B = 2 and C = 1, whence

x2 + x+ 28

(1− x)(x2 + 9)
=

3

1− x
+

2x+ 1

x2 + 9
.
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Using the above result on the integral, we have

∫ 3

0

x2 + x+ 28

(1− x)(x2 + 9)
dx =

∫ 3

0

(
3

1− x
+

2x

x2 + 9
+

1

x2 + 9

)
dx

=

[
−3 ln |1− x|+ ln

(
x2 + 9

)
+

1

3
arctan

x

3

]3

0

=
π

12
− 2 ln 2.

∗ ∗ ∗ ∗ ∗

Problem 7. Find the derivative of arcsinx + x
√
1− x2, expressing your answer in its

simplest form. Hence, evaluate the exact value of
∫ 1/2
0

√
1− x2 dx.

Solution. We have

d

dx

[
arcsinx+ x

√
1− x2

]
=

1√
1− x2

+

(√
1− x2 − x2√

1− x2

)
= 2
√

1− x2.

Hence,

∫ 1/2

0

√
1− x2 dx =

1

2

∫ 1/2

0
2
√
1− x2 dx =

1

2

[
arcsinx+ x

√
1− x2

]1/2
0

=
π

12
+

√
3

8
.
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Assignment B7

Problem 1.

(a) Find
∫

6x3+2
x2+1

dx.

(b) Evaluate
∫ 4
2 x lnx dx exactly.

Solution.

Part (a). Note that
6x3 + 2

x2 + 1
= 6x− 6x

x2 + 1
+

2

x2 + 1
.

Hence,

∫
6x3 + 2

x2 + 1
dx =

∫ (
6x− 6x

x2 + 1
+

2

x2 + 1

)
dx = 3x2 − 3 ln

(
x2 + 1

)
+ 2arctanx+ C.

Part (b). Consider the substitution u = x2.

∫ 4

2
x lnx dx =

1

2

∫ 16

4
ln
√
udu =

1

4

∫ 16

4
lnudu =

1

4
[u lnu− u]164 = 14 ln 2− 3.

∗ ∗ ∗ ∗ ∗

Problem 2.

(a) Use the derivative of cos θ to show that d
dθ sec θ = sec θ tan θ.

(b) Use the substitution x = sec θ − 1 to find the exact value of
∫ 1√

2−1
1

(x+1)
√
x2+2x

dx.

Solution.

Part (a).
d

dθ
sec θ =

d

dθ

1

cos θ
=

sin θ

cos2 θ
=

1

cos θ
· sin θ
cos θ

= sec θ tan θ.

Part (b). Consider the substitution x = sec θ − 1 =⇒ dx = sec θ tan θ dθ. When x = 1,
we have θ = π/3. When x =

√
2− 1, we have θ = π/4. Also note that x+ 1 = sec θ. Now

observe that

x2 + 2x = (sec θ − 1)2 + 2(sec θ − 1) = sec2 θ − 1 = tan2 θ =⇒
√

x2 + 2x = tan θ.

Thus, ∫ 1

√
2−1

1

(x+ 1)
√
x2 + 2x

dx =

∫ π/3

π/4

sec θ tan θ

sec θ tan θ
dθ =

π

3
− π

4
=

π

12
.
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Problem 3. The expression x2

9−x2 can be written in the form A+ B
3−x + C

3+x .

(a) Find the values of constants A, B and C.

(b) Show that
∫ 2
0

x2

9−x2 dx = 3
2 ln 5− 2.

(c) Hence, find the value of
∫ 2
0 ln

(
9− x2

)
dx, giving your answer in terms of ln 5.

Solution.

Part (a).

x2

9− x2
= −1 +

9

9− x2
= −1 +

9

(3− x)(3 + x)
= −1 +

3/2

3− x
+

3/2

3 + x
.

Thus, A = −1, B = 3/2 and C = 3/2.

Part (b).

∫ 2

0

x2

9− x2
dx =

∫ 2

0

(
−1 +

3/2

3− x
+

3/2

3 + x

)
dx

=

[
−x− 3

2
ln(3− x) +

3

2
ln(3 + x)

]2

0

=
3

2
ln 5− 2.

Part (c). Integrating by parts,

D I

+ ln
(
9− x2

)
1

− −2x/
(
9− x2

)
x

Thus, ∫ 2

0
ln
(
9− x2

)
dx =

[
x ln

(
9− x2

)]2
0
+ 2

(
3

2
ln 5− 2

)
= 5 ln 5− 4.
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Tutorial B8

Problem 1. Write down the integral for the area of the shaded region for each of the
figure below and use the GC to evaluate it, to 3 significant figures.

(a)

O

x

y y = x3 + 2x2 − x− 2

(b) 2

4

O

x

y y = x2

(c) 2O

x

y y = e2x
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(d)

−π
2

π
2

O

x

y y = 2 sinx

(e) −2 2O

x

y y = x2

y = 8− x2

(f)

1O

x

y y = 4− x2

y = 3x
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(g) −1 1O

x

y y = 9− x2

y = ex

(h) 1

1

O

x

y y =
√
x

y = x2

Solution.

Part (a).

Area = −
∫ 1

−1

(
x3 + 2x2 − x− 2

)
dx = 2.67 units2 (3 s.f.).

Part (b). Note that y = x2 =⇒ x =
√
y.

Area =

∫ 4

0

√
y dy = 5.33 units2 (3 s.f.).

Part (c). Note that y = e2x =⇒ x = 1
2 ln y. Also, when x = 0, we have y = 1. Further,

when x = 2, we have y = e4. Thus,

Area =

∫ e4

0

1

2
ln y dy = 82.4 units2 (3 s.f.).

Part (d). Note that when x = π/2, we have y = 2. Thus,

Area = 2

∫ 2

0
arcsin

y

2
dy = 2.28 units2 (3 s.f.).

Part (e).

Area =

∫ 2

−2

[(
8− x2

)
− x2

]
dx = 21.3 units2 (3 s.f.).
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Part (f).

Area =

∫ 1

0

[(
4− x2

)
− 3x

]
dx = 2.17 units2 (3 s.f.).

Part (g).

Area =

∫ 1

−1

[(
9− x2

)
− ex

]
dx = 15.0 units2 (3 s.f.).

Part (h).

Area =

∫ 1

0

(√
x− x2

)
dx = 0.333 units2 (3 s.f.).

∗ ∗ ∗ ∗ ∗

Problem 2.

(a) Write down the integral for the volume of the solid generated when the shaded region
is rotated about the x-axis through 2π for questions 1(a), (e), (f) and (h) using the
disc method and use the GC to evaluate it.

(b) Write down the integral for the volume of the solid generated when the shaded region
is rotated about the y-axis through 2π for questions 1(b), (d) and (f) using the disc
method and use the GC to evaluate it.

Solution.

Part (a).

Part (a)(i).

Volume = π

∫ 1

−1

(
x3 + 2x2 − x− 2

)2
dx = 13.9 units3 (3 s.f.).

Part (a)(ii).

Volume = π

∫ 2

−2

[(
8− x2

)2 − x2
]
dx = 536 units3 (3 s.f.).

Part (a)(iii).

Volume = π

∫ 1

0

[(
4− x2

)2 − (3x)2
]
dx = 33.1 units3 (3 s.f.).

Part (a)(iv).

Volume = π

∫ 1

0

[(√
x
)2 −

(
x2
)2]

dx = 0.942 units3 (3 s.f.).

Part (b).

Part (b)(i).

Volume = π

∫ 4

0
(
√
y)2 dy = 25.1 units3 (3 s.f.).

Part (b)(ii).

Volume = 2π

∫ 2

0
arcsin2

y

2
dy = 5.87 units3 (3 s.f.).

Part (b)(iii).

Volume = π

∫ 4

3
(4− y) dy +

π
(
12
)
(3)

3
= 4.71 units3 (3 s.f.).
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∗ ∗ ∗ ∗ ∗

Problem 3.

(a) Write down the integral for the volume of the solid generated when the shaded region
is rotated about the x-axis through 2π for questions 1(e), (f) and (h) using the shell
method and use the GC to evaluate it.

(b) Write down the integral for the volume of the solid generated when the shaded region
is rotated about the y-axis through 2π for questions 1(b), (d) and (f) using the shell
method and use the GC to evaluate it.

Solution.

Part (a).

Part (a)(i). Note that y = x2 =⇒ x =
√
y and y = 8 − x2 =⇒ x =

√
8− y for x > 0.

Thus,

Volume = 2

(
2π

∫ 4

0

√
y · y dy + 2π

∫ 8

4

√
8− y · y dy

)
= 536 units3 (3 s.f.).

Part (a)(ii). Note that y = 3x =⇒ x = y/3 and y = 4 − x2 =⇒ x =
√
4− y for x > 0.

Thus,

Volume = 2π

∫ 3

0

1

3
y · y dy + 2π

∫ 4

3

√
4− y · y dy = 33.1 units3 (3 s.f.).

Part (a)(iii). Note that y =
√
x =⇒ x = y2 and y = x2 =⇒ x =

√
y for x > 0. Thus,

Volume = 2π

∫ 1

0

(√
y − y2

)
y dy = 0.942 units3 (3 s.f.).

Part (b).

Part (b)(i).

Volume = 2π

∫ 2

0
x · x2 dx = 25.1 units3 (3 s.f.).

Part (b)(ii).

Volume = 2 · 2π
∫ π/2

0
x (2− 2 sinx) dx = 5.87 units3 (3 s.f.).

Part (b)(iii).

Volume = 2π

∫ 1

0
x
[(
4− x2

)
− 3x

]
dx = 4.71 units3 (3 s.f.).

∗ ∗ ∗ ∗ ∗

Problem 4. Calculate the area enclosed by the petals of the curve r = sin 2θ where
r ≥ 0.
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Solution. Note that r ≥ 0 =⇒ sin 2θ ≥ 0 =⇒ r ∈
[
0, π2

]
∪
[
π, 3π2

]
. Thus,

Area = 2 · 1
2

∫ π/2

0
sin2 2θ dθ =

∫ π/2

0

1− cos 4θ

2
dθ =

1

2

[
θ − sin 4θ

4

]π/2

0

=
π

4
units2.

∗ ∗ ∗ ∗ ∗

Problem 5. The finite region A is bounded by the curve y = x2 and a minor arc of the
circle x2 + y2 = 12.

(a) Find the numerical value of the area of A, correct to 2 decimal places.

(b) Find the exact volume of the solid obtained when A is rotated about the x-axis
through 2π radians.

(c) Find the exact volume of the solid obtained when A is rotated about the y-axis
through π radians.

Solution.

A

O

x

y y = x2

x2 + y2 = 12

Part (a). Consider the intersections between y = x2 and x2 + y2 = 12.

x2 + y2 = x2 +
(
x2
)2

= 12 =⇒ x4 + x2 − 12 = (x2 − 3)(x2 + 4) = 0

=⇒
(
x−

√
3
)(

x+
√
3
) (

x2 + 4
)
= 0.

Hence, the two curves intersect at x = −
√
3 and x =

√
3. Note that x2 + 4 = 0 has no

solution since x2 + 4 > 0. Also note that x2 + y2 = 12 =⇒ y =
√
12− x2 for y > 0.

Thus,

Area = 2

∫ √
3

0

(√
12− x2 − x2

)
dx = 8.02 units2 (3 s.f.).

Part (b). Note that x2 + y2 = 12 =⇒ y2 = 12− x2.

Volume = 2π

∫ √
3

0

[(
12− x2

)
−
(
x2
)2]

dx = 2π

[
12x− x3

3
− x5

5

]√3

0

=
92
√
3π

5
units3.

Part (c). Note that when the curves intersect at x =
√
3, we have y = 3. Furthermore,

when x = 0, we have y =
√
12. Also note that x2 + y2 = 12 =⇒ x2 = 12− y2.

Volume = π

∫ 3

0
y dy + π

∫ √
12

3

(
12− y2

)
dy = π

(
16
√
3− 45

2

)
units3.
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∗ ∗ ∗ ∗ ∗

Problem 6.

1
n

2
n

3
n

n−2
n

n−1
n

O

x

y y = 2x

(a) The graph of y = 2x, for 0 ≤ x ≤ 1 is shown in the diagram. Rectangles, each of

width 1
n , are drawn under the curve. Given that

n∑
k=0

xk = 1−xn+1

1−x , show that the

total area A of all n rectangles is given by 1
n

(
1

2
1
n−1

)
.

(b) Find the limit of A in exact form as n → ∞.

Let V be the volume of all n rectangles rotated about the x-axis.

(c) Find V in terms of n.

(d) State the limit of V in exact form as n → ∞.

Solution.

Part (a).

A =
n−1∑

k=0

2k/n

n
=

1

n

n−1∑

k=0

(
21/n

)k
=

1

n
· 1−

(
21/n

)n

1− 21/n
=

1

n

(
1− 2

1− 21/n

)
=

1

n

(
1

21/n − 1

)
.

Part (b).

lim
n→∞

A = lim
n→∞

1/n

21/n − 1
= lim

m→0

m

2m − 1
= lim

m→0

1

ln 2 · 2m =
1

ln 2
.

Part (c).

V = π

n−1∑

k=0

1

n

(
2k/n

)2
=

π

n

n−1∑

k=0

(
22/n

)k
=

π

n

(
1−

(
22/n

)n

1− 22/n

)

=
π

n

(
1− 4

1− 22/n

)
=

3π

n
(
41/n − 1

) .
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Part (d).

lim
n→∞

V = lim
n→∞

3π

n
(
41/n − 1

) = 3π lim
n→∞

1/n

41/n − 1
= 3π lim

m→0

m

4m − 1

= 3π lim
m→0

1

4m ln 4
= 3π

(
1

ln 4

)
=

3π

2 ln 2
.

∗ ∗ ∗ ∗ ∗

Problem 7. O is the origin and A is the point on the curve y = tanx where x = π/3.

(a) Calculate the area of the region R enclosed by the arc OA, the x-axis and the line
x = π/3, giving your answer in an exact form.

(b) The region S is enclosed by the arc OA, the y-axis and the line y =
√
3. Find the

volume of the solid of revolution formed when S is rotated through 360◦ about the
x-axis, giving your answer in an exact form.

(c) Find
∫ √

3
0 arctan y dy in exact form.

Solution.

S

R

A

π
3

√
3

O

x

y y = tanx

Part (a).

[R] =

∫ π/3

0
tanx dx = [ln secx]

π/3
0 = ln 2 units2.

Part (b).

Volume = π

∫ π/3

0

[(√
3
)2

− tan2 x

]
dx = π

∫ π/3

0

(
3− sec2 x+ 1

)
dx

= π [4x− tanx]
π/3
0 =

(
4π2

3
−
√
3π

)
units3.

Part (c). Observe that
∫ √

3
0 arctan y dy = [S] = [R ∪ S]− [R] = (π/3) ·

√
3− ln 2.

∗ ∗ ∗ ∗ ∗

Problem 8. A portion of the curve ay = x2, where a is a positive constant, is rotated
about the vertical axis Oy to form the curved surface of an open bowl. The bowl has a
horizontal circular base of radius r and a horizontal circular rim of radius 3r.
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(a) Prove that the depth of the bowl is 8r2

a .

(b) Find the volume of the bowl in terms of r and a.

(c) Given that the volume of the bowl is πa3

10 , find the depth of the bowl in terms of a
only.

Solution. Note that ay = x2 =⇒ y = x2

a .

r 3r

r2

a

(3r)2

a

O

x

y y = x2/a

Part (a).

Depth of bowl =
(3r)2

a
− r2

a
=

8r2

a
units.

Part (b).

Volume = π

∫ 9r2/a

r2/a
ay dy = π

[a
2
y2
]9r2/a
r2/a

=
aπ

2
· 80r

4

a2
=

40πr4

a
units3.

Part (c).

40πr4

a
=

πa3

10
=⇒ 400r4 = a4 =⇒ 20r2 = a2 =⇒ r2 =

1

20
a2.

Hence, the depth of the bowl is

8

a

(
1

20
a2
)

=
2

5
a units.
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Problem 9. The diagram shows the region R bounded by part of the curve C with
equation y = 3− x2, the y-axis and the line y = 2, lying in the first quadrant.

2

3

R

O

x

y C

Write down the equation of the curve obtained when C is translated by 2 units in the
negative y-direction.

Hence, or otherwise, show that the volume of the solid formed when R is rotated com-
pletely about the line y = 2 is given by π

∫ 1
0

(
1− 2x2 + x4

)
dx and evaluate this integral

exactly.

Solution. Clearly, C : y = 1− x2.
Note that 3− x2 = 2 =⇒ x = ±1, whence x = 1 since x > 0.

Volume = π

∫ 1

0

(
1− x2

)2
dx = π

∫ 1

0

(
1− 2x2 + x4

)
dx

= π

[
x− 2

3
x3 +

1

5
x5
]1

0

=
8

15
π units3.

∗ ∗ ∗ ∗ ∗

Problem 10. The diagram below shows a region R bounded by the curve (y+5)2 = x−3
and the line y = x − 10. Find the volume of solid formed when R is rotated four right
angles about

(a) the y-axis, and

(b) the x-axis.

R

O
x

y (y + 5)2 = x− 3
y = x− 10
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Solution.

Part (a). Consider the intersections between (y + 5)2 = x− 3 and y = x− 10.

(y + 5)2 = (x− 5)2 = x− 3 =⇒ x2 − 11x+ 28 = (x− 4)(x− 7) = 0.

Hence, x = 4 and x = 7, whence y = −6 and y = −3. Thus, the two curves intersect at
(4,−6) and (7,−3).
Note that (y + 5)2 = x− 3 =⇒ x = 3 + (y + 5)2 and y = x− 10 =⇒ x = y + 10.

Volume = π

∫ −3

−6

[
(y + 10)2 −

(
3 + (y + 5)2

)2]
dy = 130 units3 (3 s.f.).

Part (b). Note that

(y + 5)2 = x− 3 =⇒
{
y = −5 +

√
x− 3, y ≥ −5

y = −5−
√
x− 3, y < −5

Thus,

Volume = π

∫ 4

3

[(
−5−

√
x− 3

)2 −
(
−5 +

√
x+ 3

)2]
dx

+ π

∫ 7

4

[
(x− 10)2 −

(
−5 +

√
x− 3

)2]
dx = 127 units3 (3 s.f.).

∗ ∗ ∗ ∗ ∗

Problem 11. The curve C is defined by the following pair of parametric equations.

x = t− 1

t2
, y = 2− t2, t > 0.

Find the area of the finite region R enclosed by the curve C and the axes as well as the
volume of solid obtained when R is rotated about the x-axis through 4 right-angles.

Solution.

R

O

x

y C

Note that when x = 0, we have t = 1. Also note that when y = 0, we have t =
√
2,

whence x =
√
2− 1/2. Thus,

[R] =

∫ √
2−1/2

0
y dx =

∫ √
2

1

(
2− t2

) dx
dt

dt

=

∫ √
2

1

(
2− t2

)(
1 +

2

t3

)
dt = 0.526 units2 (3 s.f.).
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Also,

Volume = π

∫ √
2− 1

2

0
y2 dx = π

∫ √
2

1

(
2− t2

) dx
dt

dt

= π

∫ √
2

1

(
2− t2

)(
1 +

2

t3

)
dt = 1.19 units3 (3 s.f.).

∗ ∗ ∗ ∗ ∗

Problem 12. Find the area enclosed by the ellipse x = a cos t, y = b sin t, where a and
b are positive constants. Find also the volume of solid obtained when the region enclosed
by the ellipse is rotated through π radians about the x-axis.

Solution. By symmetry, we only need to consider the area of the ellipse in the first
quadrant. Note that x = 0 =⇒ t = π/2 and x = a =⇒ t = 0. Hence,

Area = 4

∫ a

0
y dx = 4

∫ 0

π/2
y · dx

dt
dt = 4

∫ 0

π/2
(b sin t)(−a sin t) dt = 4ab

∫ π/2

0
sin2 tdt

= 4ab

∫ π/2

0

1− cos 2t

2
dt = 2ab

[
t− sin 2t

2

]π/2

0

= πab units2.

Also,

Volume = 2π

∫ a

0
y2 dx = 2π

∫ 0

π/2
y2 · dx

dt
dt = 2π

∫ 0

π/2
(b sin t)2(−a sin t) dt

= 2πab2
∫ π/2

0
sin3 tdt = 2πab2

∫ π/2

0

3 sin t− sin 3t

4
dt

=
1

2
πab2

[
−3 cos t+

1

3
cos 3t

]π/2

0

=
4π

3
ab2 units3.

∗ ∗ ∗ ∗ ∗

Problem 13. Find the polar equation of the curve C with equation x5 + y5 = 5bx2y2,
where b is a positive constant. Sketch the part of the curve C where 0 ≤ θ ≤ π

2 . Show,
using polar coordinates, that the area A of the region enclosed by this part of the curve
is given by

A =
25b2

2

∫ π
2

0

sin4 θ cos4 θ

(cos5 θ + sin5 θ)2
dθ

By differentiating 1
1+tan5 θ

with respect to θ, or otherwise, find the exact value of A in
terms of b.

Solution.

x5 + y5 = 5bx2y2 =⇒ (r cos θ)5 + (r sin θ)5 = 5b(r cos θ)2(r sin θ)2

=⇒ r
(
cos5 θ + sin5 θ

)
= 5b cos2 θ sin2 θ =⇒ r =

5b cos2 θ sin2 θ

cos5 θ + sin5 θ
.
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O

θ = 0

θ = π
2 C

We have

A =
1

2

∫ π/2

0

(
5b cos2 θ sin2 θ

cos5 θ + sin5 θ

)2

dθ =
1

2

∫ π/2

0

25b2 cos4 θ sin4 θ
(
cos5 θ + sin5 θ

)2 dθ

=
25b2

2

∫ π/2

0

cos4 θ sin4 θ
(
cos5 θ + sin5 θ

)2 dθ.

Note that

d

dθ

1

1 + tan5 θ
= −5 tan4 θ sec2 θ

(1 + tan5 θ)
2 = −5

(
cos10 θ

cos5 θ + sin5 θ

)(
sin4 θ

cos6 θ

)
= − 5 cos4 θ sin4 θ

cos5 θ + sin5 θ
.

Hence,

A =
−5b2

2

∫ π/2

0
− 5 cos4 θ sin4 θ
(
cos5 θ + sin5 θ

)2 dθ = −5b2

2

[
1

1 + tan5 θ

]π/2

0

=
5b2

2
.

∗ ∗ ∗ ∗ ∗

Problem 14. The polar equation of a curve is given by r = eθ where 0 ≤ θ ≤ π/2.
Cartesian axes are taken at the pole O. Express x and y in terms of θ and hence find the
Cartesian equation of the tangent at

(
eπ/2, π/2

)
. The region R is bounded by the polar

curve, tangent and the x-axis. Find the exact area of the region R.

Solution. We have x = eθ cos θ and y = eθ sin θ. Thus,

dy

dx
=

dy/dθ

dx/dθ
=

eθ cos θ + eθ sin θ

−eθ sin θ + eθ cos θ
=

cos θ + sin θ

cos θ − sin θ
.

Hence,
dy

dx

∣∣∣∣
θ=π/2

=
cos(π/2) + sin(π/2)

cos(π/2)− sin(π/2)
= −1.

When θ = π/2, we have x = 0 and y = eπ/2. Hence, the tangent is given by

y − eπ/2 = −(x− 0) =⇒ y = −x+ eπ/2.

Thus,

[R] =
1

2

(
eπ/2

)(
eπ/2

)
− 1

2

∫ π/2

0

(
eθ
)2

dθ =
eπ

2
− 1

2

[
e2θ

2

]π/2

0

=
eπ + 1

4
units2.
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Problem 15.

O

t

v

The diagram shows the velocity-time graph of a particle moving in a straight line. The
equation of the curve shown is v = t(t− 10) where t seconds is the time and v ms−1 is the
velocity. The particle starts at a point A on the line when t = 0.
Calculate

(a) the distance travelled by the particle before coming to instantaneous rest, and

(b) the time at which the particle returns to A.

Solution.

Part (a). For instantaneous rest, v = 0. Hence, t(t − 10) = 0, whence t = 10. Note
that we reject t = 0 since t > 0. The distance travelled by the particle before coming to
instantaneous rest is hence

−
∫ 10

0
v dt = −

∫ 10

0
t(t− 10) dt = −

∫ 10

0

(
t2 − 10t

)
dt = −

[
t3

3
− 10t2

2

]10

0

=
500

3
m.

Part (b). When the particle returns to A, s = 0. Let the time at which the particle
returns to A be t0.

∫ t0

0
v dt =

∫ t0

0
t(t− 10) dt =

[
t30
3
− 10t20

2

]t0

0

=
1

3
t30 − 5t20 =

1

3
t20 (t0 − 15) = 0.

Thus, t0 = 15. Note that we reject t0 = 0 since t0 > 0. It hence takes the particle 15
seconds to return to A.
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Self-Practice B8

Problem 1.

(a) Find
∫
x sin2 x dx.

(b) The region R is bounded by the curve y =
√
x sinx, the lines x = 0 and x = π,

and the x-axis. Find the volume of the solid of revolution formed when R is rotated
through 4 right angles about the x-axis.

(c) Hence, calculate the volume of the solid of revolution formed when S is rotated
through 4 right angles about the x-axis, where S is the region bounded by the curve
y =

√
x sinx, the lines x = π and y =

√
π, and the y-axis.

∗ ∗ ∗ ∗ ∗

Problem 2. The diagram shows the curve C with the equation y2 = x
√
1− x. The region

enclosed by C is denoted by R.

0.5 1

−0.5

0.5

O
x

y y2 = x
√
1− x

(a) Write down an integral that gives the area of R, and evaluate this integral numeri-
cally.

(b) The part of R above the x-axis is rotated through 2π radians about the x-axis. By
using the substitution u = 1 − x, or otherwise, find the exact value of the volume
obtained.

(c) Find the exact x-coordinate of the maximum point of C.

∗ ∗ ∗ ∗ ∗

Problem 3.

(a) Find the exact value of
∫ 5π/3
0 sin2 x dx. Hence, find the exact value of

∫ 5π/3
0 cos2 x dx.

(b) The region R is bounded by the curve y = x2 sinx, the line x = 1
2π and the part of

the x-axis between 0 and 1
2π. Find

(i) the exact area of R,

(ii) the numerical value of the volume of revolution formed when R is rotated
completely about the x-axis, giving your answer correct to 3 decimal places.
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Problem 4. The diagram below shows the graphs of y = − 1√
9−2x2

and y = e|x|.

O

x

y
y = −1/

√
9− 2x2

y = e|x|

(a) The region A is bounded by the curves y = − 1√
9−2x2

and y = e|x|, and the lines

x = −1 and x = 2. Find the area of A, giving your answer to 3 significant figures.

(b) The region bounded by the curves y = − 1√
9−2x2

, y = e|x|, the y-axis and the line

x = 2 is rotated through 2π radians about the y-axis. Prove that the volume
generated is 2π

(
e2 + 2

)
.

∗ ∗ ∗ ∗ ∗

Problem 5.

(a) (i) The region S, is enclosed by the x-axis, the line x = 1 and the curve given by
the parametric equations

x = (1 + t)3/2, y = (1− t)1/2, t ∈ [0, 1].

Find the exact area of S.

(ii) Find also the volume of the solid obtained when the region S is rotated about
the y-axis.

(b) The region R is bounded by the curve y =
(
x−2
4−x

)1/4
, the line x = 2 and the line

y = 1. By using the substitution x = 2
(
1 + cos2 θ

)
, or otherwise, find the exact

volume of the solid generated when R is rotated through four right angles about the
x-axis.

∗ ∗ ∗ ∗ ∗

Problem 6. The diagram shows the region R in the first quadrant bounded by the curve
C with equation y =

√
x + 2√

x
and the line y = 3. The line and the curve intersect at

the points (1, 3) and (4, 3). Calculate the exact area of R. Write down the equation of
the curve obtained when C is translated by 3 units in the negative y-direction. Hence, or
otherwise, show that the volume of the solid formed when R is rotated completely about
the line y = 3 is given by

π

∫ 4

1

(
x− 6

√
x+ 13− 12√

x
+

4

x

)
dx,

and evaluate this integral exactly.
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1 4

3
R

O

x

y C

∗ ∗ ∗ ∗ ∗

Problem 7. The diagram shows the circle, centre O and radius r, with equation x2+y2 =
r2. The points A, B, C, D on the circle form a rectangle with sides parallel to the axes.
∠AOD = ∠BOC = 2α. The region bounded by the line AB, the line DC and the circular
arc BC and AD is rotated about the x-axis to form a solid of rotation S.

A B

CD

r

α

O

x

y

(a) Show that the volume obtained by rotating the shaded part of the region about the
x-axis is 1

3πr
3
(
cos3 α− 3 cosα+ 2

)
.

(b) Show that the total volume of S is 4
3πr

3
(
1− cos3 α

)
.

(c) Given that the volume of S is half the volume of a sphere of radius r, find the value
of α.

∗ ∗ ∗ ∗ ∗

Problem 8. An ellipse E has equation x2

a2
+ y2

b2
= 1, where a and b are positive constants.

Show that the area A of the region enclosed by E is given by A = 4b
a

∫ a
0

√
(a2 − x2) dx.

By using the substitution x = a sin θ, or otherwise, find the value of A in terms of a, b,
and π. Show on a sketch the region R of points inside the ellipse E such that x > 0 and
y < x. Given that a2 = 3b2, find the area of R in terms of a and π.

∗ ∗ ∗ ∗ ∗

Problem 9. Sketch the polar curve r = a(1− sin 2θ), where a > 0 and 0 ≤ θ < 2π. Prove
that the area enclosed by each loop of the curve is 3

4πa
2.
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Problem 10. The diagram shows the curves C1 and C2 whose respective polar equations
are

r = cos 3θ, (0 ≤ θ ≤ 2π)

r = 1 +
1

2
cos θ. (0 ≤ θ ≤ 2π)

R

O

θ = 0

θ = π
2 C1

C2

R is the region bounded by the curve C2 and one loop of the curve C1. Find the area of
the region R.

∗ ∗ ∗ ∗ ∗

Problem 11. The curve with polar equation r2 = a2 sin θ(1+ 2 cos θ), where r ≥ 0 and a
is a positive constant, is shown. Show that the area of the larger loop is nine times that
of the smaller loop.

O

θ = 0

θ = π
2 r2 = a2 sin θ (1 + 2 cos θ)

∗ ∗ ∗ ∗ ∗

Problem 12. The diagram shows a sketch of the graph of y = 1/
√
x.
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n− 1 nO

x

y y = 1/
√
x

By considering the shaded rectangle, and the area of the region between the graph and
the x-axis for n− 1 ≤ x ≤ n, where n ≥ 1, show that

1√
n
< 2

(√
n−

√
n− 1

)
.

Deduce that

1 +
1√
2
+

1√
3
+ · · ·+ 1√

n
< 2

√
n.

Show also that
1√
n
> 2

(√
n+ 1−√

n
)
.

Deduce that

1 +
1√
2
+

1√
3
+ · · ·+ 1√

n
> 2

√
n+ 1− 2.

Hence, find a value of N for which

1 +
1√
2
+

1√
3
+ · · ·+ 1√

N
> 1000.
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Assignment B8

Problem 1. The diagram shows the region R, which is bounded by the axes and the part
of the curve y2 = 4a(a− x) lying in the first quadrant.

Find, in terms of a, the volume, Vx, of the solid formed when R is rotated completely
about the x-axis.
The volume of the solid formed when R is rotated completely about the y-axis is Vy.

Show that Vy = 8
15Vx.

The region S, lying in the first quadrant, is bounded by the curve y2 = 4a(a − x) and
the lines x = a and y = 2a. Find, in terms of a, the volume of the solid formed when S is
rotated completely about the y-axis.

a

2a

R

S

O

x

y y2 = 4a(a− x)

Solution.

Vx = π

∫ a

0
y2 dx = π

∫ a

0
4a(a− x) dx = 4πa

[
ax− 1

2
x2
]a

0

= 2πa3 units3.

Note that

x = a− y2

4a
=⇒ x2 =

(
a− y2

4a

)2

= a2 − 1

2
y2 +

1

16a2
y4.

Hence,

Vy = π

∫ 2a

0
x2 dy = π

∫ 2a

0

(
a2 − 1

2
y2 +

1

16a2
y4
)

dy

= π

[
a2y − 1

2

(
y3

3

)
+

1

16a2

(
y5

5

)]2a

0

=
16

15
πa3 =

8

15
Vx.

We have

Volume = Volume of cylinder− Vy = π
(
a2
)
(2a)− 16

15
πa3 =

14

15
πa3 units3.
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Problem 2. The region bounded by the axes and the curve y = cosx from x = 0 to
x = 1

2π is divided into two parts, of areas A1 and A2, by the curve y = sinx.

(a) Prove that A2 =
√
2A1.

(b) Find the volume of the solid obtained when the region with area A2 is rotated about
the y-axis through 2π radians. Give your answer in exact form.

π/2

A1

A2

O

x

y y = cosx
y = sinx

Solution.

Part (a).

π/2π/4

A1

A3 A4

O

x

y y = cosx
y = sinx

Let A3 and A4 be the areas as defined on the diagram above. By the symmetry of
y = sinx and y = cosx about x = π/4, we have A3 = A4.

A3 =

∫ π/4

0
sinx dx = [− cosx]

π/4
0 = 1−

√
2

2
.

Hence,

A1 =

∫ π/4

0
cosx dx−A3 = [sinx]

π/4
0 −

(
1−

√
2

2

)
=

√
2

2
− 1 +

√
2

2
=

√
2− 1.

Thus,

A2 = 2A3 = 2

(
1−

√
2

2

)
=

√
2
(√

2− 1
)
=

√
2A1.
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Part (b). Let V3 and V4 be the volumes of the solids obtained when A3 and A4 are rotated
about the y-axis through 2π radians, respectively.

V3 = 2π

∫ π/4

0
xy dx = 2π

∫ π/4

0
x sinx dx.

Integrating by parts,

D I

+ x sinx
− 1 − cosx
+ 0 − sinx

Thus,

V3 = 2π [−x cosx+ sinx]
π/4
0 =

√
2π
(
1− π

4

)
.

Also,

V4 = 2π

∫ π/2

π/4
xy dx = 2π

∫ π/2

π/4
x cosx dx.

Integrating by parts,

D I

+ x cosx
− 1 sinx
+ 0 − cosx

Thus,

V4 = 2π [x sinx+ cosx]
π/2
π/4 = π2 −

√
2π
(
1 +

π

4

)
.

Hence, the required volume is

V3 + V4 =
√
2π
(
1− π

4

)
+ π2 −

√
2π
(
1 +

π

4

)
= π2

(
1−

√
2

2

)
units3.
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Problem 3. A curve has parametric equations

x = cos2 t, y = sin3 t, 0 ≤ t ≤ 1

2
π.

(a) Sketch the curve.

(b) Show that the area under the curve for 0 ≤ t ≤ 1
2π is 2

∫ π/2
0 cos t sin4 t dt, and find

the exact value of the area.

(c) Find the volume of the solid obtained when the region in (b) is rotated about the
y-axis through 2π radians.

Solution.

Part (a).

1

1

O

x

y x = cos2 t, y = sin3 t

Part (b). Note that x = 0 =⇒ t = π
2 and x = 1 =⇒ t = 0. Hence,

Area =

∫ 1

0
y dx =

∫ 0

π/2
y
dx

dt
dt =

∫ 0

π/2
sin3 t(−2 cos t sin t) dt = 2

∫ π/2

0
cos t sin4 t dt

= 2

[
sin5 t

5

]π/2

0

=
2

5
units2.

Part (c).

Volume = 2π

∫ 1

0
xy dx = 2π

∫ 0

π/2
cos2 t sin3 t(−2 cos t sin t) dt = 4π

∫ π/2

0
cos3 t sin4 t dt

= 4π

∫ π/2

0
sin4 t

(
1− sin2 t

)
cos t dt = 4π

∫ π/2

0

(
sin4 t− sin6 t

)
cos tdt

= 4π

[
sin5 t

5
− sin7 t

7

]π/2

0

=
8π

35
units3.

∗ ∗ ∗ ∗ ∗

Problem 4.

(a) Given that f is a continuous function, explain, with the aid of a sketch, why the
value of

lim
n→∞

1

n

[
f

(
1

n

)
+ f

(
2

n

)
+ . . .+ f

(n
n

)]

is
∫ 1
0 f(x) dx.
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(b) Hence, evaluate limn→∞ 1
n

(
3√1+ 3√2+...+ 3√n

3√n

)
.

Solution.

Part (a).

1
n

2
n

3
n

4
n

n−1
n

n
n

. . .

O

x

y y = f(x)

The area of the rectangles in the above figure is given by

1

n

[
f

(
1

n

)
+ f

(
2

n

)
+ . . .+ f

(n
n

)]
.

This gives an approximation of the signed area under the curve from x = 1
n to x = n

n = 1.
As n → ∞, the widths of the rectangles become smaller and the approximation becomes
exact. Hence,

lim
n→∞

1

n

[
f

(
1

n

)
+ f

(
2

n

)
+ . . .+ f

(n
n

)]
=

∫ 1

0
f(x) dx.

Part (b).

lim
n→∞

1

n

(
3
√
1 + 3

√
2 + . . .+ 3

√
n

3
√
n

)
= lim

n→∞
1

n

[
3

√
1

n
+

3

√
2

n
+ . . .+ 3

√
n

n

]

=

∫ 1

0

3
√
x dx =

[
x4/3

4/3

]1

0

=
3

4
.

∗ ∗ ∗ ∗ ∗

Problem 5. The function f satisfies f ′(x) > 0 for a ≤ x ≤ b, and g is the inverse of f .
By making a suitable change of variable, prove that

∫ b

a
f(x) dx = bβ − aα−

∫ β

α
g(y) dy

where α = f(a) and β = f(b). Interpret this formula geometrically by means of a sketch
where α and a are positive. Verify this result for the case where f(x) = e2x, a = 0, b = 1.
Prove similarly and interpret geometrically the formula

2π

∫ b

a
xf(x) dx = π(b2β − a2α)− π

∫ β

α
[g(y)]2 dy.
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Solution. Observe that y = f(x) =⇒ dy = f ′(x) dx. Hence,

∫ β

α
g(y) dy =

∫ b

a
f−1(f(x))f ′(x) dx =

∫ b

a
xf ′(x) dx.

Integrating by parts,

D I

+ x f ′(x)
− 1 f(x)

Hence, ∫ β

α
g(y) dy = [xf(x)]ba −

∫ b

a
f(x) dx = bβ − aα−

∫ b

a
f(x) dx.

Thus, ∫ b

a
f(x) dx = bβ − aα−

∫ β

α
g(y) dy.

a b

α

β

A
C B

D

O

x

y y = f(x)

Consider the above diagram. We clearly have [A ∪ C] = aα, [A ∪ B ∪ C ∪ D] = bβ,

[B] =
∫ b
a f(x) dx and [D] =

∫ β
α g(y) dy. Thus,

∫ b

a
f(x) dx = [B] = [A ∪B ∪ C ∪D]− [A ∪ C]− [D] = bβ − aα−

∫ β

α
g(y) dy.

Using the standard way, we get

∫ 1

0
e2x dx =

[
1

2
e2x
]1

0

=
e2 − 1

2
.

We now use the formula. Let f(x) = e2x. Then g(x) = 1
2 lnx. Hence, α = g(0) = 1 and

β = g(1) = e2. Invoking the above formula,

∫ 1

0
e2x dx = 1

(
e2
)
− 0(1)−

∫ e2

1

1

2
lnx dx = e2 − 1

2
[x lnx− x]e

2

1 =
e2 − 1

2
.

Hence, the formula holds for the above case.
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Similar to the above part, we have

∫ β

α
[g(y)]2 dy =

∫ β

α

[
f−1(f(x))

]2
f ′(x) dx =

∫ b

a
x2f ′(x) dx.

Integrating by parts,

D I

+ x2 f ′(x)
− 2x f(x)

Thus,

∫ β

α
[g(y)]2 dy =

[
x2f(x)

]b
a
− 2

∫ b

a
xf(x) dx = b2β − a2α− 2

∫ b

a
xf(x) dx.

Rearranging,

2π

∫ b

a
xf(x) dx = π

(
b2β − a2α

)
− π

∫ β

α
[g(y)]2 dy.

a b

α

β

A
C B

D

O

x

y y = f(x)

Let V (R) represent the volume of the solid obtained when a region R is rotated completely
about the y-axis.

We clearly have V (A ∪ B ∪ C ∪D) = πb2β, V (A ∪ C) = πa2α, V (B) = 2π
∫ b
a xf(x) dx

(using the shell method), and V (D) = π
∫ β
α [g(y)]2 dy (using the disc method). Thus,

2π

∫ b

a
xf(x) dx = V (B) = V (A ∪B ∪ C ∪D)− V (A ∪ C)− V (D)

= πb2β − πa2α− π

∫ β

α
[g(y)]2 dy = π

(
b2β − a2α

)
− π

∫ β

α
[g(y)]2 dy.
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B9 Applications of Integration II - Arc
Length and Surface Area

Tutorial B9

Problem 1. Calculate the exact length of each of the arcs of the following curves.

(a) y3 = x2 for −1 ≤ x ≤ 1.

(b) x = t2 − 1, y = t3 + 1 from t = 0 to t = 1.

(c) r = a cos θ from θ = 0 to θ = π/2.

Solution.

Part (a). Note that

y3 = x2 =⇒ y = x2/3 =⇒ dy

dx
=

2

3
x−1/3.

Hence, √
1 +

(
dy

dx

)2

=

√
1 +

(
2

3
x−1/3

)2

=

√
1 +

4

9
x−2/3.

Thus,

Length =

∫ 1

−1

√
1 +

(
dy

dx

)2

dx =

∫ 1

−1

√
1 +

4

9
x−2/3 dx = 2

∫ 1

0

√
1 +

4

9
x−2/3 dx

= 3

∫ 1

0

2

3
x−1/3

√
x2/3 +

4

9
dx = 3

[
2

3

(
x2/3 +

4

9

)3/2
]1

0

=
2

27

(
13
√
13− 8

)
units.

Part (b). Since the arc length of a curve is invariant under translation, it suffices to find
the arc length of the curve with parametric equations x = t2, y = t3, 0 ≤ t ≤ 1. The
Cartesian equation of this curve is y = x3/2, 0 ≤ x ≤ 1, which is the inverse of y = x2/3,
0 ≤ x ≤ 1. From part (a), the required arc length is

1

2
· 2

27

(
13
√
13− 8

)
=

1

27

(
13
√
13− 8

)
units.

Part (c). Since r = a cos θ, 0 ≤ θ ≤ π/2 describes the top half of a circle with centre
(a/2, 0) and diameter a, the arc length of the curve is πa/2 units.

∗ ∗ ∗ ∗ ∗

Problem 2. Find the exact areas of the surfaces generated by completely rotating the
following arcs about the (i) x-axis and (ii) y-axis.

(a) The line 2y = x between the origin and the point (4, 2).

(b) The curve x = t3 − 3t+ 2, y = 3
(
t2 − 1

)
, t ∈ R from t = 1 to t = 2.
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Solution.

Part (a).

Part (a)(i). When rotated about the x-axis, the curve forms a cone with slant height√
42 + 22 = 2

√
5 and radius 2. Hence, the required surface area is π(2)(2

√
5) = 4

√
5π

units2.

Part (a)(ii). When rotated about the y-axis, the curve forms a cone with slant height√
42 + 22 = 2

√
5 and radius 4. Hence, the required surface area is π(4)(2

√
5) = 8

√
5π

units2.

Part (b). Note that
dx

dt
= 3t2 − 3,

dy

dt
= 6t.

Hence,
√(

dx

dt

)2

+

(
dy

dt

)2

=

√
(3t2 − 3)2 + (6t)2 =

√
(3t2 + 3)2 = 3t2 + 3.

Part (b)(i).

Area = 2π

∫ 2

1
y

√(
dx

dt

)2

+

(
dy

dt

)2

dt = 2π

∫ 2

1
3
(
t2 − 1

) (
3t2 + 3

)
dt

= 18π

∫ 2

1

(
t4 − 1

)
dt = 18π

[
1

5
t5 − t

]2

1

=
468

5
π units2.

Part (b)(ii).

Area = 2π

∫ 2

1
x

√(
dx

dt

)2

+

(
dy

dt

)2

dt = 2π

∫ 2

1

(
t3 − 3t+ 2

) (
3t2 + 3

)
dt

= 6π

∫ 2

1

(
t5 − 2t3 + 2t2 − 3t+ 2

)
dt = 6π

[
1

6
t6 − 2

4
t4 − 2

3
t3 − 3

2
t2 + 2t

]2

1

= 31π units2.

∗ ∗ ∗ ∗ ∗

Problem 3. The section of the curve y = ex between x = 0 and x = 1 is rotated through
one revolution about

(a) the x-axis.

(b) the y-axis.

Find the numerical values of the areas of the surfaces obtained.

Solution.

Part (a).

Area = 2π

∫ 1

0
y

√
1 +

(
dy

dx

)2

dx = 2π

∫ 1

0
ex
√

1 + e2x dx = 22.9 units2 (3 s.f.).

Part (b). Note that y = ex =⇒ x = ln y and dy
dx = ex =⇒ dx

dy = e−x.

Area = 2π

∫ e

1
x

√
1 +

(
dx

dy

)2

dy = 2π

∫ 1

0
ln y

√
1 + e−2x dx = 7.05 units2 (3 s.f.).
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Problem 4. The curve y2 = 1
3x(1− x)2 has a loop between x = 0 and x = 1. Prove that

the total length of the loop is 4
√
3

3 .

Solution. Since the curve is even with respect to y, it is symmetric about the x-axis. We
thus only consider the part of the curve above the x-axis, i.e. y ≥ 0, where y = (1−x)

√
x/3.

Differentiating,

dy

dx
=

1√
3

(
−√

x+
1− x

2
√
x

)
=

1− 3x

2
√
3x

=⇒ 1 +

(
dy

dx

)2

= 1 +
(1− 3x)2

12x
=

(1 + 3x)2

12x
.

Thus,

Length = 2

∫ 1

0

√
1 +

(
dy

dx

)2

dx = 2

∫ 1

0

1 + 3x√
12x

dx =
1√
12

[
x1/2

1/2
+

3x3/2

3/2

]1

0

=
4
√
3

3
units.

∗ ∗ ∗ ∗ ∗

Problem 5. The tangent at a point P on the curve x = a
(
t− 1

3 t
3
)
, y = at2 cuts the

x-axis at T . Prove that the distance of the point T from the origin O is half the length of
the arc OP .

Solution. Let P be the point on the curve with parameter t = tP . Note that

dx

dt
= a

(
1− t2

)
,

dy

dt
= 2at.

Thus, (
dx

dt

)2

+

(
dy

dt

)2

=
[
a
(
1− t2

)]2
+ (2at)2 = a2

(
t2 + 1

)2
.

Thus,

Length of arc OP =

∫ tP

0

√(
dx

dt

)2

+

(
dy

dt

)2

dt = a

∫ tP

0

(
t2 + 1

)
dt

= a

[
t3

3
+ t

]tP

0

= a

(
t3P
3

+ tP

)
units.

Note that
dy

dx
=

dy/dt

dx/dt
=

2at

a (1− t2)
=

2t

1− t2
.

Hence, the equation of the tangent at P is given by

y − at2P =
2tP

1− t2P

[
x− a

(
tP − t3P

3

)]
.

At T , x = OT and y = 0. Hence,

0− at2P =
2tP

1− t2P

[
OT − a

(
tP − t3P

3

)]
,

whence

OT =
−at2P

(
1− t2P

)

2tP
+ a

(
tP − t3P

3

)
=

a

2

[(
−tP + t3P

)
+

(
2tP − 2t3P

3

)]

=
a

2

(
t3P
3

+ tP

)
=

OP

2
.
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Problem 6. Sketch the curve whose parametric equations are x = a cos3 θ, y = a sin3 θ,
a > 0.

(a) Find the total length of the curve.

(b) The portion of the curve in the first quadrant is revolved through four right angles
about the x-axis. Prove that the area of the surface thus formed is 6

5πa
2.

Solution.

−a a

−a

a

O

x

y x = a cos3 θ, y = a sin3 θ

Part (a). By symmetry, we only consider the length of the curve in the first quadrant.
Note that x = 0 =⇒ θ = π/2 and x = a =⇒ θ = 0. Also,

dx

dθ
= −3a cos2 θ sin θ,

dy

dθ
= 3a sin2 θ cos θ.

Hence,

(
dx

dθ

)2

+

(
dy

dθ

)2

= (−3a cos2 θ sin θ)2 + (3a sin2 θ cos θ)2

= 9a2
(
cos4 θ sin2 θ + sin4 θ cos2 θ

)
= (3a cos θ sin θ)2 .

Thus,

Length = 4

∫ π/2

0

√(
dx

dθ

)2

+

(
dy

dθ

)2

dθ = 12a

∫ π/2

0
cos θ sin θ dθ

= 12a

[
sin2 θ

2

]π/2

0

= 6a units.

Part (b).

Area = 2π

∫ π/2

0
x

√(
dx

dθ

)2

+

(
dy

dθ

)2

dθ = 2π

∫ π/2

0
a cos3 θ (3a cos θ sin θ) dt

= 6πa2
∫ π/2

0
sin θ cos4 θ dθ = 6πa2

[
−cos5 θ

5

]π/2

0

=
6

5
πa2 units2.
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Problem 7. The parametric equations of a curve are given by

x = tan t− t, y = ln sec t, t ∈
(
−π

2
,
π

2

)
.

(a) Sketch the curve.

(b) Prove that the arc length of the curve measured from the origin to the point(
1− π

4 ,
1
2 ln 2

)
is

√
2− 1.

(c) The arc in (b) is rotated about the x-axis through an angle of 360◦. Find the exact
surface area formed.

Solution.

Part (a).

O

x

y x = tan t− t, y = ln sec t

Part (b). Note that x = 0 =⇒ t = 0 and x = 1− π/4 =⇒ = t = π/4. Further,

dx

dt
= sec2 t− 1 = tan2 t,

dy

dt
= tan t.

Thus,

(
dx

dt

)2

+

(
dy

dt

)2

=
(
tan2 t

)2
+ (tan t)2 = tan2 t

(
tan2 t+ 1

)
= tan2 t sec2 t.

Hence,

Length =

∫ π/4

0

√(
dx

dt

)2

+

(
dy

dt

)2

dt =

∫ π/4

0
tan t sec tdt = [sec t]

π/4
0 =

√
2− 1 units.

Part (c). We have

Area = 2π

∫ π/4

0
y

√(
dx

dt

)2

+

(
dy

dt

)2

dt = 2π

∫ π/4

0
ln sec t · tan t sec tdt.

Integrating by parts,

D I

+ ln sec t tan t sec t
− tan t sec t



Tutorial B9 815

Thus,

Area = 2π

[
[sec t ln sec t]

π/4
0 −

∫ π/4

0
tan t sec t dt

]
= 2π

[√
2 ln

√
2−

(√
2− 1

)]

=
√
2π
(
ln 2− 2 +

√
2
)

units2.

∗ ∗ ∗ ∗ ∗

Problem 8.

S S

H H

O

x

y

The diagram shows a cable for a suspension bridge, which has the shape of a parabola
with equation y = kx2. The suspension bridge has a total span 2S and the height of the
cable relative to the lowest point is H at each end. Show that the total length of the cable

is L = 2
∫ S
0

√
1 + 4H2

S4 x2 dx.

(a) Engineers from country A proposed a suspension bridge across a strait of 8 km wide
to country B. The plan included suspension towers 380 m high at each end. Find
the length of the parabolic cable for this proposed bridge to the nearest metre.

(b) By using the result d
dx ln

(
x+

√
a2 + x2

)
= 1√

a2+x2
or otherwise, find L in terms of

S and H.

Solution. By symmetry, we only need to consider the length of the curve where x ≥ 0.
Since (S,H) is on the curve, H = kS2 =⇒ k = H

S2 . Note that

y = kx2 =⇒ dy

dx
= 2kx =

2H

S2
x.

Hence,

L = 2

∫ S

0

√
1 +

(
dy

dx

)2

dx = 2

∫ S

0

√
1 +

4H2

S4
x2 dx.

Part (a). Note that 2S = 8000 =⇒ S = 4000 and H = 380. Hence,

L = 2

∫ 4000

0

√
1 +

4(380)2

(4000)4
x2 dx = 8048 (to the nearest integer).

The bridge is thus 8048 m long.
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Part (b). Consider the integral I =
∫ √

1 + (kx)2 dx. Under the substitution kx = tan θ,
we get

I =

∫ √
1 + (kx)2 dx =

1

k

∫ √
1 + tan2 θ sec2 θ dθ =

1

k

∫
sec3 θ dθ.

Integrating by parts,

D I

+ sec θ sec2 θ
− sec θ tan θ tan t

Hence,

kI = sec θ tan θ −
∫

sec θ tan2 θ dθ = sec θ tan θ −
∫

sec θ
(
sec2 θ − 1

)
dθ

= sec θ tan θ −
∫

sec3 θ dθ +

∫
sec θ dθ = sec θ tan θ − kI + ln |sec θ + tan θ| .

Thus,

I =
sec θ tan θ + ln |sec θ + tan θ|

2k
+ C =

1

2k

[
kx
√

(kx)2 + 1 + ln
∣∣∣
√
(kx)2 + 1 + kx

∣∣∣
]
+ C.

In our case, k = 2H
S2 > 0. Hence,

L = 2


1
2

(
S2

2H

)

(
2H

S2
x

)√(
2H

S2
x

)2

+ 1 + ln



√(

2H

S2
x

)2

+ 1 +
2H

S2
x







S

0

=
S2

2H



(
2H

S

)√(
2H

S

)2

+ 1 + ln



√(

2H

S

)2

+ 1 +
2H

S






=
√
4H2 + S2 +

S2

2H
ln

(√
4H2 + S2 + 2H

S

)
.

∗ ∗ ∗ ∗ ∗

Problem 9. Sketch the semicircle with equation x2 + (y − b)2 = a2, y ≥ b where a and b
are positive constants.
A solid is formed by rotating the region bounded by the semicircle and its diameter on

the line y = b about the x-axis through 4 right angles. Find the total surface area of the
solid.

Solution.

−a a

b

O

x

y x2 + (y − b)2 = a2
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Observe that
x2 + (y − b)2 = a2 =⇒ y = b+

√
a2 − x2,

whence
dy

dx
=

−2x

2
√
a2 − x2

= − x√
a2 − x2

.

Thus,

1 +

(
dy

dx

)2

= 1 +
x2

a2 − x2
=

a2

a2 − x2
.

Hence,

Area = 2π

∫ a

−a
y

√
1 +

(
dy

dx

)2

dx+ 2π(b)(2a) = 4π

∫ a

0
y

√
1 +

(
dy

dx

)2

dx+ 4πab

= 4π

∫ a

0

(
b+

√
a2 − x2

)( a√
a2 − x2

)
dx+ 4πab = 4πa

∫ a

0

(
b√

a2 − x2
+ 1

)
dx+ 4πab

= 4πa
[
b arcsin

x

a
+ x
]a
0
+ 4πab =

(
2π2ab+ 4πa2 + 4πab

)
units2

∗ ∗ ∗ ∗ ∗

Problem 10. Using polar coordinates with pole O, the curve C has the equation r =
aeθ/k, where a and k are positive constants and 0 ≤ θ ≤ 2π. The points A and B on the
curve corresponds to θ = 0 and θ = β respectively where 0 < β < π. The length of the
arc AB is denoted by q and the area of the sector OAB is denoted by Q.

(a) Show that Q = 1
4ka

2
(
e2β/k − 1

)
.

(b) Show that q = a(1 + k2)1/2
(
eβ/k − 1

)
.

(c) Deduce from the results of parts (a) and (b) that, for large values of k, Q
q ≈ 1

2a.

(d) Draw a sketch of C for the case where k is large and explain how the result in part
(c) can be deduced from the sketch.

Solution.

Part (a).

Q =
1

2

∫ β

0
r2 dθ =

a2

2

∫ β

0
e2θ/k dθ =

a2

2

[
e2θ/k

2/k

]β

0

=
a2k

4

(
e2β/k − 1

)
.

Part (b). Note that

r = aeθ/k =⇒ dr

dθ
=

aeθ/k

k
=

r

k
.

Hence,

q =

∫ β

0

√
r2 +

(
dr

dθ

)2

dθ =

∫ β

0

√
r2 +

r2

k2
dθ =

√
1 + k−2

∫ β

0
r dθ

=
√
1 + k−2

∫ β

0
aeθ/k dθ = a

√
1 + k−2

[
eθ/k

1/k

]β

0

= a
√
k2 + 1

(
eβ/k − 1

)
.
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Part (c).

lim
k→∞

Q

q
= lim

k→∞

1
4a

2k
(
e2β/k − 1

)

a
√
k2 + 1

(
eβ/k − 1

) =
a

4
lim
k→∞

(
k√

k2 + 1

)
lim
k→∞

(
e2β/k − 1

eβ/k − 1

)
.

Now observe that

lim
k→∞

(
k√

k2 + 1

)
= lim

k→∞
1

1 + k−2
= 1,

and by the difference of squares identity,

lim
k→∞

(
e2β/k − 1

eβ/k − 1

)
= lim

k→∞

(
eβ/k + 1

)
= 2.

Hence,

lim
k→∞

Q

q
=

a

2
.

Part (d). Note that
lim
k→∞

r = lim
k→∞

aeθ/k = a.

A

B

β

O

θ = 0

θ = π
2

r = a

As k → ∞, the curve becomes a circle. Hence, Q is the area of a sector with angle β,
and q is the arc length of a sector with angle β. Thus,

Q

q
=

(
β

2π
· πa2

)/(
β

2π
· 2πa

)
=

a

2
.
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Self-Practice B9

Problem 1. The arc of the curve y2 = 4ax, for which y ≥ 0 and 0 ≤ x ≤ a, is rotated
through 2π radians about the x-axis. Prove that the area of the surface so generated is
8
3(2

√
2− 1)πa2.

Solution. Note that y =
√
4ax, so dy/dx =

√
a/x, hence the surface area of the solid

generated is given by

Area = 2π

∫ a

0
y

√
1 +

(
dy

dx

)2

dx = 2π

∫ a

0

√
4ax

√
1 +

a

x
dx = 4π

√
a

∫ a

0

√
x+ adx

= 4π
√
a

[
2

3
(x+ a)3/2

]a

0

=
8

3
π
√
a
[
(2a)3/2 − a3/2

]
=

8

3

(
2
√
2− 1

)
πa2 units2.

∗ ∗ ∗ ∗ ∗

Problem 2. The area bounded by the ellipse with parametric equations x = 3 cos θ, y =
2
√
2 sin θ and the positive x- and y-axis is rotated completely about the y-axis. Find the

curved surface area of the solid.

Solution. Note that dx/dθ = −3 sin θ and dy/dθ = 2
√
2 cos θ, so the surface area of the

solid is

2π

∫ π/2

0
x

√(
dx

dθ

)2

+

(
dy

dθ

)2

dθ = 2π

∫ π/2

0
(3 cos θ)

√
9 sin2 θ + 8 cos2 θ dθ = 54.4 units2.

∗ ∗ ∗ ∗ ∗

Problem 3. A curve is defined parametrically by x = 2
√
2a sin θ, y = 1

2a sin 2θ.
Show that (

dx

dθ

)2

+

(
dy

dθ

)2

= a2 (2 + cos 2θ)2 .

The portion of the curve from θ = 0 to θ = π/3 is rotated completely about the x-axis.
Find the exact surface area generated.

Solution. Note that

dx

dθ
= 2

√
2a cos θ and

dy

dθ
= a cos 2θ,

so
(
dx

dθ

)2

+

(
dy

dθ

)2

= 8a2 cos2 θ+α2 cos2 2θ = a2
(
4 + 4 cos 2θ + cos2 2θ

)
= a2 (cos 2θ + 2)2 .

The surface area generated is

Area = 2π

∫ π/3

0
y

√(
dx

dθ

)2

+

(
dy

dθ

)2

dθ = 2π

∫ π/3

0

1

2
a2 sin 2θ (cos 2θ + 2) dθ

= πa2
∫ π/3

0

(
1

2
sin 4θ + 2 sin 2θ

)
dθ = πa2

[
−1

8
cos 4θ − cos 2θ

]π/3

0

=
27

16
πa2 units2.

∗ ∗ ∗ ∗ ∗

Problem 4. A curve is defined parametrically by x = t2 − 2 ln t, y = 4(t − 1), where
t ∈ R, t ≥ 1.
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(a) The points A and B on the curve are given by t = 1 and t = 2 respectively. Show
that the length of the arc AB of the curve is 3 + 2 ln 2.

(b) The arc AB is rotated through one revolution about the x-axis. Show that the area
of the curved surface generated is 8

3π(11− 6 ln 2).

Solution.

Part (a). Note that dx/dt = 2t− 2/t and dy/dt = 4, so
(
dx

dθ

)2

+

(
dy

dθ

)2

=

(
2t− 2

t

)2

+ 42 =

(
2t+

2

t

)2

.

Thus, the arc length AB is given by

AB =

∫ 2

1

√(
dx

dθ

)2

+

(
dy

dθ

)2

dt =

∫ 2

1

(
2t+

2

t

)
dt =

[
t2 + 2 ln t

]2
1
= 3 + 2 ln 2 units.

Part (b). The surface area of the solid generated is given by

Area = 2π

∫ 2

1
y

√(
dx

dθ

)2

+

(
dy

dθ

)2

dt = 8π

∫ 2

1
(t− 1)

(
2t+

2

t

)
dt

= 16π

∫ 2

1
bpt2 − t+ 1− 1

t
dt = 16π

[
1

3
t3 − 1

2
t2 + t− ln t

]2

1

=
8π

3
(11− 6 ln 2) units2.

∗ ∗ ∗ ∗ ∗

Problem 5. The curve Γ has polar equation r = keθ, where k is a positive constant and
0 ≤ θ ≤ π. The points P and Q on Γ correspond to θ = α and θ = β respectively (β > α).
The area of the region bounded by the lines θ = α, θ = β and the arc PQ is denoted by
A. The length of the arc PQ is denoted by s.

(a) Find expressions for A and s in terms of α, β and k.

(b) Deduce that
A

s2
=

1

8

(
eβ + ea

eb − ea

)
.

Solution.

Part (a). We have

A =
1

2

∫ β

α
r2 dθ =

1

2

∫ β

α
k2e2θ dθ =

1

2
k2
[
1

2
e2θ
]β

α

=
1

4
k2
(
e2β − e2α

)
units2.

Note that dr/dθ = keθ = r, so

s =

∫ β

α

√
r2 +

(
dr

dθ

)2

dθ =

∫ β

α

√
r2 + r2 dθ =

√
2

∫ β

α
r dθ

=
√
2

∫ β

α
keθ dt =

√
2k
[
eθ
]β
α
=

√
2k
(
eβ − eα

)
units.

Part (b). We have

A

s2
=

1
4k

2
(
e2β − e2α

)

2k2 (eβ − eα)
2 =

1

8

(
eβ − eα

) (
eβ + eα

)

(eβ − eα)
2 =

1

8

(
eβ + ea

eb − ea

)
.



Assignment B9 821

Assignment B9

Problem 1. The curve C is defined parametrically by x = a(2 cos θ + cos 2θ), y =
a(2 sin θ + sin 2θ) where 0 ≤ θ ≤ π and a is a positive constant.

(a) Find the coordinates of the points at which C meets the x-axis.

(b) Sketch C.

(c) Find the exact total length of C.

(d) Find the exact area of the curve surface generated when C is rotated through 2π
radians about the x-axis.

Solution.

Part (a). When C meets the x-axis, y = 0.

y = a(2 sin θ + sin 2θ) = a (2 sin θ + 2 sin θ cos) = 2a sin θ (1 + cos θ) = 0.

Thus, θ = 0 or θ = π.
At θ = 0, x = 3a. At θ = π, x = −a. Hence, C meets the x-axis at (3a, 0) and (−a, 0).

Part (b).

−a 3aO

x

y C

Part (c). Note that

dx

dθ
= −2a(sin θ + sin 2θ),

dy

dθ
= 2a(cos θ + cos 2θ).

Hence,

(
dx

dθ

)2

+

(
dy

dθ

)2

= (2a)2 (2 + 2 sin θ sin 2θ + 2 cos θ cos 2θ)

= (2a)2 (2 + 2 cos θ) = (2a)2
[
2 +

(
4 cos2

θ

2
− 2

)]
=

(
4a cos

θ

2

)2

.

Thus,

Length =

∫ π

0

√(
dx

dθ

)2

+

(
dy

dθ

)2

dθ = 4a

∫ π

0
cos

θ

2
dt = 4a

[
2 sin

θ

2

]π

0

= 8a units.
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Part (d).

Area = 2π

∫ π

0
y

√(
dx

dθ

)2

+

(
dy

dθ

)2

dθ = 16πa2
∫ π

0
sin θ (1 + cos θ) cos

θ

2
dθ

= 16πa2
∫ π

0

(
2 sin

θ

2
cos

θ

2

)(
2 cos2

θ

2

)
cos

θ

2
dθ = 64πa2

∫ π

0
cos4

θ

2
sin

θ

2
dθ

= −128πa2
[
−cos5(θ/2)

5

]π

0

=
128

5
πa2 units2.

∗ ∗ ∗ ∗ ∗

Problem 2. The curve C is given by the equation y = 1
2(e

x + e−x).

(a) Sketch the curve C.

(b) Find the exact area bounded by C, the lines x = 2 and x = −2 and the x-axis.

(c) Points A and B are on C where x = 2 and x = −2 respectively. Find the exact
length of the arc AB.

A solid, made of a certain material, is of the shape obtained by rotating the region
bounded by C, the lines x = 2 and x = −2 and the x-axis about the y-axis through π
radians.

(d) Find the exact amount of material required to make this solid if x is measured in
cm.

(e) The solid is painted with a brush that uses 2 cm3 of paint for every cm2 of surface
painted. Find the exact amount of paint required.

Solution.

Part (a).

2−2

B A

O

x

y C

Part (b). Note that y = 1
2(e

x + e−x) = coshx is an even function. Hence,

Area =

∫ 2

−2
y dx = 2

∫ 2

0
coshx dx = 2 [sinhx]20

= 2 (sinh 2− sinh 0) = 2

(
e2 − e−2

2
− 0

)
= e2 − e−2 units2.
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Part (c). Note that
dy

dx
=

d

dx
coshx = sinhx,

whence √
1 +

(
dy

dx

)2

=
√

1 + sinh2 x =
√
cosh2 x = coshx

Hence,

Length =

∫ 2

−2

√
1 +

(
dy

dx

)2

dx =

∫ 2

−2
coshx dx = 2

∫ 2

0
coshx dx = e2 − e−2 units.

Part (d). We have

Volume = 2π

∫ 2

0
xy dx = 2π

∫ 2

0
x coshx dx.

Integrating by parts,

D I

+ x coshx
− 1 sinhx
+ 0 coshx

Thus,

Volume = 2π [x sinhx− coshx]20 = 2π [(2 sinh 2− cosh 2)− (0 sinh 0− cosh 0)]

= 2π

[
2

(
e2 − e2

2

)
− e2 + e−2

2
+ 1

]
= π

(
e2 − 3e−2 + 2

)
.

Thus, π
(
e2 − 3e−2 + 2

)
cm3 of material is required.

Part (e).

Area = Area of curved surface + Area of side + Area of bottom

= 2π

∫ 2

0
x coshx dx+ 22π + 22π cosh 2 = π

(
e2 − 3e−2 + 2

)
+ 4π + 4π

(
e2 + e−2

2

)

= π
[
3e2 − e−2 + 6

]
.

Thus, 2π
(
3e2 − e−2 + 6

)
cm3 of paint is required.
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B10 Applications of Integration III -
Trapezium and Simpson’s Rule

Tutorial B10

Problem 1. Estimate, using the trapezium rule, the values of the following definite
integrals, taking the number ordinates given in each case.

(a)
∫ 0
−π/2

1
1+cos θ dθ, 3 ordinates

(b)
∫ 0.2
−0.4

x2−4x+1
4x−4 , 4 ordinates

Solution.

Part (a). Let f(θ) = 1
1+cos θ .

∫ 0

−π/2

1

1 + cos θ
dθ ≈ 1

2
· 0− (−π/2)

3− 1
·
[
f
(
−π

2

)
+ 2f

(
−π

4

)
+ f(0)

]
= 1.05.

Part (b). Let f(x) = x2−4x+1
4x−4 .

∫ 0.2

−0.4

x2 − 4x+ 1

4x− 4
dx ≈ 1

2
· 0.2− (−0.4)

4− 1
·
[
f(−0.4)+2

[
f(−0.2)+f(0)

]
+f(0.2)

]
= −0.183.

∗ ∗ ∗ ∗ ∗

Problem 2. Use the trapezium rule with intervals of width 0.5 to obtain an approximation
to
∫ 3.5
2 ln 1

x dx, giving your answer to 2 decimal places.

Solution.
∫ 3.5

2
ln

1

x
dx ≈ 1

2
· 3.5− 2

4− 1
·
[
ln

1

2
+ 2

(
ln

1

2.5
+ ln

1

3

)
+ ln

1

3.5

]
= −1.49 (2 d.p.).

∗ ∗ ∗ ∗ ∗

Problem 3. Estimate, using Simpson’s rule, the values of the following definite integrals,
taking the number of ordinates given in each case.

(a)
∫ 0
−π/2

1
1+cos θ dθ, 3 ordinates

(b)
∫ 0.4
0

√
1− x2 dx, 5 ordinates

Solution.

Part (a). Let f(θ) = 1
1+cos θ .

∫ 0

−π/2

1

1 + cos θ
dθ ≈ 1

3
· 0− (−π/2)

3− 1
·
[
f
(
−π

2

)
+ 4f

(
−π

4

)
+ f(0)

]
= 1.01.
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Part (b). Let f(x) =
√
1− x2.

∫ 0.4

0

√
1− x2 dx ≈ 1

3
· 0.4− 0

5− 1
·
[
f(0) + 4f(0.1) + 2f(0.2) + 4f(0.3) + f(0.4)

]
= 0.389.

∗ ∗ ∗ ∗ ∗

Problem 4. Show, by means of substitution u =
√
x, that

∫ 0.25

0

1√
x
e−x dx =

∫ 0.5

0
2e−u2

du

Use the trapezium rule, with ordinates at u = 0, u = 0.1, u = 0.2, u = 0.3, u = 0.4 and
u = 0.5, to estimate the value of I =

∫ 0.5
0 2e−u2

du, giving three decimal places in your
answer.
Explain briefly why the trapezium rule cannot be used directly to estimate the value of∫ 0.25

0
1√
x
e−x dx.

By using the first four terms of the expansion of e−x, obtain an estimate for the integral∫ 0.25
0

1√
x
e−x dx, giving three decimal places in your answer.

Solution. Note that

u =
√
x =⇒ u2 = x =⇒ 2udu = dx.

Furthermore,
x = 0 =⇒ u = 0, x = 0.25 =⇒ u = 0.5.

Hence, ∫ 0.25

0

1√
x
e−x dx =

∫ 0.5

0

1

u
e−u2 · 2udu =

∫ 0.5

0
2e−u2

du.

Let f(u) = 2e−u2
. Using the trapezium rule,

I ≈ 1

2
· 0.5− 0

5

[
f(0) + 2

[
f(0.1) + f(0.2) + f(0.3) + f(0.4)

]
+ f(0.5)

]
= 0.921 (3 d.p.).

At x = 0, 1√
x
e−x is undefined. Hence, the trapezium rule cannot be used.

Recall that

e−x = 1− x+
1

2
x2 − 1

6
x3 + · · · .

Hence,

∫ 0.25

0

1√
x
e−x dx ≈

∫ 0.25

0

1√
x

(
1− x+

1

2
x2 − 1

6
x3
)

dx = 0.923 (3 d.p.).
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Problem 5.

1

R

O

x

y
y = (x2 + 1)−3/2

The diagram (not to scale) show the region R bounded by the axes, the curve y =
(x2 + 1)−3/2 and the line x = 1. The integral

∫ 1
0 (x

2 + 1)−3/2 is denoted by I.

(a) Use the trapezium rule and Simpson’s rule, with ordinates at x = 0, x = 0.5 and
x = 1, to estimate the value of I correct to 4 significant figures.

(b) Use the substitution x = tan θ to show that I = 1
2

√
2. Comment on the approxima-

tions using the 2 rules and give a reason why one gives a better approximation than
the other.

(c) By using the trapezium rule, with the same ordinates as in part (a), or otherwise,
estimate the volume of the solid formed when R is rotated completely about the
x-axis, giving your answer to 2 significant figures.

Solution.

Part (a). Let f(x) = (x2 + 1)−3/2. Using the trapezium rule,

I ≈ 1

2
· 1− 0

3− 1
·
[
f(0) + 2f(0.5) + f(1)

]
= 0.6962 (4 s.f.).

Using Simpson’s rule,

I ≈ 1

3
· 1− 0

3− 1
·
[
f(0) + 4f(0.5) + f(1)

]
= 0.7026 (4 s.f.).

Part (b). Using the substitution x = tan θ, we get
∫ 1

0
(x2 + 1)−3/2 =

∫ π/4

0

(
tan2 θ + 1

)−3/2
sec2 θ dθ =

∫ π/4

0
(sec2 θ)−3/2 sec2 θ dθ

=

∫ π/4

0
(sec θ)−1 dθ =

∫ π/4

0
cos θ dθ = [sin θ]

π/4
0 =

1

2

√
2.

The approximation given by Simpson’s rule is closer to the actual value than the ap-
proximation given by the trapezium rule. This is because Simpson’s rule accounts for the
concavity of the curve, which produces a better estimate.

Part (c). Let g(x) = (x2 + 1)−3.

Volume = π

∫ 1

0
y2 dx = π

∫ 1

0
(x2 + 1)−3 dx

≈ π

(
1

2
· 1− 0

3− 1

[
g(0) + 2g(0.5) + g(1)

])
= 1.7 units3 (2 s.f.).
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Problem 6. It is given that f(x) = 1√
1+

√
x
, and the integral

∫ 1
0 f(x) dx is denoted by I.

(a) Using the trapezium rule, with four trapezia of equal width, obtain an approximation
I1 to the value of I, giving 3 decimal places in your answer.

(b) Explain, with the aid of a sketch, why I < I1.

(c) Evaluate I2, where I2 = 1
3

∑3
r=1 f

(
1
3r
)
, giving 3 decimal places in your answer, and

use the sketch in (b) to justify the inequality I > I2.

(d) By means of a substitution
√
x = u− 1, show that the value of I is 4

3(2−
√
2).

Solution.

Part (a).

I1 =
1

2
· 1− 0

4

[
f(0) + 2

[
f(0.25) + f(0.5) + f(0.75)

]
+ f(1)

]
= 0.792 (3 d.p.).

Part (b).

0.25 0.5 0.75 1O

x

y y = f(x)

I is the area under the curve y = f(x), while I1 is the sum of the areas of the trapeziums.
Hence, from the sketch, I1 > I.

Part (c).

I2 =
1

3

3∑

r=1

f

(
1

3
r

)
=

1

3

[
f

(
1

3

)
+ f

(
2

3

)
+ f(1)

]
= 0.748 (3 d.p.).

1/3 2/3 1O

x

y y = f(x)
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I is the area under the curve y = f(x), while I2 is the sum of the areas of the rectangles.
Hence, from the sketch, I2 < I.

Part (d). Note

√
x = u− 1 =⇒ x = u2 − 2u+ 1 =⇒ dx = (2u− 2) du.

Furthermore,
x = 0 =⇒ u = 1, x = 1 =⇒ u = 2.

Thus,
∫ 1

0

1√
1 +

√
x
dx = 2

∫ 2

1

u− 1√
u

du = 2

[
u3/2

3/2
− u1/2

1/2

]2

1

=
4

3
(2−

√
2).

∗ ∗ ∗ ∗ ∗

Problem 7. For 0 < x < π, the curve C has the equation y = ln sinx. The region of
the plane bounded by C, the x-axis and the lines x = π

4 and x = π
2 is rotated through 2π

radians about the x-axis.
Show that the surface area of the solid generated in this way is given by S, where

S = 2π

∫ π/2

π/4

∣∣∣∣
ln sinx

sinx

∣∣∣∣ dx

Use Simpson’s rule with 5 ordinates to find an approximate value of S, giving your answer
to 3 decimal places.

Solution. Note that

dy

dx
=

cosx

sinx
= cotx =⇒ 1 +

(
dy

dx

)2

= 1 + cot2 x = csc2 x.

Thus,

S = 2π

∫ π/2

π/4
|y|
√

1 +

(
dy

dx

)2

dx = 2π

∫ π/2

π/4
|ln sinx| |cscx| dx

= 2π

∫ π/2

π/4
|ln sinx|

∣∣∣∣
1

sinx

∣∣∣∣ dx = 2π

∫ π/2

π/4

∣∣∣∣
ln sinx

sinx

∣∣∣∣ dx.

Let f(x) =
∣∣ ln sinx

sinx

∣∣.

S ≈ 2π

3
· π/4

4

[
f

(
4π

16

)
+ 4f

(
5π

16

)
+ 2f

(
6π

16

)
+ 4f

(
7π

16

)
+ f

(
8π

16

)]
= 0.670 (3 d.p.).

∗ ∗ ∗ ∗ ∗

Problem 8. The value of the integral
∫ 0.4
0.2 f(x) dx is to be estimated from information in

the table below.

x 0.2 0.3 0.4

f(x) 1.2030 1.2441 1.2777

(a) Find the best possible estimate for the integral using the trapezium rule.
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(b) Using the table of values above, find an approximate value for f ′′(0.3) and use your
answer to explain why the estimate found in part (a) is likely to be smaller than the
actual value.

(c) Estimate the integral using Simpson’s rule and determine the equation of the curve
used in this method.

Solution.

Part (a).

∫ 0.4

0.2
f(x) dx ≈ 1

2
· 0.4− 0.2

3− 1

[
f(0.2) + 2f(0.3) + f(0.4)

]
= 0.248.

Part (b). Note that f ′(0.25) ≈ f(0.3)−f(0.2)
0.3−0.2 = 0.411 and f ′(0.35) ≈ f(0.4)−f(0.3)

0.4−0.3 = 0.336.
Hence,

f ′′(0.30) ≈ f ′(0.35)− f ′(0.25)
0.35− 0.25

= −0.75.

Since f ′′(0.3) < 0, f(x) is concave downwards around x = 0.3. Hence, the estimate is
likely to be smaller than the actual value.

Part (c).

∫ 0.4

0.2
f(x) dx ≈ 1

3
· 0.4− 0.2

3− 1
·
[
f(0.2) + 4f(0.3) + f(0.4)

]
= 0.249.

Let the equation of the quadratic used be P (x) = ax2 + bx+ c, where a, b, c ∈ R. Since
P (0.2) = f(0.2), P (0.3) = f(0.3) and P (0.4) = f(0.4), we obtain the system





(0.2)2a+ 0.2b+ c = 1.2030

(0.3)2a+ 0.3b+ c = 1.2441

(0.4)2a+ 0.4b+ c = 1.2777

which has the unique solution a = −0.375, b = 0.5985, c = 1.0983. Thus, the required
equation is

y = −0.375x2 + 0.5985x+ 1.0983.

∗ ∗ ∗ ∗ ∗

Problem 9. The curve C is given by y = 1
x , where x > 0.

(a) Apply the trapezium rule with ordinates at unit intervals to the function f : x 7→ 1
x ,

x ∈ R+, to show that lnn < 1
2 + 1

2n +
∑n−1

r=2
1
r where n ≥ 3.

(b) Obtain the area of the trapezium bounded by the axis, the lines x = r ± 1
2 , and the

tangent to the curve y = 1
x at the point

(
r, 1r
)
.

Hence, show that
∑n−1

r=2
1
r < ln

(
2n−1

3

)
, where n ≥ 3.

(c) From these results, obtain numerical values between which the value of
∑99

r=2
1
r lies,

and show that 4.110 < 1
2 + 1

3 + . . .+ 1
100 < 4.205.
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Solution.

Part (a). Applying the trapezium rule,

∫ n

1

1

x
dx ≈ 1

2

[
1

1
+ 2

(
1

2
+

1

3
+ . . .+

1

n− 1

)
+

1

n

]
=

1

2
+

1

2n
+

n−1∑

r=2

1

r
.

Note that d2y/dx2 = 2x−3 > 0 for x > 0. Hence, y = 1/x is concave upwards. Thus,

1

2
+

1

2n
+

n−1∑

r=2

1

r
>

∫ n

1

1

x
dx = lnn.

Part (b). Since dy/dx = −x−2, the equation of the tangent at x = r is given by

y − 1

r
= − 1

r2
(x− r) =⇒ y = − x

r2
+

2

r
.

The area of the trapezium centred at r is hence given by

∫ r+1/2

r−1/2

(
− x

r2
+

2

r

)
dx =

[
− 1

r2

(
x2

2

)
+

2x

r

]r+1/2

r−1/2

=
1

r
units2.

Observe that the area of the trapezium centred at r is less than the area under the curve
y = 1

x from r − 1
2 to r + 1

2 . That is,

1

r
<

∫ r+1/2

r−1/2

1

x
dx = ln

(
r +

1

2

)
− ln

(
r − 1

2

)
.

Summing from r = 2 to n− 1,

n−1∑

r=2

1

r
<

n−1∑

r=2

[
ln

(
r +

1

2

)
− ln

(
r − 1

2

)]
= ln

(
n− 1

2

)
− ln

(
2− 1

2

)
= ln

(
2n− 1

3

)
.

Part (c). Taking n = 100, we have

1

2
+

1

2(100)
+

100−1∑

r=2

1

r
> ln 100 =⇒

99∑

r=2

1

r
> ln 100− 1

2
− 1

200
= 4.100

We also have

100−1∑

r=2

1

r
< ln

(
2(100)− 1

3

)
=⇒

100−1∑

r=2

1

r
< ln

(
199

3

)
= 4.195

Putting both inequalities together, we obtain

4.100 <

99∑

r=2

1

r
< 4.195.

Adding 1
100 = 0.01 to all sides of the inequality, we see that

4.110 <

100∑

r=2

1

r
< 4.205.
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Self-Practice B10

Problem 1. Use the trapezium rule, with 6 intervals to estimate the value of
∫ 3
0 ln(1 +

x) dx, showing your working. Give your answer to 3 significant figures. Hence, write down
an approximate value for

∫ 3
0 ln

√
1 + x dx.

Solution. Let f(x) = ln(1 = x). Then

∫ 3

0
ln(1 + x) dx ≈ 0.5

2
[f(0) + 2 (f(0.5) + f(1) + f(1.5) + f(2) + f(2.5)) + f(3)]

= 2.5297 = 2.53 (3 s.f.).

Thus, ∫ 3

0
ln
√
1 + x dx =

1

2

∫ 3

0
ln(1 + x) dx ≈ 2.5297

2
= 1.26 (3 s.f.).

∗ ∗ ∗ ∗ ∗

Problem 2. Use the trapezium rule with 5 intervals to estimate the value of

∫ 0.5

0

√
1 + x2 dx,

showing your working. Give your answer to 2 decimal places.
By expanding (1+x2)1/2 in powers of x as far as the term in x4, obtain a second estimate

for the value of
∫ 0.5
0

√
1 + x2 dx giving this answer also correct to 2 decimal places.

Solution. Let f(x) =
√
1 + x2. Then

∫ 0.5

0

√
1 + x2 dx ≈ 0.1

2

4∑

i=0

[f(0.1i) + f(0.1(i+ 1))] = 0.52 (2 d.p.).

We have

(
1 + x2

)1/2
= 1 +

1

2
x2 +

1
2

(
1
2 − 1

)

2

(
x2
)2

+ · · · ≈ 1 +
1

2
x2 − 1

8
x4,

hence ∫ 0.5

0

√
1 + x2 dx ≈

∫ 0.5

0

(
1 +

1

2
x2 − 1

8
x4
)

dx = 0.52 (2 d.p.).

∗ ∗ ∗ ∗ ∗

Problem 3. The trapezium rule, with 2 intervals of equal width, is to be used to find an
approximate value for

∫ 1
0 e−x dx. Explain, with the aid of a sketch, why the approximation

will be greater than the exact value of the integral. Calculate the approximate value and
the exact value, giving each answer correct to 3 decimal places.
Another approximation to

∫ 1
0 e−x dx is to be calculated by using two trapezia of unequal

width. The first trapezium has width h and the second has width 1− h, so that the three
ordinates are at x = 0, x = h and x = 1. Show that the total area T of these two trapezia
is given by

T =
1

2

[
e−1 + h

(
1− e−1

)
+ e−h

]
.

Show that the value of h for which T is a minimum is given by h = ln e
e−1 .
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Solution. Let f(x) = e−x. Note that d2f/dx2 = e−x, which is positive for 0 ≤ x ≤ 1.
Thus, the graph of y = f(x) is convex, as shown below.

0.5 1O

x

y y = e−x

The secant lines lie above the curve y = f(x), thus, the area of the trapeziums is larger
than the area under the curve. Thus, the trapezium rule gives an overestimate.
The exact value of the integral is

∫ 1

0
e−x dx =

[
−e−x

]1
0
= 1− e−1 = 0.632 (3 d.p.).

Using the trapezium rule, we have
∫ 1

0
e−x dx ≈ 0.5

2
[f(0) + 2f(0.5) + f(1)] = 0.645 (3 d.p.).

The total area is given by

T =
h

2
(f(0) + f(h)) +

1− h

2
(f(h) + f(1))

=
h

2

(
1 + e−h

)
+

1− h

2

(
e−h + e−1

)

=
1

2

[
e−1 + h

(
1− e−1

)
+ e−h

]
.

Differentiating with respect to h, we obtain

dT

dh
=

1

2

(
1− e−1 − e−h

)
.

For stationary points, dT/dh = 0, so

e−h = 1− e−1 =⇒ −h = ln
(
1− e−1

)
=⇒ h = ln

1

1− e−1
= ln

e

e− 1
.

Note further that
d2T

dh2
=

1

2
e−h,

which is positive at h = ln(e/(e− 1)), thus it is a minimum.

∗ ∗ ∗ ∗ ∗

Problem 4. Derive Simpson’s rule with 2 strips for evaluating
∫ b
a f(x) dx.

Use Simpson’s composite rule with 4 strips to obtain an estimate of
∫ 3
2 cos(x− 2) lnx dx,

giving your answer to 5 decimal places.
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Solution. Let c = (b− a)/2. Define

g(x) = f

(
x+

a+ b

2

)
.

Then

g(−c) = f(a), g(0) = f

(
a+ b

2

)
, g(c) = f(b).

Let h(x) = αx2 + βx+ γ be the quadratic such that h(x) = g(x) at x = −c, 0, c. Then

g(0) = γ,

g(−c) = αc2 − βc+ γ,

g(c) = αc2 + βc+ γ.

From the last two equations, it follows that

αc2 =
g(c) + g(−c)

2
− g(0).

Our estimate is thus

∫ b

a
f(x) dx =

∫ c

−c
g(x) dx

≈
∫ c

−c
h(x) dx =

∫ c

−c

(
αx2 + βx+ γ

)
dx

=

[
α

3
x3 +

β

2
x2 + γc

]c

−c

=
2c

3

(
αc2 + 3γ

)

=
2
(
b−a
2

)

3

[
g(c) + g(−c)

2
− g(0) + 3g(0)

]

=
b− a

6
[g(−c) + 4g(0) + g(c)]

=
b− a

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
,

which is precisely Simpson’s rule for two strips.
Let f(x) = cos(x− 2) lnx. Using Simpson’s rule, we get

∫ 3

2
cos(x− 2) lnx dx =

0.5

6
[f(2) + 4f(2.25) + 2f(2.5) + 4f(2.75) + f(3)] = 0.74988 (5 d.p.).

∗ ∗ ∗ ∗ ∗

Problem 5.

(a) Show that
∫ n+1
n lnx dx = (n+ 1) ln(n+ 1)− n lnn− 1.

(b) The diagram below shows the graph of y = lnx between x = n and x = n+ 1. The
area of the shaded region represents the error when the value of the integral in part
(a) is approximated by using a single trapezium. Show that the area of the shaded
region is (

n+
1

2

)
ln

(
1 +

1

n

)
− 1.
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n n+ 1

x

y y = lnx

(c) Use a series expansion to show that if n is large enough for 1
n3 and higher powers of

1
n to be neglected, then the area in part (b) is approximately equal to k

n2 , where k
is a constant to be determined.

Solution.

Part (a). We have

∫ n+1

n
lnx dx = [x (lnx− 1)]n+1

n

= (n+ 1) (ln(n+ 1)− 1)− n (lnn− 1)

= (n+ 1) ln(n+ 1)− n lnn− 1.

Part (b). The estimate of the area under the curve is

lnn+ ln(n+ 1)

2
.

The error is thus

(n+ 1) ln(n+ 1)− n lnn− 1− lnn+ ln(n+ 1)

2

=

(
n+

1

2

)
ln(n+ 1)−

(
n+

1

2

)
lnn− 1

=

(
n+

1

2

)
ln

(
n+ 1

n

)
− 1 =

(
n+

1

2

)
ln

(
1 +

1

n

)
− 1.

Part (c). Note that

ln

(
1 +

1

n

)
≈ 1

n
− 1

2n2
+

1

3n3
.

Thus,

(
n+

1

2

)
ln

(
1 +

1

n

)
− 1 ≈

(
n+

1

2

)(
1

n
− 1

2n2
+

1

3n3

)
− 1 =

1

12n2
,

so k = 1/12.
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Assignment B10

Problem 1. Given that y = e−x cosx, show that d2y
dx2 = −2

(
y + dy

dx

)
. By further differ-

entiation, find the series expansion of y, in ascending powers of x, up to and including the
term in x3. Use the series to obtain an approximate value for

∫ 0.2
0

cosx2

ex2
dx, giving your

answer correct to 4 decimal places.
Using the trapezium rule with 4 trapezia of equal width, find another approximation

for
∫ 0.2
0

cosx2

ex2
dx, giving your answer correct to 4 decimal places.

Solution. Differentiating with respect to x, we get

y′ = −e−x sinx− e−x cosx =⇒ y′ = −e−x sinx− y.

Differentiating once more,

y′′ = −e−x cosx+ e−x sinx− y′ = −y +
(
−y′ − y

)
− y′ = −2

(
y + y′

)
.

Further differentiating, we obtain y′′′ = −2(y′ + y′′). Evaluating y and its derivatives at
x = 0, we get

y(0) = 1, y′(0) = −1, y′′(0) = 0, y′′′(0) = 2.

Thus,

e−x cosx = 1− x+
x3

3
+ · · · .

Hence,

∫ 0.2

0

cosx2

ex2 dx =

∫ 0.2

0
e−x2

cosx2 dx ≈
∫ 0.2

0

(
1−

(
x2
)
+

(
x2
)3

3

)
dx = 0.1973 (4 d.p.).

Let g(x) = cosx2

ex2
. By the trapezium rule, we have

∫ 0.2

0

cosx2

ex2 dx ≈ 1

2
· 0.2
4

[
g(0) + 2

[
g(0.05) + g(0.1) + g(0.15)

]
+ g(0.2)

]
= 0.1973 (4 d.p.).

∗ ∗ ∗ ∗ ∗

Problem 2. The curve C has equation y2 = x√
1+x2

, y ≥ 0.

The finite region R is bounded by C, the x-axis and the lines x = 0 and x = 2. R is
rotated through 2π radians about the x-axis.

(a) Find the exact volume of the solid formed.

An estimate for the volume in (a) is found using the trapezium rule with 7 ordinates.

(b) Find the percentage error resulting from using this estimate, giving your answer to
3 decimal places.

Explain, with the help of a sketch, why the estimate given by the trapezium rule is
less than the actual value.
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Solution.

Part (a).

Volume = π

∫ 2

0
y2 dx = π

∫ 2

0

2x

2
√
1 + x2

dx = π
[√

1 + x2
]2
0
= π(

√
5− 1) units3.

Part (b). Let f(x) = x√
1+x2

. By the trapezium rule,

Volume = π

∫ 2

0
f(x) dx ≈ π · 1

2
· 2− 0

6

5∑

n=0

[
f
(n
3

)
+ f

(
n+ 1

3

)]
= 3.8566 (5 s.f.).

Hence, the percentage error is

∣∣∣∣∣
π(
√
5− 1)− 3.8566

π(
√
5− 1)

∣∣∣∣∣ = 0.686% (3 d.p.).

Consider the following graph of y = f(x).

O

x

y y = f(x)

From the graph, the curve y = f(x) is clearly concave downwards. Hence, the approx-
imation given by the trapezium rule is an underestimate and is thus less than the actual
value.

∗ ∗ ∗ ∗ ∗

Problem 3. Prove that
∫ h
−h f(x) dx = 1

3h(y−1+4y0+y1), where y = f(x) is the quadratic
curve passing through the points (−h, y−1), (0, y0) and (h, y1).
Use Simpson’s rule with 5 ordinates to find an approximation to

∫ 1

−3

(
x4 − 7x3 + 3x2 + 6x+ 4

)1/3
dx

Find another approximation to the same integral using the trapezium rule with 5 ordinates.
Which of these approximations would you expect to be more accurate? Justify your

answer.

Solution. Let f(x) = ax2 + bx+ c be the quadratic such that the graph y = f(x) passes
through the points (−h, y−1), (0, y0) and (h, y1).
Note that we have y0 = f(0) = c. We also have

y−1 + y1 = f(−h) + f(h) =
[
a(−h)2 + b(−h) + c

]
+
[
ah2 + bh+ c

]
= 2ah2 + 2c.
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Hence,

∫ h

−h
f(x) dx =

∫ h

−h
(ax2 + bx+ c) dx =

[
1

3
x3 +

1

2
bx2 + cx

]h

−h

=
1

3
h
(
2h2 + 6c

)

=
1

3
h
(
2h2 + 2c+ 4c

)
=

1

3
h (y−1 + y1 + 4y0) =

1

3
h (y−1 + 4y0 + y1) .

Let f(x) =
(
x4 − 7x3 + 3x2 + 6x+ 4

)1/3
. By Simpson’s rule,

∫ 1

−3

(
x4 − 7x3 + 3x2 + 6x+ 4

)1/3
dx

≈ 1

3
· 1− (−3)

4

[
f(−3) + 4f(−2) + 2f(−1) + 4f(0) + f(1)

]
= 11.977 (5 s.f.)

By the trapezium rule,

∫ 1

−3

(
x4 − 7x3 + 3x2 + 6x+ 4

)1/3
dx

≈ 1

2
· 1− (−3)

4

[
f(−3) + 2f(−2) + 2f(−1) + 2f(0) + f(1)

]
= 12.142 (5 s.f.)

The approximation given by Simpson’s rule should be more accurate as Simpson’s rule
accounts for the concavity of the curve y = f(x).

∗ ∗ ∗ ∗ ∗

Problem 4.

(a) Find the exact value of
∫ 1
0

1
1+x2 dx.

(b) The graph of y = 1
1+x2 is shown in the diagram below. Rectangles, each of width 1

n ,
are drawn under the curve.

Show that the total area A of all n rectangles is given by

A =
1

n

[
1

1 +
(
1
n

)2 +
1

1 +
(
2
n

)2 +
1

1 +
(
3
n

)2 + . . .+
1

2

]

State the limit of A as n → ∞.

1
n

2
n

3
n

4
n

n−2
n

n−1
n

1O

x

y y = 1/(1 + x2)
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(c) It is given that

B =
1

n

[
1

1 +
(
1
n

)4 +
1

1 +
(
2
n

)4 +
1

1 +
(
3
n

)4 + . . .+
1

2

]

Find an approximation for the limit of B as n → ∞ by considering an appropriate
graph and using the trapezium rule with 5 intervals. Given your answer correct to
2 decimal places.

Solution.

Part (a). ∫ 1

0

1

1 + x2
dx = [arctanx]10 =

π

4
.

Part (b). Observe that the kth rectangle has height 1
1+(k/n)2

and width 1/n. Hence,

A =

n∑

k=1

1

n
· 1

1 + (k/n)2
=

1

n

n∑

k=1

1

1 + (k/n)2

=
1

n

[
1

1 +
(
1
n

)2 +
1

1 +
(
2
n

)2 +
1

1 +
(
3
n

)2 + . . .+
1

1 +
(
n
n

)2

]

=
1

n

[
1

1 +
(
1
n

)2 +
1

1 +
(
2
n

)2 +
1

1 +
(
3
n

)2 + . . .+
1

2

]

Thus,

lim
n→∞

A =

∫ 1

0

1

1 + x2
=

π

4
.

Part (c). Consider the following graph of y = 1
1+x4 .

1
n

2
n

3
n

4
n

n−2
n

n−1
n

1O

x

y y = 1/(1 + x4)

Using a similar line of logic presented in part (b), we have that B is the total area of
the rectangles above. Hence,

lim
n→∞

B =

∫ 1

0

1

1 + x4
dx.

Let f(x) = 1
1+x4 . Using the trapezium rule,

lim
n→∞

B ≈ 1

2
· 1
5

[
f(0) + 2

[
f(0.2) + f(0.4) + f(0.6) + f(0.8)

]
+ f(1)

]
= 0.86 (2 d.p.).



839

B11 Functions of Two Variables

Tutorial B11

Problem 1. Find the natural domain of the function f for the following:

(a) f(x, y) =
√

1− x2 − y2

(b) f(x, y) = ln
(
x2 − y

)

(c) f(x, y) = arcsin(x+ y)

(d) f(x, y) = 1
x2−y2

Solution.

Part (a). Observe that the argument of the square root must be non-negative. Hence,
1− x2 − y2 ≥ 0 =⇒ x2 + y2 ≤ 1. Thus,

Df = {(x, y) ∈ R2 : x2 + y2 ≤ 1}.

Part (b). Observe that the argument of the natural log must be positive. Hence, x2−y >
0 =⇒ y < x2. Thus,

Df = {(x, y) ∈ R2 : y < x2}.
Part (c). Observe that the argument of arcsin must be within the range of sin, i.e. between
−1 and 1 inclusive. Hence, −1 ≤ x+ y ≤ 1. Thus,

Df = {(x, y) ∈ R2 : −1 ≤ x+ y ≤ 1}.

Part (d). Observe that the denominator must be non-zero. Hence, x2− y2 ̸= 0 =⇒ y2 ̸=
x2 =⇒ y ̸= x or y ̸= −x. Thus,

Df = {(x, y) ∈ R2 : y ̸= x or y ̸= −x}.

∗ ∗ ∗ ∗ ∗

Problem 2. Identify the correct equations of the following surfaces in 3-D space.

• z = cos(x+ y)

• z = x2y + 1

• z = 3− x+ y

• z = − 1√
x2+y2
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(a)

x

y

z

(b)

x

y

z

(c)

x

y

z

(d)

x

y

z

Solution.

Part (a). z = x2y + 1

Part (b). z = − 1√
x2+y2



Tutorial B11 841

Part (c). z = cos(x+ y)

Part (d). z = 3− x+ y

∗ ∗ ∗ ∗ ∗

Problem 3. Let f(x, y) = x2−2x3+3xy. Find an equation of the level curve that passes
through the point

(a) (−1, 1)

(b) (2,−1)

(c) (1, 5)

Solution.

Part (a). Note that f(−1, 1) = 0. Hence, the level curve is given by

x2 − 2x3 + 3xy = 0.

Part (b). Note that f(2,−1) = −18. Hence, the level curve is given by

x2 − 2x3 + 3xy = −18.

Part (c). Note that f(1, 5) = 14. Hence, the level curve is given by

x2 − 2x3 + 3xy = 14.

∗ ∗ ∗ ∗ ∗

Problem 4. If V (x, y) is the voltage or potential at a point (x, y) in the xy-plane, then
the level curves of V are called equipotential curves. Along such a curve, the voltage
remains constant. Given that

V (x, y) =
8√

16 + x2 + y2

find an equation of the equipotential curves at which

(a) V = 2.0

(b) V = 1.0

(c) V = 0.5

Solution. Rearranging the given equation, we have

x2 + y2 =
64

V 2
− 16.

Part (a). When V = 2.0, we have x2 + y2 = 64
2.02

− 16 = 0, whence

x = 0 and y = 0.

Part (b). When V = 1.0, we have

x2 + y2 =
64

1.02
− 16 = 48.
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Part (c). When V = 0.5, we have

x2 + y2 =
64

0.52
− 16 = 240.

∗ ∗ ∗ ∗ ∗

Problem 5. Given that f(x, y) = x4 sin
(
xy3
)
, find fx(x, y), fy(x, y), fxy(x, y) and

fyx(x, y).

Solution. Differentiating f with respect to x,

fx(x, y) = 4x3 sin
(
xy3
)
+ x4y3 cos

(
xy3
)
.

Differentiating f with respect to y,

fy(x, y) = 3x5y2 cos
(
xy3
)
.

Differentiating fx with respect to y,

fxy(x, y) = 12x4y2 cos
(
xy3
)
+ x4

[
3y2 cos

(
xy3
)
− 3xy5 sin

(
xy3
)]

= 15x4y2 cos
(
xy3
)
− 3x5y5 sin

(
xy3
)
.

Differentiating fy with respect to x,

fyx(x, y) = 3y2
[
5x4 cos

(
xy3
)
− x5y3 sin

(
xy3
)]

= 15x4y2 cos
(
xy3
)
− 3x5y5 sin

(
xy3
)
.

∗ ∗ ∗ ∗ ∗

Problem 6. Given that z = x2y, x = t2, y = t3, use the chain rule to find dz
dt in terms of

t.

Solution.

dz

dt
=

∂z

∂x
· dx
dt

+
∂z

∂y
· dy
dt

= 2xy (2t) + x2
(
3t2
)
= 2t2t3 · 2t+

(
t2
)2 · 3t2 = 7t6.

∗ ∗ ∗ ∗ ∗

Problem 7. Find the gradient of f(x, y) = 3x2y at the point (1, 2) and use it to calculate
the directional derivative of f at (1, 2) in the direction of the vector u = 3i+ 4j.

Solution. Note that fx(x, y) = 6xy and fy(x, y) = 3x2. Hence, ∇f at (1, 2) is (12, 3)T.
Observe that the directional derivative of f in the direction of u at (1, 2) is given by

∇f · û =

(
12
3

)
· 1
5

(
3
4

)
=

48

5
.

Thus, the instantaneous rate of change at (1, 2) in the direction of u is 48/5.

∗ ∗ ∗ ∗ ∗

Problem 8. Suppose that a point moves along the intersection of the sphere x2+y2+z2 =
1 with the plane x = 2

3 . Find the rate of z with respect to y when the point is at
(
2
3 ,

1
3 ,

2
3

)
.
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Solution. Note that x2+y2+ z2 = 1 =⇒ z = ±
√
1− x2 − y2. Given that the object we

want (the rate of change of z with respect to y) will later be evaluated when z = 2
3 > 0, we

consider only the positive branch. Let f(x, y) =
√

1− x2 − y2. Then fy(x, y) =
−y√

1−x2−y2
.

Evaluating at the desired point, we get,

fy

(
2

3
,
1

3

)
=

−1/3√
1− (2/3)2 − (1/3)2

= −1

2
.

∗ ∗ ∗ ∗ ∗

Problem 9.

(a) The Cauchy-Riemann equations are such that ∂u/∂x = ∂v/∂y and ∂u/∂y = −∂v/∂x
for u(x, y) and v(x, y). Show that u = ex cos y, v = ex sin y satisfy the Cauchy-
Riemann equations.

(b) Show that the function f(x, y) = ex sin y + ey cosx satisfies that Laplace equation,
i.e. ∂2f/∂x2 + ∂2f/∂y2 = 0.

(c) If u(x, y) and v(x, y) satisfy the Cauchy-Riemann equations, state the conditions for
both u and v to satisfy the Laplace equation.

Solution.

Part (a). Differentiating u with respect to x, we get ∂u/∂x = ex cos y. Differentiating v
with respect to y, we get ∂v/∂y = ex cos y. Hence, ∂u/∂x = ∂v/∂y.

Differentiating u with respect to y, we get ∂u/∂y = −ex sin y. Differentiating v with
respect to x, we get ∂v/∂x = ex sin y. Hence, ∂u/∂y = −∂v/∂x.
Thus, u and v satisfy the Cauchy-Riemann equations.

Part (b). Differentiating f twice with respect to x,

∂2f

∂x2
=

∂

∂x
(ex sin y − ey sinx) = ex sin y − ey cosx.

Differentiating f twice with respect to y,

∂2f

∂y2
=

∂

∂y
(ex cos y + ey cosx) = −ex sin y + ey cosx.

Hence,
∂2f

∂x2
+

∂2f

∂y2
= (ex sin y − ey cosx) + (−ex sin y + ey cosx) = 0.

Thus, f(x, y) = ex sin y + ey cosx satisfies the Laplace equation.

Part (c). Suppose u(x, y) and v(x, y) satisfy the Cauchy-Riemann equations. This gives
{
ux = vy

uy = −vx

Differentiating with respect to x and y, we obtain
{
uxx = vyx

uyx = −vxx
and

{
uxy = vyy

uyy = −vxy

This gives {
uxx + uyy = vyx − vxy

vxx + vyy = −uyx + uxy
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Hence, if u and v both satisfy the Laplace equation, we require
{

vyx − vxy = 0

−uyx + uxy = 0

which gives the conditions uxy = uyx and vxy = vyx.

∗ ∗ ∗ ∗ ∗

Problem 10. Find the equation of the tangent plane to the surface z = x2y at the point
(2, 1, 4). Hence, state the normal vector of the tangent plane.

Solution. Let f(x, y) = x2y. Then fx(x, y) = 2xy and fy(x, y) = x2. Hence, the equation
of the tangent plane at (2, 1, 4) is given by

z = 4 + fx(2, 1)(x− 2) + fy(2, 1)(y − 1) = 4 + 4(x− 2) + 4(y − 1) = 4x+ 4y − 8.

Rearranging,
4x+ 4y − z = 8,

whence the normal vector of the tangent plane is (4, 4, −1)T.

∗ ∗ ∗ ∗ ∗

Problem 11. The volume of a right-circular cone of radius r cm and height h cm is
denoted by V . If h increases from 10 cm to 10.01 cm and r decreases from 12 cm to 11.95
cm, use a linear approximation to estimate the volume of the cone after the changes.

Solution. Let V (r, h) = 1
3πr

2h be the volume of the cone. We have Vr(r, h) =
2
3πrh and

Vh(r, h) =
1
3πr

2. The equation of the tangent plane at r = 12 and h = 10 is given by

v = V (12, 10) + Vr(12, 10)(r − 12) + Vh(12, 10)(h− 10)

=
1

3
π(122)(10) +

2

3
π(12)(10)(r − 12) +

1

3
π(122)(h− 10) = 16π(5r + 3h− 60).

Evaluating at r = 11.95 and h = 10.01, we have

v = 16π [5(11.95) + 3(10.01)− 60] = 476.48π.

The volume of the cone after the changes is hence approximately 476.48π cm3.

∗ ∗ ∗ ∗ ∗

Problem 12. The radius of a right-circular cylinder is measured with an error of at
most 2%, and the height is measured with an error of at most 4%. Approximate the
maximum possible percentage error in the volume of the cylinder calculated from these
measurements.

Solution. Let the volume of the cylinder be V = πr2h. By the chain rule, we have

dV =
∂V

∂r
dr +

∂f

∂h
dh = 2πrhdr + πr2 dh.

Dividing throughout by V = πr2h,

dV

V
=

2πrhdr + πr2 dh

πr2h
= 2

dr

r
+

dh

h
.

Note that dV/V measures the percentage error of the volume V , while dr/r and dh/h
measure the percentage error of the radius and height respectively. Hence,

max
dV

V
= 2(2%) + 4% = 8%.



Tutorial B11 845

Problem 13. On a certain mountain, the elevation z above a point (x, y) in a horizontal
xy-plane that lies at sea level is z = 2000− 2x2 − 4y2 ft. The positive x-axis points east,
and the positive y-axis points north. A climber is at the point (−20, 5, 1100).

(a) If the climber uses a compass reading to walk due northeast, will he ascend or
descend? Find this rate.

(b) Find the direction where the climber should walk to travel a level path.

Solution.

Part (a). Let f(x, y) = 2000 − 2x2 − 4y2. Then fx(x, y) = −4x and fy(x, y) = −8y.
Hence,

∇f =

(
−4x
−8y

)
= −4

(
x
2y

)

Note that the vector (1, 1)T points northeast.

∇f ·
(̂
1
1

)
= −4

(
x
2y

)
·
√
2

2

(
1
1

)
= −2

√
2 (x+ 2y) .

Evaluating at (−20, 5, 1100), the instantaneous rate of change of the climber’s altitude
would be −2

√
2 (−20 + 2 · 5) = 20

√
2 ft/s. That is, the climber would ascend at a rate of

20
√
2 feet per second.

Part (b). For a level path, the instantaneous rate of change of the climber’s altitude
should be 0. Let the direction of the climber be u = (a, b)T.

Duf(x, y)|(−20,5) = −4

(
−20
10

)
·
(
a
b

)
=⇒ −2a+ b = 0 =⇒ b = 2a.

We hence have

u =

(
a
b

)
=

(
a
2a

)
= a

(
1
2

)
.

Thus, the climber should walk in the direction of (1, 2)T.

∗ ∗ ∗ ∗ ∗

Problem 14. Find the absolute maximum and minimum values of f(x, y) = 3xy − 6x−
3y + 7 on the closed triangular region R with vertices (0, 0), (3, 0) and (0, 5).

Solution. Note that fx(x, y) = 3y−6 and fy(x, y) = 3x−3, whence fxx(x, y) = fyy(x, y) =
0 and fxy = 3. For stationary points,

∇f = 0 =⇒
(
3y − 6
3x− 3

)
= 0 =⇒ x = 1, y = 2.

Consider the nature of the stationary point at (1, 2). We have

D = fxx(1, 2)fyy(1, 2)− [fxy(1, 2)]
2 = −9 < 0

Hence, by the second derivative test, we see that f(x, y) has a saddle point at (1, 2). Thus,
the extrema of f(x, y) must occur along its boundary.
Note that the boundary of f(x, y) is given by

• x = 0, y ∈ [0, 5]

• x ∈ [0, 3], y = 0
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• x ∈ [0, 3], y = 5− 5
3x

Case 1 : x = 0, y ∈ [0, 5]. We have that f(0, y) = −3y + 7, which clearly attains a
maximum of 7 at y = 0 and a minimum of −8 at y = 5.
Case 2 : x ∈ [0, 3], y = 0. We have that f(x, 0) = −6x + 7, which clearly attains a

maximum of 7 at x = 0 and a minimum of −11 at x = 3.
Case 3 : x ∈ [0, 3], y = 5− 5

3x. Observe that

f

(
x, 5− 5

3
x

)
= 3x

(
5− 5

3
x

)
− 6x− 3

(
5− 5

3
x

)
+ 7 = −(x− 2)(5x− 4)

is concave down and has a turning point at x = 1.4. Hence, the function clearly attains a
maximum of 1.8 when x = 1.4 and a minimum of −11 when x = 3 (note that at x = 0,
the function returns −8).
Hence, the maximum of f(x, y) is 7, while the minimum is −11.

∗ ∗ ∗ ∗ ∗

Problem 15. Find the dimensions of a rectangular box, open at the top, having a volume
of 32 cm3, and requiring the least amount of material for its construction.

Solution. Let the box have side lengths of x, y and z cm. Given that the volume of the
box is fixed at 32 cm3, we have

xyz = 32 =⇒ z =
32

xy

Let the surface area of the box be measured by f(x, y). Then

f(x, y) = xy + 2yz + 2xz = xy + 2y

(
32

xy

)
+ 2x

(
32

xy

)
= xy + 64x−1 + 64y−1.

Note that

∇f =

(
fx(x, y)
fy(x, y)

)
=

(
y − 64x−2

x− 64y−2

)
.

For stationary points, ∇f = 0. We hence obtain

{
y = 64x−2

x = 64y−2
=⇒

{
yx2 = 64

xy2 = 64
=⇒ x3y3 = 642 =⇒ xy = 16

Hence,

x =
x2y

xy
=

64

16
= 4,

whence y = 4 and z = 2. Thus, f(x, y) has a stationary point at (4, 4, 2).
We now consider the nature of this stationary point. Note that

fxx(x, y) = 128x−3, fyy = 128y−3, fxy = 1.

Hence,
D = fxx(4, 4)fyy(4, 4)− [fxy(4, 4)]

2 = 3

SinceD > 0 and fxx(4, 4) = 2 > 0, by the second derivative test, f(x, y) attains a minimum
at (4, 4, 2). Thus, the amount of material required is lowest for a box of dimension 4×4×2.
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Problem 16. Find the quadratic approximation of f(x, y) = x2y+ xy2 around the point
(1, 1).

Solution. Taking partial derivatives, we have

fx(x, y) = 2xy + y2, fy(x, y) = 2xy + x2

fxx(x, y) = 2y, fxy(x, y) = 2x+ 2y, fyy(x, y) = 2x.

Hence, the required quadratic approximation Q(x, y) is given by

Q(x, y) = f(1, 1) + fx(1, 1)(x− 1) + fy(1, 1)(y − 1)

+
1

2
fxx(1, 1)(x− 1)2 + fxy(1, 1)(x− 1)(y − 1) +

1

2
fyy(1, 1)(y − 1)2

= 2 + 3(x− 1) + 3(y − 1) + (x− 1)2 + 4(x− 1)(y − 1) + (y − 1)2

= 2− 3x− 3y + 4xy + x2 + y2
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Self-Practice B11

Problem 1. At what rate is the area of a rectangle changing if its length is 15 units and
increasing at 3 units/s while its width is 6 units and increasing at 2 units/s?

Solution. Let l(t) and w(t) be the length and width of the rectangle respectively, where
t is the time in seconds. Let A = lw be the area of the rectangle. Note that

∂A

∂l
= w and

∂A

∂w
= l.

Also,
dl

dt
= 3 and

dw

dt
= 2.

Hence,
dA

dt
=

∂A

∂l

dl

dt
+

∂A

∂w

dw

dt
= 3w + 2l.

When l = 15 and w = 6, we have

dA

dt
= 3(6) + 2(15) = 48.

Thus, the area of the rectangle is increasing at a rate of 48 units2/s.

∗ ∗ ∗ ∗ ∗

Problem 2. A particle moving along a metal plate in the xy-plane has the velocity
v = i − 4j cm/s at the point (3, 2). If the temperature of the plate at points in the
xy-plane is T (x, y) = y2 lnx where x ≥ 1, in degrees Celsius, find dT/dt at (3, 2).

Solution. Note that

dT

dt
=

∂T

∂x

dx

dt
+

∂T

∂y

dy

dt
=

(
y2

x

)
(1) + (2y lnx) (−4) =

y2

x
− 9y lnx.

At (3, 2), we have
dT

dt

∣∣∣∣
(3,2)

=
22

3
− 9(2) ln 3 = −16.2 (3 d.p.).

∗ ∗ ∗ ∗ ∗

Problem 3. Given that f(x, y) = x2ey, find the maximum value of a directional derivative
at (−2, 0) and give a unit vector in the direction in which the maximum value occurs.

Solution. At (−2, 0), we have

∇f =

(
2xey

x2ey

)
=

(
−4
4

)
.

Note that
Duf(x, y) = ∇f · u = |∇f | cos θ,

where θ is the angle between ∇f and u. Hence, the maximum value of the directional
derivative is ∣∣∣∣

(
−4
4

)∣∣∣∣ =
√
(−4)2 + 42 = 4

√
2.

This occurs when θ = 0, i.e. when u is the same direction as ∇f . Hence,

u =
1

4
√
2

(
−4
4

)
=

1√
2

(
−1
1

)
.
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Problem 4. If the electric potential at a point (x, y) in the xy-plane is V (x, y), where
V (x, y) = e−2x cos 2y, find the direction where V decreases most rapidly at (0, π/6).

Solution. At (0, π/6), we have

∇V =

(
−2e−2x cos 2y
−2e−2x sin 2y

)
= −

(
1√
3

)
.

Note that
DuV (x, y) = ∇V · u = |∇V | cos θ,

where θ is the angle between ∇V and u. Hence, V decreases the most when θ = π, i.e.

when u is in the opposite direction as ∇V . Thus, the desired direction is

(
1√
3

)
.

∗ ∗ ∗ ∗ ∗

Problem 5. Find all local extrema and saddle points of f(x, y) = 4xy − x4 − y4.

Solution. Note that

∇f =

(
4y − 4x3

4x− 4y3

)
.

Setting this equal to the zero vector, we have the system

{
−4x3 + 4y = 0

4x− 4y3 = 0
.

From the first equation, we get y = x3. Substituting this into the second equation yields

x− x9 = x
(
1− x8

)
= 0.

Note that x8 − 1 factors as
(
x4 + 1

) (
x2 + 1

)
(x+ 1) (x− 1). We thus have x = −1, 0, 1,

which correspond to the points (−1,−1), (0, 0) and (1, 1).
Let

D = fxxfyy − f2
xy =

(
−12x2

) (
−12y2

)
− (4)2 = 144x2y2 − 16.

Case 1 . At (−1,−1), we have

D = 144(−1)2(−1)2 − 16 = 128 > 0.

Since fxx = −12(−1)2 = −12 < 0, by the second partial derivative test, (−1,−1) is a
maximum point.
Case 2 . At (0, 0), we have

D = 144(0)2(0)2 − 16 = −16 < 0.

By the second partial derivative test, (0, 0) is a saddle point.
Case 3 . At (1, 1), we have

D = 144(1)2(1)2 − 16 = 128 > 0.

Since fxx = −12(1)2 = −12 < 0, by the second partial derivative test, (1, 1) is a maximum
point.

∗ ∗ ∗ ∗ ∗

Problem 6. Find the absolute extrema of f(x, y) = x2 + 2y2 − x such that the domain
of this function f is the circular region x2 + y2 ≤ 4.



850 B11 Functions of Two Variables

Solution. Note that

∇f =

(
2x− 1
4y

)
.

Setting this equal to the zero vector, we see that f has only one stationary point at (1/2, 0),
which is in the domain. At this point,

f

(
1

2
, 0

)
=

(
1

2

)2

+ 2(0)2 − 1

2
= −1

4
.

We now consider the points along the boundary of Df , which is given by the equation
x2 + y2 = 4. Substituting y2 = 4− x2 into the definition of f(x, y), we get the univariate
function g(x):

g(x) = x2 + 2
(
4− x2

)
− x = −

(
x+

1

2

)2

+
33

4
.

Also note that x ∈ [−2, 2]. Clearly, g(x) attains a maximum of 33/4 at x = −1/2 and a
minimum of 2 at x = 2.

Thus, the absolute maximum of f(x, y) is 33/4, while the absolute minimum of f(x, y)
is −1/4.

∗ ∗ ∗ ∗ ∗

Problem 7. A length of sheet metal 27 cm wide is to be made into a water trough by
bending up two sides as shown in the figure below. Find the values of x and θ such that
the trapezoid-shaped cross-section has a maximum area.

27− 2x

x

θ

Solution 1. Take the mirror image of the figure and place it on top of the original image.
We get a hexagon with perimeter 54, and we are tasked with maximizing its area. It is
a well-known result that for n-sided polygons with fixed perimeters, the regular n-gon
encloses the largest area. Hence, we have x = 54/6 = 9 and θ = 2π/6 = π/3.

Solution 2. Observe that the longer side of the trapezium is given by (27−2x)+2(x cos θ),
while the height of the trapezium is given by x sin θ. The area A of the trapezium is thus
given by

A =
(27− 2x) + (27− 2x+ 2x cos θ)

2
(x sin θ) = 27x sin θ + x2 sin θ (cos θ − 2) .

Observe that

∇A =

(
Ax

Aθ

)
=

(
27 sin θ + 2x sin θ (cos θ − 2)

27x cos θ + x2
(
cos2 θ − sin2 θ − 2 cos θ

)
)
.

Setting this equal to the zero vector, we get the following system:
{
27 sin θ + 2x sin θ (cos θ − 2) = 0,

27x cos θ + x2
(
cos2 θ − sin2 θ − 2 cos θ

)
= 0.

From the first equation, we get

x =
−27

2 (cos θ − 2)
.
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Substituting this into the second equation,

27

( −27

2 (cos θ − 2)

)
cos θ +

( −27

2 (cos θ − 2)

)2 (
cos2 θ − sin2 θ − 2 cos θ

)
= 0.

Clearing denominators and simplifying, we get

−2 cos θ (cos θ − 2) +
(
cos2 θ − sin2 θ − 2 cos θ

)
= 0.

Expanding, we have
− cos2 θ + 2 cos θ − sin2 θ = 0,

from which we immediately get cos θ = 1/2, whence θ = π/3 and x = 9.
We now calculate the second partial derivatives of A at θ = π/3 and x = 9. First, we

have
Axx = 2 sin θ (cos θ − 2) = −2.5981 (5 s.f.).

Secondly, we have

Aθθ = −27x sin θ + x2 (−2 cos θ sin θ − 2 sin θ cos θ + 2 sin θ) = −210.44 (5 s.f.).

Lastly, we have

Aθx = 27 cos θ + 2x
(
cos2 θ − sin2 θ − 2 cos θ

)
= −13.5.

Since

D = AxxAθθ −A2
θx = (−2.5981)(−210.44)− (−13.5)2 = 364.5 > 0

and Axx = −2.5981 < 0, by the second partial derivative test, A attains a maximum when
x = 9 and θ = π/3.

∗ ∗ ∗ ∗ ∗

Problem 8. A Further Maths student smiled when a question asked for him to find the
quadratic approximation for the function of f(x, y) = xy− 3y− x around the point (2, 3).
Explain why he is so delighted.

Solution. The function f(x, y) = xy− 3y− x is already a quadratic, hence the quadratic
approximation to f(x, y) is simply f(x, y) itself.

∗ ∗ ∗ ∗ ∗

Problem 9. A company produces two products, A and B, which require different amounts
of two resources, Resource 1 and Resource 2. The profit generated by selling product A is
$10 per unit, and the profit from selling product B is $15 per unit. Each unit of product
A requires 2 units of Resource 1 and 1 unit of Resource 2. Each unit of product B requires
1 unit of Resource 1 and 3 units of Resource 2. The company has a total of 100 units of
Resource 1 and 90 units of Resource 2. What should the company produce in order to
maximize its profitability?

Solution. We use linear programming to solve this problem.
Let n and m be the amount of product A and B produced by the company. Let Π be

the total revenue earned, i.e.
Π = 10n+ 15m.

Due to resource constraints, we have the inequalities
{
2n+m ≤ 100,

n+ 3m ≤ 90.
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Additionally, we have n,m ≥ 0.
We can visualize these inequalities graphically:

50 90

30

100

(42, 16)

R

O

n

m 2n+m = 100
n+ 3m = 90

Here, R represents the feasible zone, i.e. the region where both inequalities are satisfied.
This is the region where the company can produce. Also note that the two “boundaries”
intersect at (42, 16).
Now, recall that Π = 10n+ 15m. Rearranging,

m =
Π

15
− 2

3
n.

If we plot this, we get a line with m-intercept Π/15 and gradient −2/3. Our goal of
maximizing Π can be restated as “find the largest value Π/15 such that a line with gradient
−2/3 intersects the region R once”.

50 90

30

100

(42, 16)

R

O

n

m 2n+m = 100
n+ 3m = 90

From the figure above, it is easy to see that the “optimal line” will only intersect the
region R at only one point: (42, 16). Hence, the company should produce 42 units of
product A and 16 units of product B.
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Assignment B11

Problem 1. Show that if f is differentiable at (x0, y0) and∇f(x0, y0) ̸= 0, then∇f(x0, y0)
is perpendicular to the level curve of f through (x0, y0).

Solution. Let f(x, y) = (x(t), y(t)). Let the level curve at (x0, y0) have equation f(x, y) =
c. Implicitly differentiating this with respect to t, we get

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
=

(
fx
fy

)
·
(
dx/dt
dy/dt

)
= ∇f · u = 0,

where u is the tangent to the level curve at (x0, y0). Since both ∇f and u are non-zero
vectors, they must be perpendicular to each other.

∗ ∗ ∗ ∗ ∗

Problem 2. Find the quadratic approximation of f(x, y) = ex
2+y2 around the point(

1
2 , 0
)
.

Solution. Observe that we have

fx(x, y) = 2xex
2+y2 , fy(x, y) = 2yex

2+y2

fxx(x, y) = 2ex
2+y2(2x2 + 1), fxy(x, y) = 4xyex

2+y2 , fyy(x, y) = 2ex
2+y2(2y2 + 1).

Evaluating f(x, y) and the above partial derivatives at
(
1
2 , 0
)
, we obtain

f(x, y) = e1/4, fx(x, y) = e1/4, fy(x, y) = 0

fxx(x, y) = 3e1/4, fxy(x, y) = 0, fyy(x, y) = 2e1/4.

The quadratic approximation Q(x, y) to f(x, y) at
(
1
2 , 0
)
is hence

Q(x, y) = e1/4 + e1/4
(
x− 1

2

)
+ 3e1/4

(
x− 1

2

)2

+ e1/4y2.

∗ ∗ ∗ ∗ ∗

Problem 3. A common problem in experimental work is to obtain a mathematical
relationship between two variables x and y by “fitting” a curve to points in the plane
corresponding to various experimentally determines values of x and y, say

(x1, y1), (x2, y2), (x3, y3), . . . , (xn, yn).

Based on theoretical considerations, or simply on the pattern of the points, one decides
on the general form of the curve to be fitted. Often, the “curve” to be fitted is a straight
line, y = ax + b. One criterion for selecting a line of “best fit” is to choose a and b to
minimize the function

f(a, b) =

n∑

k=1

(axk + b− yk)
2.

Geometrically, |axk + b− yk| is the vertical distance between the data point (xk, yk) and
the line y = ax + b, so in effect, minimizing f(a, b) minimizes the sum of the squares of
the vertical distances. This procedure is called the method of least squares.

(a) Show that the conditions ∂f/∂a = 0 and ∂f/∂b = 0 result in the equations
(

n∑

k=1

x2k

)
a+

(
n∑

k=1

xk

)
b =

n∑

k=1

(xkyk)

(
n∑

k=1

xk

)
a+ nb =

n∑

k=1

yk
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(b) Solve the equations for a and b to show that

a =
n
∑n

k=1(xkyk)− (
∑n

k=1 xk) (
∑n

k=1 yk)

n
∑n

k=1 x
2
k − (

∑n
k=1 xk)

2

and

b =

(∑n
k=1 x

2
k

)
(
∑n

k=1 yk)− (
∑n

k=1 xk) (
∑n

k=1(xkyk))

n
∑n

k=1 x
2
k − (

∑n
k=1 xk)

2 .

(c) Given that x̄ = 1
n

∑n
k=1 xk, show that n

∑n
k=1 x

2
k − (

∑n
k=1 xk)

2 > 0.

(d) Find faa(a, b), fbb(a, b) and fab(a, b).

(e) Show that f has a relative minimum at the critical point found in (b).

Solution.

Part (a). Observe that

∂f

∂a
=

∂

∂a

n∑

k=1

(axk + b− yk)
2 =

n∑

k=1

2xk(axk + b− yk) = 2
n∑

k=1

(ax2k + bxk − xkyk).

Hence,

∂f

∂a
= 2

n∑

k=1

(ax2k + bxk − xkyk) = 0 =⇒ a

n∑

k=1

x2k + b

n∑

k=1

xk =

n∑

k=1

xkyk.

Observe that

∂f

∂b
=

∂

∂b

n∑

k=1

(axk + b− yk)
2 =

n∑

k=1

2(axk + b− yk) = 2

[
n∑

k=1

(axk − yk) + bn

]
.

Hence,

∂f

∂b
= 2

[
n∑

k=1

(axk − yk) + bn

]
= 0 =⇒ a

n∑

k=1

xk + bn =
n∑

k=1

yk.

Part (b). Let

A =

n∑

k=1

x2k, B =

n∑

k=1

xk, C =

n∑

k=1

(xkyk), D = n, E =

n∑

k=1

yk.

The above equations transform into
{
Aa+ Bb = C

Ba+Db = E
.

One can easily solve the system for a and b, yielding

a =
CD −BE

AD −B2
, b =

AE −BC

AD −B2
.

Thus,

a =
n
∑n

k=1(xkyk)− (
∑n

k=1 xk) (
∑n

k=1 yk)

n
∑n

k=1 x
2
k − (

∑n
k=1 xk)

2

and

b =

(∑n
k=1 x

2
k

)
(
∑n

k=1 yk)− (
∑n

k=1 xk) (
∑n

k=1(xkyk))

n
∑n

k=1 x
2
k − (

∑n
k=1 xk)

2 .
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Part (c). Observe that

x̄ =
1

n

n∑

k=1

xk =⇒
n∑

k=1

xk = nx̄.

Consider n
∑n

k=1 x
2
k − (

∑n
k=1 xk)

2.

n

n∑

k=1

x2k −
(

n∑

k=1

xk

)2

= n

(
n∑

k=1

x2k − nx̄2

)
= n

(
n∑

k=1

x2k − 2nx̄2 + nx̄2

)

= n

[
n∑

k=1

x2k − 2nx̄

(
1

n

n∑

k=1

xk

)
+

n∑

k=1

x̄2

]
= n

(
n∑

k=1

x2k −
n∑

k=1

2xkx̄+

n∑

k=1

x̄2

)

= n

n∑

k=1

(
x2k − 2xkx̄+ x̄2

)
= n

n∑

k=1

(xk − x̄)2 .

Given that the RHS is a sum of squares, it must be greater than or equal to 0. We thus
have the inequality

n

n∑

k=1

x2k −
(

n∑

k=1

xk

)2

≥ 0.

However, if n
∑n

k=1 x
2
k − (

∑n
k=1 xk)

2 = 0, then both a and b would be undefined. Thus,
we must have a strict inequality, which gives

n
n∑

k=1

x2k −
(

n∑

k=1

xk

)2

> 0.

Part (d). From (a), we have

fa(a, b) = 2a
n∑

k=1

x2k + 2b
n∑

k=1

xk − 2
n∑

k=1

xkyk

and

fb(a, b) = 2a
n∑

k=1

xk + 2nb− 2
n∑

k=1

yk.

Thus,

faa(a, b) = 2
n∑

k=1

x2k, fab(a, b) = 2
n∑

k=1

xk, fbb(a, b) = 2n.

Part (e). Let D = faa(a, b)fbb(a, b)− [fab(a, b)]
2. From part (d), we have

D = 4


n

n∑

k=1

x2k −
(

n∑

k=1

xk

)2

 ,

which is clearly positive from part (c). Furthermore, faa(a, b) = 2
∑n

k=1 x
2
k is clearly

positive (note that we reject the equality for the reason stated in part (c)). Thus, by the
second partial derivative test, the critical point found in part (b) must be a minimum
point.
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B12 Separable Differential Equations

Tutorial B12

Problem 1. Given that y = 1 when x = 1, find the particular solution of the differential

equation dy
dx = y2

x .

Solution.

dy

dx
=

y2

x
=⇒ 1

y2
dy

dx
=

1

x
=⇒

∫
1

y2
dy =

∫
1

x
dx

=⇒ −1

y
= ln |x|+ C1 =⇒ y =

1

C − ln |x| , C = −C1.

Since y(1) = 1, we have

1 =
1

C − ln |1| =⇒ C = 1 =⇒ y =
1

1− ln |x| .

∗ ∗ ∗ ∗ ∗

Problem 2. Two variables x and t are connected by the differential equation dx
dt = kx

10−x ,
where 0 < x < 10 and where k is a constant. It is given that x = 1 when t = 0 and that
x = 2 when t = 1. Find the value of t when x = 5, given your answer to three s.f.

Solution.

dx

dt
=

kx

10− x
=⇒ 10− x

x

dx

dt
= k

=⇒
∫

10− x

x
dx =

∫
k dt =⇒ 10 lnx− x = kt+ C.

Evaluating at x = 1 and t = 0,

10 ln(1)− 1 = k(0) + C =⇒ C = −1.

Evaluating at x = 2 and t = 1,

10 ln(2)− 2 = k(1)− 1 =⇒ k = 10 ln 2− 1.

Hence, evaluating at x = 5, we get

10 ln(5)− 5 = (10 ln 2− 1) t− 1 =⇒ t = 2.04 (3 s.f.).

∗ ∗ ∗ ∗ ∗

Problem 3. Use the substitution y = u−2x to find the general solution of the differential
equation dy

dx = −8x+4y+1
4x+2y+1 .
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Solution. Note that

dy

dx
= −8x+ 4y + 1

4x+ 2y + 1
= −2 +

1

4x+ 2y + 1
.

Also note that under the substitution y = u− 2x, we have

dy

dx
=

du

dx
− 2.

Thus,

du

dx
=

1

4x+ 2y + 1
=

1

4x+ 2(u− 2x) + 1
=

1

2u+ 1
=⇒ (2u+ 1)

du

dx
= 1.

Integrating with respect to x,

∫
(2u+ 1) du =

∫
1 dx =⇒ u2 + u = x+ C =⇒ (y + 2x)2 + y + x = C.

∗ ∗ ∗ ∗ ∗

Problem 4. By using the substitution z = ye2x, find the general solution of the differential
equation dy

dx + 2y = xe−2x.

Find the particular solution of the differential equation given that dy
dx = 1 when x = 0.

Solution. Note that

z = ye2x =⇒ dz

dx
=

dy

dx
e2x + 2ye2x =

dy

dx
e2x + 2z =⇒ dy

dx
=

dz

dx
e−2x − 2y.

Substituting this into the given differential equation,

dz

dx
e−2x − 2y + 2y = xe−2x =⇒ dz

dx
= x.

Integrating with respect to x, we easily see that

ye2x = z =
z2

2
+ C =⇒ y =

x2

2e2x
+

C

e2x
.

Since dy
dx = 1 when x = 0, we have

1 + 2y = 0 =⇒ y = −1

2
=⇒ C = −1

2
.

The desired particular solution is hence

y =
x2 − 1

2e2x
.

∗ ∗ ∗ ∗ ∗

Problem 5. Find the general solution of the differential equation dy
dx = 6xy3.

Find its particular solution given that y = 0.5 when x = 0.
Determine the interval of validity for the particular solution.
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Solution.

dy

dx
= 6xy3 =⇒ 1

y3
dy

dx
= 6x =⇒

∫
1

y3
dy =

∫
6x dx

=⇒ − 1

2y2
= 3x2 + C1 =⇒ y2 =

1

C − 6x2
.

Since y(0) = 0.5, we have

(0.5)2 =
1

C − 6(0)2
=⇒ C = 4.

Thus, the particular solution is

y2 =
1

4− 6x2
.

For the solution to be valid, we require 4− 6x2 > 0, whence x ∈
(
−
√

2/3,
√

2/3
)
.

∗ ∗ ∗ ∗ ∗

Problem 6.

(a) Find the general solution of the differential equation dy
dx = 3x

x2+1
.

(b) What can you say about the gradient of every solution as x → ±∞?

(c) Find the particular solution of the differential equation for which y = 2 when x = 0.
Hence, sketch the graph of this solution.

Solution.

Part (a).
dy

dx
=

3x

x2 + 1
=

3

2

(
2x

x2 + 1

)
=⇒ y =

3

2
ln
(
x2 + 1

)
+ C.

Part (b).

lim
x→±∞

dy

dx
= lim

x→±∞
3x

x2 + 1
= 0.

Part (c). Evaluating the general solution at x = 0 and y = 2, we get

2 =
3

2
ln
(
02 + 1

)
+ C =⇒ C = 2.

Thus, the particular solution is

y =
3

2
ln
(
x2 + 1

)
+ 2.

2

O

x

y y = 3
2 ln
(
x2 + 1

)
+ 2
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Problem 7. The variables x, y and z are connected by the following differential equations.

dz

dx
= 3− 2z (∗)

dy

dx
= z

(a) Given that z < 3
2 , solve equation (∗) to find z in terms of x.

(b) Hence, find y in terms of x.

(c) Use the result in part (b) to show that

d2y

dx2
= a

dy

dx
+ b

for constants a and b to be determined.

(d) The curve of the solution in part (b) passes through the points (0, 1) and
(
2, 3 + e−4

)
.

Sketch this curve, indicating its axial intercept and asymptote (if any).

Solution.

Part (a).

dz

dx
= 3− 2z =⇒ 1

3− 2z

dz

dx
= 1 =⇒

∫
1

3− 2z
dz =

∫
1 dx

=⇒ −1

2
ln(3− 2z) = x+ C1 =⇒ z =

3

2
−Ae−2x, A =

e−2C1

2
.

Thus, the general solution is

z =
3

2
−Ae−2x, A ∈ R+.

Part (b).

dy

dx
=

3

2
−Ae−2x =⇒ y =

∫ (
3

2
−Ae−2x

)
dx =

3

2
x+

A

2
e−2x +B, B ∈ R.

Part (c).

dy

dx
=

3

2
−Ae−2x =⇒ d2y

dx2
= 2Ae−2x = 2

(
3

2
− dy

dx

)
= −2

dy

dx
+ 3.

Hence, a = −2 and b = 3.

Part (d). Evaluating the general solution at (0, 1), we obtain

1 =
3

2
(0) +

A

2
e−2(0) +B =⇒ B = 1− A

2
.

Evaluating the general solution at
(
2, 3 + e−4

)
, we obtain

3 + e−4 =
3

2
(2) +

A

2
e−2(2) +

(
1− A

2

)
=⇒ A = 2.

The curve thus has equation

y =
3

2
x+ e−2x.
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1

y
=

3
2
x

O

x

y y = 3
2x+ e−2x

∗ ∗ ∗ ∗ ∗

Problem 8. A bottle containing liquid is taken from a refrigerator and placed in a room
where the temperature is a constant 20 ◦C. As the liquid warms up, the rate of increase
of its temperature θ ◦C after time t minutes is proportional to the temperature difference
(20− θ) ◦C. Initially the temperature of the liquid is 10 ◦C and the rate of increase of the
temperature is 1 ◦C per minute. By setting up and solving a differential equation, show
that θ = 20− 10e−t/10.

Find the time it takes the liquid to reach a temperature of 15 ◦C, and state what happens
to θ for large values of t. Sketch a graph of θ against t.

Solution. Since dθ
dt ∝ (20 − θ), we have dθ

dt = k(20 − θ), where k is a constant. We now
solve for θ.

dθ

dt
= k(20− θ) =⇒ 1

20− θ

dθ

dt
= k =⇒

∫
1

20− θ
dθ =

∫
k dt

=⇒ − ln(20− θ) = kt+ C1 =⇒ θ = 20− Ce−kt, C = e−C1 .

Evaluating at θ = 0 and θ = 10, we get

10 = 20− Ce−0 =⇒ C = 10.

Additionally, since dθ
dt = 1 when t = 0, we have

1 = k
[
20− (20− 10e0)

]
= 10k =⇒ k =

1

10
.

Thus,
θ = 20− 10e−t/10.

Using G.C., when θ = 15, we have t = 6.93. Thus, it takes 6.93 minutes for the liquid
to reach a temperature of 15◦C. As t tends to infinity, θ tends towards 20.
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10

20

O

t

θ θ = 20− 10e−t/10

∗ ∗ ∗ ∗ ∗

Problem 9.

(a) Find
∫

1
100−v2

dx.

(b) A stone is dropped from a stationary balloon. It leaves the balloon with zero speed,
and t seconds later its speed v metres per second satisfies the differential equation

dv

dt
= 10− 0.1v2.

(i) Find t in terms of v. Hence, find the exact time the stone takes to reach a
speed of 5 metres per second.

(ii) Find the speed of the stone after 1 second.

(iii) What happens to the speed of the stone for large values of t?

Solution.

Part (a).
∫

1

100− v2
dv =

1

2(10)
ln

(
10 + v

10− v

)
+ C =

1

20
ln

(
10 + v

10− v

)
+ C.

Part (b).

Part (b)(i).

dv

dt
= 10− 0.1v2 =

100− v2

10
=⇒ 1

100− v2
dv

dt
=

1

10
=⇒

∫
1

100− v2
dv =

∫
1

10
dt

=⇒ 1

20
ln

(
10 + v

10− v

)
+ C1 =

t

10
=⇒ t =

1

2
ln

(
10 + v

10− v

)
+ C, C = 10C1.

Evaluating the solution at t = 0 and v = 0, we get

0 =
1

2
ln

(
10 + 0

10 + 0

)
+ C =⇒ C = 0.

Thus, the general solution is

t =
1

2
ln

(
10 + v

10− v

)
.

Consider v = 5, we have

t =
1

2
ln

(
10 + 5

10− 5

)
=

1

2
ln 3.

It thus takes 1
2 ln 3 seconds for the stone to reach a speed of 5 m/s.
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Part (b)(ii). Consider t = 1. Using G.C., we get v = 7.62. Thus, after 1 second, the stone
has a speed of 7.62 m/s.

Part (b)(iii). As t → ∞, we have ln
(
10+v
10−v

)
→ ∞ =⇒ 10+v

10−v → ∞. Thus, v → 10. Hence,

for large values of t, the speed of the stone approaches 10 m/s.

∗ ∗ ∗ ∗ ∗

Problem 10. Two scientists are investigating the change of a certain population of an
animal species of size n thousand at time t years. It is known that due to its inability to
reproduce effectively, the species is unable to replace itself in the long run.

(a) One scientist suggests that n and t are related by the differential equation d2n
dt2

=
10 − 6t. Given that n = 100 when t = 0, show that the general solution of this
differential equation is n = 5t2 − t3 + Ct + 100, where C is a constant. Sketch the
solution curve of the particular solution when C = 0, stating the axial intercepts
clearly.

(b) The other scientist suggests that n and t are related by the differential equation
dn
dt = 3− 0.02n. Find n in terms of t, given again that n = 100 when t = 0. Explain
in simple terms what will eventually happen to the population using this model.

Which is a more appropriate model in modelling the population of the animal species?

Solution.

Part (a).

d2n

dt2
= 10− 6t =⇒ dn

dt
=

∫
(10− 6t) dθ = 10t− 3t2 + C

=⇒ n =

∫ (
10t− 3t2 + C

)
dt = 5t2 − t3 + Ct+D.

Evaluating the solution at t = 0 and n = 100, we obtain D = 100. Thus,

n = 5t2 − t3 + Ct+ 100.

Hence, when C = 0,
n = 5t2 − t3 + 100.

7.03

100

O

n

t n = 5t2 − t3 + 100

Part (b).

dn

dt
= 3− 0.02n =

150− n

50
=⇒ 1

150− n

dn

dt
=

1

50
=⇒

∫
1

150− n
dn =

∫
1

50
dt

=⇒ − ln(150− n) =
1

50
t+ C1 =⇒ n = 150− Ce−t/50, C = e−C1 .
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When t = 0 and n = 100, we have C = 50. Hence,

n = 150− 50e−t/50.

As t → ∞, n → 150. Hence, the population will decrease before plateauing at 150
thousand.
The first model is more appropriate, as it account for the fact that the species will

eventually go extinct (n = 0) due to the fact that they cannot replace itself in the long
run.

∗ ∗ ∗ ∗ ∗

Problem 11. A rectangular tank has a horizontal base. Water is flowing into the tank
at a constant rate, and flows out at a rate which is proportional to the depth of water in
the tank. At time t seconds, the depth of water in the tank is x metres. If the depth is
0.5 m, it remains at this constant value. Show that dx

dt = −k(2x−1), where k is a positive
constant. When t = 0, the depth of water in the tank is 0.75 m and is decreasing at a rate
of 0.01 m s−1. Find the time at which the depth of water is 0.55 m.

Solution. Let Vi m3/s be the rate at which water is flowing into the tank. Note that
Vi ≥ 0. Let the rate at which water is flowing out of the tank be Vox m3/s. Let the base
of the container be A m2. Then

dx

dt
=

Vi − Vox

A
.

At x = 0.5, the volume of water in the tank is constant. Thus,

dx

dt

∣∣∣∣
x=0.5

= 0 =⇒ Vi − 0.5Vo = 0 =⇒ Vo = 2Vi =⇒ dx

dt
= −Vi(2x− 1)

A
.

Letting k = Vi/A, we have
dx

dt
= −k(2x− 1).

We now solve for t.

dx

dt
= −k(2x− 1) =⇒ 1

2x− 1

dx

dt
= −k =⇒

∫
1

2x− 1
dx =

∫
−k dt

=⇒ ln(2x− 1)

2
+ C1 = −kt =⇒ t = − ln(2x− 1) + C

2k
, C = 2C1

Evaluating the solution at t = 0 and x = 0.75, we get

0 = − ln(2(0.75)− 1) + C

2k
=⇒ C2 = ln 2.

Additionally,

dx

dt

∣∣∣∣
t=0

= −0.01 =⇒ −0.01 = −k[2(0.75)− 1] =⇒ k = 0.02.

Thus,

t = − ln(2x− 1) + ln 2

2(0.02)
= −25 ln(4x− 2) .

Consider x = 0.55. Then

t = −25 ln(4(0.55)− 2) = 25 ln 5.

Thus, when t = 25 ln 5, the depth of the water is 0.55 m.
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Problem 12. In a model of mortgage repayment, the sum of money owned to the Building
Society is denoted by x and the time is denoted by t. Both x and t are taken to be
continuous variables. The sum of money owned to the Building Society increases, due
to interest, at a rate proportional to the sum of money owed. Money is also repaid at a
constant rate r.

When x = a, interest and repayment balance. Show that, for x > 0, dx
dt = r

a(x− a).
Given that, when t = 0, x = A, find x in terms of t, r, a and A.
On a single, clearly labelled sketch, show the graph of x against t in the two cases:

(a) A > a.

(b) A < a.

State the circumstances under which the loan is repaid in a finite time T and show that,
in this case, T = a

r ln
a

a−A .

Solution. Let the rate at which money is owned to the Building Society be kx. Then

dx

dt
= kx− r.

At x = a, interest and repayment balance. Hence,

dx/dt|a = ka− r = 0 =⇒ k =
r

a
.

Thus,
dx

dt
=

r

a
x− r =

r

a
(x− a).

We now solve for x.

dx

dt
=

r

a
(x− a) =⇒ 1

x− a

dx

dt
=

r

a
=⇒

∫
1

x− a
dx =

∫
r

a
dt

=⇒ ln |x− a| = r

a
t+ C1 =⇒ x = Cert/a + a.

When t = 0, we have x = A. Substituting this into the solution, we obtain

A = C + a =⇒ C = A− a.

Thus,
x = (A− a)ert/a + a.

T

A1

A2

O
t

x A > a
A < a

For the loan to be repaid in finite time, A < a. At time T , the loan has been repaid,
i.e. x = 0. Thus,

(A− a)ert/a + a = 0 =⇒ ert/a =
a

a−A
=⇒ rt

a
= ln

(
a

a−A

)
=⇒ t =

a

r
ln

(
a

a−A

)
.
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Self-Practice B12

Problem 1. Show that the differential equation x2 dy
dx − 2xy + 3 = 0 may be reduced by

means of the substitution y = ux2 to du
dx = − 3

x4 . Hence, other otherwise, show that the
general solution for y in terms of x is y = Cx2 + 1

x , where C is an arbitrary constant.

Solution. Since y = ux2, by the chain rule, one has

dy

dx
=

du

dx
x2 + 2ux.

Substituting this into the given DE, we obtain

x2
(
du

dx
x2 + 2ux

)
− 2x

(
ux2
)
+ 3 = 0 =⇒ du

dx
= − 3

x4
.

Integrating both sides with respect to x,
∫

du =

∫
− 3

x4
dx =⇒ u = x−3 + C.

Since u = y/x2, we have the general solution y = Cx2 + 1/x.

∗ ∗ ∗ ∗ ∗

Problem 2. Use the substitution z = yex to find the general solution of the differential
equation dy

dx + y = 2x + 3. Sketch on one diagram, the curve of a particular solution for
which y → ∞ as x → −∞, labelling the equation of this particular solution.

Solution. Since z = yex, by the chain rule, one has

dz

dx
=

dy

dx
ex + yex =⇒ dy

dx
=

dz

dx
e−x − y.

Substituting this into the given DE, we have
(
dz

dx
e−x − y

)
+ y = 2x+ 3 =⇒ dz

dx
= (2x+ 3)ex.

Integrating both sides with respect to x,
∫

dz =

∫
(2x+ 3) ex dx =⇒ yex = z = (2x+ 1)ex + C.

Thus, y = 2x+ 1 + Ce−x.

1

O

x

y y = 2x+ 1 + e−x

y = 2x+ 1
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Problem 3.

(a) Find the general solution of the differential equation

dy

dx
= (x+ 2)(y − 3),

giving your answer in the form y = f(x).

(b) Given that u and t are related by

du

dt
= 16− 9u2,

and that u = 1 when t = 0, find t in terms of u, simplifying your answer.

Solution.

Part (a). Manipulating the given DE, we have

1

y − 3

dy

dx
= x+ 2 =⇒

∫
1

y − 3
dy =

∫
(x+ 2) dx

=⇒ ln |y − 3|+A =
1

2
x2 + 2x =⇒ B(y − 3) = e

1
2
x2+2x =⇒ y = Ce

1
2
x2+2x + 3.

Part (b). Manipulating the given DE, we have

1

16− 9u2
du

dt
= 1 =⇒

∫
1

42 − (3u)2
du =

∫
dt

=⇒ t =
1

3
· 1

2(4)
ln

(
4 + 3u

4− 3u

)
+ C =

1

24
ln

(
4 + 3u

4− 3u

)
+ C.

At t = 0, u = 1. Hence,

0 =
1

24
ln

(
4 + 3

4− 3

)
+ C =⇒ C = − 1

24
ln 7.

Thus,

t =
1

24
ln

(
4 + 3u

4− 3u

)
− 1

24
ln 7 =

1

24
ln

(
4 + 3u

7(4− 3u)

)
.

∗ ∗ ∗ ∗ ∗

Problem 4. At each instant of time the rate of increase of money in a savings account is
proportional to the amount in the account at that instant. The constant of proportionality
does not vary with time. Denote the amount in the account at time t years by $x. When
x = 1000, the rate of increase is $50 per year. Obtain a differential equation relating x
and t.

(a) Initially, when t = 0, the account contained $900. Find the amount in the account
exactly 3 years later.

(b) Find, in years correct to 2 places of decimals, the time when the account contains
$1800.

(c) Comment on whether the model can be regarded as a good model of the situation
in the real world.
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Solution. We have dx
dt = kx for some k ∈ R+. Thus,

dx

dt

∣∣∣∣
x=1000

= 50 =⇒ k(10000) = 50 =⇒ k =
1

20
.

Hence,
dx

dt
=

1

20
x.

Part (a). Solving for x, we get

1

x

dx

dt
=

1

20
=⇒

∫
1

x
dx =

∫
1

20
dt

=⇒ ln |x|+A =
1

20
t =⇒ Bx = et/20 =⇒ x = Cet/20.

When t = 0, x = 900. Hence, C = 900 and

x = 900et/20.

At t = 3,
x = 900e3/20 = 1045.65 (2 d.p.).

Hence, there will be $1045.65 in the account 3 years later.

Part (b). Let x = 900et/20 = 1800. Using G.C., t = 13.86 (2 d.p.). Hence, it will take
13.86 years for the account to contain $1800.
Part (c). The model is not a good model of the situation in the real world as there is
finite money in the world, but the model predicts that the amount of money in the bank
account will grow forever.

∗ ∗ ∗ ∗ ∗

Problem 5. Salt is dissolved in a tank filled with 120 litres of water. Salt water containing
20 g of salt per litre is poured in at a rate of 3 litres per minute and the mixture flows out
at a constant rate of 3 litres per minute. The contents of the tank are kept well mixed at
all times. Let the amount of salt in the tank (in grams) be denoted by S and the time (in
minutes) be denoted by t.

(a) Show that dS
dt = 2400−S

40 .

(b) Given that 400g of salt was dissolved in the tank initially, find the amount of salt in
the tank after 1 hour, giving your answer to the nearest grams.

Solution.

Part (a). At any instant, the amount of salt entering the tank is 3(20/1) g, while the
amount of salt leaving the tank is 3(S/120). Thus,

dS

dt
= 3

(
20

1

)
− 3

(
S

120

)
= 60− 1

40
S =

2400− S

40
.

Part (b). Note that
dS

dt
+

1

40
S = 60.

Multiplying through by et/40, we have

d

dt

(
Set/40

)
=

dS

dt
et/40 +

1

40
Set/40 = 60et/40.
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Integrating both sides with respect to t,

Set/40 =

∫
60et/40 dt = 2400et/40 + C =⇒ S = 2400 + Ce−t/40.

At t = 0, S = 400. Hence,

400 = 2400 + C =⇒ C = −2000.

At t = 60,
S = 2400− 2000e60/40 = 1954.

Thus, there will be 1954 g of salt in the tank after 1 hour.

∗ ∗ ∗ ∗ ∗

Problem 6. In a certain country, the price of a brand-new car of a particular make,
manufactured on 1 January 1996, is $32,000. According to a model of car pricing, the
price P of the car (in $) depreciates at a rate proportional to P when the car is t years
old (as from 1 January 1996). Write down a differential equation relating P and t.

By solving this differential equation, show that P = 32000e−kt where k is a positive
constant.

A man purchased a used car of this particular make for $2000, at the price predicted by
the model, on 1 January 2006. Subsequently on 1 January 2007, the man sold the used
car for $800. Determine if the man sold his car below the price predicted by the model.

Solution. We have
dP

dt
= −kP,

where k is a positive real number. Solving, we have

1

P

dP

dt
= −k =⇒

∫
1

P
dP = −k

∫
dt =⇒ lnP = −kt+ C =⇒ P = Ce−kt.

At t = 0, P = 32000. Hence, C = 32000, whence

P = 32000e−kt.

When t = 10, P = 2000. Thus,

2000 = 32000e−10k =⇒ k =
1

10
ln 16.

Hence, at t = 11, the model predicts P to be

P = 32000e−11( 1
10

ln 16) = 1515 > 800.

Thus, the man sold his car below the price predicted by the model.
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Assignment B12

Problem 1. The curve y = f(x) passes through the origin and has gradient given by

dy

dx
=

3x2 − 4x+ 1

2y − 5
.

(a) Find f(x).

(b) By considering dy
dx , deduce the coordinates of the point on the curve where it is

tangent to the x-axis.

(c) Determine the interval of validity for the solution.

Solution.

Part (a).

dy

dx
=

3x2 − 4x+ 1

2y − 5
=⇒ (2y − 5)

dy

dx
= 3x2 − 4x+ 1

=⇒
∫
(2y − 5) dy =

∫ (
3x2 − 4x+ 1

)
dx =⇒ y2 − 5y = x3 − 2x2 + x+ C1.

Note that x3 − 2x2 + x = x(x− 1)2. Hence,

y2 − 5y − x(x− 1)2 + C2 = 0 =⇒ y =
5±

√
4x(x− 1)2 + C3

2
.

Since the curve passes through the origin (0, 0), we have

0 =
5−√

C3

2
=⇒ C3 = 25.

Thus,

f(x) =
5−

√
4x(x− 1)2 + 25

2
.

Note that we reject the positive branch since f(x) > 0 in that case.

Part (b). When the curve is tangent to the x-axis, we have dy
dx = 0 and y = 0. Note that

dy

dx
= 0 =⇒ 3x2 − 4x+ 1 = 0 =⇒ x =

1

3
or 1.

Also note that
y = 0 =⇒ 4x(x− 1)2 = 0 =⇒ x = 0 or 1.

Hence, the required point is (1, 0).

Part (c). Since the square root function is defined only on the non-negative reals, we
require

4x(x− 1)2 + 25 ≥ 0 =⇒ x ≥ −1.24.

Thus, the interval of validity is [−1.24,∞).

∗ ∗ ∗ ∗ ∗

Problem 2.

(a) Using the substitution y = ux, find the general solution of the differential equation

dy

dx
=

x+ y

x
,

where x > 0.
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(b) Find the particular solution of the differential equation for which y = −1 when
x = 1.

(c) Without sketching the curve of the solution in (b), determine the number of station-
ary points the solution curve has.

Solution.

Part (a). Note that

y = ux =⇒ dy

dx
=

du

dx
x+ u.

Substituting this into the given differential equation,

dy

dx
=

x+ y

x
=⇒ du

dx
x+ u =

x+ ux

x
=⇒ du

dx
=

1

x
=⇒ u = ln(x) + C =⇒ y = x lnx+ Cx.

Part (b). Evaluating the solution at x = 1 and y = −1, we get

−1 = 1 ln 1 + C(1) =⇒ C = −1.

Thus,
y = x lnx− x.

Part (c). Note that
dy

dx
=

x+ y

x
=

x+ x lnx− x

x
= lnx.

Since lnx only has one root (at x = 1), the solution curve has only 1 stationary point.

∗ ∗ ∗ ∗ ∗

Problem 3. As a tree grows, the rate of increase of its height, h m, with respect to time,
t years after planting, is modelled by the differential equation

dh

dt
=

1

10

√
16− 1

2
h.

The tree is planted as a seedling of negligible height, so that h = 0 when t = 0.

(a) State the maximum height of the tree, according to this model.

(b) Find an expression for t in terms of h, and hence find the time the tree takes to
reach half of its maximum height.

Solution.

Part (a). Note that dh
dt ≥ 0 =⇒ h ≤ 32. Thus, the maximum height of the tree is 32 m.

Part (b).

dh

dt
=

1

10

√
16− 1

2
h =⇒ 10

(
16− 1

2
h

)−1/2 dh

dt
= 1

=⇒ 10

∫ (
16− 1

2
h

)−1/2

dh =

∫
1 dt =⇒ −10

√
16− 1

2
h+ C = t.

Since h = 0 when t = 0, we have

−10
√
16 + C = 0 =⇒ C = 40.
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Thus,

t = 40− 10

√
16− 1

2
h.

When h = 32
2 = 16, we have

t = 40− 10

√
16− 1

2
(16) = 11.7 (3 s.f.).

Thus, it takes 11.7 years for the tree to reach half its maximum height.

∗ ∗ ∗ ∗ ∗

Problem 4.

(a) Find
∫

1
x(1000−x) dx.

(b) A communicable disease is spreading within a small community with a population
of 1000 people. A scientist found out that the rate at which the disease spreads
is proportional to the product of the number of people who are infected with the
disease and the number of people who are not infected with the disease. It is known
that one person in this community is infected initially and five days later, 12% of
the population is infected.

Given that the infected population is x at time t days after the start of the spread
of the disease, show that it takes less than 8 days for half the population to contract
the disease.

(c) State an assumption made by the scientist.

Solution.

Part (a).

∫
1

x(1000− x)
dx =

∫
1

1000

(
1

x
+

1

1000− x

)
dx

=
ln |x| − ln |1000− x|

1000
+ C =

1

1000
ln

∣∣∣∣
x

1000− x

∣∣∣∣+ C.

Part (b). Note that dx
dt ∝ x(1000− x) =⇒ dx

dt = kx(1000− x) for some k ∈ R+.

dx

dt
= kx(1000− x) =⇒ 1

x(1000− x)

dx

dt
= k

=⇒
∫

1

x(1000− x)
dx =

∫
k dt =⇒ 1

1000
ln

(
x

1000− x

)
+ C = kt.

Note that when t = 0, we have x = 1. Thus,

1

1000
ln

(
1

999

)
+ C = 0 =⇒ C =

ln 999

1000
.

When t = 5, x = 120. Hence,

1

1000
ln

(
120

880

)
+

ln 999

1000
= 5k =⇒ k =

1

5000

(
ln

3

22
+ ln 999

)
.
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Thus,

t =

[
1

5000

(
ln

3

22
+ ln 999

)]−1 [ 1

1000
ln

(
x

1000− x

)
+

ln 999

1000

]

=
5

ln(3/22) + ln 999

[
ln

(
x

1000− x

)
+ ln 999

]

Hence, when half the population is infected, i.e. x = 500, we have t = 7.03 < 8. Thus, it
takes less than 8 days for half the population to contract the disease.

Part (c). The assumption is that there are no measures taken by the population to limit
the spread of the disease (e.g. quarantine).
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Tutorial B13

Problem 1. Solve the following differential equations:

(a) 2 secxdy
dx =

√
1− y2

(b) dy
dt = t

y−t2y
, given y = 4 when t = 0

Solution.

Part (a).

2 secx
dy

dx
=
√

1− y2 =⇒ 2√
1− y2

dy

dx
= cosx =⇒

∫
2√

1− y2
dy =

∫
cosx dx

=⇒ 2 arcsin y = sinx+ C1 =⇒ y = sin

(
1

2
sinx+ C

)
, C =

C1

2
.

Part (b).

dy

dt
=

t

y − t2y
=⇒ y

dy

dt
=

t

1− t2
=⇒

∫
y dy =

∫
t

1− t2
dt

=⇒ 1

2
y2 = −1

2
ln
∣∣1− t2

∣∣+ C1 =⇒ y2 = C2 − ln
∣∣1− t2

∣∣ , C2 = 2C1.

Since y = 4 ≥ 0 when t = 0, we have

42 = C2 − ln |1− 0| =⇒ C2 = 16.

Hence,
y =

√
16− ln |1− t2|.

∗ ∗ ∗ ∗ ∗

Problem 2. Solve the following differential equations:

(a) xy′ + (2x− 3)y = 4x4

(b) (1 + x)y′ + y = cosx, y(0) = 1

(c) (1 + t2)dydt = 2ty + 2

(d) (x+ 1)dydx + y
ln(x+1) = x2 + x, where x > 0
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Solution.

Part (a). Note that

xy′ + (2x− 3)y = 4x4 =⇒ y′ +
(
2− 3

x

)
y = 4x3.

Hence, the integrating factor is

I.F. = exp

∫ (
2− 3

x

)
dx = exp(2x− ln 3) =

e2x

x3
.

Multiplying through by the integrating factor, we get

e2x

x3
y′ +

e2x

x3

(
2− 3

x

)
y =

d

dx

(
e2x

x3
y

)
= 4e2x =⇒ e2x

x3
y =

∫
4e2x dx = 2e2x + C

=⇒ y =
x3

e2x
(
2e2x + C

)
= 2x3 + Cx3e−2x.

Part (b).

(1 + x)y′ + y =
d

dx
[(1 + x)y] = cosx =⇒ (1 + x)y =

∫
cosx dx = sinx+ C

=⇒ y =
sinx+ C

x+ 1

Since y(0) = 1,

1 =
sin 0 + C

0 + 1
=⇒ C = 1 =⇒ y =

sinx+ 1

x+ 1
.

Part (c). Let t = tan θ. Observe that

dt

dθ
= sec2 θ = 1 + t2.

Hence,

(1 + t2)
dy

dt
= (1 + t2)

dy

dθ
· dθ
dt

=
1 + t2

1 + t2
· dy
dθ

=
dy

dθ
.

Substituting this into the given differential equation,

dy

dθ
= 2y tan θ + 2 =⇒ cos2 θ

dy

dθ
− 2y sin θ cos θ = 2 cos2 θ =⇒ d

dθ

(
y cos2 θ

)
= 2 cos2 θ

=⇒ y cos2 θ =

∫
2 cos2 θ dt =

∫
(1 + cos 2θ) dθ = θ +

sin 2θ

2
+ C = θ + sin θ cos θ + C

=⇒ y = (θ + C) sec2 θ + tan θ = (arctan t+ C)
(
1 + t2

)
+ t.

Part (d). Note that

(x+ 1)
dy

dx
+

y

ln(x+ 1)
= x2 + x =⇒ dy

dx
+

y

(x+ 1) ln(x+ 1)
= x.

Hence, the integrating factor is

I.F. = exp

∫
1/(x+ 1)

ln(x+ 1)
dx = exp ln ln(x+ 1) = ln(x+ 1) .

Multiplying through by the integrating factor, we get

ln(x+ 1)
dy

dx
+

y

(x+ 1)
=

d

dx
(y ln(x+ 1)) = x ln(x+ 1)

=⇒ y ln(x+ 1) =

∫
x ln(x+ 1) dx.
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Integrating by parts, we get

y ln(x+ 1) =
x2

2
ln(x+ 1)− 1

2

∫
x2

x+ 1
dx

=
x2

2
ln(x+ 1)− 1

2

∫ (
x− 1 +

1

x+ 1

)
dx

=
x2

2
ln(x+ 1)− x2

4
+

x

2
− ln(x+ 1)

2
+ C.

Thus,

y =
x2

2
− x2

4 ln(x+ 1)
+

x

2 ln(x+ 1)
− 1

2
+

C

ln(x+ 1)
.

∗ ∗ ∗ ∗ ∗

Problem 3. Given a general first order differential equation, dy
dx = f(x, y), if f(x, y) is

such that f(kx, ky) = f(x, y), then the equation may be reduced to a separable equation
by means of the substitution y = ux. Hence, solve the following differential equation:
(x+ y)y′ = x− y.

Solution. Note that

(x+ y)y′ = x− y =⇒ y′ =
x− y

x+ y
.

Let f(x, y) = x−y
x+y . Then

f(kx, ky) =
kx− ky

kx+ ky
=

x− y

x+ y
= f(x, y).

Hence, the differential equation can be solved with the substitution y = ux, whence
y′ = u′x+ u. Substituting this into the differential equation, we get

u′x+ u =
x− ux

x+ ux
=

1− u

1 + u
=⇒

(
1 + u

1− 2u− u2

)
u′ =

1

x

=⇒
∫

1 + u

1− 2u− u2
du =

∫
1 + u

2− (1 + u)2
du =

∫
1

x
dx

=⇒ −1

2
ln
∣∣2− (1 + u)2

∣∣ = −1

2
ln

∣∣∣∣2−
(
1 +

y

x

)2∣∣∣∣ = lnx+ C1 =⇒ (x+ y)2 = 2x2 + C,

where C = −e−2C1 ∈ R−.

∗ ∗ ∗ ∗ ∗

Problem 4. Using the substitution u = 1
y , solve

dy
dx + 2y = exy2.

Solution. Note that

u =
1

y
=⇒ y =

1

u
=⇒ dy

dx
= − 1

u2
· du
dx

.

Substituting this into the differential equation,

− 1

u2
· du
dx

+
2

u
=

ex

u2
=⇒ du

dx
− 2u = −ex =⇒ e−2xdu

dx
− 2e−2xu =

d

dx

(
e−2xu

)
= −e−x

=⇒ e−2xu =

∫
−e−x dx = e−x + C =⇒ u = ex + Ce2x =⇒ y =

1

ex + Ce2x
.

∗ ∗ ∗ ∗ ∗

Problem 5. Assuming that p(x) ̸= 0, state conditions under which the linear equation
y′ + p(x)y = f(x) is separable. If the equation satisfies these conditions, solve it by
separation of variables and by the method of integrating factor.
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Solution. The linear equation y′ + p(x)y = f(x) is separable if p(x) is a scalar multiple
of f(x), i.e. p(x) = λf(x) for some λ ∈ R.

We begin by solving using separation of variables. Note that

y′ = f(x)− p(x)y = f(x)− λf(x)y = f(x)(1− λy).

Hence,

1

1− λy
y′ = f(x) =⇒

∫
1

1− λy
dy = − ln |1− λy|

λ
=

∫
f(x) dx

=⇒ ln |1− λy| = −
∫

λf(x) dx = −
∫

p(x) dx

=⇒ y =
1

λ

[
1− C1e

−
∫
p(x) dx

]
=

1

λ
+ Ce−

∫
p(x) dx.

Integrating Factor. Note that the integrating factor is e
∫
p(x) dx. Multiplying through,

we get

e
∫
p(x) dxy′ + e

∫
p(x) dxp(x)y =

d

dx

(
e
∫
p(x) dxy

)
= e

∫
p(x) dxf(x) =

1

λ
e
∫
p(x) dxp(x)

=⇒ e
∫
p(x) dxy =

∫
1

λ
e
∫
p(x) dxp(x) dx =

1

λ
e
∫
p(x) dx + C =⇒ y =

1

λ
+ Ce−

∫
p(x) dx.

∗ ∗ ∗ ∗ ∗

Problem 6. The variables x and y are related by the differential equation dy
dx + y

x = y3.

(a) State clearly why the integrating factor method cannot be used to solve this equation.

(b) The variables y and z are related by the equation 1
y2

= −2z. Show that dz
dx − 2z

x = 1.

(c) Find the solution of the differential equation dy
dx + y

x = y3, given that y = 2 when
x = 1.

Solution.

Part (a). The differential is non-linear due to the presence of the y3 term.

Part (b).

1

y2
= −2z =⇒ dz

dx
=

1

y3
· dy
dx

=
1

y3

(
y3 − y

x

)
= 1− 1

y2
· 1
x
= 1 +

2z

x
=⇒ dz

dx
− 2z

x
= 1.

Part (c).

dz

dx
− 2z

x
= 1 =⇒ 1

x2
dz

dx
− 2z

x3
=

d

dx

( z

x2

)
=

1

x2
=⇒ z

x2
=

∫
1

x2
dx = −1

x
+ C1

=⇒ z = − 1

2y2
= −x+ C1x

2 =⇒ y2 =
1

2x+ C2x2
.

Since y(1) = 2, we have

22 =
1

2 + C2
=⇒ C2 = −7

4
.

Thus,

y2 =
1

2x− 7x2/4
=

4

8x− 7x2
=⇒ y =

2√
8x− 7x2

.

Note that we reject the negative branch since y(1) = 2 ≥ 0.

∗ ∗ ∗ ∗ ∗

Problem 7. Show that the substitution v = ln y transforms the differential equation
dy
dx + P (x)y = Q(x)(y ln y) into the linear equation dv

dx + P (x) = Q(x)v(x). Hence, solve

the equation xdy
dx − 4x2y + 2y ln y = 0.
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Solution. Note that

v = ln y =⇒ dy

dx
=

1

y
· dy
dx

=⇒ dy

dx
= y

dv

dx
.

Substituting this into the differential equation, we get

dy

dx
+ P (x)y = Q(x)(y ln y) =⇒ y

dv

dx
+ P (x)y = Q(x)(yv) =⇒ dv

dx
+ P (x) = Q(x)v.

We now solve the given differential equation. Note that

x
dy

dx
− 4x2y + 2y ln y = 0 =⇒ dy

dx
− 4xy = −2

x
(y ln y).

Hence,

P (x) = −4x, Q(x) = −2

x
.

Now, from the previous part, we can rewrite the differential equation as

dv

dx
− 4x = −2v

x
,

where v(x) = ln y. Thus,

x2
dv

dx
+ 2xv =

d

dx

(
x2v
)
= 4x3 =⇒ x2v = x2 ln y =

∫
4x3 dx = x4 + C

=⇒ y = exp
(
x2 + Cx−2

)
.

∗ ∗ ∗ ∗ ∗

Problem 8. The normal at any point on a certain curve always passes through the
point (2, 3). Form a differential equation to express this property. Without solving the
differential equation, find the equation of the curve where the stationary points of the
family of curves will lie on. Which family of standard curves will have their stationary
points lying along a curve with such an equation found earlier?

Solution. Clearly,

y − 3 =
−1

dy/dx
(x− 2).

Note that
dy

dx
= −x− 2

y − 3
.

For stationary points, dy
dx = 0, whence x = 2 and y ̸= 3.

Also note that
d2y

dx2
= −(y − 3)− (x− 2)dydx

(y − 3)2
.

At stationary points, dy
dx = 0, giving

d2y

dx2
= − 1

y − 3
.

Hence, when y > 3, we have d2y
dx2 < 0, giving a maximum. Likewise, when y < 3, we have

d2y
dx2 > 0, giving a minimum. This suggests that the required family of standard curves is
the family of circles with centre (2, 3).
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Problem 9. Obtain the general solution of the differential equation xdy
dx − y = x2 + 1 in

the form y = x2 + Cx− 1, where C is an arbitrary constant.
Show that each solution curve of the differential equation has one minimum point.
Find the equation of the curve of which all these minimum points lie.
Sketch some of the family of solution curves including those corresponding to some

negative values of C, some positive values of C, and C = 0.

Solution.

x
dy

dx
− y = x2 + 1 =⇒ 1

x

dy

dx
− y

x2
=

d

dx

y

x
= 1 +

1

x2

=⇒ y

x
=

∫ (
1 +

1

x2

)
dx = x− 1

x
+ C =⇒ y = x2 + Cx− 1.

Note that

y = x2 + Cx− 1 =

(
x+

C

2

)2

−
(
1 +

C2

4

)
.

Thus, y has a unique minimum point at
(
−C

2 ,−
(
1 + C2

4

))
.

For stationary points, dy
dx = 0. Thus, the minimum points lie on the curve with equation

−y = x2 + 1 =⇒ y = −x2 − 1.

O

x

y C = −2
C = 0
C = 2

y = −x2 − 1

∗ ∗ ∗ ∗ ∗

Problem 10. Show that the general solution of the differential equation

dy

dx
+ 2xy − 2x

(
x2 + 1

)
= 0

can be expressed in the form y = x2 + Ce−x2
, where C is an arbitrary constant.

Deduce, with reasons, the number of stationary points of the solution curves of the
equation when

(a) C ≤ 1;

(b) C > 1.

Solution. Note that the integrating factor is exp
(∫

2x dx
)
= ex

2
. Multiplying the inte-

grating factor throughout the differential equation, we get

ex
2 dy

dx
+ 2xex

2
y =

d

dx

(
ex

2
y
)
= 2xex

2 (
x2 + 1

)

=⇒ ex
2
y =

∫
2xex

2 (
x2 + 1

)
dx = ex

2
(x2 + 1)−

∫
2xex

2
dx = ex

2
(x2 + 1)− ex

2
+ C

=⇒ y =
(
x2 + 1

)
− 1 + Ce−x2

= x2 + Ce−x2
.
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For stationary points, dy
dx = 0. Hence,

2xy − 2x
(
x2 + 1

)
= 0 =⇒ x = 0 or y −

(
x2 + 1

)
= 0.

Consider y −
(
x2 + 1

)
= 0.

y −
(
x2 + 1

)
=
(
x2 + Ce−x2

)
−
(
x2 + 1

)
= Ce−x2 − 1 = 0 =⇒ x2 = lnC.

Part (a). When C < 1, we have lnC < 0. Hence, there are no solutions to x2 = lnC,
whence there is only 1 stationary point (at x = 0).

When C = 1, we have lnC = 0, whence the only solution to x2 = lnC is x = 0. Thus,
there is still only 1 stationary point (at x = 0).

Part (b). When C > 1, we have lnC > 0, whence there are two solutions to x2 = lnC,
namely x = ± lnC. Thus, there are 3 stationary points (at x = 0 and x = ± lnC).

∗ ∗ ∗ ∗ ∗

Problem 11. Using the substitution y = x2 ln t, where t > 0, show that the differential
equation

2xt ln t
dx

dt
+ (3 ln t+ 1)x2 =

e−2t

t
(∗)

can be reduced to a differential equation of the form

dy

dt
+ P (t)y =

e−2t

t2
,

where P (t) is some function of t to be determined.
Hence, find x2 in terms of t.
Sketch, on a single diagram, two solution curves for the differential equation (∗), C1 and

C2, of which only C1 has stationary point(s). Label the equations of any asymptotes in
your diagram.

Solution. Note that

y = x2 ln t =⇒ dy

dt
=

x2

t
+ 2x ln t

dx

dt
=⇒ 2xt ln t

dx

dt
= t

dy

dt
− x2.

Hence,

2xt ln t
dx

dt
+ (3 ln t+ 1)x2 =

(
t
dy

dt
− x2

)
+ (3 ln t+ 1)x2 = t

dy

dt
+ 3x2 ln t = t

dy

dt
+ 3y.

Our differential equation thus becomes

t
dy

dt
+ 3y =

e−2t

t
=⇒ dy

dt
+

3y

t
=

e−2t

t2
,

whence P (t) = 3/t. We now solve the differential equation. Observe that

t3
dy

dt
+ 3t2y =

d

dt

(
t3y
)
= te−2t =⇒ t3y =

∫
te−2t dt = −1

2
te−2t − 1

4
e−2t + C1

=⇒ t3x2 ln t = −(2t+ 1) e−2t

4
+

C

4
=⇒ x2 =

C − (2t+ 1) e−2t

4t3 ln t
.
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1

(0.776, 1.07)

(0.776,−1.07)

O
t

x C1 (C = 0)

C2 (C = 1)

∗ ∗ ∗ ∗ ∗

Problem 12. It is suggested that the spread of a highly contagious disease on an isolated
island with a population ofN may be modelled by the differential equation dx

dt = kx(N−x),
where k is a positive constant, and x(t) is the number of individuals infected with the
disease at time t.

(a) Without solving the differential equation, sketch the graph of x(t) against t for cases
when x(0) < N

2 and x(0) > N
2 .

(b) Given that x(0) = x0, solve the differential equation for an explicit expression of
x(t).

Solution.

Part (a).

N/2

N

x(0)1

x(0)2

O

t

x x(0) < N/2

x(0) > N/2

Part (b).

dx

dt
= kx(N − x) =⇒ 1

x(N − x)

dx

dt
= k =⇒

∫
1

x(N − x)
dx =

∫
k dt

=⇒
∫

1

N

(
1

x
− 1

N − x

)
=

∫
k dt =⇒ lnx− ln(N − x)

N
= kt+ C1

=⇒ ln
x

N − x
= Nkt+ C2 =⇒ x =

C3NeNkt

1 + C3eNkt
.
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At t = 0, we have x = x0. Hence,

x0 =
C3Ne0

1 + C3e0
=⇒ C3 =

x0
N − x0

.

This gives

x =
x0

N−x0
NeNkt

1 + x0
N−x0

eNkt
=

Nx0e
Nkt

N − x0 + x0eNkt
.

∗ ∗ ∗ ∗ ∗

Problem 13. In the diagram below, the curve C1 and the line C2 illustrate the relationship
between price (P dollars per kg) and quantity (Q tonnes) for consumers and producers
respectively.
The curve C1 shows the quantity of rice that consumers will buy at each price level while

the line C2 shows the quantity of rice that producers will produce at each price level. C1

and C2 intersect at point A, which has the coordinates (1, 4).
The quantity of rice that consumers will buy is inversely proportional to the price of

the rice. The quantity of rice that producers will produce is directly proportional to the
price.

A (1, 4)

O

Q

P C1

C2

(a) Interpret the coordinates of A in the context of the question.

(b) Solve for the equations of C1 and C2, expressing Q in terms of P .

Shortage occurs when the quantity of rice consumers will buy exceeds the quantity of
rice producers will produce. It is known that the rate of increase of P after time t months
is directly proportional to the quantity of rice in shortage.

(c) Given that the initial price is $3 and that after 1 month, the price is $3.65, find P
in terms of t and sketch this solution curve, showing the long-term behaviour of P .

Suggest a reason why producers might use P = aQ+ b, where a, b ∈ R+, instead of C2

to model the relationship between price and quantity of rice produced.

Solution.

Part (a). The coordinates of A represent the equilibrium price and quantity of rice. That
is, 1 tonne of rice will be transacted at a price of $4 per kg.
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Part (b). Note that C1 : P = k1
Q and C2 : P = k2Q for some constants k1 and k2. At

A(1, 4), we obtain k1 = k2 = 4. Thus,

C1 : Q =
4

P
, C2 : Q =

P

4
.

Part (c). At a given price P < 4, the difference in the amount of rice demanded and

produced is given by 4
P − P

4 = 16−P 2

4P . Hence, dP
dt = k · 16−P 2

4P .

dP

dt
= k · 16− P 2

4P
=⇒ 2P

16− P 2

dP

dt
=

k

2
=⇒

∫
2P

16− P 2
dP =

∫
k

2
dt

=⇒ − ln
(
16− P 2

)
=

kt

2
+ C1 =⇒ P =

√
16− C2e−kt/2.

Note that we used the fact that 0 < P < 4 when solving for P .
At t = 0, P = 3. Hence,

3 =
√
16− C2e0 =⇒ C2 = 7.

At t = 1, P = 3.65. Hence,

3.65 =
√

16− 7e−k(1)/2 =⇒ e−k/2 =
153

400
.

Thus,

P =

√
16− 7

(
153

400

)t

.

3

4

(1, 3.65)

O

t

P
P =

√
16− 7

(
153
400

)t

The model P = aQ+ b accounts for the fixed cost involved in producing rice.

∗ ∗ ∗ ∗ ∗

Problem 14. A rectangular tank contains 100 litres of salt solution at a concentration
of 0.01 kg/litre. A salt solution with a concentration of 0.5 kg/litre flows into the tank at
the rate of 6 litres/min. The mixture in the tank is kept uniform by stirring the mixture
and the mixture flows out at the rate of 4 litres/min. If y kg is the mass of salt in the
solution in the tank after t minutes, show that y satisfies the differential equation

dy

dt
= 3− ky

100 +mt
,

where k and m are constants to be determined.
Find the particular solution of the differential equation.
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Solution. Note that

dy

dt
= 0.5(6)− 4

(
y

100 + (6− 4)t

)
= 3− 4y

100 + 2t
.

Hence, k = 4 and m = 2.
We now solve the differential equation. Multiplying throughout by (100 + 2t)2, we get

2(100 + 2t)2
dy

dt
+ 4(100 + 2t)y =

d

dt

[
(100 + 2t)2y

]
= 3(100 + 2t)2

=⇒ (100 + 2t)2y =

∫
3(100 + 2t)2 dt =

1

2
(100 + 2t)3 + C1 = 4(50 + t)3 + C1

=⇒ y =
4(50 + t)3 + C1

(100 + 2t)2
=

4(50 + t)3 + C1

4(50 + t)2
= 50 + t+

C

(50 + t)2
.

At t = 0, y = 100(0.01) = 1. Hence,

1 = 50 + 0 +
C

(50 + 0)2
=⇒ C = −122500.

Thus,

y = 50 + t− 122500

(50 + t)2
.

∗ ∗ ∗ ∗ ∗

Problem 15. A first order differential equation of the form

dy

dx
+ p(x)y = q(x)yn, n ̸= 0, 1

is called a Bernoulli equation. Show that the substitution u = y1−n reduces the Bernoulli
equation into the linear equation du

dx + (1− n)p(x)u(x) = (1− n)q(x).
A cardiac pacemaker is designed to provide electrical impulses I amps such that as time

t increases, I oscillates with a fixed amplitude of one amp. It is proposed that the following
differential equation dI

dt + (tan t)I = (I sin t)2 can be used to describe how I changes with
t.

By using a substitution of the form u = I1−n, find I in terms of t.
State one limitation of this model.

Solution. Note that

u = y1−n =⇒ du

dx
= (1− n)yn

dy

dx
=⇒ dy

dx
=

du

dx
· yn

1− n
.

Substituting this into the given differential equation, we get

du

dx
· yn

1− n
+ p(x)y = q(x)yn =⇒ du

dx
· 1

1− n
+ p(x)u = q(x)

=⇒ du

dx
+ (1− n)p(x)u = (1− n)q(x)

Let n = 2. Then u = I−1. We also have p(x) = tan t and q(x) = sin2 t.

dI

dt
+ (tan t)I = (I sin t)2 =⇒ du

dt
− (tan t)u = − sin2 t

=⇒ cos t
du

dt
− (sin t)u = − cos t sin2 t =⇒ d

dt
(u cos t) = − cos t sin2 t

=⇒ u cos t =

∫
− cos t sin2 θ dt = −1

3
sin3 t+ C

=⇒ u =
−1/3 · sin3 t+ C

cos t
=⇒ I =

cos t

−1/3 · sin3 t+ C
=

3 cos t

3C − sin3 t
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Consider the stationary points of I. For stationary points, we have dI
dt = 0. Hence,

sin t

cos t
I = I2 sin2 t =⇒ I sin t

(
I sin t− 1

cos t

)
= 0.

Hence, sin t = 0 or I sin t− 1
cos t = 0. Note that I = 3 cos t

3C−sin3 t
̸= 0 since cos t ̸= 0. We now

consider the latter case.

I sin t− 1

cos t
= 0 =⇒ I sin t cos t = 1 =⇒ I sin 2t = 2.

Since I has an amplitude of 1, we have that I ∈ [−1, 1]. Since sin 2t ∈ [−1, 1], we have
that I sin 2t ∈ [−1, 1]. Thus, I sin 2t can never be 2. Hence, stationary points only occur
when sin t = 0, implying t = kπ. Thus, I(0) = ±1. This gives

I(0) =
3 cos 0

3C − sin3 0
= 1 =⇒ C = 1,

whence

I =
3 cos t

3− sin3 t
.

A limitation of this model is that it does not reflect the fact that the oscillations may
gradually get weaker.
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Self-Practice B13

Problem 1. Food energy taken in by a man goes partly to maintain the healthy function-
ing of his body and partly to increase body mass. The total food energy intake of the man
per day is assumed to be a constant denoted by I (in joules). The food energy required to
maintain the healthy functioning of his body is proportional to his body mass M (in kg).
The increase of M with respect to time t (in days) is proportional to the energy not used
by his body. If the man does not eat for one day, his body mass will be reduced by 1%.

(a) Show that I, M and t are related by the following differential equation:

dM

dt
=

I − aM

100a
,

where a is a constant. State an assumption for this model to be valid.

(b) Find the total food energy intake per day, I, of the man in terms of a and M if he
wants to maintain a constant body mass.

It is given that the man’s initial mass is 100 kg.

(c) Solve the differential equation in part (a), giving M in terms of I, a and t.

(d) Sketch the graph of M against t for the case where I > 100a. Interpret the shape
of the graph with regard to the man’s food energy intake.

(e) If the man’s total food energy intake per day is 50a, find the time taken in days for
the man to reduce his body mass from 100 kg to 90 kg.

∗ ∗ ∗ ∗ ∗

Problem 2. Find the general solution of the differential equation

x
dy

dx
− 3y = x5e2x.

Sketch the family of solution curves, showing clearly all the essential features sufficiently.

∗ ∗ ∗ ∗ ∗

Problem 3. Let the variables x and y be related by the differential equation

dy

dx
+

y

x
= xyn,

where n is a real number. Find the general solution for y in terms of x for the following
cases:

(a) n = 0;

(b) n = 1;

(c) n ≥ 2, using the substitution u = y1−n.

∗ ∗ ∗ ∗ ∗

Problem 4. Orthogonal trajectories are a family of curves that intersect another family
of curves perpendicularly.
The electrostatic field created by a single positive charge is a collection of straight lines

that radiate away from the charge. Equipotential lines are where the electric potentials
are equal on a 2-dimensional surface (these lines can be curves). It is given that the
equipotential lines are orthogonal trajectories of the electric field lines.
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(a) By forming a differential equation satisfied by equipotential lines and solving it, show
that the equipotential line of a point charge forms a family of circles with centre at
the origin, taking the point charge to be at the origin.

When a point charge is placed at (0, h1), there is an equipotential line tangential to the
x-axis. The collection of these equipotential lines for all h1 ∈ R, h1 ̸= 0 forms a family of
circles denoted by C.

(b) By first writing the Cartesian equation of a circle tangential to the x-axis and with
centre (0, h1), show that the orthogonal trajectories of the family of circles C satisfy

dy

dx
=

y2 − x2

2xy
.

Hence, by using the substitution Y = y2 show that the orthogonal trajectories of
the family of circles C, form a family of circles that are tangential to the y-axis at
the origin.
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Assignment B13

Problem 1. Two biological cultures, X and Y , react with each other, and their volumes
at time t are x and y respectively, in appropriate units. Their rates of growth are modelled
by the simultaneous equations

dx

dt
= (2− x)y,

dy

dt
=

y2

x

When t = 0, x = y = 1.

(a) Show that x = 2y2

1+y2
.

(b) Find and simplify expressions for y and x in terms of t.

(c) Sketch the graph of y against x for 0 < t < π
2 .

Solution.

Part (a). Note that x, y > 0 since they represent volume. Also, for x ∈ (0, 2), we have
dx
dt = (2− x)y > 0. When x = 2, we have dx

dt = 0. Hence, 0 < x ≤ 2. Now observe that

dy

dx
=

dy/dt

dx/dt
=

y2/x

(2− x)y
=

y

x(2− x)
=⇒ 1

y

dy

dx
=

1

x(2− x)
.

Integrating both sides with respect to x, we get

=⇒
∫

1

y
dy =

∫
1

x(2− x)
dx =

1

2

∫ (
1

x
+

1

2− x

)
dx

=⇒ ln y =
1

2
[lnx− ln(2− x)] + C1 =⇒ y = C2

√
x

2− x
.

At t = 0, x = y = 1. Hence,

1 = C2

√
1

2− 1
=⇒ C2 = 1.

Thus,

y =

√
x

2− x
=⇒ x =

2y2

1 + y2
.

Part (b). Observe that

dy

dt
=

y2

x
=

y2

2y2/(1 + y2)
=

1

2
(1 + y2) =⇒ 1

1 + y2
dy

dt
=

1

2
.

Integrating both sides with respect to t, we get

∫
1

1 + y2
dy =

∫
1

2
dt =⇒ arctan y =

t

2
+ C =⇒ y = tan

(
t

2
+ C

)
.

At t = 0, y = 1. Hence,

1 = tanC =⇒ C =
π

4
,

whence

y = tan

(
t

2
+

π

4

)
=

1− cos(t+ π/2)

sin(t+ π/2)
=

1 + sin t

cos t
= sec t+ tan t.
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Observe that

dx

dt
= (2− x)y = (2− x)

√
x

2− x
=
√
x(2− x) =⇒ 1√

x(2− x)

dx

dt
= 1.

Integrating both sides with respect to t, we get

∫
1√

x(2− x)
dx =

∫
1 dt =⇒ 2 arcsin

(√
x

2

)
= t+ C1 =⇒ x = 2 sin2

(
t

2
+ C2

)
.

At t = 0, x = 1. Hence,

1 = 2 sin2C2 =⇒ C2 =
π

4
.

Thus,

x = 2 sin2
(
1

2
t+

π

4

)
= 1− cos

(
t+

π

2

)
= 1 + sin t.

Part (c). Note that 0 < t < π
2 =⇒ 1 < x < 2.

2

(1, 1)

O

x

y
y =

√
x/(2− x)

∗ ∗ ∗ ∗ ∗

Problem 2. Find the general solution of the differential equation

x
dy

dx
+ 4y − 10x = 0.

Find the particular solution such that y → 0 as x → 0.
Show, on a single diagram, a sketch of this particular solution and one typical member

of the family, F of solution curves for which dy
dx is positive whenever x is positive.

Show that there is a straight line which passes through the maximum point of every
member of F and find its equation.

Solution.

x
dy

dx
+ 4y − 10x = 0 =⇒ x4

dy

dx
+ 4x3y =

d

dx

(
x4y
)
= 10x4

=⇒ x4y =

∫
10x4 dx = 2x5 + C =⇒ y = 2x+ Cx−4

As x → 0, x−4 → ∞. Hence, C must be 0, whence the particular solution is y = 2x.
Note that

dy

dx
= 2− 4Cx−5 > 0 =⇒ C <

x5

2
.

Since x > 0, we hence have the constraint C ≤ 0 for members of F .
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O

x

y C = 0
C = −1

Consider the stationary points of members of F . For stationary points, dy
dx = 0. Hence,

x
dy

dx
+ 4y − 10x = 0 =⇒ 4y − 10x = 0 =⇒ y =

5

2
x.

Differentiating the original differential equation with respect to x, we obtain

x
dy

dx
+ 4y − 10x = 0 =⇒

(
x
d2y

dx2
+

dy

dx

)
+ 4

dy

dx
− 10 = 0 =⇒ d2y

dx2
=

10

x
.

Note that for members of F , we have that dy
dx > 0 for x > 0. Hence, there are no stationary

points when x > 0. That is, any stationary point must occur when x < 0 (indeed, there

is a stationary point when x = 5
√
2C < 0). Furthermore, when x < 0, d2y

dx2 < 0. Hence, all
stationary points must be a maximum point. Thus, y = 5

2x passes through the maximum
point of every member of F .

∗ ∗ ∗ ∗ ∗

Problem 3.

(a) The variables x and y are related by the differential equation

x2
dy

dx
− 2xy + y = 0.

(i) Find the general solution of this differential equation, expressing y in terms of
x.

(ii) Find the particular solution for which y = −e when x = 1. Obtain the coordi-
nates of the turning point of the solution curve of this particular solution and
sketch the curve for x > 0.

(b) Find the general solution of the differential equation

dy

dx
+ xy = exx2,

expressing y in terms of x.

Solution.

Part (a).

Part (a)(i). Note that

x2
dy

dx
− 2xy + y = 0 =⇒ 1

y

dy

dx
=

2

x
− 1

x2
.
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Integrating with respect to x on both sides, we get
∫

1

y
dy =

∫ (
2

x
− 1

x2

)
dx =⇒ ln |y| = 2 ln |x|+ 1

x
+ C1 =⇒ y = C2x

2e1/x.

Part (a)(ii). When x = 1, y = −e. Hence,

−e = C2

(
12
) (

e1
)

=⇒ C2 = −1 =⇒ y = −x2e1/x.

For stationary points, dy
dx = 0. Hence, y(2x−1) = 0, whence x = 1

2 . Note that we reject

y = 0 since e1/x ̸= 0 and x ̸= 0 due to the presence of a 1
x term. Hence, y has a stationary

point at (1/2,−e2/4).
Differentiating the original differential equation with respect to x, we obtain

x2
d2y

dx2
− 2y = 0 =⇒ d2y

dx2
=

2y

x2
.

Hence, at (1/2,−e2/4), we have

d2y

dx2
=

−e2/2

1/4
< 0,

whence it is a turning point.

(
1
2 ,− e2

4

)O

x
y

y = −x2e1/x

Part (b). Observe that

dy

dx
+ xy = exx2 =⇒ e

1
2
x2 dy

dx
+ xe

1
2
x2
y =

d

dx

(
e

1
2
x2
y
)
= e

1
2
x2+xx2.

Thus,

e
1
2
x2
y =

∫
e

1
2
x2+xx2 dx.

Suppose
∫
e

1
2
x2+xx2 dx = P (x)e

1
2
x2+x +C for some function P (x). Differentiating both

sides with respect to x, we obtain

x2e
1
2
x2+x = e

1
2
x2+x

[
(x+ 1)P (x) + P ′(x)

]
,

whence
x2 = (x+ 1)P (x) + P ′(x).

Thus, P (x) is a polynomial of degree 1. Let P (x) = ax+ b. For some constants a and b.
Then

x2 = ax2 + (a+ b)x+ (a+ b).
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Comparing coefficients of x2, x and constant terms, we have a = 1 and a+ b = 0 =⇒ b =
−1. Thus, ∫

x2e
1
2
x2+x dx = (x− 1)e

1
2
x2+x + C.

Hence, we have

y = (x− 1)ex + Ce−
1
2
x2
.
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B14 Euler Method and Improved Euler
Method

Tutorial B14

Problem 1. Consider the initial value problem

dy

dt
= 4y − 1, y(0) = 1.

Use the Euler method with step size ∆t = 0.1 to estimate y(0.5).
Explain whether the approximation is an underestimate or an overestimate of the actual

value.

Solution. Let f(y) = 4y − 1 and y0 = 1. By the Euler method (yn+1 = yn +∆tf(yn)),

t n yn

0.0 0 1

0.1 1 1.3

0.2 2 1.72

0.3 3 2.308

0.4 4 3.1312

0.5 5 4.28368

Hence, y(0.5) ≈ 4.28.

Observe that d2y
dt2

= 4dy
dt > 0 for y > 0. Hence, y is concave upward. Thus, the

approximation is an underestimate.

∗ ∗ ∗ ∗ ∗

Problem 2. A solution to the differential equation dy
dx = y − x has y = 0.5 at x = 0.

(a) Use the Euler method with step size 0.2 to estimate y at x = 1. State with a reason
whether this value of y is an underestimate or an overestimate.

(b) Find the exact value of y at x = 1.

(c) By changing the step size to ∆x = 0.1, comment on the accuracy of the approxima-
tions. What are the trade-offs, if any?

Solution.

Part (a). Let f(x, y) = y − x, x0 = 0, y0 = 0.5 and ∆x = 0.2. By the Euler method
(yn+1 = yn +∆tf(yn)),

x n yn

0.0 0 0.5

0.2 1 0.6

0.4 2 0.68

0.6 3 0.736

0.8 4 0.7632

1.0 5 0.75584
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Hence, y(1) ≈ 0.756.
Observe that for x ∈ [0, 1],

dy

dx
= y − x < 1 =⇒ d2y

dx2
=

dy

dx
− 1 < 0.

Thus, y is concave downward near x = 1, whence the approximation is an overestimate.

Part (b).

dy

dx
= y − x =⇒ e−x dy

dx
− e−xy =

d

dx

(
e−xy

)
= −xe−x

=⇒ e−xy =

∫
−xe−x dx = xe−x + e−x + C =⇒ y = x+ 1 + Cex.

At x = 0, y = 1
2 . Hence,

1

2
= 1 + C =⇒ C = −1

2
=⇒ y = x+ 1− ex

2
.

Evaluating y at x = 1 yields,

y = 1 + 1− e1

2
= 2− e

2
.

Part (c). The accuracy of the approximations will improve. However, more calculations
will need to be done.

∗ ∗ ∗ ∗ ∗

Problem 3. Consider the initial value problem

dy

dt
= t+ y, y(0) = 1.

(a) Use the Euler method with step size ∆t = 0.2 to estimate y at t = 0.6. Compare
the approximated results with the exact solution.

(b) Use the improved Euler method with step size ∆t = 0.2 to estimate y at t = 0.6.
Compare the approximated results with the exact solution.

Solution. We begin by finding the exact solution to the differential equation. Observe
that

dy

dt
= t+ y =⇒ e−tdy

dt
− e−ty =

d

dt

(
e−ty

)
= te−t

=⇒ e−ty =

∫
te−t dt = −te−t − e−t + C =⇒ y = −t− 1 + Cet.

At t = 0, t = 1. Hence,

1 = −1 + C =⇒ C = 2 =⇒ y = −t− 1 + 2et.

Evaluating at t = 0.6, we get

y = −0.6− 1 + 2e0.6 = 2.044.

Part (a). Let f(t, y) = t+ y, t0 = 0, y0 = 1 and ∆t = 0.2. By the Euler method,
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t n yn

0.0 0 1

0.2 1 1.2

0.4 2 1.48

0.6 3 1.856

Hence, y(0.6) ≈ 1.856.
The approximation is not very close to the exact solution, with a percentage error of

9.20%.

Part (b). By the improved Euler method,

ỹ1 = y0 +∆t f(t0, y0) = 1.2

y1 = y0 +
1

2
∆t
[
f(t0, y0) + f(t1, ỹ1)

]
= 1.24

ỹ2 = y1 +∆t f(t1, y1) = 1.528

y2 = y1 +
1

2
∆t
[
f(t1, y1) + f(t2, ỹ2)

]
= 1.5768

ỹ3 = y2 +∆t f(t2, y2) = 1.97216

y3 = y2 +
1

2
∆t
[
f(t2, y2) + f(t3, ỹ3)

]
= 2.031696

Hence, y(0.6) ≈ 2.032.
The approximation is very close to the exact solution, with a percentage error of

0.602%.

∗ ∗ ∗ ∗ ∗

Problem 4. Consider the initial value problem

dy

dt
= −y2, y(0) =

1

2
, 0 ≤ t ≤ 2.

(a) Determine an analytic solution for the problem.

(b) Using the improved Euler method with a step size of 0.5, determine an approximate
value for y(2) and its error.

Solution.

Part (a).

dy

dt
= −y2 =⇒ −y−2dy

dt
= 1 =⇒

∫
−y2 dy =

∫
dt

=⇒ y−1 = t+ C =⇒ y =
1

t+ C
.

Note that

y(0) =
1

2
=⇒ 1

2
=

1

C
=⇒ C = 2.

Hence,

y =
1

t+ 2
.
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Part (b). Let f(y) = −y2, t0 = 0, y0 =
1
2 and ∆t = 0.5. By the improved Euler method,

ỹ1 = y0 +∆t f(y0) = 0.375

y1 = y0 +
1

2
∆t
[
f(y0) + f(ỹ1)

]
= 0.4023438

ỹ2 = y1 +∆t f(y1) = 0.3214035

y2 = y1 +
1

2
∆t
[
f(y1) + f(ỹ2)

]
= 0.3360486

ỹ3 = y2 +∆t f(y2) = 0.2795843

y3 = y2 +
1

2
∆t
[
f(y2) + f(ỹ3)

]
= 0.2882746

ỹ4 = y3 +∆t f(y3) = 0.2467235

y4 = y3 +
1

2
∆t
[
f(y3) + f(ỹ4)

]
= 0.2522809

Hence, y(2) ≈ 0.252. Thus, the error is

Error = 0.2522809− 1

2 + 2
= 0.0022809

∗ ∗ ∗ ∗ ∗

Problem 5. It is given that dy
dx = ey + x, and that a particular solution curve passes

through the point (0, 1).

(a) Use the Euler method with a step size of 0.1 to estimate the value of y at x = 0.5.

(b) If the estimate for y at x = 0.5 is calculated using the improved Euler method with
a step size of 0.1, determine whether this estimate will be greater or less than the
value you have calculated in (a). Justify your answer.

Solution.

Part (a). Let f(x, y) = ey + x, x0 = 0, y0 = 1 and ∆x = 0.1. By the Euler method,

t n yn

0.0 0 1

0.1 1 1.27183

0.2 2 1.63857

0.3 3 2.17334

0.4 4 3.08210

0.5 5 5.30253

Hence, y(0.5) ≈ 5.30.

Part (b). Observe that for x > 0,

dy

dx
= ey + x > 0 =⇒ d2y

dx2
= ey

dy

dx
+ 1 > 0.

Thus, y is concave upwards, whence the estimates are underestimates. Since the improved
Euler method is more accurate than the Euler method, it will be greater than the value
calculated in (a).
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Problem 6. A differential equation is given by

dy

dt
= y2 − 2y + 1, y(0) = 2, 0 ≤ t ≤ 2.

Copy and complete the table showing the use of the improved Euler’s method with step
size 0.5 to estimate y at t = 2.

n tn Euler (yn) ỹn Improved Euler (yn) Actual yn

0 0.0 2 2 2

1 0.5 2.5 2.5 2.8125

2 1.0

3 1.5

4 2.0

Compare and comment on your values obtained using the improved Euler method with
the values obtained from the Euler method and the actual solution.

Solution. Let f(y) = y2 − 2y + 1 and ∆t = 0.5.
Euler Method.

y2 = y1 +∆t f(y1) = 3.625

y3 = y2 +∆t f(y2) = 7.070313

y4 = y3 +∆t f(y3) = 25.49466

Improved Euler Method.

ỹ2 = y1 +∆t f(y1) = 4.455078

y2 = y1 +
1

2
∆t
[
f(y1) + f(ỹ2)

]
= 6.618180

ỹ3 = y2 +∆t f(y2) = 22.40016

y3 = y2 +
1

2
∆t
[
f(y2) + f(ỹ3)

]
= 129.0008

ỹ4 = y3 +∆t f(y3) = 8321.107

y4 = y3 +
1

2
∆t
[
f(y3) + f(ỹ4)

]
= 17310270

Actual Value.

dy

dt
= y2 − 2y + 1 = (y − 1)2 =⇒ 1

(y − 1)2
dy

dt
= 1 =⇒

∫
1

(y − 1)2
dy =

∫
1 dt

=⇒ − 1

y − 1
= x+ C =⇒ y = 1− 1

x+ C
.

Note that

y(0) = 2 =⇒ 2 = 1− 1

C
=⇒ C = −1.

Hence,

y = 1− 1

x− 1
.
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n tn Euler (yn) ỹn Improved Euler (yn) Actual yn

0 0.0 2 2 2

1 0.5 2.5 2.5 2.8125 3

2 1.0 3.625 4.455078 6.618180 -

3 1.5 7.070313 22.40016 129.0008 -1

4 2.0 25.49466 8321.107 17310270 0

The values obtained using the improved Euler method deviate significantly from that
obtained using the Euler method and the actual solution. This is because y has a discon-
tinuity at t = 1, making both Euler methods inappropriate to use.

∗ ∗ ∗ ∗ ∗

Problem 7. A solution of the differential equation

dy

dx
= y − x

has y = 2 at x = 0.

(a) Use the Euler method with step size 0.5 to estimate y at x = 1. Explain whether
you expect this value of y to be an underestimate or overestimate of the true value.

(b) Copy and complete the table showing the use of the improved Euler method with
step size 0.5 to estimate y at x = 1.

x y y − x ỹ ∆y/∆x

0 2 2 3 (2 + 2.5)/2

0.5 3.125 2.625 4.438

1

(c) Show that the exact value of y at x = 1 is 2 + e.

Solution.

Part (a). Let f(x, y) = y − x, x0 = 0, y0 = 2, ∆x = 0.5. By the Euler method,

x n yn

0.0 0 2

0.5 1 3

1.0 2 4.25

Hence, y(1) ≈ 4.25.
Note that for x > 0, we get

dy

dx
= y − x > =⇒ d2y

dx2
=

dy

dx
− 1 > 0.

Thus, y is concave upwards, whence the value of y is an underestimate.

Part (b). From the improved Euler method, one has

y2 = y1 +
1

2
∆x
[
f(x1, y1) + f(x2, ỹ2)

]
.

Thus,

y2 − y1
∆x

=
∆y

∆x
=

1

2

[
f(x1, y1) + f(x2, ỹ2)

]
=

1

2
[2.625 + (4.438− 1)] = 3.031.
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Also,

y2 = y1 +∆x

(
∆y

∆x

)
= 3.125 + 0.5 (3.031) = 4.64.

x y y − x ỹ ∆y/∆x

0 2 2 3 (2 + 2.5)/2

0.5 3.125 2.625 4.438 3.031

1 4.64

Part (c).

dy

dx
= y − x =⇒ e−x dy

dx
− e−xy =

d

dx

(
e−xy

)
= −xe−x

=⇒ e−xy =

∫ (
−xe−x

)
dx = xe−x + e−x + C =⇒ y = x+ 1 + Cex.

At x = 0, y = 2, whence

2 = 1 + C =⇒ C = 1 =⇒ y = x+ 1 + ex.

Thus, at x = 1,
y = 1 + 1 + e1 = 2 + e.

∗ ∗ ∗ ∗ ∗

Problem 8. Initially, a tank is fully filled with 100 litres of pure water. There exists a
tap at the top of the tank. This tap supplies brine, containing 1 g of salt per litre, into
the tank at a rate of 1 litre per minute. There also exists another tap at the bottom of the
tank which allows the mixture to flow out at a constant rate of 2 litres per minute. At time
T (in minutes), the amount of salt and the volume of the mixture in the tank are denoted
by S (in grams) and V (in litres) respectively. Both taps are turned on simultaneously at
time T = 0. The tap at the bottom of the tank is turned off at time T = 75. The mixture
in the tank is assumed to be well-stirred and homogenous at all times.

(a) Show that dS
dT = 100−T−2S

100−T , 0 < T < 75.

(b) By solving the differential equation, show that the amount of salt in the tank after
75 minutes is 18.75 grams.

At the instance when the tap at the bottom is turned off, a crack is accidentally created
at the bottom of the tank. According to Torricelli’s law, the mixture flows out from the
crack at a rate proportional to the square-root of its volume. It can be assumed that
the mixture flow obeys Torricelli’s law, regardless of its viscosity. Let the amount of salt
and the volume of the mixture in the tank be denoted by s (in grams) and v (in litres)
respectively, t minutes after the crack has been accidentally created. It has been observed
that the volume of the mixture in the tank stays constant at 36 litres after a long period
of time.

(c) Show that dv
dt = 6−√

v
6 . Estimate the time taken for the mixture in the tank to rise

to 26 litres after the crack has been created, by using

(i) Euler’s Method with two iterations,

(ii) Simpson’s Rule with two strips.
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(d) Show that ds
dv = 6

√
v−s

6
√
v−v

. Use the improved Euler method with one iteration to

estimate the amount of salt in the tank at the instant when the mixture in the tank
rises to 26 litres after the crack has been created. Given your answer to 4 decimal
places.

Solution.

Part (a). The concentration of salt in the tank is given by S
V . Let Vi and Vo be the volume

of liquid entering and leaving the tank in litres, respectively. Then

dV

dT
=

dVi

dT
− dVo

dT
= 1− 2 = −1 =⇒ V = 100− T,

since V = 100 initially. Thus,

dS

dT
= 1

(
dVi

dT

)
− S

V

(
dVo

dT

)
= 1− 2S

100− T
=

100− T − 2S

100− T
.

Part (b).

dS

dT
= 1− 2S

100− T
=⇒ dS

dT
+

2S

100− T
= 1

=⇒ 1

(100− T )2
dS

dT
+

2S

(100− T )3
=

d

dT

(
S

(100− T )2

)
=

1

(100− T )2

=⇒ S

(100− T )2
=

∫
dT

(100− T )2
=

1

100− T
+ C =⇒ S = 100− T + C(100− T )2.

When T = 0, S = 0, whence

0 = 100 + C
(
1002

)
=⇒ C = − 1

100
=⇒ S = 100− T − (100− T )2

100
.

When T = 75,

S = 100− 75− (100− 75)2

100
= 18.75.

Hence, the amount of salt in the tank after 75 minutes is 18.75 grams.

Part (c). Let vi and vo be the volume of liquid entering and leaving the tank in litres,
respectively. Since the top tap is still open, we have dvi

dt = 1. By Torricelli’s law, we also

have dv0
dt = k

√
v. Thus,

dv

dt
=

dvi
dt

− dvo
dt

= 1− k
√
v.

Since the volume of the tank remains constant at 36 litres eventually, we have

1− k
√
36 = 0 =⇒ k =

1

6
.

Thus,
dv

dt
= 1−

√
v

6
=

6−√
v

6
.

Observe that dt
dv = 6

6−√
v
.

Part (c)(i). Let f(v) = 6
6−√

v
, v0 = 25, t0 = 0 and ∆v = 0.5. By the Euler method,

t1 = t0 +∆v f(v0) = 3, t2 = t1 +∆v f(v1) = 6.157.

Hence, when t ≈ 6.16, the mixture in the tank has risen to 26 litres.
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Part (c)(ii). Note that t =
∫

6
6−√

v
dv. Hence, the desired time is given by

∫ 26
25

6
6−√

v
dv. By

Simpson’s rule,

∫ 26

25

6

6−√
v
dv ≈ 1

3
· 26− 25

2

[
f(25) + 4f(25.5) + f(26)

]
= 6.319.

Hence, when t ≈ 6.32, the mixture in the tank has risen to 26 litres.

Part (d). Observe that

ds

dt
= 1

(
dvi
dt

)
− s

v

(
dvo
dt

)
= 1− s

v

√
v

6
=

6
√
v − s

6
√
v

.

By the chain rule,

ds

dv
=

ds

dt

dt

dv
=

6
√
v − s

6
√
v

· 6

6−√
v
=

6
√
v − s

6
√
v − v

.

Let f(s, v) = 6
√
v−s

6
√
v−v

, v0 = 25, s0 = 18.75 and ∆v = 1. By the improved Euler method,

s̃1 = s0 +∆v f(s0, v0) = 21

s1 = s0 +
1

2
∆v
[
f(s0, v0) + f(s̃1, v1)

]
= 20.9192 (4 d.p.)

Hence, there is approximately 20.9192 grams of salt in the tank.

∗ ∗ ∗ ∗ ∗

Problem 9. A solution to the differential equation dy
dx = f(x) has y = y0 at x = x0. It is

required to estimate the value of y at x = x1 using a numerical method with one step.

(a) Write down expressions for the value of y at x = x1 obtained by using the Euler
method and by using the improved Euler method.

(b) The graph of f is as below. Copy the graph and use it to illustrate the errors in the
two estimates of y obtained by using the methods of part (a). State clearly whether
the errors correspond to overestimates or underestimates.

x0 x1O

x

f(x)

(c) Given that x0 = 0 and f(x) = a+ bx+ cx2, where a, b and c are constants, find the
error in using the improved Euler method with a single step of size h.
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Solution.

Part (a). Let ∆x = x1 − x0.
Euler Method.

y1 = y0 +∆x f(x0)

Improved Euler Method.

y1 = y0 +
1

2
∆x
[
f(x0) + f(x1)

]

Part (b).

x0 x1O

x

f(x)

By the fundamental theorem of calculus, the area under the graph of f(x) between x0
and x1 is precisely y1 − y0. That is,

∫ x1

x0

f(x) dx = y1 − y0 = ∆y.

Hence, the better the approximation of the integral, the better the approximation of ∆y
and thus y1.
The Euler method gives the approximation ∆y = ∆x f(x0). This is represented by the

area of the red-shaded rectangle with base ∆x and height f(x0).
The improved Euler method gives the approximation ∆y = ∆x 1

2

[
f(x0) + f(x1)

]
. This

is represented by the area of the blue-shaded trapezium with base ∆x and heights f(x0)
and f(x1).
Thus, the improved Euler method gives a better approximation for the integral of f(x)

than the Euler method. Thus, the error of the estimate given by the improved Euler
method is smaller than that of the Euler method.
The Euler method underestimates the integral, hence y1 is also underestimated. Sim-

ilarly, the improved Euler method overestimates the integral, hence y1 is also overesti-
mated.

Part (c). We have f(x) = a+ bx+ cx2, x0 = 0 and ∆x = h. Let y0 = d.
Improved Euler Method.

y1 = d+
1

2
h
[(
a
)
+
(
a+ bh+ ch3

)]
= d+ ah+

1

2
bh2 +

1

2
ch3.

Actual Value.

dy

dx
= a+ bx+ cx2 =⇒ y =

∫ (
a+ bx+ cx2

)
dx = ax+

1

2
bx2 +

1

3
cx3 + C.
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When x = 0, y = d. Hence, C = d, thus y = d+ ax+ 1
2bx

2 + 1
3cx

3. At x = h,

y1 = d+ ah+
1

2
bh2 +

1

3
ch3

Error.

Error =

(
d+ ah+

1

2
bh2 +

1

3
ch3
)
−
(
d+ ah+

1

2
bh2 +

1

2
ch3
)

=
1

6
ch3.

∗ ∗ ∗ ∗ ∗

Problem 10. The differential equation

dy

dx
− y2 tanx = 1,

where y = 1 when x = 1, is to be solved numerically.

(a) Carry out two steps of Euler’s method with step length 0.1 to estimate the value of
y when x = 1.2, giving your answer to 4 decimal places.

(b) The method in part (a) is now replaced by the improved Euler method. The estimate
obtained is 2.0156, given to 4 decimal places. State, with a reason, whether this esti-
mate and the one found in part (a) are likely to be overestimates or underestimates
of the actual value of y when x = 1.2.

(c) Explain why it would be inappropriate to continue this process in part (a) to estimate
the value of y when x = 1.6.

Solution.

Part (a). Let f(x, y) = dy/dx = 1+y2 tanx, x0 = 1, y0 = 1, ∆x = 0.1 and xn = x0+n∆x.
By the Euler method,

y1 = y0 +∆x f(x0, y0) = 1.2557408, y2 = y1 +∆x f(x1, y1) = 1.6655608.

Hence, y(1.2) ≈ 1.6656 (4 d.p.).

Part (b). Observe that on the interval x ∈ I = [1, 1.2], we have

dy

dx
= 1 + y2 tanx > 0.

Since y is continuous on I, and y(1) = 1, we also have y > 0 on I. Thus,

d2y

dx2
= 2y

dy

dx
tanx+ y2 sec2 x > 0,

whence y is concave upwards. Thus, the estimates are likely to be underestimates.

Part (c). f(x, y) has a vertical asymptote at x = π/2 ∈ (1.5, 1.6). Thus, the Euler method
will fail.
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Self-Practice B14

Problem 1. A solution of the differential equation dx
dt + x cot t = csc t has x = 0 when

t = 1.

(a) Use the improved Euler method with a step size of 0.5 to estimate x at t = 2.

(b) Solve the differential equation to find the exact value of x when t = 2.

(c) By considering the gradients of the curve at t = 1.5, t = 2 and t = 2.5, comment on
the accuracy of the Euler method to estimate x at t = 2 and t = 3.

∗ ∗ ∗ ∗ ∗

Problem 2. For the differential equation dy
dx +

y
x = 3x, consider the solution curve passing

through the point (1, 2).

(a) Compute the Euler approximation to y(1.1) using step-size h = 0.1.

(b) State, giving a reason, if you would expect the estimate in part (a) to be an under-
estimate or an overestimate of the true value.

(c) Find the general solution of the differential equation dy
dx + y

x = 3x.

(d) Hence, find the solution curve that passes through the point (1, 2) and calculate the
percentage error of your estimate in (a).

∗ ∗ ∗ ∗ ∗

Problem 3. A differential equation is of the form

dy

dx
=

y

x
f
(y
x

)
.

(a) By using the substitution z = y/x, show that

ln |x| =
∫

1

z [f(z)− 1]
dz.

(b) A particular solution of the differential equation

dy

dx
=

y

x
ln

(
x

y

)

has y = 1 when x = 1. Find y in terms of x.

(c) Copy and complete the table below, using the improved Euler method with step size
0.5 to estimate y at x = 2.

x y dy/dx ỹ ∆y/∆x

1 1 0 1 0.13516

1.5 1.06758

2

(d) Use a graphical method to explain whether the estimated value of y found in part
(c) is an under-estimate or over-estimate.
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Problem 4. The variables P and t are related by the “modified” logistic equation

dP

dt
=

1

10
P

(
1− P

10

)
(P − 1).

The differential equation is used to model the size, P (in thousands), of species of wolves
in time, t (in years) in a given habitat.

(a) Biologists observe that if the population of wolves is “too small”, adults run the risk
of being unable to find a mate, resulting in a decrease to the population.

(i) Explain how the model accounts for this observation.

(ii) State the maximum population that the resources in the habitat can support.

(iii) Find the equilibrium solutions.

(iv) Sketch the possible solution curves for P as a function of t.

(b) You are given that the population is now 2000.

(i) Copy and complete the table showing the use of the improved Euler method
with step size 0.5 to estimate the population in a year’s time.

t P dP/dt P̃ ∆P/∆t

0 2 0.16 2.08 0.16896

0.5 2.08448

1

(ii) How could the accuracy of the numerical method in part (b)(i) be improved?

(c) Suppose the wolves are being hunted at a fixed rate E (in thousands per year). Write
down the new model for the population.
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Assignment B14

Problem 1.

(a) Explain why the Euler method will fail for the initial-value problem

dy

dx
= y cos

√
x, y(0) = 0,

where y = y(x) satisfies that differential equation and is not a constant.

(b) Suppose the initial condition for the problem in part (a) is now y(0) = 10. Use the
improved Euler method with a step size of 0.1 to find, to three decimal places, an
estimate for y(0.1).

(c) Solve the differential equation

dy

dx
=

1

2
y(2− x), y > 0, y(0) = 10,

expressing y in terms of x, and simplifying your answer as far as possible.

(d) Explain why the solution found in part (c) will give a reasonable estimate for y(0.1)
in part (b).

Solution.

Part (a). By the Euler method,

y1 = y0 +∆x(y0 cos
√
x0) = 0 +∆x(0 cos 0) = 0.

It follows that yn = 0 for all n ∈ N, whence y is the zero function. However, because y is
not a constant function, y cannot be the zero function, a contradiction. Hence, the Euler
method fails.

Part (b). Let ∆x = 0.1, y0 = 10 and xn = n∆x.

ỹ1 = y0 +∆x(y0 cos
√
x0) = 11

y1 = y0 +
1

2
∆x [y0 cos

√
x0 + ỹ1 cos

√
x1] = 11.023 (3 d.p.)

Hence, y(0.1) ≈ 11.023.

Part (c).

dy

dx
=

1

2
y(2− x) =⇒ 1

y

dy

dx
=

1

2
(2− x) =⇒

∫
1

y
dy =

∫
1

2
(2− x) dx

=⇒ ln y =
1

2

[
2x− 1

2
x2
]
+ C1 = x− 1

4
x2 + C1 =⇒ y = C exp

(
x− 1

4
x2
)
.

Since y(0) = 10, we have C = 10. Thus,

y = 10 exp

(
x− 1

4
x2
)
.

Part (d). For small x, we have that cos
√
x ≈ 1− 1

2(
√
x)2 = 1

2(2− x). Thus,

y cos
√
x ≈ 1

2
y(2− x),
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whence the two differential equations and thus their solutions are approximately equal.
Since x = 0.1 is small, the solution found in part (c) will give a reasonable estimate for
y(0.1) in part (b).

∗ ∗ ∗ ∗ ∗

Problem 2. Rewriting the given differential equation, we obtain

dv

dx
= −7x

v
− 24.

Let f(x, v) = −7x
v − 24, ∆x = 1, v0 = 121, and xn = n∆x.

Solution.

Part (a). By the Euler method,

v1 = v0 +∆xf(x0, v0) = 97.

Thus, y(1) ≈ 97.

Part (b). By the improved Euler method,

ṽ1 = v0 +∆xf(x0, v0) = 97

v1 = v0 +
1

2
∆x [f(x0, v0) + f(x1, ṽ1)] = 96.964

Thus, y(1) ≈ 96.964.
The gradient of v at x = 0 is f(x0, v0) = −24, which is very close to the gradient of

v at x = 1, f(x1, ṽ1) = −24.072. Since the gradient of v is approximately constant for
0 ≤ x ≤ 1, we have that v is approximately a linear function on that interval.
Observe that for 0 ≤ x ≤ 1, x/v ≈ 0 since x ∈ [0, 1], while v ≥ 96. Thus, dv/dx ≈ −24,

whence v = −24x+ C. Since v = 121 when x = 0, we have v ≈ −24x+ 121.

∗ ∗ ∗ ∗ ∗

Problem 3. The function y = y(x) satisfies

dy

dx
=

1

5
(tanx+ x3y).

The value of y(h) is to be found, where h is a small positive number, and y(0) = 0.

(a) Use one step of the improved Euler method to find an alternative approximation to
y(h) in terms of h.

(b) It can be shown that y = y(x) satisfies

y(h) = e0.05h
4

∫ h

0

tanx

5
e−0.05x4

dx.

Assume that h is small and hence find another approximation to y(h) in terms of h.

(c) Discuss the relative merits of these two methods employed to obtain these approxi-
mations.
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Solution.

Part (a). Let f(x, y) = 1
5(tanx + x3y), ∆x = h and y0 = 0. By the improved Euler

method,

ỹ1 = y0 +∆xf(x0, y0) = 0

y1 = y0 +
1

2
∆x [f(x0, y0) + f(x1, ỹ1)] = 0 +

1

2
h

[
0 +

1

5
(tanh+ 0)

]
=

h tanh

10
.

Hence,

y(h) ≈ h tanh

10
.

Part (b). Since h is small, we have that e0.05h
4 ≈ 1. Furthermore, since we are integrating

over the interval x ∈ [0, h], the integrand tanx
5 e−0.05x4

can likewise be approximated by x
5 .

Our integral hence transforms to

y(h) = e0.05h
4

∫ h

0

tanx

5
e−0.05x4

dx ≈
∫ h

0

x

5
dx =

h2

10
.

Part (c). The improved Euler method involves more steps, while the approximation in
(b) is more direct.
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B15 Modelling Populations with First Order
Differential Equations

Assignment B15

Problem 1. In response to a massive ecosystem-wide destruction by goats on the island
of Isabela in Ecuador, Project Isabela was started on the first day of 1997 to eliminate all
goats on the island. Goat elimination was done by hunting at a constant rate. Suppose
that the goat population, P (in thousands), can be modelled by the differential equation

dP

dt
=

P

4

(
1− P

150

)
−H,

where t is measured in months and H is measured in thousands.

(a) State, in context, the significance of the term H.

(b) Find the greatest integer value of H for which it is still possible for some goats to
survive in the long run.

(c) Based on the answer from part (b), discuss the long-term behaviour of the goat
population for different initial populations.

The hunters involved in Project Isabela finally managed to eliminate all the goats on the
island of Isabela on the first day of 2006.

(d) State an inequality that must be satisfied by H.

(e) Given that the initial goat population was 100 thousand, find the value of H, correct
to 3 decimal places.

Solution.

Part (a). H represents the number of goats killed (in thousands) per month.

Part (b). Consider the equilibrium points of the differential equation.

dP

dt
=

P

4

(
1− P

150

)
−H = − 1

600

(
P 2 − 150P + 600H

)
= 0.

By the quadratic formula,
P = 75± 5

√
225− 24H.

For it to be possible for goats to survive in the long term, there must be at least one
equilibrium point. That is,

√
225− 24H ≥ 0 =⇒ H ≤ 9.375. Thus, the maximum

integer value of H is 9.

Part (c). When H = 9, the equilibrium points are P = 75 ± 5
√

225− 24(9) = 60 or 90.
Let the initial population be P0.
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60 90O

PdP/dt

When P0 = 0, there are no goats initially. Hence, the population will remain at 0.
When 0 < P0 < 60, dP/dt < 0. Hence, the population of goats will decrease towards 0.
When P0 = 60, dP/dt = 0. Hence, the population of goats will remain at 60 thousand.
When 60 < P0 < 90, dP/dt > 0. Hence, the population of goats will increase towards

90 thousand.
When P0 = 90, dP/dt = 0. Hence, the population of goats will remain at 90 thousand.
When P0 > 90, dP/dt < 0. Hence, the population of goats will decrease towards 90

thousand.

Part (d). H must satisfy the inequality H > 9.375.

Part (e). Note that t = 120, P (0) = 100 and P (108) = 0. Now observe that

dP

dt
= − 1

600

(
P 2 − 150P + 600H

)
= − 1

600

[
(P − 75)2 +

(
600H − 752

)]

=⇒ 1

(P − 75)2 + (600H − 752)

dP

dt
= − 1

600
.

Integrating both sides with respect to t,

∫
1

(P − 75)2 + (600H − 752)
dP =

∫
− 1

600
dt

=⇒ 1√
600H − 752

arctan

(
P − 75√

600H − 752

)
= − 1

600
t+ C.

Let X = 1√
600H−752

. This simplifies the above result to

X arctan((P − 75)X) = − 1

600
t+ C.

When t = 0, P = 100. Hence,
C = X arctan(25X)

When t = 108, P = 0. Hence,

X arctan(−75X) = −108

600
+X arctan(25X) ,

which has the solution X = 0.073145. Note that we reject X = −0.073145 since X ≥ 0.
We thus have

H =
1

600

(
1

0.0731452
+ 752

)
= 9.377 (3 d.p.).
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Problem 1. Find the general solution of 3d2x
dt2

+ 4dx
dt − 7x = 0.

Solution. Consider the characteristic equation of the DE:

3m2 + 4m− 7 = (3m+ 7)(m− 1) = 0.

We hence have m = −7/3 or m = 1, whence

x = Ae−
7
3
t +Bet.

∗ ∗ ∗ ∗ ∗

Problem 2. Solve the following homogeneous second-order linear differential equations.

(a) d2y
dx2 + 4dy

dx + 3y = 0, given that y = 0 and dy
dx = −4 when x = 0.

(b) d2y
dx2 + 6dy

dx + 9y = 0, given that y = 1 and dy
dx = 1 when x = 0.

(c) d2y
dx2 +

√
3dy
dx + 3y = 0, given that y = 0 and dy

dx = −4 when x = 0.

Solution.

Part (a). Consider the characteristic equation of the DE:

m2 + 4m+ 3 = (m+ 1)(m+ 3) = 0.

We hence have m = −1 or m = −3, whence

y = Ae−x +Be−3x =⇒ dy

dx
= −Ae−x − 3Be−3x.

Using the given conditions, we obtain the system

{
A+ B = 0

−A− 3B = −4
,

which has solution A = −2 and B = 2. Thus,

y = −2e−x + 2e−3x.

Part (b). Consider the characteristic equation of the DE:

m2 + 6m+ 9 = (m+ 3)2 = 0.

We have a repeated root m = −3, whence

y = (A+Bx)e−3x =⇒ dy

dx
= −3(A+Bx)e−3x +Be−3x.
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Using the given conditions, we obtain the system

{
A = 1

−3A+B = 1
,

which has solution A = 1 and B = 4. Thus,

y = (1 + 4x)e−3x.

Part (c). Consider the characteristic equation of the DE:

m2 +
√
3m+ 3 = 0.

Solving, we get

m =
−
√
3

2
± 3

2
i,

whence

y = e−
√
3

2
x

(
A cos

3

2
x+B sin

3

2
x

)
.

Differentiating, we get

dy

dx
= e−

√
3

2
x

[(
−
√
3

2
A+

3

2
B

)
cos

3

2
x+

(
−
√
3

2
B − 3

2
A

)
sin

3

2
x

]
.

Using the given conditions, we obtain the system

{
A = 0

−
√
3
2 A+ 3

2B = −4
,

whence A = 0 and B = −8/3. Thus,

y = −8

3
e−

√
3
2
x sin

3

2
x.

∗ ∗ ∗ ∗ ∗

Problem 3. Find the general solution of

(a) 2d2y
dx2 − 3dy

dx − 5y = 10x2 + 1,

(b) d2y
dx2 − 2dy

dx + 3y = 22e4x,

(c) d2s
dt2

− 2ds
dt + s = 4et,

(d) d2x
dt2

+ 16x = 3 cos 4t.

Solution.

Part (a). Consider the characteristic equation of the DE:

2m2 − 3m− 5 = (2m− 5)(m+ 1) = 0.

The roots are m = 5/2 and m = −1, whence the complementary function is

yc = Ae
5
2
x +Be−x.
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For the particular solution, we try

yp = Cx2 +Dx+ E.

Note that
y′p = 2Cx+D and y′′p = 2C.

Substituting this into the DE,

2 (2C) +−3 (2Cx+D)− 5
(
Cx2 +Dx+ E

)
= 10x2 + 1.

Comparing coefficients, we get the system





−5C = 10

−6C − 5D = 0

4C − 3D − 5E = 1

,

which has solution C = −2, D = 12/5 and E = −81/25. The general solution is thus

y = yc + yp = Ae
5
2
x +Be−x − 2x2 +

12

5
x− 81

25
.

Part (b). Consider the characteristic equation of the DE:

m2 − 2m+ 3 = 0 =⇒ m = 1±
√
2i.

The complementary function is hence

yc = ex
(
A cos

√
2x+B sin

√
2x
)
.

For the particular solution, we try
yp = Ce4x.

Note that
y′p = 4Ce4x and y′′p = 16Ce4x.

Substituting this into the DE,

16Ce4x − 2
(
4Ce4x

)
+ 3Ce4x22e4x =⇒ C = 2.

The general solution is thus

y = yc + yp = ex
(
A cos

√
2x+B sin

√
2x
)
+ 2e4x.

Part (c). Consider the characteristic equation of the DE:

m2 − 2m+ 1 = (m− 1)2 = 0.

The only root is m = 1, whence the complementary function is

sc = (A+Bt)et.

For the particular solution, we try
sp = Ct2et.

Note that
s′p = Cet

(
t2 + 2t

)
and s′′p = Cet

(
t2 + 4t+ 2

)
.
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Substituting this into the DE,

Cet
(
t2 + 4t+ 2

)
− 2Cet

(
t2 + 2t

)
+ Cet

(
t2
)
= 4et =⇒ C = 2.

The general solution is thus

s = sc + sp =
(
A+Bt+ 2t2

)
et.

Part (d). Consider the characteristic equation of the DE:

m2 + 16m = 0 =⇒ m = ±4i.

The complementary function is hence

xc = A cos 4t+B sin 4t.

For the particular solution, we try

xp = t (C cos 4t+D sin 4t) .

Note that
x′p = 4t (−C sin 4t+D cos 4t) + (C cos 4t+D sin 4t)

and
x′′p = 16t (−C cos 4t−D sin 4t) + 8 (−C sin 4t+D cos 4t) .

Substituting this into the DE,

16t (−C cos 4t−D sin 4t) + 8 (−C sin 4t+D cos 4t)

+ 16t (C cos 4t+D sin 4t) = 3 cos 4θ.

Simplifying, we get
−8C sin 4t+ 8D cos 4t = 3 cos 4t,

whence C = 0 and D = 3/8. Thus, the general solution is

x = A cos 4t+B sin 4t+
3

8
t sin 4t.

∗ ∗ ∗ ∗ ∗

Problem 4.

(a) Find the general solution of the differential equation d2y
dx2 − 4y = 10e3x.

(b) Hence, find the solution for which y = −2 and dy
dx = −6 when x = 0.

Solution.

Part (a). Observe that the characteristic equation of the DE is m2 − 4 = 0, whence the
roots are m = ±2. Hence, the complementary function is

yc = Ae2x +Be−2x.

For the particular solution, we try yp = Ce3x. Note that

y′p = 3Ce3x and y′′p = 9Ce3x.
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Substituting this into the DE, get

9Ce3x − 4Ce3x = 10e3x =⇒ C = 2,

whence the general solution is

y = yc + yp = Ae2x +Be−2x + 2e3x.

Part (b). Note that
dy

dx
= 2Ae2x − 2Be−2x + 6e3x.

The given conditions thus give the system

{
A+ B + 2 = −2

2A− 2B + 6 = −6
,

whence A = −5 and B = 1. Hence,

y = −5e2x + e−2x + 2e3x.

∗ ∗ ∗ ∗ ∗

Problem 5.

(a) Find the general solution of the differential equation d2y
dx2 = sinx. Find the particular

solution that passes through the points (0,
√
2) and

(
π
4 ,−

√
2
)
.

(b) Find the general solution of the differential equation

(i) d2y
dx2 = 16− 9x2,

(ii)
(
9− x2

)2 d2y
dx2 − x = 0,

giving your answer in the form y = f(x).

Solution.

Part (a). Integrating the DE with respect to x,

dy

dx
=

∫
sinx dx = − cosx+A.

Integrating once more,

y =

∫
(− cosx+A) dx = − sinx+Ax+B.

At (0,
√
2), we have B =

√
2. At (π4 ,−

√
2), we have

−
√
2

2
+A

(π
4

)
+B = −

√
2 =⇒ A = −6

√
2

π
.

Thus, the particular solution is

y = − sinx− 6
√
2

π
x+

√
2.
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Part (b).

Part (b)(i). Integrating with respect to x,

dy

dx
=

∫ (
16− 9x2

)
dx = 16x− 3x2 +A.

Integrating once more,

y =

∫ (
16x− 3x2 +A

)
dx = 8x2 − 3

4
x4 +Ax+B.

Part (b)(ii). Rewriting, we get
d2y

dx2
=

x

(9− x2)2
.

Integrating with respect to x,

dy

dx
=

∫
x

(9− x2)2
dx.

Using the substitution x = 3 sin θ, we have

dy

dx
=

∫
3 sin θ

81 cos4 θ
3 cos θ dθ =

1

9

∫
tan θ sec2 θ dθ

=
1

9

(
tan2 θ

2

)
+ C =

1

18

(
(x/3)2

1− (x/3)2

)
+ C =

1

18

(
x2

9− x2

)
+ C.

Integrating once more,

y =

∫ [
1

18

(
x2

9− x2

)
+ C

]
dx =

∫ [
1

18

(
9

9− x2
− 1

)
+ C

]
dx

=
1

18

[
3

2
ln

∣∣∣∣
3 + x

3− x

∣∣∣∣− x

]
+ Cx+D =

1

12
ln

∣∣∣∣
3 + x

3− x

∣∣∣∣+ Ex+D,

where E = −1/18 + C.

∗ ∗ ∗ ∗ ∗

Problem 6.

(a) Find the particular solution of d2x
dt2

+ 16x = 0, given that x = 3 and dx
dt = −8 when

t = 0.

(b) By writing the particular solution as R cos(4t+ α), find the first positive value of t
for which x is maximum.

Solution.

Part (a). Note that the characteristic equation of the DE is m2 + 16 = 0, whence the
roots are m = ±4i. Hence,

x = A cos 4t+B sin 4θ.

Differentiating with respect to t, we obtain

dx

dt
= −4A sin 4t+ 4B cos 4t.

When x = 3 and t = 0, we have A = 3. When dx
dt = −8 and t = 0, we have B = −2.

Thus,
x = 3 cos 4t− 2 sin 4t.
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Part (b). We have

x = 3 cos 4t− 2 sin 4t =
√

32 + 22 cos

(
4t− arctan

−2

3

)
=

√
13 cos(4t+ 0.58800) .

x attains a maximum whenever cos(4t+ 0.58800) = 1. Thus,

4t+ 0.58800 = 2πn =⇒ t =
2πn− 0.58800

4
,

where n is an integer. The first positive value of t is hence

t =
2π − 0.58800

4
= 1.42 (3 s.f.),

which occurs when n = 1.

∗ ∗ ∗ ∗ ∗

Problem 7. Using the substitution x = eu, find the general solution of

(a) x2 d2y
dx2 + 2xdy

dx − 2y = 0,

(b) x2 d2y
dx2 − 5xdy

dx − 6y = 0.

Solution. Note that
dy

dx
=

dy

du

du

dx

and
d2y

dx2
=

d2y

du2

(
du

dx

)2

+
dy

du

d2u

dx2
.

Since u = lnx, we have du/dx = 1/x and d2u/dx2 = −1/x2. Thus,

dy

dx
=

1

x

dy

du
and

d2y

dx2
=

1

x2
d2y

du2
− 1

x2
dy

du
.

Part (a). Substituting the above expressions into the DE, we have

x2
(

1

x2
d2y

du2
− 1

x2
dy

du

)
+ 2x

(
1

x

dy

du

)
− 2y = 0.

Simplifying, we get
d2y

du2
+

dy

du
− 2y = 0.

The characteristic equation m2 + m − 2 = (m + 2)(m − 1) = 0 has roots m = −2 and
m = 1. Thus,

y = Ae−2u +Beu = Ax−2 +Bx.

Part (b). Substituting the above expressions into the DE, we have

x2
(

1

x2
d2y

du2
− 1

x2
dy

du

)
− 5x

(
1

x

dy

du

)
− 6y = 0.

Simplifying, we get
d2y

du2
− 6

dy

du
− 6y = 0.

The characteristic equation m2 − 6m− 6 = 0 has roots m = 3±
√
15. Thus,

y = Ae(3+
√
15)u +Be(3−

√
15)u = Ax3+

√
15 +Bx3−

√
15.
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Problem 8. Show, by means of the substitution y = x−4z, that the differential equation

x2
d2y

dx2
+
(
4x2 + 8x

) dy
dx

+
(
3x2 + 16x+ 12

)
y = 0

can be reduced to the form
d2z

dx2
+ a

dz

dx
+ bz = 0,

where a and b are constants to be determined. Hence, find the general solution of the
above differential equation.

Solution. Note that z = x4y. Differentiating with respect to x,

dz

dx
= x4

dy

dx
+ 4yx3.

Differentiating with respect to x again,

d2z

dx2
= x4

d2y

dx2
+ 8x3

dy

dx
+ 12yx2.

Consider the DE in question. Multiplying through by x2,

x4
d2y

dx2
+
(
4x4 + 8x3

) dy
dx

+
(
3x4 + 16x3 + 12x2

)
y = 0.

Now observe that we can split the LHS as

(
x4

d2y

dx2
+ 8x3

dy

dx
+ 12yx2

)
+ 4

(
x4

dy

dx
+ 4yx3

)
+ 3x4y.

Thus,
d2z

dx2
+ 4

dz

dx
+ 3z = 0.

Hence, a = 4 and b = 3.
Note that the characteristic equation of this new DE ism2+4m+3 = (m+3)(m+1) = 0.

Thus, the roots are m = −3 and m = −1, whence

z = Ae−3x +Be−x =⇒ y = x−4
(
Ae−3x +Be−x

)
.

∗ ∗ ∗ ∗ ∗

Problem 9. By letting x =
√
t, show that the differential equation

d2y

dx2
+

(
2x− 1

x

)
dy

dx
+ 24x2 = 0

where x > 0, may be transformed to

d2y

dt2
+ a

dy

dt
+ b = 0,

where a and b are constants to be determined. Hence, find the general solution of y in
terms of x.
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Solution. Note that
dy

dx
=

dy

dt

dt

dx

and
d2y

dx2
=

d2y

dt2

(
dt

dx

)2

+
dy

dt

d2t

dx2
.

Since t = x2, we have dt/dx = 2x and d2u/dx2 = 2. Thus,

dy

dx
= 2x

dy

dt
and

d2y

dx2
= 4x2

d2y

dt2
+ 2

dy

du
.

Substituting this into the given DE,

(
4x2

d2y

dt2
+ 2

dy

du

)
+

(
2x− 1

x

)(
2x

dy

dt

)
+ 24x2 = 0.

Simplifying, we get
d2y

dt2
+

dy

dt
+ 6 = 0,

whence a = 1 and b = 6.
Rewriting,

d2y

dt2
+

dy

dt
= −6.

Integrating with respect to t, we get

dy

dt
+ y = −6t+ C.

Multiplying through by et yields

et
dy

dt
+ ety =

d

dt

(
ety
)
= et (−6t+ C) .

Integrating with respect to t,

ety =

∫
et (−6t+ C) dt = −6

(
tet − et

)
+ Cet = et (−6t+A) +B.

Thus,
y = −6t+A+Be−t = −6x2 +A+Be−x2

.

∗ ∗ ∗ ∗ ∗

Problem 10. A damped vibrating spring system is described by the differential equation

m
d2y

dt2
= −ky − λ

dy

dt
,

where m, k and λ are positive constants. The variable y represents the displacement of
the object from equilibrium position in centimetres, and t is time measured in seconds.
Given that m = 1, k = 25 and λ = 10, and the object was initially released from rest at
y = 1, find the equation of motion and sketch its graph. Briefly explain if this motion is
suitable to be used to close a door.
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Solution. We have
d2y

dt2
+ 10

dy

dt
+ 25y = 0.

The characteristic equation r2 + 10r + 25 = (r + 5)2 = 0 has a single root r = −5. Thus,

y = (A+Bt) e−5t.

Since y = 1 when t = 0, we get A = 1. Hence,

y = (1 +Bt) e−5t =⇒ dy

dt
= Be−5t − 5 (1 +Bt) e−5t.

Since the object is initially at rest, dy
dt = 0 when t = 0. This gives B = 5. Thus,

y = (1 + 5t) e−5t.

1

O

t

y y = (1 + 5t)e−5t

Since the object does not oscillate (y does not change sign) and y approaches y = 0
quite quickly, the motion is suitable to be used to close a door.

∗ ∗ ∗ ∗ ∗

Problem 11. The motion of the tip of a tuning fork can be modelled by the differential
equation

m
d2x

dt2
+ k

dx

dt
+mω2x = 0,

where x is the displacement of the tip from its equilibrium position at time t and m, k and
ω are positive constants. It is known that k is so small that k2 can be ignored as k models
the slight damping due to the resistance of the air. It is given that the tip of the fork is
initially in its equilibrium position and moving with speed v in the positive x-direction.

(a) Solve the differential equation.

The amplitude of a vibration is the maximum displacement of the tip from its equilib-
rium position and one period of a vibration is the time interval between the occurrences
of two consecutive amplitudes.

(b) Comment on the period of the vibrations over time and show that the amplitude of
successive vibrations follows a geometric progression.

(c) Given that k is no longer small and k2 > 4m2ω2, describe the behaviour of x as time
progresses and sketch a possible graph of x against t. Justify your answer.
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Solution.

Part (a). The characteristic equation of the DE is given by mr2 + kr+mω2 = 0. Let the
roots be r1 and r2. We have

r1,2 =
−k ±

√
k2 − 4m2ω2

2m
.

Since k2 can be ignored,

r1,2 =
−k ±

√
−4m2ω2

2m
=

−k ± 2mω i

2m
= − k

2m
± ω i.

The general solution is thus given by

x = e−
k

2m
t (A cosωt+B sinωt) .

Since the object is initially at equilibrium, we have x = 0 at t = 0. There is hence no
contribution from the cosine term, i.e. A = 0. Thus,

x = Be−
k

2m
t sinωt.

Differentiating with respect to t,

dx

dt
= Be−

k
2m

t

(
ω cosωt− k

2m
sinωt

)
.

Since the object was initially released with speed v > 0, we have dx/dt = v at t = 0.
Hence,

Bω = v =⇒ B =
v

ω
.

We hence obtain the solution
x =

v

ω
e−

k
2m

t sinωt.

Part (b). Let xn be the (signed) amplitude of the nth vibration, and let tn be the
corresponding time, where n ∈ N.
To find tn, we consider the stationary points of x:

dx

dt

∣∣∣∣
t=tn

=
v

ω
e−

k
2m

tn

(
ω cosωtn − k

2m
sinωtn

)
= 0 =⇒ tanωtn =

2mω

k
.

Since tangent has period π,

tn =
1

ω

(
arctan

2mω

k
+ πn

)
.

Quite clearly, x has a constant period 2π/ω.
We now find xn. Evaluating x at tn,

xn =
v

ω
exp

(
− k

2mω

[
arctan

2mω

k
+ πn

])
sin

(
arctan

2mω

k
+ πn

)
.

Note that sin(X + πn) = (−1)n sinX. Hence,

xn =

[
− exp

(
− kπ

2mω

)]n [ v
ω
exp

(
− k

2mω
arctan

2mω

k

)
sin

(
arctan

2mω

k

)]

︸ ︷︷ ︸
constant

.

Hence,
|xn+1|
|xn|

= e−
kπ

2mω ,

whence the amplitudes {|xn|} are in geometric progression with common ratio e−
kπ

2mω .
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Part (c). Recall that the roots of the characteristic equation are given by

r1,2 =
−k ±

√
k2 − 4m2ω2

2m
.

If k2 > 4m2ω2, then the roots are real and distinct, whence x has general solution

x = Aer1t +Ber2t.

Since x = 0 at t = 0, we obtain A+B = 0. Thus,

x = A
(
er1t − er2t

)
.

Note that both roots are negative (since
√
k2 −X2 <

√
k2 = k). Hence, as t tends to

infinity, er1t − er2t (and by extension x) tends to 0.
A possible graph of x is

O

t

x
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Self-Practice B16

Problem 1. Find the general solution of the differential equation

d2y

dx2
+ 4y = 24e−2x.

Show that when x → ∞, the solution can be expressed as a single trigonometric expres-
sion.

∗ ∗ ∗ ∗ ∗

Problem 2.

(a) By using the substitution z = xy, show that the differential equation

x
d2y

dx2
+ (2− 4x)

dy

dx
+ 4y(x− 1) = 0

can be simplified into the differential equation

d2z

dx2
− 4

dz

dx
+ 4z = 0.

Hence, find the general solution for y in terms of x.

(b) Using a machine, a particle is accelerated from rest such that at a time t seconds
after the machine is turned on, its displacement s from its initial starting point is
modelled by the following differential equation:

d2s

dt2
− 4

ds

dt
+ 4s = cos t.

Find s in terms of t. Hence, find the amount of time required for the particle’s
speed to exceed the speed of sound (340 ms−1), giving your answer to the nearest
hundredth of a second.

∗ ∗ ∗ ∗ ∗

Problem 3. Given that dx
dt = 5x− 9t+ y, dy

dt = y− 4x+9, by eliminating the variable y,
show that

d2x

dt2
− 6

dx

dt
+ 9x = 9t.

Find the general solution of x in terms of t and hence obtain the general solution of y in
terms of t. Find the ratio x : y when t → −∞.

∗ ∗ ∗ ∗ ∗

Problem 4. A teacher gave his class the following differential equation

x
d2y

dx2
− dy

dx
+ 16x3y = 8x3 (1)

and asked them to find the solution. One of the students, Adrian, who had come across
(1) before recalled that the solution is y = cos2

(
x2
)
.

(a) Show that y = cos2
(
x2
)
satisfies (1).

Another student, Bobby, decided to use the substitution t = x2 to solve (1).
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(b) Show that by using the substitution, (1) can be transformed into the equation

d2y

dt2
+ ay = b,

where a and b are constants to be determined.

(c) Find the general solution of (1).

(d) Show that Adrian’s solution can be obtained from Bobby’s solution be choosing
suitable values of the arbitrary constants in the solution.

The teacher found out later that there was a typing error in (1). The differential equation
should be

x
d2y

dx2
− dy

dx
− 16x3y = 8x3. (2)

Deduce the general solution of (2).

∗ ∗ ∗ ∗ ∗

Problem 5. Use the substitution x = sec θ, where 0 < θ < π/2, to show that the
differential equation

(
x3 − x

) d2y
dx2

+
(
2x2 − 1

) dy
dx

+
ky

x
=

2

x3
,

where k is a positive integer, can be reduced to

d2y

dθ2
+ ky = 2 cos2 θ.

Hence, obtain the general solution for the differential equation in x and y for k ̸= 4 in the
form

y = A cos
√
k (arcsecx) +B sin

√
k (arcsec k) + f(x),

where A and B are arbitrary constants and f(x) is a function of x to be determined.

∗ ∗ ∗ ∗ ∗

Problem 6. Two 50-litre tanks, Tank A and Tank B (as shown in the diagram below),
containing salt solution are connected by two horizontal pipes. Both tanks have inlets and
outlets where salt solution flows in and out of the tanks. The rates of flow in the inlets,
outlets and pipes are managed in such a way that both tanks will be full at all times.

Tank A is receiving salt solution at a concentration of 1 gram per litre at a rate of 1 litre
per minute and Tank B is receiving pure water at the same rate. Salt solution is flowing
out from Tank A from the bottom outlet at a rate of 2 litres per minute. Salt solution
flows from Tank A to Tank B through one of the horizontal pipes at a rate of 2 litres per
minute and flows in the reverse direction through the other horizontal pipe at a rate of 3
litres per minute.

Tank A Tank B

salt solution

salt solution pure water
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(a) Suppose that at time t minutes, the amount of salt in Tank A and Tank B are x
grams and y grams respectively. Show that

dx

dt
= − 2

25
x+

3

50
y + 1 and

dy

dt
=

1

25
x− 3

50
y.

(b) Prove that
d2y

dt2
+ p

dy

dt
+ qy = r,

where p, q and r are constants to be determined.

(c) Find the general solution of the differential equation in (b).

(d) By expressing x in terms of t, find the ratio of the amount of salt in Tank A to the
amount of salt in Tank B in the long run.

∗ ∗ ∗ ∗ ∗

Problem 7 ( ). A model for the vibrations of a wine glass when struck by an external
force is

d2x

dt2
+ λ

dx

dt
+ ω2x = 0,

where λ is a constant due to the external force, ω is a constant of the wine glass, 2ω >
λ > 0, and x is the deformation of the glass.

(a) Find the general solution of the model in the form

x = eAt (c1 cosBt+ c2 sinBt) ,

where A and B are expressions to be determined in terms of λ and ω, and c1 and c2
are arbitrary constants.

Suppose that the wine glass vibrates at 440 Hz when struck, that is, the period of the
oscillation is 1/440 second.

(b) Show that
√
4ω2 − λ2 = 1760π.

If it takes about 2 seconds for the sound to die away, and this happens when the original
vibrations have reduced to one hundredth of their initial amplitude,

(c) show that λ = ln 100 and hence find ω, correct to three significant figures.

A pure tone at 440 Hz is produced at D decibels and aimed at the glass, forcing it to
vibrate at its natural frequency. The glass will shatter if the amplitude of the pure tone
is approximately 1. The vibrations are now modelled by

d2x

dt2
+ λ

dx

dt
+ ω2x =

10D/10−8

3
cos(880πt) .

(d) Determine how loud the sound should be, i.e. how large D should be, in order to
shatter the glass.
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Assignment B16

Problem 1. The charge, Q coulombs, on the capacitor in an electrical circuit is governed
by Kirchhoff’s Second Law, which satisfies the differential equation

L
d2Q

dt2
+R

dQ

dt
+

Q

C
= V (t),

where L is the inductance (in henries), R the resistance (in ohms), C the capacitance (in
farads) and V (t) is the applied voltage (in volts).

The initial charge Q and initial current dQ/dt in a circuit are both zero.
Given that L = 0.5 henries, R = 10 ohms, C = 0.02 farads and V (t) = 50e−10t, solve

for the charge Q at time t and sketch your solution curve.

Solution. Substituting the given values of L, R, C and V (t), the differential equation
becomes

0.5
d2Q

dt2
+ 10

dQ

dt
+

Q

0.02
= 50e−10t,

which simplifies as
d2Q

dt2
+ 20

dQ

dt
+ 100Q = 100e−10t.

The characteristic equation r2 + 20r + 100 = (r + 10)2 = 0 has the single root r = −10.
Thus,

Qc = (A+Bt) e−10t.

For the particular solution, we try

Qp = Ct2e−10t =⇒ dQp

dt
= Ce−10t

(
2t− 10t2

)
=⇒ d2Qp

dt2
= Ce−10t

(
2− 40t+ 100t2

)
.

Substituting this into the differential equation, we get

Ce−10t
(
2− 40t+ 100t2

)
+ 20Ce−10t

(
2t− 10t2

)
+ 100Ct2e−10t = 100e−10t,

whence C = 50 upon simplification. Thus,

Q = Qc +Qp = (A+Bt) e−10t + 50t2e−10t.

Note that
dQ

dt
= e−10t

(
B − 10A− 10Bt+ 100t− 500t2

)
.

Since Q = 0 and dQ/dt = 0 at t = 0, we get A = 0 and B = 10A = 0. Hence,

Q = 50t2e−10t.

(0.200, 0.271)

O

t

Q(t)
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Problem 2. Given that y is a function of x and x = tan θ, show that

(
1 + x2

) dy
dx

=
dy

dθ
.

Hence, show that the differential equation

(
1 + x2

)3 d2y

dx2
+ 2

(
1 + x2

)2
(1 + x)

dy

dx
− 3

(
1 + x2

)
y = x2 + 6x− 1

can be expressed as
d2y

dθ2
+ a

dy

dθ
+ by = c sin 2θ + d cos 2θ,

where a, b, c and d are constants to be determined.
Hence, find the general solution for y in terms of x.

Solution. Note that
dx

dθ
= sec2 θ = tan2 θ + 1 = x2 + 1.

Thus,
dy

dθ
=

dy

dx

dx

dθ
=
(
1 + x2

) dy
dx

.

Differentiating once more with respect to θ,

d2y

dθ2
=
(
1 + x2

) d2y
dx2

dx

dθ
+ 2x

dx

dθ

dy

dx
=
(
1 + x2

)2 d2y

dx2
+ 2x

dy

dθ
.

Dividing the given DE by 1 + x2, we have

(
1 + x2

)2 d2y

dx2
+ 2

(
1 + x2

)
(1 + x)

dy

dx
− 3y =

x2 + 6x− 1

1 + x2
.

We can rewrite this as

(
1 + x2

)2 d2y

dx2
+ 2x

dy

dθ
+ 2

dy

dθ
− 3y =

x2 + 6x− 1

1 + x2
,

which quickly simplifies as

d2y

dθ2
+ 2

dy

dθ
− 3y =

x2 + 6x− 1

1 + x2
.

Now, observe that

x2 + 6x− 1

1 + x2
=

tan2 θ + 6 tan θ − 1

sec2 θ
= sin2 θ + 6 sin θ cos θ − cos2 θ = 3 sin 2θ − cos 2θ.

Thus,
d2y

dθ2
+ 2

dy

dθ
− 3y = 3 sin 2θ − cos 2θ,

whence a = 2, b = −3, c = 3 and d = −1.
Note that the characteristic equation r2 + 2r − 3 = (r + 3)(r − 1) = 0 has roots r = 1

and r = −3. Thus,
yc = Aeθ +Be−3θ.

For the particular solution, we try

yp = C sin 2θ +D cos 2θ.
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Note that

y′p = 2C cos 2θ − 2D sin 2θ and y′′p = −4C sin 2θ − 4D cos 2θ.

Substituting this into the DE, we get

(−4C sin 2θ − 4D cos 2θ) + 2 (2C cos 2θ − 2D sin 2θ)− 3 (C sin 2θ +D cos 2θ)

= 3 sin 2θ − cos 2θ.

Comparing coefficients, we get
{
−7C − 4D = 3

4C − 7D = −1
,

whence C = −5/13 and D = −1/13. Thus,

y = yc + yp = Aeθ +Be−3θ − 5

13
sin 2θ − 1

13
cos 2θ.

Substituting θ = arctanx,

y = Aearctanx +Be−3 arctanx − 5

13
sin(2 arctanx)− 1

13
cos(2 arctanx) .

∗ ∗ ∗ ∗ ∗

Problem 3. An object of mass m, in kilograms, is suspended from one end of a vertical
spring of elasticity k, k > 0, in a resistive medium with resistivity c, c > 0. When the
object is pulled down from its equilibrium position and released, the motion of the object
can be described by the following differential equation, where y is the displacement, in
metres, of the object from the equilibrium position after time t.

d2y

dt2
+

c

m

dy

dt
+

k

m
y = 0.

(a) The diagram below shows how y varies with t for some values of c, m and k.

O
t

y

State the condition(s) for c, m and k for the above scenario.

When an external force, F (t), is applied to the object, the motion of the object can be
described by the following modified differential equation:

d2y

dt2
+

c

m

dy

dt
+

k

m
y = F (t).
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(b) For the same c, m and k in part (a), sketch a graph of y versus t for

(i) F (t) = a,

(ii) F (t) = be−t,

where a and b are positive constants, showing the long-term behaviour of y.

(c) In another setup, the resistivity is approximately equal to 0, that is c = 0. Given
that the external force is F (t) = sinwt, where w2 = k/m, the differential equation
is now

d2y

dt2
+ w2y = sinwt.

Solve for y, in terms of w and t, if the object is initially at the equilibrium position
with zero velocity.

Solution.

Part (a). Note that the characteristic equation of the DE is given by

r2 +
c

m
r +

k

m
= 0 =⇒ mr2 + cr + k = 0.

For y to oscillate (i.e. composed of sine and cosine terms), the roots of the characteristic
equation must be non-real. We hence obtain the constraint

∆ = c2 − 4mk < 0.

Part (b). Note that the given graph represents the complementary solution.

Part (b)(i). Let the particular solution be a constant z. Substituting this into the DE, we
get kz/m = a, whence z = am/k, which is a positive constant. Hence, we simply shift the
graph of y(t) in the positive y-axis.

am/k

O
t

y
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Part (b)(ii). Since F (t) = be−t, the particular solution is of the form Ce−t. The resulting
graph hence oscillates around Ce−t:

O
t

y

Part (c). Note that the characteristic equation is r2 + r2 = 0, whence r = ±iw. Thus,

yc = A coswt+B sinwt.

For the particular solution, we try

yp = Ct sinwt+Dt coswt.

Note that
y′p = wt (C coswt−D sinwt) + C sinwt+D coswt

and
y′′p = w2t (−C sinwt−D coswt) + 2w (C coswt−D sinwt) .

Substituting this into the DE, we get

w2t (−C sinwt−D coswt) + 2w (C coswt−D sinwt)

+w2 (Ct sinwt+Dt coswt) = sinwt.

Comparing coefficients, we obtain C = 0 and D = −1/2w. Thus,

y = yc + yp = A coswt+B sinwt− t

2w
coswt.

Note that

y′ = −Aw sinwt+Bw coswt− 1

2w
(coswt− tw sinwt) .

Since y(0) = y′(0) = 0, we have A = 0 and

Bw − 1

2w
= 0 =⇒ B =

1

2w2
.

Thus,

y =
1

2w2
sinwt− t

2w
coswt.



930

B17A Linear Algebra - Matrices

Tutorial B17A

Problem 1. Without the use of G.C., find the following matrix products:

(a)
(
−1 4 2

)


5
1
3




(b)



3
9
2


(1 −6 3

)

(c)

(
4 −1 1
2 3 0

)

7 −3
5 4
1 2




(d)



2 2 1
1 0 2
2 1 2





−2 −3 4
2 2 −3
1 2 −2




Solution.

Part (a).

(
−1 4 2

)


5
1
3


 =

(
5
)

Part (b). 

3
9
2


(1 −6 3

)
=



3 −18 9
9 −54 27
2 −12 6




Part (c).
(
4 −1 1
2 3 0

)

7 −3
5 4
1 2


 =

(
24 −14
29 6

)

Part (d). 

2 2 1
1 0 2
2 1 2





−2 −3 4
2 2 −3
1 2 −2


 =



1 0 0
0 1 0
0 0 1




∗ ∗ ∗ ∗ ∗

Problem 2. An orthogonal matrix M has the property

MMT = MTM = I,

whereMT and I denote the transpose of the matrixM and the identity matrix respectively.
Given that matrices A and B are orthogonal, are the following true or false?



Tutorial B17A 931

(a) AB is orthogonal.

(b) A+B is orthogonal.

Solution.

Part (a). The statement is true. Since A and B are both orthogonal,

(AB)T (AB) = BT
(
ATA

)
B = BTB = I,

and
(AB) (AB)T = A

(
BBT

)
AT = AAT = I,

thus AB is orthogonal.
Geometric Approach. A real matrix is orthogonal if and only if it is norm-preserving.
Since A and B are both orthogonal,

∥v∥ = ∥Bv∥ = ∥ABv∥ ,

thus AB is also orthogonal.

Part (b). The statement is false. Let M be orthogonal. Then −M is also orthogonal
(reflection preserves norm). However, their sum, 0, is clearly not orthogonal.

∗ ∗ ∗ ∗ ∗

Problem 3. It is given that a matrix A is symmetric if and only if AT = A. Suppose
that A is a symmetric m×m matrix and that P is any m×m matrix. Prove that PTAP
is symmetric.

Solution. (
PTAP

)T
= PTAT

(
PT
)T

= PTATP = PTAP.

∗ ∗ ∗ ∗ ∗

Problem 4. For what value(s) of the constant k does the following system of linear
equations {

x− y = 3

2x− 2y = k

have

(a) no solutions?

(b) exactly one solution?

(c) infinitely many solutions?

Solution. Note that we have 2x− 2y = 6 and 2x− 2y = k.

Part (a). If k ̸= 6, there are no solutions.

Part (b). It is impossible for the system to have a unique solution.

Part (c). If k = 6, there are infinitely many solutions.

∗ ∗ ∗ ∗ ∗

Problem 5.
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(a) Solve the following system of linear equations by using row operations to express
the matrix representation of the following system of linear equations in row echelon
form. 




x1 + x2 + x3 = 8

−x1 − 2x2 + 3x3 = 1

3x1 − 7x2 + 4x3 = 10

.

(b) Solve the following system of linear equations by using row operations to express
the matrix representation of the following system of linear equations in reduced row
echelon form. 




x+ y + z = 0

−2x+ 5y + 2z = 0

−7x+ 7y + z = 0

.

Solution.

Part (a). Note that the given system of linear equations has matrix representation




1 1 1 8
−1 −2 3 1
3 −7 4 10


 .

Performing row operations on this matrix, we get




1 1 1 8
−1 −2 3 1
3 −7 4 10


→

2R1+R2

−R2−R1

− 1
39

(R3−13R1−10R2)



1 0 5 17
0 1 −4 −9
0 0 1 8

3


 .

We thus recover the system of linear equations





x1 + 4x3 = 17

x2 − 4x3 = −9

x3 =
8
3

,

whence we have x1 =
11
3 , x2 =

5
3 and x3 =

8
3 .

Part (b). Note that the given system of linear equations has matrix representation




1 1 1
−2 5 2
−7 7 1


 .

Performing row operations on this matrix, we get




1 1 1
−2 5 2
−7 7 1


→

1
7
(5R1−R2)

1
7
(R2+2R1)

R3+3R1−2R2



1 0 3

7
0 1 4

7
0 0 0


 .

Since the last row is full of zeroes, we have a free variable. Let x3 = t, where t ∈ R. Then
we recover the system of linear equations





x1 + 3
7x3 = 0

x2 +
4
7x3 = 0

x3 = t

,

whence x1 = −3
7 t, x2 = −4

7 t and x3 = t.
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Problem 6. What conditions must the b’s satisfy in order for the following system of
linear equations to be consistent?

(a)





x1 − x2 + 3x3 = b1

3x1 − 3x2 + 4x3 = b2

−2x1 + 2x2 − 6x3 = b3

(b)





2x1 + 3x2 − x3 + x4 = b1

x1 + 5x2 + x3 − 2x4 = b2

−x1 + 2x2 + 2x3 − 3x4 = b3

3x1 + x2 − 3x3 + 4x4 = b4

Solution.

Part (a). We can represent the given system of linear equations with the matrix




1 −1 3 b1
3 −3 4 b2

−2 2 −6 −b3


 .

Performing row operations, we see that



1 −1 3 b1
3 −3 4 b2

−2 2 −6 −b3


→ R2−3R1

R3+2R1



1 −1 3 b1
0 0 −5 b2 − 3b1
0 0 0 b3 + 2b1


 .

For the system to be consistent, we require b3 + 2b1 = 0.

Part (b). We can represent the given system of linear equations with the matrix




2 3 −1 1 b1
1 5 1 −2 b2

−1 2 2 −3 b3
3 1 −3 4 b4


 .

Performing row operations, we see that



2 3 −1 1 b1
1 5 1 −2 b2

−1 2 2 −3 b3
3 1 −3 4 b4


→

R1−2R2

R3+R1−R2

R4−2R1+R2




0 −7 3 5 b1 − 2b2
1 5 1 −2 b2
0 0 0 0 b3 + b1 − b2
0 0 0 0 b4 − 2b1 + b2


 .

For the system to be consistent, we require b3 + b1 − b2 = 0 and b4 − 2b1 + b2 = 0.

∗ ∗ ∗ ∗ ∗

Problem 7. Without the use of a graphing calculator, find A−1 for each of the following
cases of A.

(a)



2 3 1
3 1 2
1 2 3




(b)

(
cosα sinα

− sinα cosα

)

(c)



1 0 0
0 cosα − sinα
0 sinα cosα
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Solution.

Part (a). Performing row operations on
(
A I

)
, we have



2 3 1 1 0 0
3 1 2 0 1 0
1 2 3 0 0 1


→

1
18

(R1+7R2−5R3)

1
18

(7R1−5R2+R3)

1
18

(−5R1+R2+7R3)



1 0 0 1

18
7
18 − 5

18

0 1 0 7
18 − 5

18
1
18

0 0 1 − 5
18

1
18

7
18


 .

Thus,

A−1 =
1

18




1 7 −5
7 −5 1

−5 1 7


 .

Part (b). By the formula for the inverse of a 2× 2 matrix,

A−1 =

(
cosα − sinα
sinα cosα

)
.

Part (c). Observe thatA represents a rotation of α about the x-axis. Thus,A−1 represents
a rotation of −α about the x-axis, i.e.

A−1 =



1 0 0
0 cosα sinα
0 − sinα cosα


 .

∗ ∗ ∗ ∗ ∗

Problem 8. Without the use of a graphing calculator, find the determinants of the
following matrices:

(a) A =

(
0 4
−1 2

)

(b) B =



2 −1 4
4 −3 1
1 2 1




(c) C =



2 0 0
4 −3 0
1 2 1




(d) D =



2 −1 4
4 −3 1
3 6 3




Solution.

Part (a).
detA = (0)(2)− (−1)(4) = 4.

Part (b).

detB = 2

∣∣∣∣
−3 1
2 1

∣∣∣∣− (−1)

∣∣∣∣
4 1
1 1

∣∣∣∣+ 4

∣∣∣∣
4 −3
1 2

∣∣∣∣ = 2(−5)− (−1)(3) + 4(11) = 37.

Part (c).

detC = det

∣∣∣∣
2 0
4 −3

∣∣∣∣ = −6.
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Part (d). Note that D is simply B where the third row has been multiplied by 3. Thus,

detD = 3detB = 111.

∗ ∗ ∗ ∗ ∗

Problem 9. For the case where A =



0 1 0
1 2 −1
0 1 3


 and B =




1 0 2
2 1 0
−1 1 −1


, verify the

results

(a) det(AB) = det(A) det(B),

(b) det
(
A−1

)
= 1/ det(A).

Determine also if

(c) det(A+B) = det(A) + det(B),

(d) det(A) = det
(
AT
)
.

Solution. Note that detA = −3 and detB = 5.

Part (a). Using G.C.,

AB =




2 1 0
6 1 3

−1 4 −3


 .

Hence,
det(AB) = −15 = (−3)(5) = det(A) det(B) .

Part (b). Using G.C.,

A−1 =
1

3



−7 3 1
3 0 0

−1 0 1


 .

Hence,

det
(
A−1

)
= −1

3
=

1

−3
=

1

detA
.

Part (c). Note that

A+B =




1 1 2
3 3 −1

−1 2 2


 .

Hence,
det(A+B) = 21 ̸= −3 + 5 = detA+ detB.

Part (d). Note that

AT =



0 1 0
1 2 1
0 −1 3


 .

Hence,
detAT = −3 = detA.
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Problem 10. It is given that matrices A =




2 1 3
−1 0 4
3 1 0


, B =




2 1 3
−1 1 12
3 1 0


. Without

the use of the G.C., find the inverse of A and B if it exists. For each of (a) and (b) below,
solve, if possible, the equation, giving your answers in terms of a (where applicable).

(a) Ax = (4, 1, a)T,

(b) Bx = (4, 1, a)T.

Hence, determine whether it is possible for x to have a unique solution when

ABx =



4
1
a


 .

Solution. Performing row operations on
(
A I

)
, we have




2 1 3 1 0 0
−1 0 4 0 1 0
3 1 0 0 0 1


→

−4R1+3R2+4R3

12R1−9R2−11R3

−R1+R2+R3



1 0 0 −4 3 4
0 1 0 12 −9 −11
0 0 1 −1 1 1


 .

Thus,

A−1 =



−4 3 4
12 −9 −11
−1 1 1


 .

Note that

detB = 3

∣∣∣∣
−1 1
3 1

∣∣∣∣− 12

∣∣∣∣
2 1
3 1

∣∣∣∣ = 0.

Hence, B−1 does not exist.

Part (a). Since A is invertible, we can pre-multiply A−1 on both sides of the equation
Ax = (4, 1, a)T, yielding

x =



−4 3 4
12 −9 −11
−1 1 1





4
1
a


 =



−13 + 4a
39− 11a
−3 + a


 .

Part (b). Note that the equation Bx = (4, 1, a)T has matrix representation




2 1 3 4
−1 1 12 1
3 1 0 a


 .

Performing Gaussian elimination yields




2 1 3 4
−1 1 12 1
3 1 0 a


→

1
3
R1+

2
3
R2

1
3
R1− 1

3
R2

− 4
3
R1+

1
3
R2+R3



0 1 9 2
1 0 −3 1
0 0 0 a− 5


 .

If a ̸= 5, the system is inconsistent and there is no solution. If a = 5, the system is
consistent with one free variable. Let x = (x1, x2, x3)

T, with x3 = t, where t ∈ R. We
have {

x2 + 9x3 = 2

x1 − 3x3 = 1
,
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whence x1 = 1 + 3t, x2 = 2− 9t and x3 = t. Thus,

x =



1
2
0


+ t




3
−9
1


 , t ∈ R.

Since A is invertible,

ABx =



4
1
a


 =⇒ Bx = A−1



4
1
a


 .

However, because B is not invertible, there cannot be a unique solution x to the above
equation (if such a solution exists).

∗ ∗ ∗ ∗ ∗

Problem 11. Let Ax = 0 be a homogeneous system of n linear equations in n unknowns
that has only the trivial solution. Show that if k is any positive integer, then the system
Akx = 0 also has only the trivial solution.

Solution. Since Ax = 0 has only the trivial solution, det(A) ̸= 0. Thus, det
(
Ak
)
=

det(A)k ̸= 0, whence Akx = 0 has a unique solution, which must clearly be the trivial
solution.

∗ ∗ ∗ ∗ ∗

Problem 12.

(a) Let A be a non-zero square matrix such that A2 = A. Determine all possible values
of det(A). Determine if the following statements are true. Justify your answer.

(i) I−A is always invertible.

(ii) I+A is always invertible.

(b) Let B =



a b c
d e f
g h i


. Given that B is the inverse of a matrix C, and D is the

matrix obtained from C by adding to the second row of C twice the first row of C,
find D−1 in a similar form to B.

Solution.

Part (a). Taking determinants on both sides of the given equation, we have

det
(
A2
)
= det(A) =⇒ det(A)2 = det(A) .

Thus, the possible values of det(A) are 0 and 1. An example of A with determinant 0 is

A =

(
1 0
0 0

)
,

while an example of A with determinant 1 is simply I.
In fact, I is the only such matrix that has determinant 1: if A is invertible, we can

pre-multiply its inverse to the equation A2 = A to get

A−1A2 = A−1A =⇒ A = I.

Geometric Approach. Let A represent a linear transformation of Rn. A is idempotent if
and only if all vectors v ∈ colA are invariant under A. If A has non-zero determinant,
then its image is Rn, i.e. Av = v for all v ∈ Rn, which is only possible if A = I.
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Part (a)(i). The statement is false. Observe that if A is idempotent, then I − A is also
idempotent:

(I−A)2 = I2 − IA−AI+A2 = I−A−A+A = I−A.

Seeking a contradiction, suppose I−A is invertible. From the above result, it follows that

I−A = I =⇒ A = 0,

which contradicts our assumption that A is non-zero. Hence, I−A is not invertible.
Alternative Approach. Let v ∈ colA. Then

(I−A)v = v −Av = v − v = 0 =⇒ col(A) ⊆ ker (I−A) .

If I−A is invertible, then its kernel must be trivial. This means that

col(A) = ker (I−A) = {0} =⇒ A = 0,

contradicting our assumption that A is non-zero. Hence, I−A is not invertible.

Part (a)(ii). The statement is true. Let B = I+A. Since A2 = A,

0 = A2 −A = (B− I)2 − (B− I) = B2 − 3B+ 2I.

Rearranging,

I =
3

2
B− 1

2
B2 = B

(
3

2
I− 1

2
B

)
= (I+A)

(
I− 1

2
A

)
.

Thus, the inverse of I+A exists and is given by I− 1
2A.

Alternative Approach. Let v ∈ ker (I+A). Then

(I+A)v = v +Av = 0 =⇒ Av = −v. (1)

Pre-multiplying both sides by A,

A2v = −Av =⇒ Av = −Av =⇒ Av = 0.

Substituting this into (1), we have v = 0. Hence, the kernel of I+A is trivial, thus I+A
is invertible.

Part (b). Note that

D =



1 0 0
2 1 0
0 0 1


C =



1 0 0
2 1 0
0 0 1


B−1.

Thus, our goal matrix D−1 is given by

D−1 =





1 0 0
2 1 0
0 0 1


B−1



−1

= B



1 0 0
2 1 0
0 0 1




−1

=



a b c
d e f
g h i






1 0 0
−2 1 0
0 0 1


 =



a− 2b b c
d− 2e e f
g − 2h h i


 .
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Self-Practice B17A

Problem 1. Find the 2× 2 matrix T such that
(
2 1
3 0

)
= T

(
1 0
2 2

)
.

Solution. We have

T =

(
2 1
3 0

)(
1 0
2 2

)−1

=

(
1 1

2
3 0

)
.

∗ ∗ ∗ ∗ ∗

Problem 2. If

A =

(
1 3
2 2

)
,

show that the roots of the equation det(A− λI) = 0 are λ = −1 and λ = 4.

Solution. Note that

det(A− λI) = det

(
1− λ 3
2 2− λ

)
= λ2 − 3λ− 4 = (λ+ 1) (λ− 4) ,

so the roots are λ = −1 and λ = 4.

∗ ∗ ∗ ∗ ∗

Problem 3. Consider the matrix

A =

(
1 0
3 4

)
.

(a) Find the elementary matrices E1 and E2 such that E2E1A = I.

(b) Write A−1 as a product of two elementary matrices.

(c) Write A as a product of two elementary matrices.

Solution.

Part (a). We can reduce A to the identity matrix I using two elementary row operations:

(
1 0
3 4

)
→

R2−3R1

(
1 0
0 4

)
→

1
4
R2

(
1 0
0 1

)
.

The two elementary matrices representing these operations are given by

E1 =

(
1 0
−3 1

)
and E2 =

(
1 0
0 1

4

)
.

Part (b). From E2E1A = I, we have

A−1 = E2E1 =

(
1 0
0 1

4

)(
1 0
−3 1

)
.

Part (c). Taking the inverse of the previous part, we have

A = E−1
1 E−1

2 =

(
1 0
3 1

)(
1 0
0 4

)
.
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Problem 4. Given that the matrix A is singular, where

A =




1 2 1
a −1 −11
−2 a 12


 ,

find the possible values of a. For each of these values, determine the number of solutions
to the equation

Ax =



3
2
1


 .

If there are infinitely many solutions for a particular value of a, give the general solution.

Solution. Note that

detA =

∣∣∣∣
−1 −11
a 12

∣∣∣∣− 2

∣∣∣∣
9 −11
−2 12

∣∣∣∣+
∣∣∣∣
a −1
−2 a

∣∣∣∣ = a2 − 13a+ 30 = (a− 10) (a− 3) .

For A to be singular, its determinant must be 0, so we have a = 10 or a = 3.
Case 1 : a = 10. The equation can be represented by the following augmented matrix,

which we reduce to its RREF:



1 2 1 3
10 −1 −11 2
−2 10 12 1


→



1 0 −1 0
0 1 1 0
0 0 0 1


 .

From the last row, we see that the system is inconsistent, so there are no solutions.
Case 2 : a = 3. The equation can be represented by the following augmented matrix,

which we reduce to its RREF:



1 2 1 3
3 −1 −11 2
−2 3 12 1


→



1 0 −3 1
0 1 2 1
0 0 0 0


 .

Since the last row is full of zeroes, there are infinitely many solutions.
Let x = (x, y, z)T. Then



1 0 −3
0 1 2
0 0 0





x
y
z


 =



1
1
0


 =⇒

{
x − 3z = 1

y + 2z = 1
.

Let z = λ ∈ R. Then the general solution is given by

x =



x
y
z


 =



1 + 3λ
1− 2λ

λ


 =



1
1
0


+ λ




3
−2
0


 .

∗ ∗ ∗ ∗ ∗

Problem 5. Given that

Y =

(
p q
r s

)
and YYT =

(
2 0
0 2

)
,

show that, if p, q, r, s are real, they all lie in the interval
[
−
√
2,
√
2
]
.
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Solution. Note that

YYT =

(
p q
r s

)(
p r
q s

)
=

(
p2 + q2 pr + qs
pr + qs r2 + s2

)
=

(
2 0
0 2

)
,

so we have p2+q2 = 2 and r2+s2 = 2. It immediately follows that p, q, r, s ∈
[
−
√
2,
√
2
]
.

∗ ∗ ∗ ∗ ∗

Problem 6. Let Ax = 0 be a homogeneous system of n linear equations in n unknowns,
and let Q be an invertible matrix. Show that Ax = 0 has just the trivial solution if and
only if QAx = 0 has just the trivial solution.

Solution. Suppose Ax = 0 has just the trivial solution. Then A is invertible, so detA ̸=
0, whence det(QA) = det(Q) det(A) ̸= 0. Thus, QA is also invertible, so QAx = 0 has
just the trivial solution.

Suppose QAx = 0 has just the trivial solution. Then QA is invertible, so det(QA) ̸= 0.
Since Q is invertible, we have det(Q) ̸= 0, whence it follows that det(A) ̸= 0, so A is
invertible and Ax = 0 has just the trivial solution.

∗ ∗ ∗ ∗ ∗

Problem 7. Let 

a 0 b 2
a a 4 4
0 a 2 b




be the augmented matrix for a linear system. For what values of a and b does the system
have

• a unique solution?

• a one-parameter solution?

• a two-parameter solution?

• no solution?

Solution. Note that


a 0 b 2
a a 4 4
0 a 2 b


→ R2−R1

R3+R1−R2



a 0 b 2
0 a 4− b 2
0 0 b− 2 b− 2


 .

Case 1 : a ̸= 0, b ̸= 2. Note that

det



a 0 b
a a 4
0 a 2


 = a2 (b− 2) ̸= 0,

so the matrix is invertible and we obtain a unique solution.
Case 2 : a = 0, b = 2. Our matrix can be further reduced to



a 0 b 2
0 a 4− b 2
0 0 b− 2 b− 2


 =



0 0 2 2
0 0 2 2
0 0 0 0


→



0 0 1 1
0 0 0 0
0 0 0 0


 .

Since there are two rows of zeroes, we have a two-parameter solution.
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Case 3 : a = 0, b ̸= 2. Our matrix can be further reduced to


a 0 b 2
0 a 4− b 2
0 0 b− 2 b− 2


 =



0 0 b 2
0 0 4− b 2
0 0 b− 2 b− 2


→



0 0 1 1
0 0 0 b− 2
0 0 0 0


 .

Since b− 2 ̸= 0, the second row is inconsistent, so there are no solutions in this case.
Case 4 : a ̸= 0, b = 2. Substituting b = 2 into the reduced augmented matrix, we see

that 

a 0 b 2
0 a 4− b 2
0 0 b− 2 b− 2


 =



a 0 2 2
0 a 2 2
0 0 0 0


 .

There is only one row of zeroes, so we have a one-parameter solution in this case.
To summarize,

Solution a b

None a = 0 b ̸= 2

Unique a ̸= 0 b ̸= 2

One-parameter a ̸= 0 b = 2

Two-parameter a = 0 b = 2

∗ ∗ ∗ ∗ ∗

Problem 8. The matrix A is given by

A =



6 3 2
3 2 1
8 4 3


 .

By performing row-operations on the matrix
(
A I

)
, find A−1. Hence, or otherwise, find

B−1 where

B =




1 1
2

1
3

1
2

1
3

1
6

1
3

1
6

1
8


 .

Given that the real numbers x1, x2 and x3 satisfy the equation

B



x1
x2
x3


 =



c1
c2
c3


 ,

show that the solution of the equation

Bx =



c1 + δ
c2 − δ
c3 − δ




is

x =



x1 + 42δ
x2 − 18δ
x3 − 96δ


 .

Solution. We have


6 3 2 1 0 0
3 2 1 0 1 0
8 4 3 0 0 1


→

2R1−R2−R3

2R2−2R1

3R3−4R1



1 0 0 2 −1 −1
0 1 0 −1 2 0
0 0 1 −4 0 3


 ,
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so

A−1 =




2 −1 −1
−1 2 0
−4 0 3


 .

Note that

B =




1 1
2

1
3

1
2

1
3

1
6

1
3

1
6

1
8


 =




1
6 0 0

0 1
6 0

0 0 1
24


A,

so

B−1 = A−1




1
6 0 0

0 1
6 0

0 0 1
24




−1

=




2 −1 −1
−1 2 0
−4 0 3





6 0 0
0 6 0
0 0 24


 =




12 −6 −24
−6 12 0
−24 0 72


 .

Note that

Bx =



c1 + δ
c2 − δ
c3 − δ


 =



c1
c2
c3


+ δ




1
−1
−1


 = B



x1
x2
x3


+ δ




1
−1
−1


 .

Pre-multiplying B−1 on both sides,

x =



x1
x2
x3


+ δB−1




1
−1
−1


 =



x1
x2
x3


+ δ




42
−18
−96


 =



x1 + 42δ
x2 − 18δ
x3 − 96δ


 .

∗ ∗ ∗ ∗ ∗

Problem 9. Given that

A =




1 2 3
5 4 a
−5 a 11


 ,

find the values of a for which the equation Ax = b does not have exactly one solution
where x and b are 3× 1 matrices.

Using each of these values of a, find the solutions, if any, of the equation

Ax =




1
4
−3


 .

Solution. Note that

detA =

∣∣∣∣
4 a
a 11

∣∣∣∣− 2

∣∣∣∣
5 a
−5 11

∣∣∣∣+ 3

∣∣∣∣
5 4
−5 a

∣∣∣∣ = −a2 + 5a− 6 = − (a− 3) (a− 2) .

For Ax = b to not have a unique solution, we require detA = 0, so a = 2 or a = 3.
Case 1 : a = 2. The equation can be represented by the following augmented matrix,

which we reduce to its RREF:




1 2 3 1
5 4 2 4
−5 2 11 −3


→




1 0 −4
3

2
3

0 1 13
6

1
6

0 0 0 0


 .
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Let x = (x, y, z)T. Then the system becomes

{
x − 4

3z = 2
3

y + 13
6 = 1

6

.

Let z = λ ∈ R. Then

x =



x
y
z


 =



2/3
1/6
0


+ λ




4/3
−13/6

1


 .

Case 2 : a = 3. The equation can be represented by the following augmented matrix,
which we reduce to its RREF:




1 2 3 1
5 4 3 4
−5 3 11 −3


→



1 0 −1 0
0 1 2 0
0 0 0 1


 .

From the last row, we see that the system is inconsistent, so it has no solutions.
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Assignment B17A

Problem 1. The equations of three planes p, q and r are





2x+ y + 3z = 4

8x+ 6y + 5z = µ

−4x+ 8y + λz = 7

respectively, where λ and µ are constants.
Determine the conditions on λ and µ such that the three planes

(a) intersect at exactly one point,

(b) intersect at a line,

(c) have no point in common.

Solution. The system of equations can be rewritten as the matrix equation




2 1 3
8 6 5
−4 8 λ





x
y
z


 =



4
µ
7


 .

The augmented matrix corresponding to this equation is row-equivalent to




2 1 3 4
8 6 5 µ
−4 8 λ 7


→ R2−4R1

R3+22R1−5R2



2 1 3 4
0 2 −7 µ− 16
0 0 λ+ 41 95− 5µ


 .

Part (a). For the three planes to intersect at exactly one point, the system of equations
must have a unique solution. Hence, there must be no row of 0’s, whence λ + 41 = 0.
Thus, λ ̸= −41 and µ ∈ R.
Part (b). For the three planes to intersect at a line, the system of equations must have
infinitely many solutions. Hence, there are must a consistent row of 0’s. This gives
λ+ 41 = 0 and 95− 5µ = 0, whence λ = −41 and µ = 19.

Part (c). For the three planes to have no common point, the system of equations must
be inconsistent. Thus, λ+ 41 = 0 and 95− 5µ ̸= 0, whence λ = −41 and µ ̸= 19.

∗ ∗ ∗ ∗ ∗

Problem 2. An n× n matrix A is said to be an involutory matrix if A2 = I, where I is
the identity matrix. It is an idempotent matrix if A2 = A.

(a) Find the possible values of the determinant of an involutory matrix.

(b) State the expression of A2n+1 where n ∈ Z+, where A is an involutory matrix.

(c) Prove that A is an involutory matrix if and only if 1
2 (A+ I) is idempotent.

Solution.

Part (a). Taking determinants on both sides,

detA2 = det I =⇒ (detA)2 = 1 =⇒ detA = ±1.

Part (b). Clearly,

A2n+1 = A
[
(A)2

]n
= AIn = A.
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Part (c). Suppose A is involutory. Then A2 = I. Consider
[
1
2 (A+ I)

]2
:

[
1

2
(A+ I)

]
=

1

4

(
A2 +AI+ IA+ I2

)
=

1

4

(
A2 + 2A+ I

)

=
1

4
(I+ 2A+ I) =

1

2
(A+ I) .

Thus, 1
2 (A+ I) is idempotent.

Suppose that 1
2 (A+ I) is idempotent. Then

[
1

2
(A+ I)

]2
=

1

2
(A+ I) =⇒ (A+ I)2 = 2 (A+ I)

=⇒ A2 + 2A+ I = 2A+ 2I =⇒ A2 = I,

hence A is involutory.
Thus, A is involutory if and only if 1

2 (A+ I) is idempotent.

∗ ∗ ∗ ∗ ∗

Problem 3. The matrix A is given by

A =



−5 4 3
10 −7 −6
−8 6 5


 .

(a) By performing row operations on the matrix
(
A I

)
, find A−1.

(b) Solve the equation xA =
(
−1 2 3

)
, where x is a 1× 3 matrix.

(c) Solve, by multiplying both sides of the equation by A−1, the equation

(
x y z t

)



−1 2 3
−5 4 3
10 −7 −6
−8 6 5


 =

(
2 −2 1

)
.

Solution.

Part (a). Performing row operations on the augmented matrix
(
A I

)
, we have



−5 4 3 1 0 0
10 −7 −6 0 1 0
−8 6 5 0 0 1


→

−R1+2R2+3R3

R2+2R1

5R3−4R1+2R2



1 0 0 −1 2 3
0 1 0 2 1 0
0 0 1 −4 2 5


 .

Thus,

A−1 =



−1 2 3
2 1 0
−4 2 5


 .

Part (b). Using G.C., we have x =
(
−7 6 12

)
.

Part (c). Post-multiplying the given equation with A−1, we have

(
x y z t

)(−1 2 3
A

)
A−1 =

(
2 −2 1

)
A−1.
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Block-multiplying the LHS yields

(
x y z t

)



−7 6 12
1 0 0
0 1 0
0 0 1


 =

(
−10 4 11

)
.

This gives the system of linear equations





−7x+ y = −10

6x + z = 4

12x + t = 11

.

Let x = λ, where λ ∈ R. Then

x = λ, y = −10 + 7λ, z = 4− 6λ, t = 11− 12λ.
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B17B Linear Algebra - Linear Spaces

Tutorial B17B

Problem 1. Determine which of the following functions are linear transformations, and
if they are, find the matrix representing the linear transformation.

(a) T : R2 → R2 given by

T

((
x
y

))
=

(
2x− 3y
3x+ 4y

)
.

(b) T : R3 → R3 given by

T





x1
x2
x3




 =



x1 + 1
x2 − 2
x3


 .

(c) T : R2 → R given by

T

((
x
y

))
=
√
x2 + y2.

Solution.

Part (a). Note that

T

((
x
y

))
= x

(
2
3

)
+ y

(
−3
4

)
.

Hence,

T

((
ux
uy

)
+

(
vx
vy

))
= T

((
ux + vx
uy + vy

))
= (ux + vx)

(
2
3

)
+ (uy + vy)

(
−3
4

)

=

[
ux

(
2
3

)
+ uy

(
−3
4

)]
+

[
vx

(
2
3

)
+ vy

(
−3
4

)]
= T

((
ux
uy

))
+ T

((
vx
vy

))
.

Let k ∈ R. Then

T

(
k

(
x
y

))
= T

((
kx
ky

))
= kx

(
2
3

)
+ ky

(
−3
4

)
= k

[
x

(
2
3

)
+ y

(
−3
4

)]
= kT

((
x
y

))
.

Thus, T is a linear transformation.

Part (b). Note that

T





0
0
0




 =




1
−2
0


 .

Let k ∈ R. Then

T


k



0
0
0




 = T





0
0
0




 =




1
−2
0


 ̸= k




1
−2
0


 = kT





0
0
0




.

Thus, T is not a linear transformation.
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Part (c). Note that

T

((
0
1

))
+ T

((
0
1

))
=
√
02 + 12 +

√
12 + 02 = 2.

However,

T

((
1
1

))
=
√
12 + 12 =

√
2.

Thus,

T

((
0
1

))
+ T

((
0
1

))
= 2 ̸=

√
2 = T

((
1
1

))
= T

((
0
1

)
+

(
1
0

))
.

Thus, T is not a linear transformation.

∗ ∗ ∗ ∗ ∗

Problem 2. Let T : R2 → R2 be the linear transformation such that

T

((
1
1

))
=

(
0
2

)
and T

((
1
−1

))
=

(
2
0

)
.

(a) Compute T ((1, 4)T) and T ((−2, 1)T).

(b) Find the matrix representing the linear transformation T .

Solution.

Part (a). Note that

T

((
1
0

))
= T

(
1

2

(
1
1

)
+

1

2

(
1
−1

))
=

1

2
T

((
1
1

))
+

1

2
T

((
1
−1

))
=

(
1
1

)
.

Also note that

T

((
0
1

))
= T

(
1

2

(
1
1

)
− 1

2

(
1
−1

))
=

1

2
T

((
1
1

))
− 1

2
T

((
1
−1

))
=

(
−1
1

)
.

Thus,

T

((
1
4

))
= T

((
1
0

)
+ 4

(
0
1

))
= T

((
1
0

))
+ 4T

((
0
1

))
=

(
−3
5

)

and

T

((
−2
1

))
= T

(
−2

(
1
0

)
+

(
0
1

))
= −2T

((
1
0

))
+ T

((
0
1

))
=

(
−3
−1

)
.

Part (b). The matrix representing T is

(
1 −1
1 1

)
.

∗ ∗ ∗ ∗ ∗

Problem 3. In each part, determine whether the given set of vectors span R3.

(a)







2
2
2


 ,



0
0
3


 ,



0
1
1





,
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(b)







1
2
6


 ,



3
4
1


 ,



4
3
1


 ,



3
3
1





.

Solution.

Part (a). Let (a, b, c)T ∈ R3 be an arbitrary vector. Consider

x1



2
2
2


+ x2



0
0
3


+ x3



0
1
1


 =



a
b
c


 . (1)

We can rewrite this equation as



2 0 0
2 0 1
2 3 1





x1
x2
x3


 =



a
b
c


 .

However, observe that

det



2 0 0
2 0 1
2 3 1


 = −6 ̸= 0.

Thus, there will always be solutions x1, x2 and x3 that satisfy (1). Hence, the set of
vectors spans R3.

Part (b). Clearly,

span







1
2
6


 ,



3
4
1


 ,



4
3
1


 ,



3
3
1





 ⊇ span







1
2
6


 ,



3
4
1


 ,



4
3
1





 .

Let (a, b, c)T ∈ R3 be an arbitrary vector. Consider

x1



1
2
6


+ x2



3
4
1


+ x3



0
1
1


 =



a
b
c


 , (2)

which we can rewrite as 

1 3 4
2 4 3
6 1 1





x1
x2
x3


 =



a
b
c


 .

Since

det



1 3 4
2 4 3
6 1 1


 = −39 ̸= 0,

there will always be solutions x1, x2, x3 that satisfy (2). Hence, the set of vectors span
R3.

∗ ∗ ∗ ∗ ∗

Problem 4. Determine whether the set of vectors are linearly independent.

(a)







3
1
4


 ,




2
−3
5


 ,




5
−2
9


 ,




1
4
−1





,
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(b)








2
−4
6


 ,



−1
3
−5


 ,



−2
5
8





.

Solution.

Part (a). Since the set consists of 4 vectors in R3 space, it is not linearly independent.

Part (b). Consider

x1




2
−4
6


+ x2



−1
3
−5


+ x3



−2
5
8


 =



0
0
0


 . (1)

We can rewrite this as 


2 −1 −2
−4 3 5
6 −5 8





x1
x2
x3


 =



0
0
0


 .

Since

det




2 −1 −2
−4 3 5
6 −5 8


 = 32 ̸= 0,

the only solution to (1) is the trivial solution x1 = x2 = x3 = 0. Thus, the set of vectors
is linearly independent.

∗ ∗ ∗ ∗ ∗

Problem 5.

(a) Show that the value of

det



−2 1 2k
−1 1 k + 1
2 k − 1 1




is independent of k.

(b) State, with a reason, whether the vectors



−2
1
2


 ,



1
1
1


 ,



4
3
1




are linearly independent.

(c) (i) State, with a reason, whether the system of equations





−2x+ y + 6z = 1

−x+ y + 4z = 0

2x+ 2y + z = −2

is consistent.

(ii) The three equations given in part (c)(i) are the Cartesian equations of three
planes. Describe the geometrical relationship of the three planes.
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Solution.

Part (a). Expanding along column 2,

det



−2 1 2k
−1 1 k + 1
2 k − 1 1


 = −

∣∣∣∣
−1 k + 1
2 1

∣∣∣∣+
∣∣∣∣
−1 2k
2 1

∣∣∣∣− (k − 1)

∣∣∣∣
−2 2k
−1 k + 1

∣∣∣∣

= (2k + 3) + (−2− 4k) + (2k − 2) = −1.

Part (b). Taking k = 2, we see that



−2 1 4
−1 1 3
2 1 1




is invertible (since its determinant is −1 ̸= 0). Thus,

x1



−2
−1
2


+ x2



1
1
1


+ x3



4
3
1


 =



−2 1 4
−1 1 3
2 1 1





x1
x2
x3


 =



0
0
0




has only the trivial solution x1 = x2 = x3 = 0. Thus, the vectors



−2
1
2


 ,



1
1
1


 ,



4
3
1




are linearly independent.

Part (c).

Part (c)(i). The system of equations can be rewritten as



−2 1 6
−1 1 4
2 2 1





x
y
z


 =




1
0
−1


 .

Taking k = 3, we see that 

−2 1 6
−1 1 4
2 2 1




is invertible (since its determinant is −1 ̸= 0). Thus, the system is consistent and has a
unique solution.

Part (c)(ii). The three planes intersect at a single common point.

∗ ∗ ∗ ∗ ∗

Problem 6. Find a basis for the row space and a basis for the column space of the matrix

A =



2 1 3 3
0 −3 1 −2
4 5 5 8


 .

State the rank of A.
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Solution. Observe that the RREF of A is


1 0 5/3 7/6
0 1 −1/3 2/3
0 0 0 0


 .

Thus, a basis for the row space of A is simply








1
0
5/3
7/6


 ,




0
1

−1/3
2/3








,

while a basis for the column space of A is







2
0
4


 ,




1
−3
5





 .

The rank of A is given by

rankA = dim rangeA = dim colA = 2.

∗ ∗ ∗ ∗ ∗

Problem 7. In this question, V denotes the set of vectors of the form (a, b, c, d)T, where
a, b, c and d are real numbers. You may assume that V forms a linear space under the
usual operations of vector addition and multiplication by scalar.

(a) Show that the subset of V for which a+ b+ c+ d = 0 forms a linear space.

(b) Show that the subset of V for which a+ b+ c+ d = 1 does not form a linear space.

(c) Determine whether the subset for which a+ b = c+ d and a+ 2b = c+ 3d forms a
linear space.

(d) State the dimension of the linear space defined in part (a) and provide a basis for
this linear space.

Solution. Let Π be the null space of a matrix A.

• Π contains the zero vector: A0 = 0.

• Π is closed under addition: for any v1,v2 ∈ Π,

A (v1 + v2) = Av1 +Av2 = 0+ 0 = 0.

• Π is closed scalar multiplication: for any v ∈ Π and k ∈ R,

A (kv) = kAv = k0 = 0.

Thus, null spaces are linear spaces.

Part (a). Let V1 be the subset for which a+ b+ c+ d = 0. Then

V1 =
{
r ∈ R4 :

(
1 1 1 1

)
r = 0

}
,

which is a null space and thus forms a linear space.
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Part (b). Let V2 be the subset for which a + b + c + d = 1. Clearly, V2 does not contain
the zero vector (a = b = c = d = 0) and is thus not a linear space.

Part (c). Let V3 be the subset for which a+ b = c+ d and a+ 2b = c+ 3d. Then

V3 =

{
r ∈ R4 :

(
1 1 −1 −1
1 2 −1 −3

)
r = 0

}
,

which is clearly a null space. Hence, V3 is a linear space.

Part (d). The dimension of V1 is 3. Its basis is








1
−1
0
0


 ,




1
1
−2
0


 ,




1
1
1
−3








.

One can easily see that the three vectors are pairwise orthogonal and are thus linearly
independent.

∗ ∗ ∗ ∗ ∗

Problem 8. The vector spaces S1, S2 and S3 are given by

S1 =




x ∈ R4 : x = λ




1
0
1
0


+ µ




0
1
0
1


+ γ




0
0
1
1








,

S2 =




x ∈ R4 : x = λ




1
0
1
0


+ µ




0
1
0
1


+ γ




0
0
1
−1








,

S3 =




x ∈ R4 : x = λ




1
0
1
0


+ µ




0
1
0
1








.

(a) Find a basis for the vector space S1 ∩ S2.

(b) Show that S1 ∪ S2 is not a vector space.

(c) Determine whether the set (S2 \ S3) ∪ {0} is a vector space.

Solution.

Part (a). Clearly,

S1 ∩ S2 =




x ∈ R4 : x = λ




1
0
1
0


+ µ




0
1
0
1








.

Hence, its basis is simply 






1
0
1
0


 ,




0
1
0
1








.
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Part (b). Take

v1 =




0
0
1
1


 , v2 =




0
0
1
−1


 .

Clearly, v1,v2 ∈ S1 ∪ S2. However, their sum is

v1 + v2 =




0
0
2
0


 /∈ S1 ∪ S2.

Thus, S1 ∪ S2 is not closed under addition and is thus not a vector space.

Part (c). Take

v1 =




1
0
1
0


+




0
1
0
1


+




0
0
1
−1


 , v2 =




1
0
1
0


+




0
1
0
1


−




0
0
1
−1


 .

Clearly, v1,v2 ∈ (S2 \ S3) ∪ {0}. However, their sum is

v1 + v2 =




2
2
2
2


 ∈ S3.

Thus, S2 \ S3 ∪ {0} is not closed under addition and is hence not a vector space.

∗ ∗ ∗ ∗ ∗

Problem 9.

(a) Three n × 1 column vectors are denoted by x1, x2, x3 and M is an n × n matrix.
Show that if x1, x2, x3 are linearly dependent then the vectors Mx1, Mx2, Mx3

are also linearly dependent.

(b) The vectors y1, y2, y3 and the matrix P are defined as follows:

y1 =



1
5
7


 , y2 =




2
−3
4


 , y3 =




5
51
55


 , P



1 −4 3
0 2 5
0 0 7


 .

Show that y1, y2, y3 are linearly dependent.

(c) Find a basis for the linear space spanned by the vectors Py1, Py2, Py3.

Solution.

Part (a). Since x1, x2, x3 are linearly dependent, there exists a, b, c ∈ R that are not all
0 such that

ax1 + bx2 + cx3 = 0.

Applying M to both sides of the equation,

aMx1 + bMx2 + cMx3 = 0.

Since a, b and c are not all 0, by definition, Mx1, Mx2, Mx3 are also linearly dependent.
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Part (b). Observe that

8y1 − 2y2 − y3 = 9



1
5
7


− 2




2
−3
4


−




5
51
55


 =



0
0
0


 .

Hence, y1, y2, y3 are linearly dependent.

Part (c). Note that the basis of span{y1,y2,y3} is simply {y1,y2}. Thus, the basis of
span{Py1,Py2,Py3} is {Py1,Py2}, which works out to be








2
45
49


 ,



26
14
28





 .

∗ ∗ ∗ ∗ ∗

Problem 10. In the equation



1 1 −1 1
2 3 0 5
1 0 −2 −6
2 5 4 11− α


x =




0
0
0
β


 ,

α and β are real constants.

(a) Show that if α = β = 0, then the set of solutions for x is a vector space V of
dimension 1, and find a basis for V with integer elements.

(b) The set of all solutions for which α and β are both non-zero is denoted by S. Show
that S is a subset of V , but is not itself a vector space.

Solution.

Part (a). When α = β = 0, our equation becomes



1 1 −1 1
2 3 0 5
1 0 −2 −6
2 5 4 11


x =




0
0
0
0


 .

The RREF of the matrix is 


1 0 0 −14
0 1 0 11
0 0 1 −4
0 0 0 0


 .

We thus have the system of linear equations




x1 − 14x4 = 0

x2 + 11x4 = 0

x3 − 4x4 = 0

,

where x = (x1, x2, x3, x4)
T. Taking x4 = λ, where λ ∈ R, we get

x = λ




14
−11
4
1


 .

This describes a line that passes through the origin. Hence, V is a vector space with
dimension 1 and basis (14, −11, 4, 1)T.
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Part (b). Observe that any solution to




1 1 −1 1
2 3 0 5
1 0 −2 −6
2 5 4 11− α


x =




0
0
0
β




must be of the form

x = λ




14
−11
4
1


 (1)

since the first three rows of its RREF is the same as in part (a). Meanwhile, we can
expand the last row as

2x1 + 5x2 + 4x3 + (11− α)x4 = β.

Substituting (1), we have

2(14λ)− 5(11λ) + 4(4λ) + (11− α)λ = β =⇒ λ = −β

α
.

Thus,

S =




x ∈ R4 : x = −β

α




14
−11
4
1


 , α, β ̸= 0





,

which is clearly a subset of V . However, because S does not contain the zero vector
(−β/α ̸= 0), it is not a vector space.

∗ ∗ ∗ ∗ ∗

Problem 11. The elements of the matrices A and B are given by

A =



a11 a12 a13
a21 a22 a23
a31 a32 a33


 and B =



b11 b12 b13
b21 b22 b23
b31 b32 b33


 .

(a) Write down in full the first column of the product AB and show that this can be
put in the form b11c1 + b21c2 + b31c3, where

c1 =



a11
a21
a31


 , c2 =



a12
a22
a32


 , c3 =



a13
a23
a33


 .

(b) Write down the corresponding expressions for the second and third columns of AB.
Hence, show that the rank of AB cannot be greater than the rank of A.

(c) For the case where

A =



1 α β
2 2α+ β − 1 α+ 2β
5 5α+ 3β − 3 3α+ 5β


 ,

α, β ∈ R, show that

(i) for all values of α and β, the rank of A is not greater than 2,

(ii) if α = 0 and β = 1, then, for all 3× 3 matrices B, there are at least 2 linearly
independent solutions for x of the equation ABx = 0, where x ∈ R3.
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Solution.

Part (a). The first column of AB is given by



a11b11 + a12b21 + a13b31
a21b11 + a22b21 + a23b31
a31b11 + a32b21 + a33b31




= b11



a11
a21
a31


+ b21



a12
a22
a32


+ b31



a13
a23
a33


 = b11c1 + b21c2 + b31c3.

Part (b). The second column is given by

b12c1 + b22c2 + b32c3,

while the third column is given by

b13c1 + b23c2 + b33c3.

Observe that every column of AB lies in span{c1, c2, c3}. Thus,

col(AB) ⊆ col(A) =⇒ rank(AB) = dim col(AB) ≤ dim col(A) = rank(A) .

Part (c).

Part (c)(i). Note that




α
2α+ β − 1
5α+ 3β − 3


 = α



1
2
5


+ (β − 1)



0
1
3




and 


β
α+ 2β
3α+ 5β


 = β



1
2
5


+ α



0
1
3


 .

Thus, col(A) is given by

span







1
2
5


 , α



1
2
5


+ (β − 1)



0
1
3


 , β



1
2
5


+ α



0
1
3





 = span







1
2
5


 ,



0
1
3





 ,

whence
rank(A) = dim col(A) = 2.

Part (c)(ii). When α = 0 and β = 1, we have

A =



1 0 1
2 0 2
5 0 5


 .

Hence,

rank(AB) ≤ rank(A) = dim span







1
2
5


 ,



0
0
0


 ,



1
2
5





 = 1.

By the rank-nullity theorem,

nullity(AB) = 3− rank(AB) ≥ 3− 1 = 2.
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Thus, the kernel of AB has dimension at least 2, whence there are at least 2 linearly
independent solutions to ABx = 0.

∗ ∗ ∗ ∗ ∗

Problem 12. The linear transformation T : R4 → R3 is represented by the matrix M,
where

M =



1 −2 2 2
4 −7 λ 5
3 λ −7 3


 ,

where λ ∈ R.

(a) Show that the rank of M is 2 if λ = −5 and determine the dimension of the null
space, K of T if λ ̸= −5.

(b) If λ = −5, write down a basis for the range space, R, and the null space, K of T .

(c) If λ = −5, find the set of vectors x such that

Mx =



1
1
0




and state whether this set forms a vector space, justifying your answer.

Solution.

Part (a). Performing elementary row operations on M, we get



1 −2 2 2
4 −7 λ 5
3 λ −7 3


→ R2−4R1

(4λ+21)R1−(λ+6)R2+R3



1 −2 2 2
0 1 λ− 8 −3
0 0 −(λ+ 5)(λ− 7) 3(λ+ 5)


 .

Thus, if λ = −5, then the last row is entirely 0, whence rankM = 2. If λ ̸= −5, then the
last row is not entirely 0, whence rankM = 3 and

dimK = 4− rankM = 1.

Part (b). When λ = −5, the RREF of M is



1 0 −24 −4
0 1 −13 −3
0 0 0 0


 .

Thus, the basis of R is simply 





1
4
3


 ,



−2
−7
−5





 .

Now consider K, the solution set of Mx = 0, which is equivalent to the solution set of



1 0 −24 −4
0 1 −13 −3
0 0 0 0







x1
x2
x3
x4


 =




0
0
0
0


 ,
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where x = (x1, x2, x3, x4)
T. This gives the system of linear equations

{
x1 − 24x3 − 4x4 = 0

x2 − 13x3 − 3x4 = 0
.

Let x3 = s and x4 = t be free variables, with s, t ∈ R. Then

x =




x1
x2
x3
x4


 =




24s+ 4t
13s+ 3t

s
t


 = s




24
13
1
0


+ t




4
3
0
1


 .

Thus, the basis of K is 






24
13
1
0


 ,




4
3
0
1








.

Part (c). Consider a particular solution to Mx = (1, 1, 0)T. Since there are two free
variables, we take x = (x1, x2, 0, 0)

T. Then



1 −2 2 2
4 −7 −5 5
3 −5 −7 3







x1
x2
0
0


 =



1
1
0


 .

This gives the system of linear equations





x1 − 2x2 = 1

4x1 − 7x2 = 1

3x1 − 5x2 = 0

.

Solving, we get x1 = −5 and x2 = −3. Thus, the set of all solutions to Mx = (1, 1, 0)T is




x ∈ R4 : x =




−5
−3
0
0


+ s




24
13
1
0


+ t




4
3
0
1


 , s, t ∈ R





.

This set is not a vector space since it does not contain the zero vector.

∗ ∗ ∗ ∗ ∗

Problem 13. The linear transformation T : R4 → R4 is represented by the matrix A,
where

A =




1 2 −3 −4
2 5 1 3
3 7 −2 −1
7 16 −7 q


 .

The range space of T is denoted by R.

(a) Show that q = −6 if the dimension of R is 2, and that q ̸= −6 if the dimension of R
is 3.

(b) For the case where q = −6, write down a basis for R, and hence, find a vector x
such that Ax = (1, 5, 6, 13)T.
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(c) The null space of T , for the case where q ̸= −6, is denoted by K1. Find a basis for
K1.

(d) The null space of T , for the case where q = −6, is denoted by K2. Without using a
calculator, find a basis for K2. Show that K1 is a subspace of K2.

Solution.

Part (a). Performing elementary row operations on A, we get




1 2 −3 −4
2 5 1 3
3 7 −2 −1
7 16 −7 q


→

5R1−2R2

R2−2R1

−2R3−R1+R4

R3−R1−R2




1 0 −17 −26
0 1 7 11
0 0 0 q + 6
0 0 0 0


 .

Clearly, if q = −6, then we have two non-zero rows, whence dimR = rankA = 2. If
q ̸= −6, then we have three non-zero rows, whence dimR = rankA = 3.

Part (b). When q = −6, we have from the above calculation that the RREF of A is




1 0 −17 −26
0 1 7 11
0 0 0 0
0 0 0 0


 .

Thus, the range space of T has basis








1
2
3
7


 ,




2
5
6
16








.

Thus, the solution x =




a
b
0
0


 to Ax = (1, 5, 6, 13)T also satisfies the equation

a




1
2
3
7


+ b




2
5
7
16


 =




1
5
6
13


 .

This is equivalent to the system of linear equations





a+ 2b = 1

2a+ 5b = 5

3a+ 7b = 6

7a+ 16b = 13

,

which has the unique solution x1 = −5 and x2 = 3. Thus,

x =




−5
3
0
0


 .
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Part (c). Consider Ax = 0. This is equivalent to solving



1 0 −17 −26
0 1 7 11
0 0 0 q + 6
0 0 0 0







x1
x2
x3
x4


 =




0
0
0
0


 .

This yields the system of equations




x1 − 17x3 − 26x4 = 0

x2 + 7x3 + 11x4 = 0

(q + 6)x4 = 0

.

Note that x4 = 0. Let x3 = λ, where λ ∈ R. Then

x =




x1
x2
x3
x4


 = λ




17
−7
1
0


 .

Thus, the basis of K1 is 






17
−7
1
0








.

Part (d). Consider Ax = 0. This is equivalent to solving



1 0 −17 −26
0 1 7 11
0 0 0 0
0 0 0 0







x1
x2
x3
x4


 =




0
0
0
0


 .

This yields the system of equations
{
x1 − 17x3 − 26x4 = 0

x2 + 7x3 + 11x4 = 0
.

Let x3 = λ and x4 = µ. Then

x =




x1
x2
x3
x4


 =




17λ+ 26µ
−7λ− 11µ

λ
µ


 = λ




17
−7
1
0


+ µ




26
−11
0
1


 .

Since K1 and K2 are both null spaces, they must be vector spaces. Since K1 ⊂ K2, it
follows that K1 is a subspace of K2.

∗ ∗ ∗ ∗ ∗

Problem 14. Let u = (1, 1, 0)T and T : R3 → R3 be the linear transformation

T (v) =
(u · v
u · u

)
u.

(a) Find the null space, ker(T ) and a basis for it. State also its geometrical interpretation
and write down its Cartesian equation.

(b) Find the range space of T and its rank. State also a geometrical interpretation of
the range space of T .
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Solution.

Part (a). Consider T (v) = 0:

T (v) =
(u · v
u · u

)
u = 0 =⇒ u · v = 0 =⇒ v ·



1
1
0


 = 0.

Let v = (x, y, z)T. Expanding the dot product, we see that ker(T ) has Cartesian equation
x+ y = 0, z ∈ R. Let y = λ and z = µ. Then

v =



x
y
z


 =



−λ
λ
µ


 = λ



−1
1
0


+ µ



0
0
1


 .

Thus, the kernel of T is

ker(T ) =



x ∈ R3 : x = λ



−1
1
0


+ µ



0
0
1


 , λ, µ ∈ R



 ,

and its basis is 





−1
1
0


 ,



0
0
1





 .

ker(T ) is the plane passing through the origin that is normal to (1, 1, 0)T.

Part (b). Note that u·v
u·u is simply a scalar. Thus,

range(T ) =



x ∈ R3 : ν



1
1
0


 , ν ∈ R



 .

The range of T is a line passing through the origin with direction vector u. Thus, the
rank of T is 1.

∗ ∗ ∗ ∗ ∗

Problem 15. The linear transformation T : R4 → R3 is represented by the matrix M,
where

M =




1 5 −1 −2
−1 −3 4 3
1 11 8 1


 .

(a) (i) Find a basis for R(T ), the range space of T . Give a precise geometrical descrip-
tion of R(T ).

(ii) Find a basis for K(T ), the null space of T .

(iii) Hence, find the general solution of the equation

T (x) =




6α− 5β
−4a+ 3β
12α− 11β


 ,

where α, β ∈ R, leaving your answer in terms of α and β.
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(b) Let V ⊆ R3 be the set that satisfies the following properties:

V ∩R(T ) = {0} , V ∪R(T ) = R3.

Determine whether V is a subspace of R3.

Solution.

Part (a). Using G.C., we see that the RREF of M is



1 0 −17/2 −9/2
0 1 3/2 1/2
0 0 0 0


 .

Part (a)(i). R(T ) has basis 






1
−1
1


 ,




5
−3
11





 .

R(T ) represents the plane passing through the origin that contains the points (1,−1, 1)
and (5,−3, 11).

Part (a)(ii). Consider Mx = 0. This is equivalent to



1 0 −17/2 −9/2
0 1 3/2 1/2
0 0 0 0







x1
x2
x3
x4


 = 0,

which gives the system of linear equations
{
x1 − 17

2 x3 − 9
2x4 = 0

x2 +
3
2x3 +

1
2x4 = 0

.

Let x3 = s and x4 = t, where s, t ∈ R. Then x1 =
17
2 s+

9
2 t and x2 = −3

2s− 1
2 t, whence

x =




x1
x2
x3
x4


 = s




17/2
−3/2
1
0


+ t




9/2
−1/2
0
1


 .

Thus, a basis of K(T ) is 






17
−3
2
0


 ,




9
−1
0
2








.

Part (a)(iii). Consider




1 5 −1 −2
−1 −3 4 3
1 11 8 1







x1
x2
x3
x4


 =




6α− 5β
−4a+ 3β
12α− 11β


 .

Expanding the LHS and RHS, we see that

x1




1
−1
1


+ x2




5
−3
11


+ x3



−1
4
8


+ x4



−2
3
1


 = α






1
−1
1


+




5
−3
11




− β




5
−3
11


 .
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It is hence obvious that taking x1 = α, x2 = α−β, x3 = x4 = 0 yields a particular solution
to the equation. Thus, the general solution is

x =




α
α− β
0
0


+ s




17
−3
2
0


+ t




9
−1
0
2


 , s, t ∈ R.

Part (b). From the given equations, it is obvious that V = R3 \R(T ) ∪ {0}. Take

v1 =




1
−1
1


+



0
0
1


 and v2 =




1
−1
1


−



0
0
1


 .

Clearly, both v1 and v2 are not in R(T ). Thus, v1,v2 ∈ V . However, their sum

v1 + v2 =




2
−2
2


 = 2




1
−1
1




is clearly in R(T ) and is also not the zero vector, thus it cannot be in V . Hence, V is not
closed under addition, thus it is not a subspace of R3.

∗ ∗ ∗ ∗ ∗

Problem 16. Matrices M1 and M2 define linear transformations from R4 to R4 and are
respectively defined as follows:

M1 =




1 2 1 a
0 1 1 b
0 0 0 c
0 0 0 d


 , M2 =




1 2 −1 1
0 1 3 −2
0 0 c− 1 1
0 0 0 c+ 1


 ,

where a, b, c and d are real constants.

(a) The null spaces of M1 and M2 are denoted by N1 and N2 respectively. For the case
where a = b = c = 1 and d = 0, find a basis for N1 and a basis for N2. Hence,
determine whether N1 ∪N2 is a vector space.

(b) The range spaces of the linear transformations defined by M1 and M2 are denoted
by R1 and R2 respectively. Given that R1 ∪ R2 is a vector space, find the possible
conditions to be satisfied by a, b, c and d.

Solution.

Part (a). When a = b = c = 1 and d = 0, we have

M1 =




1 2 1 1
0 1 1 1
0 0 0 1
0 0 0 0


 , M2 =




1 2 −1 1
0 1 3 −2
0 0 0 1
0 0 0 2


 .

Note also that the RREF of M1 and M2 are given by



1 0 −1 0
0 1 1 0
0 0 0 1
0 0 0 0


 and




1 0 −7 0
0 1 3 0
0 0 0 1
0 0 0 0
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respectively.
Consider M1x = 0. This is equivalent to solving




1 0 −1 0
0 1 1 0
0 0 0 1
0 0 0 0







x1
x2
x3
x4


 =




0
0
0
0


 ,

which yields the system of linear equations




x1 − x3 = 0

x2 + x3 = 0

x4 = 0

.

Let x3 = λ, where λ ∈ R. Then x1 = λ and x2 = −λ, whence

x =




x1
x2
x3
x4


 =




λ
−λ
λ
0


 = λ




1
−1
1
0


 .

Thus, N1 has basis 






1
−1
1
0








.

Consider M2x = 0. This is equivalent to solving



1 0 −7 0
0 1 3 0
0 0 0 1
0 0 0 0







x1
x2
x3
x4


 =




0
0
0
0


 ,

which yields the system of linear equations




x1 − 7x3 = 0

x2 + 3x3 = 0

x4 = 0

.

Let x3 = µ, where µ ∈ R. Then x1 = 7µ and x2 = −3µ, whence

x =




x1
x2
x3
x4


 =




7µ
−3µ
µ
0


 = µ




7
−3
1
0


 .

Thus, N2 has basis 






7
−3
1
0








.

Clearly,

v1 =




1
−1
1
0


 and v2 =




7
−3
1
0
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are both in N1 ∪N2. However, their sum

v1 + v2 =




8
−4
2
0




is neither a scalar multiple of v1 nor v2, hence it is neither in N1 nor N2, so v1 + v2 /∈
N1 ∪N2. Thus, N1 ∪N2 is not closed under addition, and it cannot be a vector space.

Part (b). Note that because both R1 and R2 are already vector spaces, for their union
R1 ∪R2 to also be a vector space, either R1 ⊆ R2 or R2 ⊆ R1.
Performing elementary column operations on M1 and M2, we see that the two matrices

are column-equivalent to

M′
1 =




1 0 0 0
0 1 0 0
0 0 0 c
0 0 0 d


 and M′

2 =




1 0 0 0
0 1 0 0
0 0 c− 1 1
0 0 0 c+ 1


 .

Case 1 . Suppose c /∈ {−1, 1}. Then M′
2 has no row or column full of zeroes and thus

has full rank. Hence, M2 also has full rank, i.e. R2 = R4. Thus, regardless of what d is,
we will always have R1 ⊆ R4 = R4, whence R1 ∪R4 is a vector space.
Case 2 . Suppose c = 1. Then

M′
1 =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 d


 and M′

2 =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 2


 .

Thus,

R1 = span








1
0
0
0


 ,




0
1
0
0


 ,




0
0
1
d








and R2 = span








1
0
0
0


 ,




0
1
0
0


 ,




0
0
1
2








.

Since both R1 and R2 have equal dimension (3), we require R1 = R2, which is only possible
if d = 2.
Case 3 . Suppose c = −1. Then

M′
1 =




1 0 0 0
0 1 0 0
0 0 0 −1
0 0 0 d


 and M′

2 =




1 0 0 0
0 1 0 0
0 0 −2 1
0 0 0 0


 .

Thus,

R1 = span








1
0
0
0


 ,




0
1
0
0


 ,




0
0
1
−d








and R2 = span








1
0
0
0


 ,




0
1
0
0


 ,




0
0
1
0








.

Since both R1 and R2 have equal dimension (3), we require R1 = R2, which is only possible
if d = 0.
Thus, if R1 ∪R2 is a vector space, then a, b ∈ R, with
• c ∈ R \ {−1, 1}, d ∈ R, or

• c = 1, d = 2, or

• c = −1, d = 0.
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Problem 1. Determine which of the following are subspaces of the space of all real-valued
functions f defined on the entire real line.

(a) all f such that f(x) ≤ 0 for all x.

(b) all f such that f(0) = 0.

(c) all f such that f(0) = 2.

(d) all constant functions.

Solution. Let V be the space of all real-valued functions defined on R. Note that the
zero element of V is the zero function f(x) ≡ 0.

Part (a). Let S be the set of all functions f ∈ V such that f(x) ≤ 0 for all x ∈ R. Then
g ∈ S, where g(x) ≡ −1. Taking c = −1, we see that cg(x) ≡ 1 ̸≤ 0 for all x, so S is not
closed under scalar multiplication. Hence, S is not a subspace of V .

Part (b). Let S be the set of all functions f ∈ V such that f(0) = 0. Clearly, the zero
function is in S. Let g, h ∈ S and c ∈ R. Then

g(0) + h(0) = 0 + 0 = 0,

so S is closed under addition, and

cg(0) = c(0) = 0,

so S is closed under scalar multiplication. Thus, S is a subspace of V .

Part (c). Let S be the set of all functions f ∈ V such that f(0) = 2. The zero function is
not in S, so S is not a subspace of V .

Part (d). Let S be the set of all constant functions. Clearly, the zero function is in S. Let
g, h ∈ S such that g(x) ≡ a and h(x) ≡ b, where a and b are constants. Let also c ∈ R.
Then

g(x) + h(x) ≡ a+ b,

which is a constant, so S is closed under addition. Further,

cg(x) ≡ ca,

which is also a constant, so S is closed under scalar multiplication. Thus, S is a subspace
of V .

∗ ∗ ∗ ∗ ∗

Problem 2. Find a basis for the vector space spanned by the vectors (1, 2, −2)T,
(2, 1, 3)T, (1, −4, 12)T and (3, −9, 29)T. What is the dimension of this space? For what
value (or values) of a does (4, 3, a)T belong to this space?

Part (a). Consider

A =




1 2 1 3
2 1 −4 −9
−2 3 12 29


 .

Its RREF is given by 

1 0 −3 −7
0 1 2 5
0 0 0 0


 ,
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so the column space of A, which is also the span of the given vectors, has basis








1
2
−2


 ,



2
1
3







and thus has dimension 2.
Suppose (4, 3, a)T belongs to the column space of A. Then there exist x, y ∈ R such

that

x




1
2
−2


+ y



2
1
3


 =



4
3
a


 .

From the first two rows, we see that x and y satisfy

{
x+ 2y = 4

2x+ y = 3
,

so x = 2/3 and y = 5/3. From the last row, we have

a = −2x+ 3y =
11

3
.

∗ ∗ ∗ ∗ ∗

Problem 3. Given that (a, b, c)T belongs to the row space of the matrix




3 2 1
−2 −2 1
1 −2 7


 ,

find a linear relation that must be satisfied by a, b and c.

Solution. The given matrix has RREF



1 0 2
0 1 −5/2
0 0 0


 ,

so its row space has basis 





1
0
2


 ,




0
1

−5/2





 .

Since (a, b, c)T is in the row space, there exist x, y ∈ R such that



a
b
c


 = x



1
0
2


+ y




0
1

−5/2


 .

From the first two rows, we see that x = a and y = b. Thus, from the last row,

c = 2a− 5

2
b.
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Problem 4. Determine the rank of the matrix

A =




1 1 2 3
3 2 3 13
4 4 9 7
11 9 17 36


 .

Deduce that if x is a solution of the equation

Ax = p




1
3
4
11


+ q




1
2
4
9


+ r




2
3
9
17


 ,

where p, q and r are given real numbers, then

x =




p− 2λ
q − 11λ
r + 5λ

λ


 ,

where λ ∈ R.
Hence, or otherwise, for solutions x = (α, β, γ, δ)T of the equationAx = (4, 8, 17, 37)T,

(a) find x such that α = 0,

(b) show that there is no x for which α2 + β2 + γ2 + δ2 = 1.

Solution. The RREF of A is 


1 0 0 2
0 1 0 11
0 0 1 −5
0 0 0 0


 ,

so A has rank 3.
Let x = (x, y, z, w)T. Then the LHS of the equation can be expanded as

x




1
3
4
11


+ y




1
2
4
9


+ z




2
3
9
17


+ w




3
13
7
36


 = p




1
3
4
11


+ q




1
2
4
9


+ r




2
3
9
17


 ,

which rearranges as

(x− p)




1
3
4
11


+ (y − q)




1
2
4
9


+ (z − r)




2
3
9
17


+ w




3
13
7
36


 = A




x− p
y − q
z − r
w


 =




0
0
0
0


 . (∗)

We now find the null space of A. Consider Ay = 0, where y = (a, b, c, d)T. From the
RREF of A, we see that




1 0 0 2
0 1 0 11
0 0 1 −5
0 0 0 0







a
b
c
d


 =




0
0
0
0


 =⇒





a + 2d = 0

b + 11d = 0

c− 5d = 0

.
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Let d = λ ∈ R. Then the general solution is

y =




a
b
c
d


 = λ




−2
−11
5
1


 .

Going back to (∗), we see that




x− p
y − q
z − r
w


 = λ




−2
−11
5
1


 =⇒ x =




p− 2λ
q − 11λ
r + 5λ

λ


 .

Part (a). Take p = q = r = 1. Then the solution to

Ax =




1
3
4
11


+




1
2
4
9


+




2
3
9
17


 = (4, 8, 17, 37)T

has the form

x =




1− 2λ
1− 11λ
1 + 5λ

λ


 .

Since α = 0, we take λ = 1/2 to obtain

x =




0
−9/2
7/2
1/2


 .

Part (b). Observe that

α2 + β2 + γ2 + δ2 = (1− 2λ)2 + (1− 11λ)2 + (1 + 5λ) + λ2 = 151λ2 − 16λ+ 3.

Suppose now that α2+β2+ γ2+ δ2 = 1 has a solution. Then there exists λ ∈ R such that
151λ2 − 16λ+ 2. The discriminant of this quadratic is (−16)2 − 4(151)(2) < 0, so λ /∈ R,
a contradiction. Thus, there does not exist x such that α2 + β2 + γ2 + δ2 = 1.

∗ ∗ ∗ ∗ ∗

Problem 5. The set P of all quadratic polynomials in x is a vector space over R. For
each of the following subsets of P , determine whether it is a subspace, and if so, give a
basis.

(a) S1 = {f ∈ P : f(0) = 0}.

(b) S2 = {f ∈ P : f(0) = 1}.

(c) S3 = {f ∈ P : f(1) = 0}.

(d) S4 = {f ∈ P : f(−x) = f(x) ∀x ∈ R}.

Solution. Note that the zero element of P is the zero polynomial f(x) ≡ 0.
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Part (a). Clearly, the zero polynomial is in S1. Let g, h ∈ S1 and c ∈ R. Observe that

g(0) + h(0) = 0 + 0 = 0,

so S1 is closed under addition. Also,

cg(0) = c(0) = 0,

so S1 is closed under scalar multiplication. Thus, S1 is a subspace of P .
Let f ∈ S1, where f(x) = ax2 + bx + c. Since f(0) = 0, we must have c = 0, so

f(x) = ax2 + bx. Thus, a basis of S1 is
{
x2, x

}
.

Part (b). S2 does not contain the zero polynomial, hence it is not a subspace of P .

Part (c). Clearly, the zero polynomial is in S3. Let g, h ∈ S3 and c ∈ R. Observe that

g(1) + h(1) = 0 + 0 = 0,

so S3 is closed under addition. Also,

cg(1) = c(1) = 0,

so S3 is closed under scalar multiplication. Thus, S3 is a subspace of P .
Let f ∈ S3, where f(x) = ax2 + bx+ c. Since f(1) = 0, we must have a+ b+ c = 0, so

f(x) = ax2 + bx− a− b = a
(
x2 − 1

)
+ b (x− 1) .

Thus, a basis of S3 is
{
x2 − 1, x− 1

}
.

Part (d). Clearly, the zero polynomial is in S4. Let g, h ∈ S4 and c ∈ R. Observe that

g(x) + h(x) = g(−x) + h(−x),

so S4 is closed under addition. Also,

cg(−x) = cg(x),

so S4 is closed under scalar multiplication. Thus, S4 is a subspace of P .
Let f ∈ S4, where f(x) = ax2 + bx + c. Since f(−x) = f(x), we must have b = 0, so

f(x) = ax2 + c. Thus, a basis of S4 is
{
x2, 1

}
.
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Problem 6. The linear transformation T : R4 → R4 is represented by the matrix A
where

A =




1 −2 0 4
3 1 1 0
−1 −5 −1 8
3 8 2 −12


 .

(a) Find the rank of A and a basis for the range space of T .

(b) Show that the vector b = (4, 5, 3, −2)T belongs to the range space of T .

(c) Find a basis for the null space of T . Hence, find the general solution of Ax = b.

Solution.

Part (a). The RREF of A is given by




1 0 2/7 4/7
0 1 1/7 −12/7
0 0 0 0
0 0 0 0


 .

Thus, A has rank 2, and a basis for the range space of T is given by







1
3
−1
3


 ,




−2
1
−5
8








.

Part (b). Consider

x




1
2
−1
3


+ y




−2
1
−5
8


 =




4
5
3
−2


 .

Since there exists a solution (x = 2, y = −1), it follows that (4, 5, 3, −2)T belongs to the
range space of T .

Part (c). Consider Ax = 0, where x =




x
y
z
w


. From the RREF of A, we have

{
x + 2

7z +
4
7w = 0

y + 1
7z − 12

7 w = 0
.

Let z = 7λ and w = 7µ, where λ, µ ∈ R. Then

x =




x
y
z
w


 = λ




−2
−1
7
0


+ µ




−4
12
0
7


 ,

so a basis for the null space of T is given by







−2
1
7
0


 ,




4
12
0
7








.
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From (b), we know a particular solution to Ax = b:




4
5
3
−2


 = 2




1
2
−1
3


+ (−1)




−2
1
−5
8


+ (0)




0
1
−1
2


+ (0)




4
0
8

−12


 = A




2
−1
0
0


 .

Thus, the general solution of Ax = b is thus

x =




2
−1
0
0


+ λ




−2
−1
7
0


+ µ




−4
12
0
7


 .

∗ ∗ ∗ ∗ ∗

Problem 7. The linear transformation L : R4 → R3 is represented by the matrix A,
where

A =



1 2 0 1
2 −1 2 −1
1 −3 2 −2


 .

(a) Find the rank of A and deduce that the dimension of the null space, N , of L is 2.

(b) Show that there is a basis {e1, e2} for N such that

e1 =




p
2
q
0


 and e2 =




r
0
s
2


 ,

where p, q, r and s are integers to be found.

(c) Given that e0 = (1, 1, 1, 1)T, b = (4, 2, −2)T, show that the solution set, W , of the
equation Ax = b is

W = {e0 + λe1 + µe2 | λ, µ ∈ R} .

The set of elements of R4 which do not belong to W is denoted by V .

(d) Show that N is a subset of V .

(e) Write down the vectors e3 and e4 such that the set {e1, e2, e3, e4} forms a basis for
R4, justifying your answer.

Solution.

Part (a). The RREF of A is



1 0 4/5 −1/5
0 1 −2/5 3/5
0 0 0 0


 .

Hence, the rank of A is 2, so by the rank-nullity theorem, the dimension of N is 4−2 = 2.
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Part (b). Consider Ax = 0, where x = (x, y, z, w)T. From the RREF, we have
{
x + 4

5z − 1
5w = 0

y − 2
5z +

3
5w = 0

.

Let z = 5λ and w = 5µ, where λ, µ ∈ R. Then,

x = λ




−4
2
5
0


+ µ




1
−3
0
5


 .

Clearly, e1 = (−4, 2, 5, 0)T, so p = −4 and q = 5. Now consider




r
0
5
2


 = a




−4
2
5
0


+ b




1
−3
0
5


 .

From the first and third rows, we have 5b = 2 and 2a − 3b = 0, so a = 3/5 and b = 2/5.
Thus,

e2 =




r
0
5
2


 =

3

5




−4
2
5
0


+

2

5




1
−3
0
5


 =




−2
0
3
2


 ,

so r = −2 and s = 3. The basis for N is







−4
2
5
0


 ,




−2
0
3
2








.

Part (c). Note that

Ae0 =



1 2 0 1
2 −1 2 −1
1 −3 2 −2







1
1
1
1


 =




4
2
−2


 = b.

Let x ∈ W . Then
Ax = b = Ae0 =⇒ A (x− e0) = 0,

so x− e0 ∈ N , whence x = e0 + λe1 + µe2.

Part (d). Suppose v ∈ N . Then Av = 0 ̸= b, so v /∈ W , whence v ∈ V . Thus, N ⊆ V .

Part (e). Note that the RREF of the matrix below is I:




−4 −2 1 0
2 0 0 1
5 3 0 0
0 2 0 0


→




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 .

Thus, a basis for R4 is 






−4
2
5
0


 ,




−2
0
3
2


 ,




1
0
0
0


 ,




0
1
0
0








,
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hence e3 = (1, 0, 0, 0)T and e4 = (0, 1, 0, 0)T.

∗ ∗ ∗ ∗ ∗

Problem 8. The linear transformations T1 : R4 → R4 and T2 : R4 → R4 are represented
by the matrices M1 and M2 respectively, where

M1 =




1 2 1 2
0 θ 3 3
3 1 10 4
0 1 −19 −10


 and M2 =




2 1 3 2
1 0 2 3
1 3 14 16
1 0 −1 −2


 .

The null spaces of T1 and T2 are denoted by K1 and K2 respectively. The range spaces of
T1 and T2 are denoted by R1 and R2 respectively.

(a) Determine the value of θ given that the dimension of K1 is 1. Find a basis of R1.

(b) Write down a basis of K2 and a basis of R2.

(c) Prove that R1 ∩R2 is a vector space. Show that the dimension of R1 ∩R2 is 2.

(d) Without evaluating M1M2, find a vector in the null space the transformation T3 :
R4 → R4 represented by M1M2.

Solution.

Part (a). Using G.C., M1 can be reduced to

M1 →




1 0 0 −23
22

0 1 0 27
22

0 0 1 13
22

0 θ 3 3




→




1 0 0 −23
22

0 1 0 27
22

0 0 1 13
22

0 0 0 3− θ
(
27
22

)
− 3

(
13
22

)




.

Since dimK1 = 1, we must have exactly one row of zeroes, so

3− θ

(
27

22

)
− 3

(
13

22

)
=⇒ θ = 1.

A basis for R1 is 






1
0
3
0


 ,




2
1
1
1


 ,




1
3
10
−19








.

Part (b). The RREF of M2 is given by




1 0 0 −1
3

0 1 0 −7
3

0 0 1 5
3

0 0 0 0




.

A basis for R2 is 






2
1
1
1


 ,




1
0
3
0


 ,




3
2
14
−1








.
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Consider M2x = 0, where x = (x, y, z, w)T. Then




1 0 0 −1
3

0 1 0 −7
3

0 0 1 5
3

0 0 0 0







x
y
z
w


 =




0
0
0
0


 =⇒





x − 1
3w = 0

y − 7
3w = 0

z + 5
3w = 0

.

Let w = 3λ ∈ R. Then

x =




x
y
z
w


 = λ




1
7
−5
3


 ,

so a basis of K2 is 






1
7
−5
3








.

Part (c). Let v ∈ R1 ∩R2. Then there exist constants a, b, c, d, e, f ∈ R such that

a




1
0
3
0


+ b




2
1
1
1


+ c




1
3
10
−19


 = d




1
0
3
0


+ e




2
1
1
1


+ f




3
2
14
−1


 .

Rearranging, we have




1 2 1 3
0 1 3 2
3 1 10 14
0 1 −19 −1







a− d
b− e
c
−f


 =




0
0
0
0


 .

Since the matrix on the LHS is invertible, we must have a = d, b = e and c = f = 0.
Hence, v is of the form

v = a




1
0
3
0


+ b




2
1
1
1


 .

Thus,

R1 ∩R2 = span








1
0
3
0


 ,




2
1
1
1








and is thus a vector space with dimension 2.

Part (d). Picking x = (1, 7, −5, 3)T, which is in K2, we have

M1M2x = M10 = 0

as desired.
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Problem 9.

(a) Let L : V → V be a linear transformation on the vector space V . A linear trans-
formation is said to be nilpotent if there exists k ∈ Z+ such that Lk(x) = 0 for all
x ∈ V . A linear transformation L is said to be invertible if there exists a transfor-
mation T such that LT (x) = TL(x) = x for all x ∈ V . Show that if L is nilpotent,
then the transformation M = I − L is invertible by finding an explicit formula for
(I − L)−1, where I is the identity transformation.

(b) Let V be the space of quadratic polynomials and L the differential transformation,
that is,

L
(
ax2 + bx+ c

)
= 2ax+ b.

Show that L is a linear transformation on V .

(c) Using (a) and (b), find a particular solution yp /∈ V of y′ − y = 5x2 − 3.

(d) Hence, find the general solution of the differential equation in (c).

Solution.

Part (a). A simple series expansion gives

(I − L)−1 = I + L+ L2 + · · ·+ Lk−1 + Lk + · · · = I + L+ L2 + · · ·+ Lk−1,

so M is invertible.

Part (b). Let f, g be quadratic polynomials, where f(x) = a1x
2 + b1x + c1 and g(x) =

a2x
2 + b2x+ c2. Then

L(f + g) = L
(
(a1 + a2)x

2 + (a2 + b2)x+ (c1 + c2)
)
= 2 (a1 + a2)x+ (b1 + b2)

= (2a1x+ b1) + (2a2x+ b2) = L(f) + L(g).

Let k ∈ R. Then

L(kf) = L
(
ka1x

2 + kb1x+ kc1
)
= 2ka1x+ kb1 = k (2a1x+ b1) = kL(f).

Thus, L is a linear transformation on V .

Part (c). Rewriting the given differential equation, we see that

y′p − yp = (L− I)yp = 5x2 − 3 =⇒ (I − L)yp = −5x2 + 3.

Since L3 = 0, by (a), we have the particular solution

yp = (I − L)−1
(
−5x2 + 3

)
=
(
I + L+ L2

) (
−5x2 + 3

)

=
(
−5x2 + 3

)
+ (−10x) + (−10) = −5x2 − 10x− 7.

Part (d). The associated homogeneous differential equation is y′ = y, so the complemen-
tary solution is yc = Aex. Thus, the general solution is given by

y = yc + yp = Aex − 5x2 − 10x− 7.
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Assignment B17B

Problem 1. In R2, a horizontal shear is a mapping that takes a generic point with
position vector (x, y)T to the point with position vector (x+my, y)T, where m is a fixed
parameter called the shear factor.
Show that every horizontal shear mapping in R2 is a linear transformation. State the

matrix that represents the horizontal shear with shear factor m.

Solution. Let T : R2 → R2 such that

T

((
x
y

))
=

(
x+my

y

)
.

Let α, β ∈ R. Observe that

T

(
α

(
x1
y1

)
+ β

(
x2
y2

))
= T

((
αx1 + βx2
αy1 + βy2

))
=

(
αx1 + βx2 +mαy1 +mβy2

αy1 + βy2

)

= α

(
x1 +my1

y1

)
+ β

(
x2 +my2

y2

)
= αT

((
x1
y1

))
+ βT

((
x2
y2

))
.

Hence, T preserves both addition and scalar multiplication, whence it is a linear transfor-
mation.

Note that

T

((
x
y

))
=

(
x+my

y

)
= x

(
1
0

)
+ y

(
m
1

)
=

(
1 m
0 1

)(
x
y

)
.

Thus, (
1 m
0 1

)

is the matrix representation of T .

∗ ∗ ∗ ∗ ∗

Problem 2. Given that 





1
a
b


 ,



b
1
a


 ,



a
b
1







is not a basis for R3, prove that a3 − 3ab+ b3 + 1 = 0.

Solution. Since the vectors do not form a basis of R3, they must be linearly dependent.
Thus, there exist x1, x2, x3 ∈ R that are not all 0 such that

x1



1
a
b


+ x2



b
1
a


+ x3



a
b
1


 = 0,

which is equivalent to the matrix equation


1 b a
a 1 b
b a 1





x1
x2
x3


 = 0.

Thus, the above matrix has a non-trivial kernel, whence its determinant is 0. Thus,

0 = det



1 b a
a 1 b
b a 1


 = 1

∣∣∣∣
1 b
a 1

∣∣∣∣− a

∣∣∣∣
b a
a 1

∣∣∣∣+ b

∣∣∣∣
b a
1 b

∣∣∣∣ = a3 − 3ab+ b3 + 1.
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Problem 3. Let A be an n × n matrix and W to be the subset {u ∈ Rn | Au = u} of
Rn.

(a) Show that W is a subspace of Rn.

(b) Let

A =



1 0 −1
0 1 0
0 0 −1


 .

Find a basis of W .

Solution.

Part (a). Note that

W = {u ∈ Rn | Au = u} = {u ∈ Rn | (A− I)u = 0} ,

which is a null space in Rn. Hence, W is a subspace of Rn.

Part (b). Consider the solutions to (A− I)u = 0:

(A− I)u = 0 =⇒



0 0 −1
0 0 0
0 0 −2





x
y
z


 =



0
0
0


 .

We immediately see that x, y ∈ R and z = 0. Letting x = λ and y = µ, where λ, µ ∈ R,
we have

u =



x
y
z


 =



λ
µ
0


 = λ



1
0
0


+ µ



0
1
0


 .

Thus, a basis of W is 





1
0
0


 ,



0
1
0





 .

∗ ∗ ∗ ∗ ∗

Problem 4. The linear transformation T : R4 → R3 is represented by the matrix

A =




1 3 −2 a
2 −1 3 −5
−3 −3 0 3




where a is a real constant.

(a) It is given that the dimension of the null space of T is 2. Find the value of a. Hence,
find a basis for the null space of T .

(b) Show that R, the range space of T , is a plane, and find the Cartesian equation of R.

(c) Let V be a vector space spanned by v where v = (0, b, c)T, b, c ∈ R. If R ∪ V is a
vector space, find a relationship between b and c.
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Solution.

Part (a). Since dimkerT = 2, we have dim rangeT = 4− 2 = 2. Since




1
2
−3


 and




3
−1
3




are linearly independent, they form a basis for rangeT . Hence, there exist λ, µ ∈ R such
that 


a
−5
3


 = λ




1
2
−3


+ µ




3
−1
−3


 ,

which is equivalent to the system of linear equations





λ+ 3µ = a

2λ− µ = −5

3λ− 3µ = 3

.

Solving the last two equations simultaneously yields λ = −2 and µ = 1, whence a = 1.
Thus,

A =




1 3 −2 1
2 −1 3 −5
−3 −3 0 3


 ,

and its RREF is 

1 0 1 −2
0 1 −1 1
0 0 0 0


 .

Consider the equation Ax = 0. Then x also satisfies



1 0 1 −2
0 1 −1 1
0 0 0 0







x1
x2
x3
x4


 =




0
0
0
0


 ,

which is equivalent to the system of linear equations

{
x1 + x3 − 2x4 = 0

x2 − x3 + x4 = 0
.

Let x3 = α and x4 = β, where α, β ∈ R. Then

x =




x1
x2
x3
x4


 =




−α+ 2β
α− β
α
β


 = α




−1
1
1
0


+ β




2
−1
0
1


 .

Thus, kerT has basis 






−1
1
1
0


 ,




2
−1
0
1








.
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Part (b). We have dimR = dim rangeT = 2, hence R is a plane. From the RREF of A,
the basis of R is 







1
2
−3


 ,




3
−1
3





 .

Since 


1
2
−3


×




3
−1
−3


 = −



9
6
7


 ,

R has scalar product form

R : r ·



9
6
7


 = 0,

which translates into the Cartesian equation 9x+ 6y + 7z = 0.

Part (c). Since R and V are both vector spaces, for their union R∪ V to also be a vector
space, we require either R ⊆ V or V ⊆ R. However, since dimR = 2 > 1 ≥ dimV , we can
only have V ⊂ R. Thus, there exist s, t ∈ R such that



0
b
c


 = s




1
2
−3


+ t




3
−1
−3


 .

We immediately have s = −3t. Thus, b = −7t and c = 6t, whence 6b = −7c.

∗ ∗ ∗ ∗ ∗

Problem 5. The matrix A and the vectors x1, x2, x3, x4 are defined as follows:

A =




1 1 1 1
−3 4 11 −10
4 5 6 3
6 −2 −10 14


 , x1 =




1
0
0
0


 , x2 =




1
1
0
0


 , x3 =




1
1
1
0


 , x4 =




1
1
1
1


 .

The vector space V is the set of all vectors of the form λ1Ax1+λ2Ax2+λ3Ax3+λ4Ax4,
where λ1, λ2, λ3, λ4 ∈ R.

(a) Show that x1, x2, x3, x4 form a basis of R4.

(b) Find the rank of A. Deduce the dimension of the null space of A.

(c) Explain why the dimension of V is 2 and state a basis of V .

(d) The vector (p, q, 23, 6)T belongs to V . Find p and q.

Solution.

Part (a). Let B =
(
x1 x2 x3 x4

)
. In full,

B =




1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1


 .

Observe that detB = 1 ̸= 0. Thus, the column space of B (i.e. the span of x1, . . . ,x4)
is R4. Also, the columns of B are linearly independent. Thus, x1, . . . ,x4 form a basis of
R4.
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Part (b). Note that A has RREF




1 0 −1 2
0 1 2 −1
0 0 0 0
0 0 0 0


 .

Thus, the dimension of the column space of A is rankA = 2. By the rank-nullity theorem,
the dimension of the null space of A is 4− 2 = 2.

Part (c). Note that V is the range (or column space) of AB =
(
Ax1 Ax2 Ax3 Ax4

)
.

Thus, dimV = rank(AB) = rankA = 2. Note that in the second-last step, we used the
fact that B has full rank and thus does not affect the rank of AB. A basis of V is

{Ax1,Ax2} =








8
7
10
6


 ,




8
7
3
−2








.

Part (d). There exists λ, µ ∈ R for which




p
q
23
6


 = λ




8
7
10
6


+ µ




8
7
3
−2


 .

The last two rows give the system of linear equations

{
10λ+ 3µ = 23

6λ− 2µ = 6
,

whence λ = 32/19 and µ = 39/19. Thus,

p = 8(λ+ µ) =
568

19
, q = 7(λ+ µ) =

497

19
.
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B17C Linear Algebra - Eigenvalues and
Eigenvectors

Tutorial B17C

Problem 1. For each of the following matrices A, determine the eigenvalue(s) and cor-
responding eigenvector(s). Where A is diagonalizable, write down the matrix Q and D
where A = QDQ−1.

(
0 −1
−2 0

)
(a)

(
2 0
−3 2

)
(b)

(
−3 0
0 −3

)
(c)



19 −9 −6
25 −11 −9
17 −9 −4


(d)



5 0 0
1 5 0
0 1 5


(e)



0 0 0
0 0 0
3 0 1


(f)

Solution.

Part (a). Consider det(A− λI) = 0:

0 = det(A− λI) =

∣∣∣∣
−λ −1
−2 −λ

∣∣∣∣ = λ2 − 2 =⇒ λ = ±
√
2.

Let x = (x, y)T ̸= 0 be an eigenvector.
Case 1 : λ =

√
2. Consider (A− λI)x = 0:

(A− λI)x =

(
−
√
2 −1

−2 −
√
2

)(
x
y

)
=

(
0
0

)
.

Solving, we get x+ 1√
2
y = 0. Taking y = −

√
2, we have x =

(
1, −

√
2
)T

.

Case 2 : λ = −
√
2. Consider (A− λI)x = 0:

(A− λI)x =

(√
2 −1

−2
√
2

)(
x
y

)
=

(
0
0

)
.

Solving, we get x− 1√
2
y = 0. Taking y =

√
2, we have x =

(
1,

√
2
)T

.

Thus,

Q =

(
1 1

−
√
2

√
2

)
and D =

(√
2 0

0 −
√
2

)
.

Part (b). Consider det(A− λI) = 0:

0 = det(A− λI) =

∣∣∣∣
2− λ 0
−3 2− λ

∣∣∣∣ = (2− λ)2 =⇒ λ = 2.

Let x = (x, y)T ̸= 0 be an eigenvector. Consider (A− λI)x = 0:

(A− λI)x =

(
0 0
−3 0

)(
x
y

)
=

(
0
0

)
.

Solving, we get x = 0 and y ∈ R. Taking y = 1, we have (0, 1)T.
Since there are fewer eigenvectors (1) than dimensions (2), A is not diagonalizable.
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Part (c).

A =

(
−3 0
0 −3

)
=

(
1 0
0 1

)(
−3 0
0 −3

)(
1 0
0 1

)−1

,

so λ = −3 with eigenvectors (1, 0)T and (0, 1)T.

Part (d). Note that

λ1 + λ2 + λ3 = |19|+ |−11|+ |−4| = 4,

λ1λ2 + λ2λ3 + λ3λ1 =

∣∣∣∣
19 −9
25 −11

∣∣∣∣+
∣∣∣∣
−11 −9
−9 −4

∣∣∣∣+
∣∣∣∣
19 −6
17 −4

∣∣∣∣ = 5,

λ1λ2λ3 =

∣∣∣∣∣∣

19 −9 −6
25 −11 −9
17 −9 −4

∣∣∣∣∣∣
= 2.

Thus, the characteristic polynomial of A is −λ3 + 4λ2 − 5λ+ 2. Solving, we get λ = 1, 2.
Let x = (x, y, z)T ̸= 0 be an eigenvector.
Case 1 : λ = 1. Consider (A− λI)x = 0:

(A− λI)x =



18 −9 −6
25 −12 −9
17 −9 −5





x
y
z


 =



0
0
0


 .

Reducing to RREF, we have



1 0 −1
0 1 −4/3
0 0 0





x
y
z


 =



0
0
0


 .

Letting z = t ∈ R, we have

x =



x
y
z


 = t




1
4/3
1


 .

Taking t = 3, our eigenvector is (3, 4, 3)T.
Case 2 : λ = 2. Consider (A− λI)x = 0:

(A− λI)x =



17 −9 −6
25 −13 −9
17 −9 −6





x
y
z


 =



0
0
0


 .

Reducing to RREF, we have



1 0 −3/4
0 1 −3/4
0 0 0





x
y
z


 =



0
0
0


 .

Letting z = t ∈ R, we have

x =



x
y
z


 = t



3/4
3/4
1


 .

Taking t = 4, our eigenvector is (3, 3, 4)T.
Since there are fewer eigenvectors (2) than dimensions (3), A is not diagonalizable.
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Part (e). Note that the characteristic polynomial of A is simply (5−λ)3. Hence, the only
eigenvalue of A is λ = 5. Let x = (x, y, z)T ̸= 0 be an eigenvector. Then

(A− λI)x =



0 0 0
1 0 0
0 1 0





x
y
z


 =



0
0
0


 .

Hence, x = y = 0 and z = t ∈ R. Thus, the only eigenvector is (0, 0, 1)T. Since there are
fewer eigenvectors (1) than dimensions (3), A is not diagonalizable.

Part (f). Consider det(A− λI) = 0:

0 = det(A− λI) =

∣∣∣∣∣∣

−λ 0 0
0 −λ 0
3 0 1− λ

∣∣∣∣∣∣
= λ2(1− λ) =⇒ λ = 0, 1.

Let x = (x, y, z)T ̸= 0 be an eigenvector.
Case 1 : λ = 0. Consider (A− λI)x = 0:

(A− λI)x =



0 0 0
0 0 0
3 0 1





x
y
z


 =



0
0
0


 .

Let y = s ∈ R and z = t ∈ R. Then x = −1/3t, so

x =



−t/3
s
t


 = s



0
1
0


+

1

3
t



−1
0
3


 .

Thus, the corresponding eigenvectors are (0, 1, 0)T and (−1, 0, 3)T.
Case 2 : λ = 1. Consider (A− λI)x = 0:

(A− λI)x =



−1 0 0
0 −1 0
3 0 0





x
y
z


 =



0
0
0


 .

Thus, x = y = 0 while z = t ∈ R. Hence, the corresponding eigenvector is (0, 0, 1)T.
Thus,

Q =



0 −1 0
1 0 0
0 3 1


 and D =



0 0 0
0 0 0
0 0 1


 .

∗ ∗ ∗ ∗ ∗

Problem 2. Find the eigenvalues and corresponding eigenvectors of the matrix A, where

A =



−3 5 5
−4 6 5
4 −4 −3


 .

Hence, find a matrix P and a diagonal matrix D such that A = P−1DP. Find also a
diagonal matrix E such that A3 = P−1EP.



Tutorial B17C 987

Solution. Note that

λ1 + λ2 + λ3 = |−3|+ |6|+ |−3| = 0

λ1λ2 + λ2λ3 + λ3λ1 =

∣∣∣∣
−3 5
−4 6

∣∣∣∣+
∣∣∣∣
6 5
−4 −3

∣∣∣∣+
∣∣∣∣
−3 5
4 −3

∣∣∣∣ = −7

λ1λ2λ3 =

∣∣∣∣∣∣

−3 5 5
−4 6 5
4 −4 −3

∣∣∣∣∣∣
= −6.

Hence, the characteristic polynomial ofA is −λ3+7λ−6, whence the roots are λ = −3, 1, 2.
Note that

A− λI =



−3− λ 5 5
−4 6− λ 5
4 −4 −3− λ


 .

The eigenvectors are thus

e1 =
1

20



−3− (−3)

5
5


×




4
−4

−3− (−3)


 =




1
1
−1




e2 =
1

4



−3− 1

5
5


×




4
−4

−3− 1


 =




0
1
−1




e3 = −1

5



−3− 2

5
5


×




4
−4

−3− 2


 =



1
1
0


 .

Thus,

P =




1 0 1
1 1 1
−1 −1 0




−1

=




1 −1 −1
−1 1 0
0 1 1


 and D =



−3 0 0
0 1 0
0 0 2


 .

Note that A3 =
(
P−1DP

)3
= P−1D3P. Hence,

E = D3 =



−27 0 0
0 1 0
0 0 8


 .

∗ ∗ ∗ ∗ ∗

Problem 3. Find the eigenvalues and corresponding eigenvectors of the matrix A, where

A =




2 −3 0
1 −1 1
−1 3 1


 .

Hence, or otherwise,

(a) find the eigenvalues and corresponding eigenvectors of the matrix A+ 10I, where I
is the unit matrix of order 3,

(b) find a matrix P such that PAP−1 is a diagonal matrix.
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Solution. Note that

λ1 + λ2 + λ3 = |2|+ |−1|+ |1| = 2

λ1λ2 + λ2λ3 + λ3λ1 =

∣∣∣∣
2 −3
1 −2

∣∣∣∣+
∣∣∣∣
−1 1
3 1

∣∣∣∣+
∣∣∣∣
2 0
−1 1

∣∣∣∣ = −1

λ1λ2λ3 =

∣∣∣∣∣∣

2 −3 0
1 −1 1
−1 3 1

∣∣∣∣∣∣
= −2.

Hence, the characteristic equation of A is −λ3 + 2λ2 + λ − 2, whence its roots are λ =
−1, 1, 2.

Note that

A− λI =



2− λ −3 0
1 −1− λ 1
−1 3 1− λ


 .

The eigenvectors are thus

e1 = −1

3



2− (−1)

−3
0


×




1
−1− (−1)

1


 =




1
1
−1


 ,

e2 = −



2− 1
−3
0


×




1
−1− 1

1


 =




3
1
−1


 ,

e3 =
1

3



2− 2
−3
0


×




1
−1− 2

1


 =



−1
0
1


 .

Part (a). Note that

(A+ 10I) e = Ae+ 10e = λe+ 10e = (λ+ 10)e.

Hence, the eigenvalues of A+ 10I are 9, 11 and 12. Their corresponding eigenvectors are
(1, 1, −1)T, (3, 1, −1)T and (−1, 0, 1)T.

Part (b). Note that A = QDQ−1, where

Q =




1 3 −1
1 1 0
−1 −1 1


 and D =



−1 0 0
0 1 0
0 0 2


 .

Rearranging, we have Q−1AQ = D. Hence,

P = Q−1 =
1

2



−1 2 −1
1 0 1
0 2 2


 .

∗ ∗ ∗ ∗ ∗

Problem 4.

(a) Given two square matrices A and B of the same order, show that if there exists
a non-singular matrix P such that A = PBP−1, then, A and B have the same
eigenvalues.
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(b) Hence, by considering the product


1 0 −1
0 1 0
0 0 1





4 0 0
1 5 0
2 3 7





1 0 1
0 1 0
0 0 1




or otherwise, find the eigenvalues and corresponding eigenvectors of the matrix M,
where

M =



2 −3 −5
1 5 1
2 3 9


 .

(c) Find a matrix Q and a diagonal matrix D such that M = QDQ−1, and deduce that
if n is a positive integer, then

Mn = Q



4n 0 0
0 5n 0
0 0 7n


Q−1.

Solution.

Part (a). Let B = QDQ−1, where D is a diagonal matrix. Then the principal diagonal
of D contains the eigenvalues of B. Further,

A = PBP−1 = PQDQ−1P−1 = (PQ)D (PQ) ,

so the principal diagonal of D also contains the eigenvalues of A. Thus, A and B must
have the same eigenvalues.

Part (b). Since 

4 0 0
1 5 0
2 3 7




is triangular, its eigenvalues are simply the entries of its principal diagonal, i.e. λ = 4, 5, 7.
Since

M =



1 0 −1
0 1 0
0 0 1





4 0 0
1 5 0
2 3 7





1 0 1
0 1 0
0 0 1


 =



1 0 −1
0 1 0
0 0 1





4 0 0
1 5 0
2 3 7





1 0 −1
0 1 0
0 0 1




−1

,

it follows from (a) that M also has eigenvalues λ = 4, 5, 7.

Part (c). Note that


4 0 0
1 5 0
2 3 7


− λI =



4− λ 0 0
1 5− λ 0
2 3 7− λ


 .

The eigenvectors are hence

e1 =




2
3

7− 4


×




1
5− 4
0


 =



−3
3
−1


 ,

e2 =



4− 5
0
0


×




2
3

7− 5


 =




0
2
−3


 ,

e3 =



4− 7
0
0


×




1
5− 7
0


 =



0
0
6


 .
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Thus,

Q =



1 0 −1
0 1 0
0 0 1





−3 0 0
3 2 0
−1 −3 6


 =



−2 3 −6
3 2 0
−1 −3 −6


 and D =



4 0 0
0 5 0
0 0 7


 .

Note also that

M =
(
QDQ−1

) (
QDQ−1

)
. . .
(
QDQ−1

)
︸ ︷︷ ︸

n times

= QDnQ−1 = Q



4n 0 0
0 5n 0
0 0 7n


Q−1.

∗ ∗ ∗ ∗ ∗

Problem 5. The matrix A is given by

A =



−1 5 0
2 3 b
0 a −1


 .

(a) Given that 5 is an eigenvalue of A with eigenvector (5, 6, 2)T, find the values of a
and b.

(b) Find the other eigenvalues of A and their corresponding eigenvectors.

(c) Hence, state the matrices P and D such that A = PDP−1

The matrix B is such that B = A2 − 2A+ 3I.

(d) Find a matrix Q and a diagonal matrix E such that E = QBQ−1.

Solution.

Part (a). We have


−1 5 0
2 3 b
0 a −1





5
6
2


 = 5



5
6
2


 =⇒




25
28 + 2b
6a− 2


 =



25
30
10


 .

Thus, a = 2 and b = 1.

Part (b). Note that

5 + λ2 + λ3 = |−1|+ |3|+ |−1| = 1 and 5λ2λ3 =

∣∣∣∣∣∣

−1 5 0
2 3 1
0 2 −1

∣∣∣∣∣∣
= 15.

By inspection, we have λ2 = −3 and λ3 = −1.
Note that

A− λI =



−1− λ 5 0

2 3− λ 1
0 2 −1− λ


 .

The eigenvectors are thus

e2 =



−1− (−3)

5
0


×




2
3− (−3)

1


 =




5
−2
2




e3 =
1

5



−1− (−1)

5
0


×




2
3− (−1)

1


 =




1
0
−2


 .
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Part (c). We have

P =



5 5 1
6 −2 0
2 2 −2


 and D =



5 0 0
0 −3 0
0 0 −1


 .

Part (d). Note that the eigenvalues of B are λ2 − 2λ+ 3 = 18, 18, 6. Hence,

B = A2 − 2A+ 3I = P
(
D2 − 2D+ 3I

)
P−1 = P



18 0 0
0 18 0
0 0 6


P−1.

Thus,

Q = P−1 =
1

48



2 6 1
6 −6 3
8 0 −20


 and E =



18 0 0
0 18 0
0 0 6


 .

∗ ∗ ∗ ∗ ∗

Problem 6.

(a) Determine the eigenvalues of a square matrix, A, if

(i) An = 0 for some positive integer n,

(ii) A3 = A.

(b) The matrices A and B have the same eigenvectors e1, e2, e3. The corresponding
eigenvalues of A are λ1, λ2 and λ3 while the corresponding eigenvalues of B are µ1,
µ2 and µ3.

(i) Show that the matrix A+B has eigenvalues λ1+µ1, λ2+µ2 and λ3+µ3 with
corresponding common eigenvectors e1, e2, e3.

It is given that

A =




0 −1 0
−4 −9 −6
5 11 7


 , B =



−4 −16 −11
−9 −27 −19
14 44 31




and µ1 = −3, µ2 = 2, µ3 = 1.

(ii) Find λ1, λ2, λ3, where λ1 < λ2 < λ3, and the corresponding e1, e2, e3.

(iii) Find matrices R and S and a diagonal matrix D such that (A+B)5 = RDS.

Solution.

Part (a). Let λ be an eigenvalue of A.

Part (a)(i). Since A5 = 0, we have λ5 = 0. Hence, the eigenvalues of A are all 0.

Part (a)(ii). Since A3 = A, we have λ3 = λ. Hence, λ = −1, 0, 1.

Part (b).

Part (b)(i). Since

(A+B) ei = Aei +Bei = λiei + µiei = (λi + µi)ei,

it follows that A + B has eigenvalues λi + µi with corresponding eigenvectors ei for i =
1, 2, 3.
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Part (b)(ii). We have the system of equations

λ1 + λ2 + λ3 =
∣∣0
∣∣+
∣∣−9

∣∣+
∣∣7
∣∣ = −2,

λ1λ2 + λ2λ3 + λ3λ1 =

∣∣∣∣
0 −1
−4 −9

∣∣∣∣+
∣∣∣∣
−9 −6
11 7

∣∣∣∣+
∣∣∣∣
0 0
5 7

∣∣∣∣ = −1

λ1λ2λ3 =

∣∣∣∣∣∣

0 −1 0
−4 −9 −6
5 11 7

∣∣∣∣∣∣
= 2.

Hence, the characteristic polynomial ofA is −λ3−2λ2+λ+2. Solving, we have λ1 = −2,
λ2 = −1 and λ3 = 1.
Note that

A− λiI =



−λi −1 0
−4 −9− λi −6
5 11 7− λi


 .

Hence, we take

e1 =
1

6



−(−2)
−1
0


×




−4
−9− (−2)

−6


 =




1
2
−3


 ,

e2 =
1

6



−(−1)
−1
0


×




−4
−9− (−1)

−6


 =




1
1
−2




e3 =
1

6



−1
−1
0


×




−4
−9− 1
−6


 =




1
−1
1


 .

Part (b)(iii). Note that A+B = PEP−1, where

P =
(
e1 e2 e3

)
=




1 1 1
2 1 −1
−3 −2 1




and

E =



λ1 + µ1 0 0

0 λ2 + µ2 0
0 0 λ3 + µ3


 =



−5 0 0
0 1 0
0 0 2


 .

Hence, (A+B)5 = PE5P−1 = RDS. We thus take

R = P =




1 1 1
2 1 −1
−3 −2 1


 ,

S = P−1 =




1 3 2
−1 −4 −3
1 1 1


 ,

D = E5 =



−3125 0 0

0 1 0
0 0 32


 .
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Problem 7. A square matrix A has eigenvector x with corresponding eigenvalue λ.

(a) Show that x is also an eigenvector ofA+A2+A3+A4 with corresponding eigenvalue
λ+ λ2 + λ3 + λ4.

Let B = A+A2 +A3 +A4, where

A =



1 3 4
0 2 8
0 0 −3


 .

(b) Using the result from part (a), find the eigenvectors and corresponding eigenvalues
of B.

(c) Hence, write down a non-singular matrix Q and a diagonal matrix D such that
B = QDQ−1.

Solution.

Part (a). Observe that

(
A+A2 +A3 +A4

)
x = Ax+A2x+A3x+A4x

= λx+ λ2x+ λ3x+ λ4x =
(
λ+ λ2 + λ3 + λ4

)
x.

Hence, x is also an eigenvector of A + A2 + A3 + A4 with corresponding eigenvalue
λ+ λ2 + λ3 + λ4.

Part (b). Since A is triangular, the entries on its principal diagonal are precisely its
eigenvectors. Hence, λ = 1, 2,−3. Thus, B has eigenvalues λ+ λ2 + λ3 + λ4 = 4, 30, 60.

Note that

A− λI =



1− λ 3 4
0 2− λ 8
0 0 −3− λ


 .

The eigenvectors of A and B are hence

e1 = − 1

12



1− 1
3
4


×




0
0

−3− 1


 =



1
0
0


 ,

e2 = −1

5



1− 2
3
4


×




0
0

−3− 2


 =



3
1
0


 ,

e3 =
1

4



1− (−3)

3
4


×




0
2− (−3)

8


 =




1
−8
5


 .

Part (c). We have

Q =



1 3 1
0 1 −8
0 0 5


 and D =



4 0 0
0 30 0
0 0 60


 .
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Problem 8. Two n× n square matrices A and B are said to commute if AB = BA.

(a) Show that any two diagonal n× n square matrices commute.

(b) Let A and B be two n × n square matrices with the same eigenvectors. By diago-
nalizing the square matrices, show that A and B commute.

(c) The matrix A is given by

A =



−5 −5 −2
8 4 4
16 10 7


 .

Find the eigenvalues of A and corresponding eigenvectors with integer entries.

(d) Write down a matrix P and a diagonal matrix D such that P−1AP = D.

(e) The matrix B is given by

B =



−11 3 −6
8 −2 4
16 −6 9


 .

Determine whether B is diagonalizable with your matrix P from (d), and hence
deduce whether A and B commutes.

Solution.

Part (a). Let xi be the ith standard basis vector, where 1 ≤ i ≤ n. Note that xi is an
eigenvector of a diagonal matrix D with corresponding eigenvalue dii. Hence,

ABxi = A (biixi) = aiibiixi and BAxi = B (aiixi) = biiaiixi.

Hence, xi has the same image under AB and BA, whence AB = BA.

Part (b). Since A and B have the same eigenvectors, we can write A = PDP−1 and
B = PEP−1, where D and E are diagonal matrices. Then

AB =
(
PDP−1

) (
PEP−1

)
= PDEP−1

and
BA =

(
PEP−1

) (
PDP−1

)
= PEDP−1.

Since D and E are diagonal, by part (a), they commute, so DE = ED. Consequently,
AB = BA, so A and B also commute.

Part (c). We have the system of equations

λ1 + λ2 + λ3 =
∣∣−5

∣∣+
∣∣4
∣∣+
∣∣7
∣∣ = 6,

λ1λ2 + λ2λ3 + λ3λ1 =

∣∣∣∣
−5 −5
8 4

∣∣∣∣+
∣∣∣∣
4 4
10 7

∣∣∣∣+
∣∣∣∣
−5 −2
16 7

∣∣∣∣ = 5

λ1λ2λ3 =

∣∣∣∣∣∣

−5 −5 −2
8 4 4
16 10 7

∣∣∣∣∣∣
= −12.

Hence, the characteristic equation of A is −λ3+6λ2−5λ−12. Solving, we get λ = −1, 3, 4.
Note that

A− λI =



−5− λ −5 −2

8 4− λ 4
16 10 7− λ


 .
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The corresponding eigenvectors are thus

e1 =
1

10



−5− (−1)

−5
−2


×




8
4− (−1)

4


 =



−1
0
2


 ,

e2 =
1

2



−5− 3
−5
−2


×




8
4− 3
4


 =



−9
8
16


 ,

e3 =
1

20



−5− 4
−5
−2


×




8
4− 4
4


 =



−1
1
2


 .

Part (d). Rearranging, we have A = PDP−1. Thus,

P =



−1 −9 −1
0 8 1
2 16 2


 and D =



−1 0 0
0 3 0
0 0 4


 .

Part (e). Observe that

Be1 =



−1
0
2


 = e1, Be2 =




27
−24
−48


 = −3e1, Be3 =




2
−2
−4


 = −2



−1
1
2


 = −2e3.

Hence, A and B share the share eigenvectors. Thus, by part (b), A and B commute.

∗ ∗ ∗ ∗ ∗

Problem 9. The linear transformation T : R2 → R2 is represented by the matrix A,
where

A =

(
2 −4
−1 −1

)
.

(a) Show that T transforms any point on the line y = x to a point on the same line.

(b) Explain what happens to the points on the line 4y+x = 0 when they are transformed
by T .

(c) State the two eigenvalues of A and state two eigenvectors corresponding to the two
eigenvalues.

Solution.

Part (a). Let x be a point on the line y = x. Then x has the form t (1, 1)T, where t ∈ R.
Now observe that

Tx =

(
2 −4
−1 −1

)[
t

(
1
1

)]
= t

(
−2
−2

)
= −2x.

Hence, the image of x under T is a point on the same line y = x.

Part (b). Let x be a point on the line 4y+ x = 0. Then x has the form t (−4, 1)T, where
t ∈ R. Now observe that

Tx =

(
2 −4
−1 −1

)[
t

(
−4
1

)]
= t

(
−12
3

)
= 3x.

Hence, the image of x under T is a point on the same line 4y + x = 0.
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Part (c). The eigenvalues of A are λ = −2, 3, and their corresponding eigenvectors are
(1, 1)T and (−4, 1)T.

∗ ∗ ∗ ∗ ∗

Problem 10.

(a) (i) Suppose that an invertible 3× 3 matrix A has non-zero eigenvalues λ1, λ2, λ3

with corresponding eigenvectors e1, e2, e3. Show that the matrix A−1 has the
same eigenvectors and find the corresponding eigenvalues of A−1.

(ii) Another 3×3 matrix B has eigenvalues µ1, µ2, µ3 with corresponding eigenvec-
tors e1, e2, e3. Determine the eigenvalues and the corresponding eigenvectors
of the matrix A−1B. Hence, find the eigenvalue of the matrix C corresponding
to the eigenvector e1, where

C = I+A−1B+
(
A−1B

)2
+ · · ·+

(
A−1B

)n
,

where n ∈ Z+ and µ1 ̸= λ1.

(b) The matrix

E =

(
a b
−1 0

)
,

where a, b ∈ R, has real eigenvalues β1, β2.
(i) If β1 ̸= β2, show that a2 > 4b.

(ii) Assume that a ̸= 0. State the value of b when E is singular. Find a matrix P
and a diagonal matrix D such that E = PEP−1 when E is singular.

Solution.

Part (a).

Part (a)(i). We have Aei = λiei. Pre-multiplying by 1
λi
A−1 yields 1

λi
ei = A−1ei. Hence,

A−1 has the same eigenvectors ei with corresponding eigenvalues 1/λi.

Part (a)(ii). Note that

A−1Bei = A−1µiei =
µi

λi
ei.

Thus,

Ce1 =
[
I+A−1B+

(
A−1B

)2
+ · · ·+

(
A−1B

)n]
e1

=

[
1 +

µ1

λ1
+

(
µ1

λ1

)2

+ · · ·+
(
µ1

λ1

)n
]
e =

(µ1/λ1)
n+1 − 1

µ1/λ1 − 1
e1.

Thus, the eigenvalue corresponding to e1 is (µ1/λ1)n+1−1
µ1/λ1−1 .

Part (b).

Part (b)(i). The characteristic polynomial of E is λ2 − aλ + b. Since there are two real
and distinct eigenvalues, the discriminant of the characteristic polynomial must be strictly
greater than 0. Hence, a2 − 4b > 0 =⇒ a2 > 4b.

Part (b)(ii). For E to be singular, we require b = 0. In this case, the characteristic
polynomial of E is λ2 − aλ. Its roots are λ = 0, a. Let x = (x, y)T ̸= 0 be an eigenvector.

Case 1 : λ = 0. Consider (E− λI)x = 0:

(
a 0
−1 0

)(
x
y

)
=

(
0
0

)
.
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Hence, x = 0, while y is free. Hence, x =

(
0
1

)
.

Case 2 : λ = a. Consider (E− λI)x = 0:

(
0 0
−1 −a

)(
x
y

)
=

(
0
0

)
.

We get the equation x+ ay = 0. Taking y = 1, we have x = (−a, 1)T.
Thus,

P =

(
0 −a
1 1

)
and D =

(
a 0
0 0

)
.

∗ ∗ ∗ ∗ ∗

Problem 11. A microbiologist wants to investigate the growth of three different species
of microorganisms in a controlled habitat. She sets up the following model



an
bn
cn


 = Q



an−1

bn−1

cn−1


 , Q =




0.42 0.076 1.16
0.6 0.68 −1.2
−0.1 0.02 1.2


 ,

where an, bn and cn represents the number of microorganisms A, B and C (in billions)
respectively, n hours after the start of the experiment.

(a) Give an observation that the microbiologist may expect to see pertaining to the
population of each of the microorganisms A, B and C, justifying your answer by
drawing references to the entries in the matrix Q.

(b) Explain numerically why the model will fail in predicting the growth of the microor-
ganisms for the initial population of a0 = 10, b0 = 20 and c0 = 30.

The microbiologist wants to predict the long-term growth of the microorganisms for the
case where the scenario in (b) does not occur. She turns to a mathematician for help. The
mathematician advises her to diagonalize Q into the form PDP−1, such that

P =




5 1 2
−10 5 0
1 0 1


 .

(c) Find the matrices D and P−1 corresponding to the given matrix P.

(d) Show how this diagonalization process can be used to help the microbiologist predict
that the population of the microorganisms stabilize in the long run. Determine the
equilibrium population of the microorganisms in the long run for the case where
a0 = 40, b0 = 20 and c0 = 6.

(e) Comment on one possible drawback of the model.

Solution.

Part (a). Microorganism C will likely have a large population. Further, q13 = 1.16 means
that a high population of C will result in a large population of A, while q23 = −1.2 means
that a large population of C will result in a small population of C.
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Part (b). Note that



a1
b1
c1


 = Q



a0
b0
c0


 =




0.42 0.076 1.16
0.6 0.68 −1.2
−0.1 0.02 1.2





10
20
30


 =




40.52
−16.4
35.4


 .

This is absurd since populations cannot be negative. Hence, the model fails when a0 = 10,
b0 = 20 and c0 = 30.

Part (c). Clearly,

P−1 =
1

25




5 −1 −10
10 3 −20
−5 1 35


 .

Rearranging the given equation, we obtain

D = P−1QP =



0.5 0 0
0 0.8 0
0 0 1


 .

Part (d). Note that

lim
n→∞

Dn = lim
n→∞



0.5n 0 0
0 0.8n 0
0 0 1n


 =



0 0 0
0 0 0
0 0 1


 .

Hence,

lim
n→∞



an
bn
cn


 = lim

n→∞
Qn



a0
b0
c0


 = P



0 0 0
0 0 0
0 0 1


P−1



40
20
6


 =



2.4
0
1.2


 .

Thus, in the long run, microorganisms A and C will have a population of 2.4 and 1.2
billion respectively, while microorganism B will die out.

Part (e). The model does not take depletion of resources (e.g. space and food) into
account.
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Self-Practice B17C

Problem 1. The vector x is an eigenvector of the matrices A and B with corresponding
eigenvalues λ and µ respectively. Show that x is an eigenvector of AB with corresponding
eigenvalues λµ.

Find the eigenvalues and corresponding eigenvectors of A, where

A =



−11 3 −6
8 −2 4
16 −6 9


 .

The matrix B has eigenvectors



1
0
−2


 ,




1
−1
−2


 ,




9
−8
−16


 ,

with corresponding eigenvalues −1, 3, 4 respectively.

(a) Without evaluating AB and BA, determine whether AB = BA. Justify your
conclusion.

(b) Find a matrix P and a diagonal matrix D such that (AB)2 = PDP−1.

Solution. By the definition of an eigenvector, one has Ax = λx and Bx = µx. Thus,

ABx = Aµx = µAx = µλx = λµx,

so x is an eigenvector of AB with corresponding eigenvalue λµ.
Let the characteristic polynomial of A be χ(λ) = λ3 − c2λ

2 + c1λ− c0. Then

c0 = |A| = 6,

c1 =

∣∣∣∣
−11 3
8 −2

∣∣∣∣+
∣∣∣∣
−2 4
−6 9

∣∣∣∣+
∣∣∣∣
−11 −6
16 9

∣∣∣∣ = 1,

c2 = |−11|+ |−2|+ |9| = −4,

Thus, the characteristic polynomial of A is

χ(λ) = λ3 + 4λ2 + λ− 6 = (λ− 1)(λ+ 2)(λ+ 3),

so A has eigenvalues λ = 1,−2,−3.
Note that

A− λI =



−11− λ 3 −6

8 −2− λ 4
16 −6 9− λ


 .

Case 1 : λ = 1. Observe that


−12
3
−6


×




8
−3
4


 = −6




1
0
−2


 .

We hence take x = (1, 0, −2)T to be the corresponding eigenvector of λ = 1.
Case 2 : λ = −2. Observe that



−9
3
−6


×



8
0
4


 = 12




1
−1
−2


 .
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We hence take x = (1, −1, −2)T to be the corresponding eigenvector of λ = −2.
Case 3 : λ = −3. Observe that



−8
3
−6


×



8
1
4


 = 2




9
−8
−16


 .

We hence take x = (9, −8, −16)T to be the corresponding eigenvector of λ = −3.

Part (a). Since A and B share the same linearly independent eigenvectors, we can write
A = PDAP

−1 and B = PDBP
−1 for some diagonal matrices DA and DB. Then

AB =
(
PDAP

−1
) (

PDBP
−1
)
= PDADBP

−1.

Since diagonal matrices commute, we see that

AB = PDBDAP
−1 =

(
PDBP

−1
) (

PDAP
−1
)
= BA.

Part (b). Observe that
(AB)2 = P (DADB)

2P−1,

so the desired matrices are

P =




1 1 9
0 −1 −8
−2 −2 −16




and

D = (DADB)
2 =





1 0 0
0 −2 0
0 0 −3





−1 0 0
0 3 0
0 0 4





2

=



1 0 0
0 36 0
0 0 144


 .

∗ ∗ ∗ ∗ ∗

Problem 2. The eigenvector x is an eigenvector of the matrix A, with corresponding
eigenvalue λ, and x is also an eigenvector of the matrix B, with corresponding eigenvalue
µ. Prove that x is an eigenvector of the matrix pA + qB, with corresponding eigenvalue
pλ+qµ, where p, q ∈ R. Find the eigenvalues and corresponding eigenvectors of the matrix

L =



−11 3 −6
8 −2 4
16 −6 9


 .

The matrix M has eigenvectors




1
0
−2


 ,




1
−1
−2


 ,




9
−8
−16


 ,

with corresponding eigenvalues −1, 3, 4 respectively. Find a matrix P and a diagonal
matrix D such that (2L+ 3M)4 = PDP−1.

Solution. By the definition of an eigenvector, one has Ax = λx and Bx = µx. Thus,

(pA+ qB)x = pAx+ qBx = pλx+ qµx = (pλ+ qµ)x,

so x is an eigenvector of pA+ qB with corresponding eigenvalue pλ+ qµ.
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Let the characteristic polynomial of L be χ(λ) = λ3 − c2λ
2 + c1λ− c0. Then

c0 = |L| = 6,

c1 =

∣∣∣∣
−11 3
8 −2

∣∣∣∣+
∣∣∣∣
−2 4
−6 9

∣∣∣∣+
∣∣∣∣
−11 −6
16 9

∣∣∣∣ = 1,

c2 = |−11|+ |−2|+ |9| = −4,

Thus, the characteristic polynomial of L is

χ(λ) = λ3 + 4λ2 + λ− 6 = (λ− 1)(λ+ 2)(λ+ 3),

so A has eigenvalues λ = 1,−2,−3.
Note that

L− λI =



−11− λ 3 −6

8 −2− λ 4
16 −6 9− λ


 .

Case 1 : λ = 1. Observe that


−12
3
−6


×




8
−3
4


 = −6




1
0
−2


 .

We hence take x = (1, 0, −2)T to be the corresponding eigenvector of λ = 1.
Case 2 : λ = −2. Observe that



−9
3
−6


×



8
0
4


 = 12




1
−1
−2


 .

We hence take x = (1, −1, −2)T to be the corresponding eigenvector of λ = −2.
Case 3 : λ = −3. Observe that



−8
3
−6


×



8
1
4


 = 2




9
−8
−16


 .

We hence take x = (9, −8, −16)T to be the corresponding eigenvector of λ = −3.
Note that 2L+3M has eigenvalues 2λi+3µi = −1, 5, 6 with corresponding eigenvectors




1
0
−2


 ,




1
−1
−2


 ,




9
−8
−16


 .

Thus, the desired matrices are

P =




1 1 9
0 −1 −8
−2 −2 −16


 , D =



(−1)4 0 0
0 54 0
0 0 64


 =



1 0 0
0 625 0
0 0 1296


 .

∗ ∗ ∗ ∗ ∗

Problem 3. Given

a =




3
1
−1


 , b =




1
1
−1


 , c =




1
0
−1


 ,

find a 3× 3 matrix U having eigenvectors a, b, c corresponding to the eigenvalues 1, −1
and 2 respectively.

For the transformation y = Ux from vector x to vector y,
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(a) find all the invariant points and all the invariant lines,

(b) given that x = (3, 2, −3)T is in the plane spanned by b and c, find U10x.

Solution. We have

U =




3 1 1
1 1 0
−1 −1 −1





1 0 0
0 −1 0
0 0 2






3 1 1
1 1 0
−1 −1 −1




−1

=




2 −3 0
1 −1 1
−1 3 1


 .

Part (a). The invariant points correspond to eigenvectors with eigenvalue 1, so they
have the form λ (3, 1, −1)T for some λ ∈ R. The invariant lines correspond to all other
eigenvectors, so they have the form µ (1, 1, −1)T or ν (1, 0, −1)T for some µ, ν ∈ R.
Part (b). Note that x = 2b+ c. Thus,

U10x = U10 (2b+ c) = 2U10b+U10c = 2(−1)10b+ 220c =




1026
0

−1026


 .

∗ ∗ ∗ ∗ ∗

Problem 4. A Leslie matrix is often used to model population dynamics for different
stages of a life cycle of certain species of animals of interest. A general form of a Leslie
matrix is given by 



f0 f1 f2 · · · fn−2 fn−1

s0 0 0 · · · 0 0
0 s1 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · sn−2 0




,

where fi and si are non-negative real numbers.

(a) Consider a 3× 3 Leslie matrix

L =



f0 f1 f2
s0 0 0
0 s1 0


 .

If L has complex eigenvalues, prove that L has exactly one positive eigenvalue.

(b) In the study of the population of locusts in a particular region, it is of important to
track the number of locusts in various stages of their life cycle. In particular, the
tracking of the number of eggs, nymphs (young locust) and adults are of interest.
Let x1(t), x2(t) and x3(t) denote the number of eggs, nymphs and adults at time t,
where time in measured in years. From years of studies, the relations between x1,
x2 and x3 are given as follows:

x1(t+ 1) = 1000x3(t),

x2(t+ 1) = 0.02x1(t),

x3(t+ 1) = 0.05x2(t).

Let xt = (x1(t), x2(t), x3(t))
T. The relations can be represented by a Leslie matrix

M, where xt+1 = Mxt.

(i) Identify the matrix M that represents the growth.
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(ii) Given at time t = 0, there are only 50 adults and no eggs or nymphs, compute
the values of x1, x2 and x3 for the first 6 years.

(iii) Using your answer to (b)(ii), predict the behaviour of the population of locusts.

(c) Consider a population in which both juveniles and adults can reproduce. Denote
v1(t) and v2(t) as the number of juveniles and adults at time t respectively, and let
vt = (v1(t), v2(t))

T. The recurrence relation for vt is given by vt+1 = Avt, where

A =

(
1 4
0.5 0

)
and v0 =

(
a
b

)
.

(i) Find the eigenvalues and eigenvectors of the matrix A.

(ii) By using a suitable diagonalization of the matrix A, express vt in terms of a,
b and t.

(iii) Hence, find the long term proportion of juveniles and adults in this population.

Solution.

Part (a). Let α be a complex eigenvalue. Then α is a root to the characteristic polynomial
χ(λ) of L. Since χ(λ) has real coefficients, by the conjugate root theorem, α∗ is also a
solution to χ(λ) and is hence an eigenvalue too. Let β be the remaining eigenvalue. Since
the product of eigenvalues is equal to the determinant of L, we have

αα∗β = detL = f2s0s1.

But αα∗ = |α|2, so
β =

f2s0s1

|α|2
,

which is clearly a positive number (since we are given f2, s0, s1 > 0).

Part (b).

Part (b)(i). Note that

xt+1 =



x1(t+ 1)
x2(t+ 1)
x3(t+ 1)


 =



1000x3(t)
0.02x1(t)
0.05x2(t)


 =




0 0 1000
0.02 0 0
0 0.05 0





x1(t)
x2(t)
x3(t)


 ,

so the desired matrix is

M =




0 0 1000
0.02 0 0
0 0.05 0


 .

Part (b)(ii).

t x1(t) x2(t) x3(t)

1 50000 0 0

2 0 1000 0

3 0 0 50

4 50000 0 0

5 0 1000 0

6 0 0 50

Part (b)(iii). The population will remain in this cycle, where there are only 50 adults every
third year.
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Part (c).

Part (c)(i). Note that

det(A− λI) =

∣∣∣∣
1− λ 4
0.5 −λ

∣∣∣∣ = λ2 − λ− 2 = (λ+ 1) (λ− 2) ,

so the eigenvalues of A are λ = −1, 2.
Case 1 : λ = −1. Let x = (x, y)T be an eigenvector. Then

(
1− (−1) 4

0.5 −(−1)

)(
x
y

)
=

(
0
0

)
.

Using G.C., x = −2λ and y = λ, where λ ∈ R, so we take x = (−2, 1)T to be the
corresponding eigenvector.
Case 2 : λ = 2. Let x = (x, y)T be an eigenvector. Then

(
1− (2) 4
0.5 −(2)

)(
x
y

)
=

(
0
0

)
.

Using G.C., x = 4µ and y = µ, where µ ∈ R, so we take x = (4, 1)T to be the correspond-
ing eigenvector.

Part (c)(ii). Write A = PDP−1, where

P =

(
−2 4
1 1

)
and D =

(
−1 0
0 2

)
.

Then
vt = Atv0 = PDtP−1v0.

Substituting, we get

vt =

(
−2 4
1 1

)(
(−1)t 0
0 2t

)[
1

6

(
−1 4
1 2

)](
a
b

)
,

which simplifies to

vt =
1

6

(
−2(−1)t(−a+ 4b) + 4 · 2t(a+ 2b)

(−1)t(−a+ 4b) + 2t(a+ 2b)

)
.

Part (c)(iii). The proportion of juveniles to adults in the long term is given by

lim
t→∞

1
6

[
−2(−1)t(−a+ 4b) + 4 · 2t(a+ 2b)

]
1
6 [(−1)t(−a+ 4b) + 2t(a+ 2b)]

= lim
t→∞

4 · 2t(a+ 2b)

2t(a+ 2b)
= 4.
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Assignment B17C

Problem 1.

(a) The matrix A is given by

A =



1 c 3
4 1 0
3 0 1


 .

It is given that A has an eigenvalue of 6. Find the value of c and the remaining
eigenvalues.

(b) Hence, find matrices P and D such that A = PDP−1, where D is a diagonal matrix.

(c) It is given that three functions y1, y2, y3 are the solutions of the following system of
differential equations:

dy1
dx

= y1 + cy2 + 3y3,

dy2
dx

= 4y1 + y2,

dy3
dx

= 3y1 + y3,

where c is the value found in (a).

By considering U = P−1Y, where

U =



u1
u2
u3


 and Y =



y1
y2
y3


 ,

show that the above system can be rewritten as U′ = DU, where

U′ =



du1/dx
du2/dx
du3/dx


 .

You may assume that U′ = P−1Y′, where

Y′ =



dy1/dx
dy2/dx
dy3/dx


 .

(d) Hence, or otherwise, find the general solution of the functions y1, y2, y3 in terms of
x.

Solution.

Part (a). Let the characteristic polynomial of A be χ(λ) = −λ3 +E1λ
2 −E2λ

1 +E3. We
have

E1 = |1|+ |1|+ |1| = 3,

E2 =

∣∣∣∣
1 c
4 1

∣∣∣∣+
∣∣∣∣
1 0
0 1

∣∣∣∣+
∣∣∣∣
1 3
3 1

∣∣∣∣ = −6− 4c,

E3 =

∣∣∣∣∣∣

1 c 3
4 1 0
3 0 1

∣∣∣∣∣∣
= −8− 4c.
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Thus,
χ(λ) = −λ3 + 3λ2 + (6 + 4c)λ− (8 + 4c) .

Since 6 is an eigenvalue, it is a root to the characteristic polynomial. Thus,

χ(6) = −63 + 3
(
62
)
+ (6 + 4c) 6− (8 + 4c) = 0 =⇒ c = 4.

Hence,
χ(λ) = −λ3 + 3λ2 + 22λ− 24 = − (λ− 6) (λ− 1) (λ+ 4) .

The other eigenvalues are thus 1 and −4.

Part (b). Note that

A− λI =



1− λ 4 3
4 1− λ 0
3 0 1− λ


 .

Case 1 : λ = 6. Note that



4
1− 6
0


×




3
0

1− 6


 = 5



5
4
3


 .

We thus take (5, 4, 3)T to be our eigenvector corresponding to λ = 6.
Case 2 : λ = 1. Note that



1− 1
4
3


×




3
0

1− 1


 = 3




0
3
−4


 .

We thus take (0, 3, −4)T to be our eigenvector corresponding to λ = 1.
Case 1 : λ = −4. Note that




4
1− (−4)

0


×




3
0

1− (−4)


 = −5



−5
4
3


 .

We thus take (−5, 4, 3)T to be our eigenvector corresponding to λ = −4.
Thus,

P =



5 0 −5
4 3 4
3 −4 3


 and D =



6 0 0
0 1 0
0 0 −4


 .

Part (c). Rewriting the given system of equations, we have

Y′ = AY = PDP−1Y =⇒ P−1Y′ = DP−1Y.

Since U = P−1Y and U′ = P−1Y′, we have U′ = DU as desired.

Part (d). U′ = DU expands as

U′ =



du1/dx
du2/dx
du3/dx


 =



6 0 0
0 1 0
0 0 −4





u1
u2
u3


 .

This gives us the system of differential equations

du1
dx

= 6u1,
du2
dx

= u2,
du3
dx

= −4u3,
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which we can easily solve:

u1 = c1e
6x, u2 = c2e

x, u3 = c3e
−4x.

Since U = P−1Y, we have

Y = PU =⇒



y1
y2
y3


 =



5 0 −5
4 3 4
3 −4 3






c1e
6x

c2e
x

c3e
−4x


 ,

so

y1 = 5c1e
6x − 5c3e

−4x,

y2 = 4c1e
5x + 3c2e

x + 4c3e
−4x,

y3 = 3c1e
6x − 4c2e

x + 3c3e
−4x.

∗ ∗ ∗ ∗ ∗

Problem 2. The 3×3 non-singular matrix A has eigenvectors e1, e2, e3 with correspond-
ing eigenvalues α, β and γ respectively. The three eigenvectors are linearly independent,
and the eigenvalues are all non-zero real numbers. The eigenvectors of the 3 × 3 matrix
B are also e1, e2, e3 and the corresponding eigenvalues are α − βγ, β − γα and γ − αβ
respectively.

(a) The characteristic equation of A is x3 − x2 + kx+4 = 0, where k is a real constant.
Find an expression for the matrix B but in terms of the matrix A.

The transformation T : R3 → R3 is represented by the matrix B.

(b) Show that {e1, e2, e3} forms a basis for the range of T .

Solution.

Part (a). Note that

x3 − x2 + kx+ 4 = (x− α)(x− β)(x− γ).

By Vieta’s formula, we see that αβγ = −4. Thus, B has eigenvalues α+4/α, β+4/β and
γ + 4/γ, so B = A+ 4A−1.

Part (b). Let λ be an eigenvalue of A. The corresponding eigenvalue of B is λ + 4/λ,
which is non-zero, since

λ+
4

λ
=

1

λ

(
λ2 + 4

)

has no real roots. Hence, B has full rank, so range(T ) = R3. But because the eigenvectors
e1, e2, e3 are linearly independent, they span R3, so they form a basis for range(T ).

∗ ∗ ∗ ∗ ∗

Problem 3. The matrix A is given by

A =




p 5 0
−1 −1 1− p
−1 2 1


 .

(a) Find the possible number(s) of real eigenvalues of A, and the corresponding range
of values of p.
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Joe makes the following assertion: “If p = −1, then A is not diagonalizable.”

(b) Explain, with working, whether Joe’s assertion is true.

Solution.

Part (a). Let χ(λ) = −λ3 + E1λ
2 − E2λ+ E3. Note that

E1 = |p|+ |−1|+ |1| = p,

E2 =

∣∣∣∣
p 5
−1 −1

∣∣∣∣+
∣∣∣∣
−1 1− p
2 1

∣∣∣∣+
∣∣∣∣
p 0
−1 1

∣∣∣∣ = 2p+ 2,

E3 =

∣∣∣∣∣∣

p 5 0
−1 −1 1− p
−1 2 1

∣∣∣∣∣∣
= p (2p+ 2) .

Thus,

χ(λ) = −λ3 + pλ2 − (2p+ 2)λ+ p (2p+ 2) = (−λ+ p)
(
λ2 + 2p+ 2

)
.

Case 1 . If 2p + 2 < 0, i.e. p < −1, then A has three real and distinct eigenvalues,
namely p,

√
− (2p− 2) and

√
− (2p− 2).

Case 2 . If 2p+2 = 0, i.e. p = −1, then A has two real and distinct eigenvalues, namely
p = −1 and 0.
Case 3 . If 2p+ 2 > 0, i.e. p > −1, then A has one real eigenvalue, namely p.

Part (b). When p = −1, A has two eigenvalues, namely −1 and 0. Note that

A− λI =



−1− λ 5 0
−1 −1− λ 2
−1 2 1− λ


 .

Case 1 : λ = −1. Note that



0
5
0


×



−1
0
2


 = 5



2
0
1


 .

The eigenvector corresponding to λ = −1 is thus (2, 0, 1)T.
Case 2 : λ = 0. Note that



−1
5
0


×



−1
−1
2


 = 2



5
1
3


 .

The eigenvector corresponding to λ = 0 is thus (5, 1, 3)T.
Thus, A has two independent eigenvectors when p = −1. Since there are less than 3

independent eigenvectors, A is not diagonalizable, so Joe is correct.
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B18 Correlation and Regression

Tutorial B18

Problem 1. The product moment correlation coefficient is denoted by r. Comment on
the validity of following:

(a) r = 0 for a set of data (x, y) implies x and y are unrelated.

(b) If x is the number of cigarettes smoked per day by lung cancer patients and y is the
age of the lung cancer patients at death, then r = −0.9 implies that smoking more
cigarettes per day causes lung cancer patients to die at a younger age.

(c) The value of r for a sample (x, y) being 1 means that a linear relation holds for x
and y.

Solution.

Part (a). False. r = 0 implies that x and y are not linearly correlated; x and y could be
related by another model (e.g. quadratic).

Part (b). False. Though r = −0.9 implies that x and y have a strong negative linear
correlation, it does not imply a causal relationship between x and y.

Part (c). False. If r = 1, we can say that a linear relation holds for x and y within the
range provided by the sample. However, outside this range, we cannot say that x and y
still share a linear relationship.

∗ ∗ ∗ ∗ ∗

Problem 2. For a random sample of 12 observations of pairs of values (x, y), the equation
of the regression line of y on x is y = 4.82− 2.25x. The sum of the 12 values of x is 20.64
and the product moment correlation coefficient for the sample is −0.3.

(a) Find the sum of the 12 values of y.

(b) Find the estimated value of y when x = 2.8 and comment on the reliability of this
estimate.

Part (a).

Part (b). Note that x = 20.64/12 = 1.72. Since (x, y) lies on the regression line, we have

y = 4.82− 2.25 (1.72) = 0.95,

so the sum of the 12 values of y is 12 (0.95) = 11.4.

Part (c). When x = 2.8, we have

y = 4.82− 2.25 (2.8) = −1.48.

Since |r| = 0.3, there is a weak linear relationship between x and y, so the estimate is
unreliable.
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Problem 3. With the aid of suitable scatter diagrams, describe the differences between
the least squares linear regression line of y on x and that of x on y. Show clearly on these
diagrams, the distances which are used to draw the least squares linear regression lines
from 5 data points. Explain why these distances are squared.

Solution.

1 5
x

y

y on x

The least squares linear regression line of y on x is the line that minimizes the squares
of the vertical distances (dotted lines) between the data points to the line.

1 5
x

y

x on y

The least squares linear regression line of x on y is the line that minimizes the squares
of the horizontal distances (dotted lines) between the data points to the line.
The regression lines aim to minimize the “distance” between the line and the data

points. This is equivalent to minimizing the squared deviations. Hence, the distances
(deviations) are squared.

∗ ∗ ∗ ∗ ∗

Problem 4. An engineering company makes cranes. The numbers, x, sold in each three-
month period for two years, together with the profits, y thousand dollars, on the sale of
these cranes are given in the following table.

x 15 17 13 21 16 22 14 18

y 290 350 270 430 340 410 300 360
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(a) Give a sketch of the scatter diagram for the data as shown on your calculator.

(b) Find x and y and mark the point (x, y) on your scatter diagram.

(c) Calculate the equation of the regression line of y on x, and draw this line on your
scatter diagram. Interpret the gradient of this line in the context of question.

(d) Calculate the product moment correlation coefficient, and comment on its value in
relation to your scatter diagram.

(e) For the next three-month period, the sales target is 20 cranes. Estimate the corre-
sponding profit.

(f) The company’s sales director uses the regression line in part (c) to predict the profit
if 40 cranes were to be sold in a three-month period. Comment on the validity of
this prediction.

Solution.

Part (a).

13 22

270

430

(x, y)

x

y

y on x

Part (b). Using G.C., x = 17 and y = 343.75.

Part (c). Using G.C., the equation of the regression line of y on x is y = 17.083x+53.333.
Each additional crane yields a profit of $17 083.

Part (d). Using G.C., r = 0.969, indicating that x and y have a strong positive linear
correlation.

Part (e). Using the regression line of y on x at x = 20, we have

y = 17.083 (20) + 53.333 = 395,

so the corresponding profit is $395 000.

Part (f). x = 40 lies outside the given range of values (13 ≤ x ≤ 22), so the estimate is
an extrapolation and is hence unreliable.

∗ ∗ ∗ ∗ ∗

Problem 5. A study was carried out to investigate possible links between the weights
of hens (x kg) and their eggs (y g). A sample of 15 hens was chosen at random and the
weights of these hens and their eggs were noted. The scatter diagram and the summarized
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information for the sample are shown below. The linear product moment coefficient was
also computed and found to be 0.200.

0.8 4

16

63

x

y

n
∑

x
∑

x2
∑

y
∑

y2
∑

xy

15 33.9 85.99 690 34432 1591.2

By referring to the scatter diagram and the given value of the linear product moment
correlation coefficient, comment on the appropriateness of a linear model.
One of the points, (4, 16), was identified as an outlier and removed.

(a) For the remaining sample of size 14, recalculate the values in the table above and
determine the value of the linear product moment correlation coefficient. Show your
workings clearly.

(b) Use a suitable regression line to estimate the weight of an egg laid by a hen weighing
4 kg, giving your answer to the nearest grams.

(c) Comment on the reliability of your answer.

Solution.

Part (a). We have

∑
x = 33.9− 4 = 29.9,

∑
x2 = 85.99− 42 = 69.99,
∑

y = 690− 16 = 674,
∑

y2 = 34432− 162 = 34176,
∑

xy = 1591.2− (4)(16) = 1527.2,

so

r =

∑
xy − 1

n

∑
x
∑

y√[∑
x2 − 1

n (
∑

x)2
] [∑

y2 − 1
n (
∑

y)2
] = 0.852.

Part (b). The equation of the regression line y on x is given by

y − y = b (x− x) ,
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where

b =

∑
xy − 1

n

∑
x
∑

y
∑

x2 − 1
n (
∑

x)2
= 14.3063.

Thus,
y = 14.306x+ 17.589.

At x = 4, y = 75, so the weight of an egg laid by a hen weighing 4 kg is approximately 75
g.

Part (c). x = 4 is outside the given range of values (since we removed the point (4, 16)).
Thus, the estimate is an extrapolation and is hence unreliable.

∗ ∗ ∗ ∗ ∗

Problem 6. The table gives the world record time, in seconds above 3 minutes 30 seconds,
for running 1 mile as at 1st January in various years.

Year, x 1930 1940 1950 1960 1970 1980 1990 2000

Time, t 40.4 36.4 31.3 24.5 21.1 19.0 16.3 13.1

(a) Draw a scatter diagram to illustrate the data.

(b) Comment on whether a linear model would be appropriate, referring to both the
scatter diagram and the context of the question.

(c) Explain why in this context a quadratic model would probably not be appropriate
for long-term predictions.

(d) Fit a model of the form ln t = a + bx to the data, and use it to predict the world
record time as at 1st January 2010. Comment on the reliability of your prediction.

Solution.

Part (a).

1,930 2,000

40.4

13.1

x

y

Part (b). Based on the scatter plot, a linear model is appropriate. However, it is unlikely
for the world record time to keep on decreasing at its current rate; one would expect it to
taper off (approach a limiting value). Thus, a linear model is not appropriate in the given
context.

Part (c). The rate of decrease in time will likely decrease, not increase, as a quadratic
model would predict.
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Part (d). The equation of the regression line ln t on x is

ln t = −0.39512x+ 801.67.

At x = 2010, we have t = e2.43589 = 11.426. Hence, the model predicts the world recorded
time, at 1st January 2010, to be 3 minutes and 41 seconds.

∗ ∗ ∗ ∗ ∗

Problem 7.

(a) Sketch a scatter diagram that might be expected for the case when x and y are
related approximately by y = a + bx2, where a is positive and b is negative. Your
diagram should include 5 points, approximately equally spaced with respect to x,
and with all x- and y-values positive.

The table gives the values of seven observations of bivariate data, x and y.

x 2.0 2.5 3.0 3.5 4.0 4.5 5.0

y 18.8 16.9 14.5 11.7 8.6 4.9 0.8

(b) Calculate the value of the product moment correlation coefficient, and explain why
its value does not necessarily mean that the best model for the relationship between
x and y is y = c+ dx.

(c) Explain how to use the values obtained by calculating product moment correlation
coefficients to decide, for this data, whether y = a+ bx2 or y = c+ dx is the better
model.

(d) It is desired to use the data in the table to estimate the value of y for which x = 3.2.
Find the equation of the least-squares regression line of y on x2. Use your equation
to calculate the desired estimate.

Solution.

Part (a).

1 5

29.3

4.6

x

y

Part (b). Using G.C., r = −0.992. The rate of decrease of y is not constant; it seems to
be decreasing at an increasing rate. Hence, a linear model may not be best.
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Part (c). The product moment correlation coefficient for y = a + bx2 is r = −0.99998,
which is much closer to −1 than the coefficient for y = cx+ d, indicating that y = a+ bx2

is the better model.

Part (d). The equation for the regression line of y on x2 is

y = −0.85621x2 + 22.230.

At x = 3.2, y = 13.5.

∗ ∗ ∗ ∗ ∗

Problem 8. A certain metal discolours when exposed to air. To protect the metal against
discolouring, it is treated with a chemical. In an experiment, different quantities, x ml, of
the chemical were applied to standard samples of the metal, and the times, t hours, for
the metal to discolour were measured. The results are given in the table.

x 1.2 2.0 2.7 3.8 4.8 5.6 6.9

t 2.2 4.5 5.8 7.3 7.6 9.0 9.9

(a) Calculate the product moment correlation coefficient between x and t, and explain
whether your answer suggests that a linear model is appropriate.

(b) Draw a scatter diagram for the data.

One of the values of t appears to be incorrect.

(c) Indicate the corresponding point on your diagram by labelling it P , and explain why
the scatter diagram for the remaining points may be consistent with a model of the
form t = a+ b lnx.

(d) Omitting P , calculate the least squares estimate of a and b for the model t = a+b lnx.

(e) Assume that the value of x at P is correct. Estimate the value of t for this value of
x.

(f) Comment on the use of the model in part (d) in predicting the value of t when
x = 8.0.

Solution.

Part (a). Using G.C., r = 0.970. Since |r| is close to 1, there is a strong linear correlation
between x and t, so a linear model is appropriate.

Part (b).

1.2 6.9

2.2

9.9

P

x

t
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Part (c). Removing P , the product moment correlation coefficient of t on lnx is r =
0.99998, indicating a near perfect linear correlation between t and lnx, suggesting that
t = a+ b lnx is a suitable model.

Part (d). Using G.C., a = 1.4247 and b = 4.3966.

Part (e). At x = 4.8, we have

t = 1.4247 + 4.3966 ln 4.8 = 8.3.

Part (f). x = 8.0 is outside the given range of values (1.2 ≤ x ≤ 6.9), hence the estimate
is an extrapolation and will be unreliable.

∗ ∗ ∗ ∗ ∗

Problem 9. Amy is revising for a mathematics examination and takes a different practice
paper each week. Her marks, y% in week x, are as follows:

Week x 1 2 3 4 5 6

Percentage mark y 38 63 67 75 71 82

(a) Draw a scatter diagram showing these marks.

(b) Suggest a possible reason why one of the marks does not seem to follow the trend.

(c) It is desired to predict Amy’s marks on future papers. Explain why, in this context,
neither a linear nor a quadratic model is likely to be appropriate.

It is desired to fit a model of the form ln(L− y) = a+bx, where L is a suitable constant.
The product moment correlation coefficient between x and ln(L− y) is denoted by r. The
following table gives values of r for some positive values of L.

L 91 92 93

r −0.929944 −0.929918

(d) Calculate the value of r for L = 91, giving your answer correct to 6 decimal places.

(e) Use the table and your answer to part (d) to suggest with a reason which of 91, 92
or 93 is the most appropriate value of L.

(f) Using the value for L, calculate the values of a and b, and use them to predict the
week in which Amy will obtain her first mark of at least 90%.

(g) Give an interpretation, in context, of the value of L.



Tutorial B18 1017

Solution.

Part (a).

1 6

38

82

x

y

Part (b). The paper might have been much more difficult than usual, so she scored lower
than usual.

Part (c). There is a maximum score for the papers. Since linear and quadratic models
grow without bound, they are not appropriate.

Part (d). Using G.C., ln(91− y) and x have a product moment correlation coefficient of
r = −0.929744.

Part (e). L = 92 is the most suitable, as its value of r is the closest to −1.

Part (f). The regression line of ln(92− y) on x is

ln(92− y) = −0.27960x+ 4.1045,

so a = 4.1045 and b = −0.27960. If y ≥ 90, then

ln(92− 90) ≥ −0.27960 + 4.1045,

so the least integral x is 13. Hence, Amy will obtain her first mark of at least 90% in week
13.

Part (g). L is the highest mark obtainable by Amy.

∗ ∗ ∗ ∗ ∗

Problem 10. In an experiment, the following information was gathered about air pressure
P , measured in inches of mercury, at different heights above sea level h, measured in feet.

h 2000 5000 10000 15000 20000 25000 30000 35000 40000 45000

P 27.8 24.9 20.6 16.9 13.8 11.1 8.89 7.04 5.52 4.28

(a) Draw a scatter diagram for these values, labelling the axes.

(b) Find, correct to 4 decimal places, the product moment correlation coefficient between

(i) h and P ,

(ii) lnh and P ,

(iii)
√
h and P .
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(c) Using the most appropriate case from part (b), find the equation which best models
air pressure at different heights.

(d) Given that 1 metre = 3.28 feet, re-write your equation from part (c) so that it can
be used to estimate the air pressure when the height is measured in metres.

Solution.

Part (a).

0.2 4.5

·104

4.28

27.8

h

P

Part (b).

Part (b)(i). Using G.C., r = −0.98073.

Part (b)(ii). Using G.C., r = −0.97480.

Part (b)(iii). Using G.C., r = −0.99864.

Part (c). The most appropriate case is
√
h and P , since its value of r is the closest to −1.

Its regression line is given by

P = −0.14687
√
h+ 34.789.

Part (d). The equation becomes

P = −0.14687
√
3.28h+ 34.789 = −0.26599

√
h+ 34.789.

∗ ∗ ∗ ∗ ∗

Problem 11. A website about electric motors gives information about the percentage
efficiency y of motors depending on their power x, measured in horsepower. Xian has
copied the following table for a particular type of electric motor, but he has copied one of
the efficiency values wrongly.

x 1 1.5 2 3 5 7.5 10 20 30 40 50

y 72.5 82.5 84.0 87.4 87.5 88.5 89.5 90.2 91.0 91.7 92.4

(a) Plot a scatter diagram for these values. On your diagram, circle the point that Xian
has copied wrongly.

For parts (b), (c) and (d) of this question you should exclude the point for which Xian
has copied the efficiency value wrongly.
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(b) Explain from your scatter diagram why the relationship between x and y should not
be modelled by an equation of the form y = ax+ b.

(c) Suppose that the relationship between x and y is modelled by an equation of the
form y = c/x+ d, where c and d are constants. State with reason whether each of c
and d is positive or negative.

(d) Find the product moment correlation coefficient and the constants c and d for the
model in part (c).

(e) Use the model y = c/x+ d, with the values of c and d found in part (d), to estimate
the efficiency value (y) that Xian copied wrongly. Give two reasons why you would
expect this estimate to be reliable.

Solution.

Part (a).

1 50

72.5

92.4

x

y

Part (b). y is increasing at a decreasing rate, not at a constant rate as a linear model
would suggest.

Part (c). c is negative since the rate of increase is decreasing. d is positive since the
y-values are positive.

Part (d). Using G.C., r = −0.97955. The regression line of y on 1/x is

y =
−17.484

x
+ 91.750.

Part (e). At x = 3, y = 85.9. x = 3 is within the given range of values (1 ≤ x ≤ 50), so
the estimate is an interpolation. Further, |r| is close to 1. Thus, the estimate is reliable.

∗ ∗ ∗ ∗ ∗

Problem 12. An athletic coach believes that athletes with longer legs can run faster.
He selected 10 of his athletes and recorded their leg lengths, x metres and their times, t
seconds, in a 100 m race. The results are given in the table.

x 0.70 0.76 0.80 0.84 0.85 0.89 0.92 0.95 0.98 1.00

t 13.90 12.73 12.12 11.89 11.80 11.42 11.29 10.94 11.00 10.80

It is given that the value of the product moment correlation coefficient for this data is
−0.963, correct to 3 decimal places.
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(a) State, with a reason, whether the value of the product moment correlation coefficient
would be different if the leg lengths had been measured in centimetres instead.

(b) One of the athletes, Aaron, had missed the race. Assuming a linear model, the coach
decides to use a regression line to estimate Aaron’s 100 m race timing by measuring
his leg length. Explain which of the least squares regression lines, x on t or t on x,
should be used.

(c) Draw a scatter diagram to illustrate the data.

(d) Aaron disagreed with the coach and claimed that x and t do not have a linear
correlation. Comment on Aaron’s statement with reference to the scatter diagram.

(e) To be fair to Aaron, the coach considered another possible model for the relationship
between x and t: t = a+ b/x2, where a and b are constants.

(i) Find the value of the product moment correlation coefficient between t and
1/x2, and hence explain why this new model is better than the linear model.

(ii) The coach wants to train an athlete to run the 100 m race in 10 seconds.
Calculate the equation of the regression line based on the new model, and
use it to estimate the minimum leg length required for the potential athlete.
Comment on the reliability of the estimate.

Solution.

Part (a). r is invariant under scaling, hence r will remain the same even if the leg lengths
were measured in cm.

Part (b). Since the leg length (x) is given, he should use the regression line of t on x.

Part (c).

0.7 1

13.9

10.8

x

t

Part (d). t seems to approach a limiting value as x increases. Hence, Aaron’s statement
is correct.

Part (e).

Part (e)(i). Using G.C., r = 0.9951. Since |r| is now closer to 1 (0.9951 > 0.963), the new
model is better than the linear model.

Part (e)(ii). The regression line t on 1/x2 is given by

t =
2.8616

x2
+ 7.8603.

When t = 10, we have x = 1.16. Since t is outside the given range of values (10.80 ≤ t ≤
13.90), the estimate is an extrapolation and thus unreliable.
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Assignment B18

Problem 1. The table below gives the observed values of bivariate x and y.

x 20 30 34 35 36 40 42

y 32 25 a 22 26 18 19

It is given that the equation of the regression line y on x is y = 43.5− 0.602x.

(a) Find the value of a correct to the nearest integer.

(b) Using the result in part (a), write down the equation of the regression line x on y
and the value of the product moment correlation coefficient between x and y.

Solution.

Part (a). Using G.C., x = 33.857. Since (x, y) lies on the regression line y on x, we have

32 + 25 + a+ 22 + 26 + 18 + 19

7
= y = 43.5− 0.602 (33.857) ,

whence a = 20 (to the nearest integer).

Part (b). Using G.C., the regression line x on y is

x = −1.3176y + 64.349

and the product moment correlation coefficient is r = −0.891.

∗ ∗ ∗ ∗ ∗

Problem 2. A medical statistician wishes to carry out a test to see if there is any
correlation between the head circumference and body length of newborn babies. A random
sample of ten newborn babies have their head circumference, c cm and body length, l cm
measured. This bivariate data is illustrated in the table below.

c 31.0 32.0 33.5 34.0 34.0 51.0 35.0 36.0 36.5 37.5

l 45.0 49.0 49.0 47.0 50.0 34.0 50.0 53.0 51.0 51.0

One particular data has been recorded incorrect with its values of c and l interchanged.
Identify the point.

(a) Make the necessary correction and use a suitable regression line to estimate the
length of a baby whose head has the circumference of

(i) 34.5 cm,

(ii) 45.0 cm.

(b) Give a reason why the estimation found in (a)(ii) may not be a good one.

Solution. The point is (c, l) = (51.0, 34.0).

Part (a). Since c is given, we use the regression line l on c. Using G.C., this is given by

l = 0.86981c+ 19.722.

Part (a)(i). When c = 34.5, l = 49.7 cm.

Part (a)(ii). When c = 45.0, l = 58.9 cm.
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Part (b). c = 45.0 is out of the given range of values (31.0 ≤ c ≤ 37.5). Hence, the
estimate found is an extrapolation, so it is unreliable.

∗ ∗ ∗ ∗ ∗

Problem 3. A car is placed in a wind tunnel and the drag force F for different wind
speeds v, in appropriate units, is recorded. The results are shown in the table.

v 0 4 8 12 16 20 24 28 32 36

F 0 2.5 5.1 8.8 11.2 13.6 17.6 22.0 27.8 33.9

(a) Draw the scatter diagram for these values, labelling the axes correctly.

It is thought that the drag force F can be modelled by one of the formulae

F = a+ bc or F = c+ dv2,

where a, b, c and d are constants.

(b) Find, correct to 4 decimal places, the value of the product moment correlation
coefficient between

(i) v and F ,

(ii) v2 and F .

(c) Use your answers to parts (a) and (b) to explain why of F = a+ bv or F = c+ dv2

is the better model.

(d) It is required to estimate the value of v for which F = 26.0. Find the equation of a
suitable regression line, and use it to find the required estimate. Explain why neither
the regression line of v on F nor the regression line of v2 on F should be used.

Solution.

Part (a).

0 36

0

33.9

v

F

Part (b).

Part (b)(i). Using G.C., r = 0.9860.

Part (b)(ii). Using G.C., r = 0.9906.
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Part (c). Since r = 0.9907 is closer to 1 than r = 0.9860, there is a stronger linear
correlation between v2 and F than v and F . Further, from the scatter diagram of v and
F , there is a slight curvature present, so a linear model may not be suitable for v and F .

Part (d). Using G.C., the regression line F on v2 is given by

F = 0.024242v2 + 3.1957.

When F = 26.0, v = 30.7. Note that we reject v = −30.7 since v ≥ 0.
v is the independent variable while F is the dependent variable, so the regression lines

v on F and v2 on F should not be used.

∗ ∗ ∗ ∗ ∗

Problem 4. The number of employees, y, who stay back and continue in the office t
minutes after 5 pm on a particular day in a company is recorded. The results are shown
in the table.

t 15 30 45 60 75 90 105

y 30 19 15 13 12 11 10

(a) Draw a scatter diagram for these values, labelling the axes clearly.

(b) Find, correct to 4 decimal places, the product moment correlation coefficient between

(i) t and y,

(ii)
√
t and t,

(iii) 1/t and y.

Hence, state with a valid reason, which of the above models is the most appropriate
model of the relationship between t and y.

(c) Using the model you chose in part (b), find the equation for the relationship between
t and y.

(d) Predict, to the nearest whole number, the number of employees who stay back and
continue to work in the office at 7 pm on that particular day. Comment on the
reliability of your prediction.

Solution.

Part (a).

15 105

30

10

t

y



1024 B18 Correlation and Regression

Part (b).

Part (b)(i). Using G.C., r = −0.8745.

Part (b)(ii). Using G.C., r = −0.9288.

Part (b)(iii). Using G.C., r = 0.9993.
The model between 1/t and y is the most appropriate, since its |r| is the closest to 1

among the three, thus it has the strongest linear correlation among the three models.

Part (c). Since t is independent, we use the regression line 1/t on y. Using G.C., this is
given by

y =
344.60

t
+ 7.2048.

Part (d). Note that 7 pm corresponds to t = 120, which gives y = 10 (to the nearest
integer). Thus, the number of employees staying back until 7 pm is 10. However, because
t = 120 is outside the given range of values (15 ≤ t ≤ 105), the estimate is an extrapolation
and hence unreliable.
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B19 Non-Parametric Tests

Tutorial B19

Problem 1. In your own words, explain the rejection criterion for the Sign Test using
the test statistic K−, the number of negative signs, for the left-tail, right-tail and two-tail
test.

Solution. Let m be the population median and let m0 be a fixed value.
For the left-tail test, H0: m = m0 and H1: m < m0. In this case, H0 will be rejected

if the observed number of negatives, k−, is too large (i.e. more than some critical value
corresponding to the level of significance).

P[K− ≥ k−] ≤
α

100
.

For the right-tail test, H0: m = m0 and H1: m > m0. In this case, H0 will be rejected if
k− is too small (i.e. less than some critical value corresponding to the level of significance).

P[K− ≤ k−] ≤
α

100
.

For the two-tail test, H0: m = m0 and H1: m ̸= m0. In this case, H0 will be rejected
if k− is too small or too large (i.e. less/greater than some critical value corresponding to
the level of significance).

2min{P[K− ≥ k−] ,P[K− ≤ k−]} ≤ α

100
.

∗ ∗ ∗ ∗ ∗

Problem 2. Show that if the sign test is applied to n = 5 pairs, the null hypothesis
will never be rejected in favour of a two-sided alternative hypothesis at the 5% level of
significance, no matter how extreme the sample results are. Why does this imply there is
no point in carrying out this test when n = 5 (or less)?

What is the corresponding value of n in the case where the null hypothesis will never
be rejected in favour of a one-sided alternative hypothesis at the 5% level of significance.

Solution. Let m be the population median, and let m0 be a fixed value. Our hypotheses
are H0: m = m0, H1: m ̸= m0. Let K+ be the number of observed data greater than m0.
Under a sign test,

K+ ∼ B

(
5,

1

2

)
.

In the extreme case where all observed data aligns with our alternative hypothesis, say
(without loss of generality) k+ = 0, then the p-value is 2P[K+ ≤ 0] = 2/25, which is
greater than the 5% significance level we took. Hence, we will never reject H0. Since there
is only one possible outcome, there is no point in carrying out this test when n = 5. A
similar situation occurs when n ≤ 5. The corresponding lowest p-value is 2/2n, which is
always greater than 5% for all n ≤ 5.

For a one-sided H1, the lowest p-value is now 1/2n. For H0 to never be rejected, we
require

1

2n
≥ 0.05 =⇒ n ≤ 4.
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Problem 3. In the Wilcoxon matched-pair signed rank test, why should P +Q = 1
2n(n+

1)?

Solution. P corresponds to the sum of the positive ranks while Q corresponds to the sum
of the negative ranks. Altogether, P +Q corresponds to the sum of all n ranks, so

P +Q = 1 + 2 + · · ·+ n =
n(n+ 1)

2
.

∗ ∗ ∗ ∗ ∗

Problem 4. The manufacturers of an electric water heater claim that their heaters will
heat 500 litres of water from a temperature of 10◦C to a temperature of 55◦C in, on
average, no longer than 12 minutes. In order to test this claim, 14 randomly chosen
heaters are bought and the times (x minutes) to heat 500 litres of water from 10◦C to
55◦C are measured. Correct to 1 decimal place, the results are as follows.

13.2, 12.2, 11.4, 14.5, 11.6, 12.9, 12.4, 10.3, 12.3, 11.8, 11.0, 13.0, 12.1, 12.6.

Stating, in each case, any assumption necessary for validity, test the manufacturer’s claim
at the 10% significance level using

(a) a t-test,

(b) a sign test.

Solution.

Part (a). Let m be the median time taken, in minutes. Our hypotheses are H0: m = 12,
H1: m > 12. We perform a sign test at the 10% significance level. Let K+ be the number
of values larger than 12. Under H0, K+ ∼ B(14, 1/2). From the sample, k+ = 9, so the
p-value is 0.21, which is greater than the 10% significance level. Thus, we do not reject
H0 and conclude there is insufficient evidence at the 10% significance level to reject the
manufacturer’s claim.

Part (b). LetX be the time taken in minutes. Our hypotheses are H0: µ = 12, H1: µ > 12.
Assuming that X is normally distributed, we perform a t-test at the 10% significance level.
From the sample, x = 12.236 and s = 1.0315. Under H0,

X − 12

s/
√
14

∼ t(13).

The p-value is 0.204, which is greater than our significance level of 10%, hence we do not
reject H0 and conclude there is insufficient evidence at the 10% significance level to reject
the manufacturer’s claim.

∗ ∗ ∗ ∗ ∗

Problem 5. In order to compare the effectiveness of two mail delivery services, A and B,
two samples of 12 identical deliveries were arranged. The number of hours taken for each
delivery was recorded, with the following results, to the nearest half hour.

A 26.0 21.0 35.0 24.5 26.0 31.0 28.5 18.5 25.0 27.5 15.5 29.5

B 26.5 20.0 27.0 27.0 24.5 34.0 33.5 20.5 28.5 32.0 19.5 37.0

(a) It is required to test, at the 5% significance level, whether the data indicate that,
on average, service A takes a shorter time for its deliveries than service B. Without
assuming that the data are samples taken from normal distributions, perform a
suitable test, clearly stating your hypothesis.
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(b) Service A claims that its average delivery time is 25 hours. Use a non-parametric
test, at the 10% significance level, to test this claim against the alternative hypothesis
that the average delivery time exceeds 25 hours.

Solution.

Part (a). We perform a Wilcoxon matched-pair signed rank test. Let m be the median of
B−A, in hours. Our hypotheses are H0: m = 0 and H1: m > 0. We take a 5% significance
level.
From the sample, the ranks are

B −A 0.5 −1.0 −8.0 2.5 −1.5 3.0 5.0 2.0 3.5 4.5 4.0 7.5

Rank 1 2 12 5 3 6 10 4 7 9 8 11

Let P and Q be the sum of the ranks corresponding to the positive and negative dif-
ferences respectively. Let T be the smaller of the two. From the above table, we see
that p = 61 and q = 17, so t = 17. From the formula list, with n = 12, we reject H0 if
t ≤ 17. Since t = 17 ≤ 17, we reject H0 and conclude there is sufficient evidence at a 5%
significance level that service A takes a shorter time for its deliveries than service B.

Part (b). We perform a sign test. Let m′ be the median time taken by service A’s
deliveries, in hours. Our hypotheses are H0: m′ = 25, H1: m′ > 25. We take a 10%
significance level. Let K+ be the number of values larger than 25. From the sample, the
signs are

+, −, +, −, +, +, +, −, 0, +, −, +,

so k+ = 7. We discard the 0 and reduce our sample size to n = 11. Under H0,
K+ ∼ B(11, 1/2). Our p-value is thus P[K+ ≥ 7] = 0.274, which is greater than our
10% significance level. Thus, we do not reject H0 and conclude there is insufficient evi-
dence at a 10% significance level that the median time taken by service A is greater than
25 hours.

∗ ∗ ∗ ∗ ∗

Problem 6. The weights of fish in two populations were compared by analysing the
differences in the weights of a sample of pairs of fish (one from each population) matched
by length. The weight differences, in g, for 10 pairs of fish were as follows:

11, −13, −125, −210, −73, 2, 3, −147, −12, −4.

Give a reason why a parametric test is unsuitable in the context of this question.
Perform two tests, each at 5% significance level, to test for a difference in average weights

of fish in the two populations, where one test

(a) ignores the magnitudes of the differences; while the other

(b) uses both the signs and magnitudes of the difference.

Draw an overall conclusion from (a) and (b).

Solution. The differences in the weights of the fish vary wildly, and hence do not seem
to follow a familiar distribution. Thus, we cannot assume any underlying distribution, so
a parametric test is unsuitable in the context of this question.
Let m be the median difference in weights, in grams. Our hypotheses are H0: m = 0,

H1: m ̸= 0. We take a 5% significance level.
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Part (a). We perform a sign test. Let K+ be the number of positive differences. From the
sample, we see that k+ = 3. Under H0, K+ ∼ B(10, 1/2), so the p-value is 2P[K+ ≤ 3] =
0.344, which is greater than our significance level of 5%. Thus, we do not reject H0 and
conclude there is insufficient evidence at the 5% significance level that there is a difference
in the average weights of fish in the two populations.

Part (b). We perform a Wilcoxon matched-pair signed rank test. From the given data,
the ranks are

Differences 11 −13 −125 −210 −73 2 3 −147 −12 −4

Rank 4 6 8 10 7 1 2 9 5 3

Let P and Q be the sum of ranks corresponding to the positive and negative differences
respectively. Let T be the smaller of the two. From the above table, we see that p = 7
and q = 48, so t = 7. From the formula list, we reject H0 if t ≤ 8. Since t = 7 ≤ 8, we
reject H0 and conclude there is sufficient evidence at the 5% significance level that there
is a difference in the average weights of fish in the two populations.
Overall, we use the result of the Wilcoxon matched-pair signed rank test and reject H0.

This is because the positive values are relatively small (11, 2, 3) while the negatives are
relatively large (−125, −210, −147), thus considering the magnitude is very important.

∗ ∗ ∗ ∗ ∗

Problem 7. Briefly describe circumstances in which each of the following are used:

(a) parametric tests of significance,

(b) non-parametric tests of significance.

It is believed that the material from which running tracks are made has a significant
effect on the times taken for athletes to run specified distances. In order to test this, 12
athletes ran on two tracks over a distance of 200 m. One track was made from synthetic
material and the other from cinders. The times, in seconds, are given in the table.

Athlete A B C D E F G H I J K L

Synthetic 26.5 26.3 24.9 25.7 26.5 24.8 26.1 27.0 24.4 24.7 24.6 24.5

Cinder 27.3 26.4 26.6 25.1 26.0 27.0 26.8 27.0 25.4 26.7 25.0 24.7

(c) Use a Wilcoxon matched-pair signed rank test to show that, at the 1% significance
level, there is insufficient evidence that the median time on the synthetic track is
lower than that on the cinder track. State the lowest significance level at which it
can be concluded that the median time on the synthetic track is lower.

(d) By using a sign test, show that, at the 10% significance level, the median times on
each of the tracks could be 26 seconds.

Solution.

Part (a). Parametric tests are used when we can make assumptions about the underlying
distribution of the parameter we wish to test, e.g. when the data is normally distributed.

Part (b). Non-parametric tests are used when we cannot make assumptions about the
underlying distribution of the parameter we wish to test, e.g. when the data is normally
distributed and there is a small sample size.

Part (c). Consider the difference “cinder” − “synthetic”. Let m be the median time of
these differences, measured in seconds. We perform a Wilcoxon matched-pair signed rank
test. Our hypotheses are H0: m = 0 and H1: m > 0. We take a 1% significance level.
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From the sample, the ranks are given by

C − S 0.8 0.1 1.7 −0.6 −0.5 2.2 0.7 0 1 2 0.4 0.2

Rank 7 1 9 5 4 11 6 – 8 10 3 2

We discard the 0 and reduce our sample size to n = 11. Let P and Q be the sum of
the ranks corresponding to the positive and negative differences. Let T be the smaller of
the two. From the above table, p = 57 and q = 9, so t = 9. From the formula list, we
reject H0 if t ≤ 7. Since t = 9 > 7, we do not reject H0 and conclude there is insufficient
evidence at the 1% significance level that the median time on the synthetic track is lower
than that on the cinder track.
The lowest significance level at which it can be concluded that the median time on the

synthetic track is lower is 2.5%.

Part (d). Let m′ be the median time taken on a track. We perform two sign tests. Our
hypotheses are H0: m′ = 26 and H1: m′ ̸= 26. We take a 10% level of significance. Let
K+ be the number of values larger than 26.
Case 1 : Synthetic Track. From the data, the signs are

+, +, −, −, +, −, +, +, −, −, −, −,

so k+ = 5. Under H0, K+ ∼ B(12, 1/2), so the p-value is 2P[K+ ≤ 5] = 0.774, which is
greater than our 10% significance level. Thus, we do not reject H0 and conclude there is
insufficient evidence at the 10% significance level that the median time on the synthetic
track differs from 26 seconds.
Case 2 : Cinder Track. From the data, the signs are

+, +, +, −, +, +, +, +, −, +, −, −,

so k+ = 8. Under H0, K+ ∼ B(12, 1/2), so the p-value is 2P[K+ ≥ 8] = 0.388, which is
greater than our 10% significance level. Thus, we do not reject H0 and conclude there is
insufficient evidence at the 10% significance level that the median time on the cinder track
differs from 26 seconds.

∗ ∗ ∗ ∗ ∗

Problem 8. For the case of paired samples, explain briefly

(a) the circumstances under which the t-test would be appropriate; and

(b) the relative advantages and disadvantages of the sign test and of the Wilcoxon
matched-pair signed rank test.

A teacher in charge of bowling wants to find out if switching to a Class III coach affected
the bowling team’s A division results. To do that, he randomly selected 8 students and
compared their A division results in 2016 (taught by the Class II coach) and in 2017
(taught by the Class III coach). The total pin falls of their results in 2016 and 2017 are
recorded in the table below.

Student 1 2 3 4 5 6 7 8

Total pin fall (2016) 1758 1961 1787 1626 1600 1859 1764 1680

Total pin fall (2017) 1757 1964 2023 1984 1610 1857 1990 1744

(c) State explicitly suitable null and alternative hypothesis.

(d) Using the sign test, carry out a test of the null hypothesis at the 5% significance
level, and state your conclusions.
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(e) Using the Wilcoxon matched-pair signed rank test, carry out a test of the null
hypothesis at the 5% significance level, and state your conclusions.

(f) Comment on the conclusions of the 2 tests.

Solution.

Part (a). A t-test is appropriate if the differences can be assumed to be normally dis-
tributed.

Part (b). The sign test is easier to compute, while the Wilcoxon matched-pair signed rank
test is more powerful, as it considers both sign and magnitude.

Part (c). Consider the difference “pinfall in 2017” − “pinfall in 2016”. Let m be the
median of these differences. Our hypotheses are H0: m = 0 and H1: m ̸= 0.

Part (d). We perform a sign test at the 5% significance level. Let K+ be the number of
positive differences. From the data, the signs are

−, +, +, +, +, −, +, +,

so k+ = 6. Under H0, K+ ∼ B(8, 1/2), so the p-value is 2P[K+ ≥ 6] = 0.289, which is
greater than our 5% significance level. This, we do not reject H0 and conclude there is
insufficient evidence at the 5% significance level that the average pinfall differs between
2016 and 2017.

Part (e). We perform a Wilcoxon matched-pair signed rank test at the 5% significance
level. From the data, the ranks are

Difference −1 3 236 358 10 −2 226 64

Rank 1 3 7 8 4 2 6 5

Let P and Q be the sum of ranks corresponding to the positive and negative differences
respectively. Let T be the smaller of the two. From the above table, p = 33 and q = 3,
so t = 3. From the formula list, we reject H0 if t ≤ 3. Sicne t = 3 ≤ 3, we reject H0 and
conclude there is sufficient evidence at the 5% significance level that the average pinfall
differs between 2016 and 2017.

Part (f). The Wilcoxon matched-pair signed rank test is more powerful than the sign test
as it takes both sign and magnitude into account. Thus, we use the result of the Wilcoxon
matched-pair signed rank test, so we reject H0.

∗ ∗ ∗ ∗ ∗

Problem 9. A device for reducing air conditioning costs has been produced, and in order
to test its effectiveness, 11 households were selected at random and the device was fitted.
The annual costs for the year before fitting the device and for the year after fitting the
device are shown in teh table. It may be assumed that the price of electricity had not risen
over the two-year period and that the weather patterns in the two years were similar.

Cost before ($) 756 650 855 533 796 1128 591 656 976 844 681

Cost after ($) 711 608 833 551 776 1096 608 648 942 859 644

Stating your null and alternative hypotheses, perform two non-parametric tests, each
at the 5% significance level, to determine whether the average cost had decreased after
fitting the device.
State how the conclusion in the Wilcoxon matched-pairs signed rank test would be

affected if the price of electricity had risen in the year after fitting the device.
The manufacturer claims that the average reduction in the annual bill would be at least

$35. Test the manufacturer’s claim using a 5% significance level.
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Solution. Consider the difference “cost after” − “cost before”. Let m be the median
difference in cost. Our hypotheses are H0: m = 0, H1: m < 0. We take a 5% significance
level.
Case 1 : Sign Test. Let K− be the number of negative differences. From the data, the

signs are
−, −, −, +, −, −, +, −, −, +, −,

so k− = 8. Under H0, K− ∼ B(11, 1/2), so the p-value is P[K− ≥ 8] = 0.113, which is
greater than our 5% significance level. Thus, we do not reject H0 and conclude there is
insufficient evidence at the 5% significance that the average cost decreased after fitting
the device.
Case 2 : Wilcoxon Matched-Pair Signed Rank Test. From the data, the ranks are

Difference −45 −42 −22 18 −20 −32 17 −8 −34 13 −37

Rank 11 10 6 4 5 7 3 1 8 2 9

Let P and Q be the sum of ranks corresponding to the positive and negative difference
respectively. Let T be the smaller of the two. From the above table, p = 9 and q = 57, so
t = 9. From the formula list, we reject H0if t ≤ 13. Since t = 9 ≤ 13, we reject H0 and
conclude there is sufficient evidence at the 5% significance that the average cost decreased
after fitting the device.
If the price of electricity had risen in the year after fitting the device, the difference

between the cost before and the cost after will generally decrease throughout. This results
in more positive ranks, therefore the value of t associated with the Wilcoxon matched-pair
signed rank test will likely increase, so the conclusion may change.
Let m be the median cost reduction. Our hypotheses are H0: m = 35, H1: m < 35. We

perform a sign test at a 5% significance level. Let K− be the number of cost reductions
less than $35. From the data, the signs are

+, +, −, −, −, −, −, −, −, −, +,

so k− = 8. Under H0, K− ∼ B(11, 1/2), so the p-value is P[K− ≥ 8] = 0.113, which is
greater than our 5% significance level. Thus, we do not reject H0 and conclude there is
insufficient evidence at the 5% significance level that the average cost reduction is less
than $35.
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Assignment B19

Problem 1. Explain why it is better to use a Wilcoxon matched-pair signed rank test,
rather than a sign test, to test for a difference between two populations.

The task completion times, in minutes, for a random sample of 12 operatives using two
different methods are given in the table below.

Operative 1 2 3 4 5 6 7 8 9 10 11 12

Method A 9.1 8.6 8.2 9.0 8.7 9.1 9.5 8.9 10.0 9.6 9.5 8.3

Method B 8.4 8.8 7.6 9.4 9.2 8.2 9.4 7.9 8.7 8.4 8.7 8.0

(a) Use both tests mentioned above to test, at the 5% significance level, whether Method
B results in a smaller median completion time than Method A. Comment on the
results.

(b) Test, at the 5% significance level, whether the median time for Method A is 8.3
minutes.

Solution. A Wilcoxon matched-pair signed rank test accounts for the sign and magnitude
of the differences between samples of two populations, while a sign test only accounts for
the sign. Hence, a Wilcoxon matched-pair signed rank test is more powerful than a sign
test.

Part (a). Consider the differences “Method A” − “Method B”. Let m be the median of
these differences. Our hypotheses are H0: m = 0, H1: m > 0. We take a 5% significance
level.

A − B 0.7 −0.2 0.6 −0.4 −0.5 0.9 0.1 1 1.3 1.2 0.8 0.3

Rank 7 2 6 4 5 9 1 10 12 11 8 3

Case 1 : Sign Test. Let K+ be the number of positive differences. From the above table,
k+ = 9. Under H0, K+ ∼ B(12, 1/2). Hence, the p-value is P[K+ ≥ 9] = 0.0730, which is
greater than our 5% significance level. Thus, we do not reject H0 and conclude there is
insufficient evidence to claim at a 5% significance level that Method B results in a smaller
median completion time than Method A.
Case 2 : Wilcoxon Matched-Pair Signed Rank Test. Let P and Q be the sum of ranks

corresponding to the positive and negative differences respectively. Let T be the smaller
of the two. From the above table, p = 67 and q = 11, so t = 11. From the formula list,
we reject H0 if t ≤ 17. Since t = 11 ≤ 17, we reject H0 and conclude there is sufficient
evidence to claim at a 5% significance level that Method B results in a smaller median
completion time than Method A.
Since the Wilcoxon test is more powerful than the sign test, we should reject H0.

Part (b). Let m′ be the median of completion times for Method A. We perform a sign
test at a 5% significance level. Our hypothesis are H0: m′ = 8.3, H1: m′ ̸= 8.3. Let K+

be the number of completion times for Method A that takes longer than 8.3 minutes.
From the data, the signs are

+, +, −, +, +, +, +, +, +, +, +, 0,

so k+ = 10. We discard the 0 and reduce our sample size to n = 11. Under H0, K+ ∼
B(11, 1/2), so the p-value is 2P[K+ ≥ 10] = 0.0117, which is less than our 5% significance
level. Thus, we reject H0 and conclude there is sufficient evidence to claim at a 5%
significance level that the median time for Method A differs from 8.3 minutes.
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Problem 2. A group of 14 students from the 19/20 DHS FM course participated in an
experiment on writing speeds using dominant and non-dominant hands. Each student was
to write with each of their 2 hands in 30 seconds the alphabets A to Z, and repeating if
time permits. Out of the 14, 7 were randomly assigned to use the dominant hand, followed
by the non-dominant hand whereas the rest were to use the non-dominant followed by the
dominant.

The number of alphabets each student wrote were recorded in the table below.

Student 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Dominant 57 52 60 46 26 63 54 65 67 48 78 70 45 40

Non-dominant 35 21 20 16 23 31 17 28 36 41 33 22 13 25

Taking the 14 students as a random sample of the DHS 19/20 cohort, test at the 1%
significance level, the hypothesis that DHS students are able to write, on average, at least
3 times as fast using their dominant hand as compared to their non-dominant hand.

Solution. Consider the difference “Dominant” − 3×“Non-dominant”, and let m be its
median. Our hypotheses are H0: m = 0 and H1: m < 0. We perform a sign test at a 1%
significance level. Let K+ be the number of positive differences.

From the data, the signs of the differences are

−, −, 0, −, −, −, +, −, −, −, −, +, +, −,

so k+ = 3. We also discard the 0 and reduce our sample size to n = 13. Under H0,
K+ ∼ B(13, 1/2), so the p-value is P[K+ ≤ 3] = 0.0461, which is greater than our 1%
significance level. Thus, we do not reject H0 and conclude there is insufficient evidence to
claim at the 1% significance level that the students are able to write, on vaerage, at least
3 times as fast using their dominant hand as compared to their non-dominant hand.
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Mathematical Proofs and Reasoning

An Introduction to the Mathematical Vernacular

Problem 1. Prove that the sum of even and even is even.

Proof. Let a and b be even. By definition, there exists a′, b′ ∈ Z such that a = 2a′ and
b = 2b′. Thus,

a+ b = 2a′ + 2b′ = 2
(
a′ + b′

)
= 2c,

where c = a′ + b′. Since c is an integer, by definition, a + b is even. Hence, the sum of
even and even is even.

∗ ∗ ∗ ∗ ∗

Problem 2. Prove that the sum of even and odd is odd.

Proof. Let a be even and let b be odd. By definition, there exists a′, b′ ∈ Z such that
a = 2a′ and b = 2b′ + 1. Thus,

a+ b = 2a′ +
(
2b′ + 1

)
= 2

(
a′ + b′

)
+ 1 = 2c+ 1,

where c = a′+ b′. Since c is an integer, by definition, a+ b is odd. Hence, the sum of even
and odd is odd.

∗ ∗ ∗ ∗ ∗

Problem 3. Prove that the sum of odd and odd is even.

Proof. Let a and b be odd. By definition, there exists a′, b′ ∈ Z such that a = 2a′ + 1 and
b = 2b′ + 1. Thus,

a+ b = 2
(
a′ + 1

)
+ 2

(
b′ + 1

)
= 2

(
a′ + b′ + 2

)
= 2c,

where c = a′ + b′ + 2. Since c is an integer, by definition, a+ b is even. Hence, the sum of
odd and odd is even.
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An Introduction to Proofs

Problem 1. Let m and N be positive integers. Prove that m
√
N is either an integer or

an irrational.

Proof. Let x = m
√
N . Let A be the nearest integer to x.

Consider (x−A)n. By the binomial theorem,

(x−A)n =

n∑

k=0

(
n

k

)
xk(−A)n−k.

Since xm = N ∈ Z, the above n-degree polynomial reduces to an m− 1 degree polynomial
with integer coefficients, i.e.

(x−A)n =
m−1∑

k=0

ckx
k, (1)

where {ck} are integers.
Now, suppose x ∈ Q. Then we can write x = p/q, where p, q ∈ Z and q ̸= 0. Substituting

this into (1), we get

(x−A)n =

m−1∑

k=0

ck

(
p

q

)k

=

m−1∑

k=0

ckp
k

qk
.

By combining all terms into a single fraction, we can write

(x−A)n =
l

pm−1
,

where l is an integer. Thus, the only possible values that (x−A)n can take on are

. . . ,
−2

pm−1
,

−1

pm−1
, 0,

1

pm−1
,

2

pm−1
, . . . .

Observe that 1/pm−1 is constant with respect to n, i.e. p and m do not depend on n.
Since |x−A| < 1, for arbitrarily large n, we can make (x− A)n as close to 0 as we wish.
In other words, we can always find an n large enough such that

|(x−A)n| < 1

pm−1
.

Thus, (x−A)n must be 0, whence x = A ∈ Z. Hence, if x is rational, it must necessarily
be an integer. This completes the proof.

∗ ∗ ∗ ∗ ∗

Problem 2. Prove that π is irrational.

Proof. Seeking a contradiction, suppose π = p/q, where p, q ∈ Z with q ̸= 0.
Consider the function sinx. It is well known that sinx

• is non-negative for all x ∈ [0, π], with equality only when x = 0 or x = π; and

• attains a maximum at π/2.
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Now consider the 2nth degree polynomial f(x) = xn(p − qx)n. Clearly, f(x) is non-
negative on [0, π] and has roots only at x = 0 and x = π. Additionally, f(x) attains a
maximum of (π/2)2n at x = π/2. Thus, f(x) also satisfies the above two properties.
Consider now the integral

I =

∫ π

0
f(x) sinx dx.

Since both f(x) and sinx are non-negative on [0, π], it follows that I must also be non-
negative on [0, π]. Additionally, since f(x) sinx ̸≡ 0 on [0, π], we have the strict lower
bound

0 < I.

We can also bound I from above:

I =

∫ π

0
f(x) sinx dx ≤

∫ π

0

(π
2

)2n
dx =

π2n+1

22n
≤ p2n+1.

Putting both inequalities together,

0 < I ≤ p2n+1. (1)

We now evaluate I. Repeatedly integrating by parts, we get

I =
2n+1∑

k=0

[
f (k)(x) sin(−k−1)(x)

]π
0
=

2n+1∑

k=0

[
f (k)(π) sin(−k−1)(π)− f (k)(0) sin(−k−1)(0)

]
.

Note that the sum ends at k = 2n+ 1 since f (k) = 0 for k ≥ 2n+ 2. Also observe that

sin(−k−1)(x) =





− cosx, k ≡ 0 (mod 4)

− sinx, k ≡ 1 (mod 4)

cosx, k ≡ 2 (mod 4)

sinx, k ≡ 3 (mod 4)

.

The odd k terms hence vanish. We are thus left with

I =
n∑

k=0

(−1)k+1
[
f (2k)(π) + f (2k)(0)

]
.

We now consider f (2k)(x). Firstly, notice that f(x) = f(π − x). Hence, by differentiating
this repeatedly, we get f (2k)(0) = f (2k)(π), so

I = 2
n∑

k=0

(−1)k+1f (2k)(0).

Now, observe that when expanded, f(x) is of the form

f(x) =
2n∑

i=n

aix
i,

where {ai} are integers. Repeatedly differentiating this yields

f (k)(x) = xn (px− q)n =
2n∑

i=n

ai(i)(i− 1) . . . (i− k + 1)xi−k.
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Thus,

f (k)(0) =

{
0, 0 ≤ k < n

akk!, n ≤ k ≤ 2n
.

Thus, f (k)(0) is divisible by k! and by extension n! too (since n ≤ k). Hence, I is divisible
by n!, i.e. I = Cn! for some integer C. From Inequality (1), we have

0 < Cn! < p2n+1.

However, n! grows much faster than p2n+1. Thus, for sufficiently large n, the inequality
does not hold, a contradiction. Hence, π must be irrational.

∗ ∗ ∗ ∗ ∗

Problem 3. Prove that e is irrational.

Proof. By definition,

e =
∞∑

n=0

1

n!
.

Seeking a contradiction, suppose e is rational, i.e. e = a/b, where a, b ∈ Z and b ̸= 0.
Define x as

x = b!

(
e−

b∑

n=0

1

n!

)
. (1)

Replacing e with a/b, we get

x = b!

(
a

b
−

b∑

n=0

1

n!

)
= a(b− 1)!−

b∑

n=0

b!

n!
.

Since b!/n! is an integer for 0 ≤ n ≤ b, it follows that x is also an integer.
Using the definition of e, we can rewrite (1) as

x = b!

( ∞∑

n=0

1

n!
−

b∑

n=0

1

n!

)
=

∞∑

n=b+1

b!

n!
.

It follows that x > 0. Now, observe that

x =
∞∑

n=b+1

b!

n!

=
1

b+ 1
+

1

(b+ 1)(b+ 2)
+

1

(b+ 1)(b+ 2)(b+ 3)
+ . . .

<
1

b+ 1
+

1

(b+ 1)2
+

1

(b+ 1)3
+ . . .

=
1

b+ 1

(
1

1− 1
b+1

)
=

1

b
≤ 1.

Hence, 0 < x < 1 but x ∈ Z, a contradiction. Thus, e must be irrational.
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Problem 4. Let a and b be positive integers such that b is not a perfect power of a. Prove
that loga b is irrational.

Proof. Seeking a contradiction, suppose loga b is rational. Then loga b = m/n, where
m,n ∈ Z and n ̸= 0. Note that m,n > 0 since a, b > 1. Clearly, we have

b = am/n =⇒ bn = am.

Since b is not a perfect power of a, this implies that the integer k = bn = am has two
distinct prime factorizations, which is a clear contradiction of the Fundamental Theorem
of Algebra. Hence, loga b must be irrational.
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Problem-Solving

Problem 1. A warden wishes to give a group of 10 prisoners a change to be released
early. He tells the group that the following day, he will line all 10 of them on a flight of
stairs such that each prisoner faces downwards and can only see the heads of the prisoners
in front of him. The warden will then put a hat, either black or white, on each of the
prisoners’ heads. The prisoners, starting from the highest stair, are then to ‘guess’ the
colour of the hat on their own head, calling out only “‘Black”’ or “White”; and they can
hear all preceding guesses. If at least 9 of them match what they say with the colour of
that hat on their head, the whole group is released early. The warden gives the group
time to discuss a strategy beforehand.

(a) Is there a strategy to guarantee that at least nine of them will get the colour of the
hat correct?

(b) What if the warden used black, white, and red hats?

(c) What if there are now m prisoners and n different hats, where m ≥ n.

Solution.

Part (a). Label the prisoners n = 1, 2, . . . , 10, starting from the prisoner on the lowest
stair. Let un be the colour of Prisoner n’s hat, where 0 represents a white hat, and 1
represents a black hat. Let Sn = u1 + u2 + · · ·+ un−1 be the sum of ‘hats’ visible by the
nth prisoner. For instance, if Prisoner 10 sees 7 black hats and 2 white hats, then S10 = 7.

The prisoners can guarantee an early release. The strategy is to let Prisoner 10 say
“Black” if S10 is even, and “White” if S10 is odd. This enables the 9 other prisoners to
logically deduce the colour of their own hat by comparing the parity of black hats with
what they see.

1
2

3
4

5
6

7
8

9
10

To illustrate this, consider the above illustration. Here, Prisoner 10 sees 4 black hats
(S10 = 4), thus Prisoner 10 says “Black”. This tells the other prisoners that S10 ≡ 0
(mod 2). Since Prisoner 9 only sees 3 black hats (S9 = 3), he deduces that

u9 = S10 − S9 ≡ 1 (mod 2) =⇒ u9 = 1,

i.e. his hat is black. He thus says “Black”. It is now Prisoner 8’s turn. From the preceding
answers, he deduces that S9 is odd, whence

u8 = S9 − S8 ≡ 0 (mod 2) =⇒ u8 = 0,

i.e. his hat is white. A chain of similar reasoning continues all the way to Prisoner 1, at
which point Prisoners 1 – 9 have correctly guessed the colours of their hats.

Part (b). Following a similar argument, the prisoners can simply number the colours as
1, 2, . . . , n and consider Sk−Sk−1 modulo n, from which Prisoners 1 – (m−1) will be able
to deduce their own hat colour.
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Problem 2. Two players are playing a coin game. An even number of coins of non-unique
integer values are placed in random order in a row. The players take turns collecting a
coin from either end of the row. The player with the highest total value of his collected
coins wins. Does either player have a winning strategy, and what is the strategy if there
is one?

Solution. Player 1 can guarantee a win or a draw. Index the coins from 1 to 2n. Observe
that Player 1 will always have the choice of an odd and even index, e.g. coins 1 (odd)
and 2n (even). Thus, the indices of the coins available to Player 2 will have the same
parity, and it will be opposite that of the index taken by Player 1 on the previous turn.
For instance, if Player 1 takes coin 1 at the start (odd parity), then Player 2 must choose
between coins 2 and 2n (both even parity). This means that Player 1 can take all coins
whose index is of the same parity, e.g. all coins with odd index, or all coins with even
index. Player 1 can thus take the parity which results in a higher sum and win the game.
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Problem Set 1

Problem 1. Determine whether each of the following statements is true or false. Give a
direct proof if it is true, and give a counter-example if it is false.

(a) The set of prime numbers is closed under addition.

(b) The set of positive rational numbers is closed under division.

Solution. (a) is false (since 3 and 5 are prime but their sum, 8, is not), while (b) is true.

Proof of (b). Let a/b and c/d be positive rational numbers, i.e. a, b, c and d are positive
integers. Then

a/b

c/d
=

ad

bc
.

Since both ad and bc are positive integers, it follows that ad/bc is a positive rational
number. Hence, the set of positive rational numbers is closed under division.

∗ ∗ ∗ ∗ ∗

Problem 2. Let a, b and c be non-zero integers. Use the definition of divisibility and write
down a direct proof for each of the following statements. (Indicate every step clearly).

(a) If a divides b, then ac divides bc.

(b) If a divides b and b divides a, then a = ±b.

Solution.

Proof of (a). Since a divides b, we have

b = ka

for some integer k. Multiplying this equation through by c,

bc = k(ac).

Hence, by the definition of divisibility, ac divides bc.

Proof of (b). Since a divides b, we have

b = k1a

for some integer k1. Similarly, since b divides a, we have

a = k2b

for some integer k2. Substituting this into the first equation,

b = k1k2b =⇒ k1k2 = 1.

Since k1 and k2 are integers, we either have k1 = k2 = 1 or k1 = k2 = −1. Thus, a = b or
a = −b, i.e. a = ±b.



Problem Set 1 1045

Problem 3. Show that 3 divides n(n+ 1)(2n+ 1) for any integer n.
Extension. Let k ≥ 3. Let S and P be the sum and product of k−1 consecutive integers,
starting from n. Prove that k | PS for all n ∈ Z. (The original problem is the k = 3
case).

Proof 1. Observe that

n(n+ 1)(2n+ 1) = 6
n∑

k=1

k2 = 3

(
2

n∑

k=1

k2

)
.

Since 2
∑n

k=1 k
2 is an integer, n(n+ 1)(2n+ 1) is a multiple of 3.

Proof 2. Observe that

n(n+ 1)(2n+ 1) = 2(n− 1)(n)(n+ 1) + 3n(n+ 1).

This must be divisible by 3, since (n−1)(n)(n+1) (three consecutive integers) and 3n(n+1)
are both divisible by 3.

Proof of Extension. Note that

P = n(n+ 1)(n+ 2) . . . (n+ k − 2).

Trivially, k | P for all n ≡ 0, 2, 3, . . . , k − 1 (mod k). We hence consider only n ≡ 1
(mod k). Note that

S =
k−1∑

i=0

(n+ i) = (k − 1)n+
(k − 1)(k − 2)

2
.

Hence,

SP = n(n+ 1) . . . (n+ k − 2)

[
(k − 1)n+

(k − 1)(k − 2)

2

]

≡ (1)(2) . . . (k − 1)

[
−1 +

(k − 1)(k − 2)

2

]
= (k − 1)!

(
k(k − 3)

2

)
(mod k).

For all k ≥ 3, we have 2 | (k − 1)!, whence 1
2(k − 3)(k − 1)! is an integer, thus SP ≡ 0

(mod k), i.e. k | SP .

∗ ∗ ∗ ∗ ∗

Problem 4. Prove that for all integers a, if the remainder is NOT 2 when a is divided
by 4, then 4 | a3 + 23a.

Solution. Observe that

a3 + 23a = (a− 1)a(a+ 1) + 24a ≡ (a− 1)a(a+ 1) (mod 4).

Case 1 . If a ≡ 0 (mod 4), i.e. a is a multiple of 4, then a3 + 23a is trivially a multiple
of 4.
Case 2 . If a ≡ 1, 3 (mod 4), i.e. a is odd, then both a − 1 and a + 1 are even and

contribute at least one factor of 2 each to (a− 1)a(a+ 1). Hence, a3 + 23a is divisible by
22 = 4.

Case 3 . If a ≡ 2 (mod 4), then a contributes only one factor of two. Additionally, both
a− 1 and a+ 1 are odd and do not contribute any factors of two. Thus, (a− 1)a(a+ 1)
has only one factor of 2 and is not divisible by 4.
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Problem 5. For any integer n > 1, let the standard factored form of n be given by

n = pk11 pk22 . . . pkrr .

Prove that n is a perfect square if and only if k1, k2, . . . , kr are all even integers.

Solution.

Proof. We begin by proving the backwards case. Suppose k1, k2, . . . , kr are all even inte-
gers. We can write ki = 2k′i for all 1 ≤ i ≤ r. Then

n = pk11 pk22 . . . pkrr = p
2k′1
1 p

2k′2
2 . . . p2k

′
r

r =
(
p
k′1
1 p

k′2
2 . . . pk

′
r

r

)2
.

Since p
k′1
1 p

k′2
2 . . . p

k′r
r is an integer, n is a perfect square.

We now prove the forwards case. Since n is a perfect square, we have n = m2 for some
positive integer m. Let the prime factorization of m be given by

m = q
k′1
1 q

k′2
2 . . . qk

′
r

r ,

where qi are primes and k′1 are non-negative integers. Then

n =
(
q
k′1
1 q

k′2
2 . . . qk

′
r

r

)2
= q

2k′1
1 q

2k′2
2 . . . q2k

′
r

r .

Note that this is exactly the prime factorization of n. Also notice that all the exponents
are multiples of 2 and are hence even.

∗ ∗ ∗ ∗ ∗

Problem 6. For all integers a and b, prove that 3 | ab if and only if 3 | a or 3 | b.
Solution.

Proof. The backwards case is trivial. We hence only consider the forwards case. We prove
this claim using the contrapositive. Suppose 3 ∤ a and 3 ∤ b. Then

a ≡ n1 (mod 3), b ≡ n2 (mod 3),

where n1 and n2 are integers with 0 < n1, n2 < 2. Without loss of generality, suppose
n1 ≤ n2.
Applying standard properties of modular arithmetic, we obtain

ab ≡ n1n2 (mod 3).

Case 1 . Suppose n1 = n2 = 1. Then ab ≡ 1 ̸≡ 0 (mod 3).
Case 2 . Suppose n1 = 1, n2 = 2. Then ab ≡ 2 ̸≡ 0 (mod 3).
Case 3 . Suppose n1 = n2 = 2. Then ab ≡ 4 ≡ 1 ̸≡ 0 (mod 3).
In any case, ab ̸≡ 0 (mod 3), i.e. 3 does not divide ab. By the contrapositive, it follows

that 3 divides ab if 3 divides a or b.

∗ ∗ ∗ ∗ ∗

Problem 7. Let a, b and n be integers with n > 1. Suppose a ≡ b (mod n). Prove the
following:

• ka ≡ kb (mod kn) for any positive integer k.
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• If m is a common divisor of a, b and n, and 1 < m < n, then

a

m
≡ b

m
(mod

n

m
).

Solution.

Proof of (a). Since a ≡ b (mod n), we have a = cn + b for some integer c. Multiplying
this through by k, we have ak = c(nk) + bk. Hence, ak ≡ bk mod nk.

Proof of (b). Since a ≡ b (mod n), we have a = cn + b for some integer c. Since m is a
common divisor of a, b and n, we have a = ma′, b = mb′ and n = mn′ for integers a′, b′

and m′. Dividing through by m, we get

a

m
=

cn

m
+

b

n
=⇒ a′ = cn′ + b′.

Hence, a′ ≡ b′ (mod n′), i.e.
a

m
≡ b

m
(mod

n

m
).



1048 Mathematical Proofs and Reasoning

Problem Set 2

Problem 1. Is each of the following statements true or false? Give a proof if it is true,
and give a counter-example if it is false.

(a) For each pair of real numbers x and y, if x+ y is irrational, then x is irrational and
y is irrational.

(b) For each pair of real numbers x and y, if x+ y is irrational, then x is irrational or y
is irrational.

Solution. The first statement is false: Take x = 0 and y =
√
2. Then x + y =

√
2 is

irrational, but x = 0 is rational.
The second statement is true.

Proof of (b). Suppose x and y are rational. Then x + y is also rational (Q is closed
under addition). Thus, by the contrapositive, if x+ y is irrational, either x or y must be
irrational.

∗ ∗ ∗ ∗ ∗

Problem 2. Determine whether each of the following real numbers is rational or irrational.
Justify your answers.

(a)
√
3 +

√
5;

(b)
√
2 +

√
8;

(c)
(
1 +

√
2
)
/
(
1 +

√
3
)
.

Solution.

Part (a). Seeking a contradiction, suppose
√
3 +

√
5 is rational. Then

√
3−

√
5 =

32 − 52√
3 +

√
5

is also rational. Thus, both
√
3 and

√
5 are rational. But 3 and 5 are not perfect squares,

so by P6, they must be irrational, a contradiction. Thus,
√
3 +

√
5 must be irrational.

Part (b). Note that √
2 +

√
8 =

√
2 + 2

√
2 = 3

√
2.

Seeking a contradiction, suppose 3
√
2 is rational. Then

√
2 must also be rational. But 2

is not a perfect square, so by P6,
√
2 is irrational, a contradiction. Thus,

√
2 +

√
8 must

be irrational.

Part (c). Rationalizing the fraction,

1 +
√
2

1 +
√
3
=

(
1 +

√
2
) (

1−
√
3
)

(
1 +

√
3
) (

1−
√
3
) =

1 +
√
2−

√
3−

√
6

−8
.

Using an identical argument as part (a), one can show that the numerator is irrational,
whence the original fraction must also be irrational.

∗ ∗ ∗ ∗ ∗

Problem 3. Use proof by contradiction to show that the sum of squares of two odd
integers is not divisible by 4.
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Proof. Seeking a contradiction, suppose there exist two odd integers k1 = 2n1 + 1 and
k2 = 2n2 + 1 such that k21 + k22 ≡ 0 (mod 4). However,

k21 + k22 = (2n1 + 1)2 + (2n2 + 1)2 =
(
4n2

1 + 4n1 + 1
)
+
(
4n2

2 + 4n2 + 1
)
≡ 2 (mod 4).

Thus, 0 ≡ 2 (mod 4), a contradiction. Hence, the sum of squares of two odd integers is
not divisible by 4.

∗ ∗ ∗ ∗ ∗

Problem 4. Prove that there are no integers a and n with n ≥ 2 and a2 + 1 = 2n.

Proof. Note that the only possible remainders of a2+1 (mod 4) are 1 and 2. However, for
n ≥ 2, we have 2n ≡ 0 (mod 4). Since 0 ̸≡ 1, 2 (mod 4), the desired statement holds.

∗ ∗ ∗ ∗ ∗

Problem 5.

(a) Let p be a prime number greater than 2. Write down the possible remainders of p
when divided by 4.

Fermat’s Little Theorem states that if p is prime and a is an integer, which is not
divisible by p, then ap−1 ≡ 1 (mod p).

(b) Use Fermat’s Little Theorem to prove that if p is a prime number greater than 2,
and there exists an integer z such that z2 ≡ −1 (mod p), then p is not congruent to
3 (mod 4).

(c) Write down the possible remainders of w2 when divided by 8, where w is an integer.

Solution.

Part (a). All primes greater than 2 are odd. Thus, the only possible remainders when p
is divided by 4 are 1 and 3.

Proof of (b). Since z2 ≡ −1 ̸≡ 0 (mod p), we know that p ∤ z. Thus, by Fermat’s Little
Theorem, we have

zp−1 ≡ 1 (mod p).

Squaring the given congruence, we also have

z4 ≡ 1 (mod p).

Seeking a contradiction, suppose p is congruent to 3 (mod 4). Then p− 1 = 4k + 2 for
some integer k. Thus,

zp−1 = z4k+2 =
(
z4
)k

z2 ≡ 1k(−1) = −1 (mod p),

which is only possible for p = 2, a contradiction. Thus, p cannot be congruent to 3 (mod
4).

Part (c). The possible remainders of w2 when divided by 8 are 0, 1, and 4.

∗ ∗ ∗ ∗ ∗

Problem 6. The Unique Factorization Theorem states that every integer n > 1 has a
unique standard factored form, i.e. there is exactly one way to express

n = pk11 pk22 . . . pktt
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where p1 < p2 < · · · < pt are distinct primes and k1, k2, . . . , kt are some positive integers.
Use the Unique Factorization Theorem to prove that, if a positive n is not a perfect

square, then
√
n is irrational.

Proof. We prove the claim via the contrapositive. Suppose
√
n is rational, where n is an

integer. Write
√
n = a/b for integers a, b with b ̸= 0. Squaring, we get

n =
a2

b2
=⇒ b2n = a2. (1)

Let νp(z) represent the power of p in the factorization of an integer z. From (1), we
have

νp
(
b2
)
+ νp(n) = νp

(
a2
)

=⇒ 2νp(b) + νp(n) = 2νp(a) =⇒ νp(n) = 2 [νp(a)− νp(b)] ,

which is even. Hence, all prime factors of n have an even power, thus n is a perfect square.
Hence, by the contrapositive, if n is not a perfect square, then

√
n is irrational.
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Problem Set 3

Problem 1. Use Mathematical Induction to prove the following:

(a) For each positive integer n, 1(1!) + 2(2!) + 3(3!) + · · ·+ n(n!) = (n+ 1)!− 1.

(b) For each positive integer n, (−7)n − 9n is divisible by 16.

(c) For each positive integer n with n ≥ 3,
(
1 + 1

n

)n
< n.

(d) For each positive integer n ≥ 6, n3 < n!.

Proof of (a). Let n ∈ N, and let P (n) be the statement

P (n) :
n∑

i=1

i(i!) = (n+ 1)!− 1.

The base case P (1) is trivial:

1∑

i=1

i(i!) = 1 = (1 + 1)!− 1.

Suppose that P (k) is true for some k ∈ N. Then

k+1∑

i=1

i(i!) =
k∑

i=1

i(i!) + (k + 1)(k + 1)!

= [(k + 1)!− 1] + (k + 1)(k + 1)! = (k + 2)(k + 1)!− 1 = (k + 2)!− 1.

Thus, P (k) =⇒ P (k + 1). Hence, by the principle of mathematical induction, P (n) is
true for all n ∈ N.

Proof of (b). Let n ∈ N and let P (n) be the statement

P (n) : 16 | (−7)n − 9n.

The base case P (1) clearly holds, since (−7)1−91 = −16, which is divisible by 16. Suppose
that P (k) is true for some k ∈ N. Then

(−7)k+1 − 9k+1 = (−7)(−7)k − 9(9)k = (−7)
[
(−7)k − 9k

]
− 16(9)k

≡ (−7)(0)− (0)(9n) = 0 (mod 16).

Thus, P (k) =⇒ P (k + 1). Hence, by the principle of mathematical induction, P (n) is
true for all n ∈ N.

Alternative proof of (b). Let un = (−7)n−9n. Then un is the general solution of a second-
order homogenous linear recurrence relation with characteristic equation (x+7)(x− 9) =
x2 − 2x− 63. Thus,

un = 2un−1 − 63un−2 (1)

for n ≥ 2 with initial conditions u0 = 0 and u1 = −16. Since both u0 and u1 are divisible
by 16, and (1) is homogenous, it follows that 16 | un = (−7)n − 9n for all n ∈ Z≥0.
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Proof of (c). Let n ∈ Z≥3, and let P (n) be the statement

P (n) :

(
1 +

1

n

)n

< n.

The base case P (3) is trivial: (
1 +

1

3

)3

=
64

27
< 3.

Suppose that P (k) is true for some k ∈ Z≥3. Then

(
1 +

1

k + 1

)k+1

<

(
1 +

1

k

)k+1

< k

(
1 +

1

k

)
= k + 1.

Thus, P (k) =⇒ P (k + 1). Hence, by the principle of mathematical induction, P (n) is
true for all n ∈ Z≥3.

Proof of (d). We begin by proving that n3 − (n + 1)2 > 0 for all integers n ≥ 6. Firstly,
observe that

n3 − (n+ 1)2 = n3 − n2 − 2n− 1 =
(
n2 − 2

)
(n− 1)− 3,

which is increasing for n ≥ 6. Thus,

n3 − (n+ 1)2 ≥
(
62 − 2

)
(6− 1)− 3 > 0.

Let P (n) be the statement that n3 < n!. We now prove that P (n) is true for all integers
n ≥ 6. The base case is trivial:

63 = 216 < 720 = 6!.

Suppose that P (k) is true for some integer k ≥ 6. Then

(k + 1)3 = (k + 1)(k + 1)2 < (k + 1)k3 < (k + 1)k! = (k + 1)!.

Thus, P (k) =⇒ P (k + 1). Hence, by the principle of mathematical induction, P (n) is
true for all n ∈ Z≥6.

∗ ∗ ∗ ∗ ∗

Problem 2. Let f1, f2, . . . , fn, . . . be the Fibonacci sequence. That is, the sequence is
defined recursively by

fn = fn−1 + fn−2

for all n ≥ 3, with initial conditions f1 = 1 and f2 = 1.
Prove each of the following:

(a) For each positive integer n, f5n is a multiple of 5.

(b) For each positive integer n, f1 + f3 + · · ·+ f2n−1 = f2n.

(c) For each positive integer n, 2fn + 3fn+1 = fn+4.

(d) For each positive integer n, fn is even if and only if 3 | n.

Solution. We first prove two identities involving the Fibonacci sequence:
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Lemma 35.0.1 (Honsberger’s Identity). For all m,n ∈ N0, fm+n = fm+1fn + fmfn−1.

Proof. fk counts the number of ways to climb k − 1 steps, taking either 1 or 2 steps each
time. Now consider climbing m+ n− 1 steps.

Case 1 : We step on the mth step. We effectively climb m steps before climbing another
n− 1 steps. This gives a total of fm+1fn possibilities.

Case 2 : We do not step on the (m − 1)th step. We effectively climb the first m − 1
steps, are forced to jump 2 steps to the (m + 1)th step, and climb the remaining n − 2
steps. This gives a total of fmfn−1 possibilities.

Thus, the total number of ways to climb m+ n− 1 is

fm+n = fm+1fn + fmfn−1.

Lemma 35.0.2. For all m,n ∈ Z>2, m | n ⇐⇒ fm | fn.

Proof. Let n = km− r, where k, r ∈ Z with k ∈ N and 0 ≤ r < m. Note that m | n ⇐⇒
r = 0. Let P (k) be the statement

P (k) : r = 0 ⇐⇒ fm | fkm−r.

Base case: Note that fm ≥ fm−r with equality only when r = 0. Thus, r = 0 ⇐⇒ fm |
fm−r, hence P (1) holds.
Suppose P (k) is true for some k ∈ N. Let fkm−r = afm + b, where a, b ∈ Z and

0 ≤ b < fm. Consider f(k+1)m−r. Using Honsberger’s identity

f(k+1)m−r = fkm−rfm−1 + fmfkm−r+1 = (afm + b) fm−1 + fmfkm−r+1

= fm (afm−1 + fkm−r+1) + bfm−1.

It is well-known fact that fm and fm−1 are always coprime. Hence,

fm | f(k+1)m−r ⇐⇒ fm | bfm−1 ⇐⇒ fm | b ⇐⇒ b = 0.

However, by our induction hypothesis,

r = 0 ⇐⇒ fm | fkm−r ⇐⇒ b = 0.

Thus,
r = 0 ⇐⇒ fm | f(k+1)m−r.

Hence, P (k) =⇒ P (k + 1), and by the principle of mathematical induction, P (k) holds
for all k ∈ N.

Part (a). By Lemma 35.0.2, 5 = f5 | f5n for all positive integers n.

Part (b). Let P (n) be the statement that

P (n) : f1 + f3 + · · ·+ f2n−1 = f2n.

The base case P (1) clearly holds, since f1 = 1 = f2. Now suppose P (k) holds for some
k ∈ N. Then

f1 + f3 + · · ·+ f2(k+1)−1 = f1 + f3 + · · ·+ f2k−1 + f2k+1 = f2k + f2k+1 = f2k+2 = f2(k+1).

Hence, P (k) =⇒ P (k + 1). Thus, by the principle of mathematical induction, P (n) is
true for all n ∈ N.
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Part (c). Using Honsberger’s identity, fn+4 = f3fn + f4fn+1 = 2fn + 3fn+1.

Part (d). By Lemma 35.0.2, 2 = f3 | fn if and only if 3 | n.
∗ ∗ ∗ ∗ ∗

Problem 3. Euclid’s lemma states that for any prime p and any integers a and b, if p | ab
and p ∤ a, then p | b.

Use mathematical induction together with Euclid’s lemma to prove that for any prime
p and any integers q1, q2, . . . , qn, if p | q1q2 . . . qn, then p | qi for some i.

Proof. Let P (n) be the statement that for any prime p and any integers q1, q2, . . . , qn, if
p | q1q2 . . . qn, then p | qi for some i.

The base case P (1) is trivial: since p | q1, we are done. The case P (2) is also trivial:
suppose p | q1q2. If p | q1, we are done. If not, by Euclid’s lemma, p | q2 and we are done.
Now suppose that P (k) holds for some k ∈ N. Suppose p | q1q2 . . . qk+1. If p | qk+1,

we are done. Else, p | q1q2 . . . qk, then by our inductive hypothesis, there exists some
1 ≤ i ≤ k such that p | qi and we are done. Thus, P (k) =⇒ P (k+1) and by the principle
of mathematical induction, P (n) holds for all n ∈ N.

∗ ∗ ∗ ∗ ∗

Problem 4. Suppose you want to prove P (n) is true (only) for all integers n ≥ 7 that
are not divisible by 4 using a version of mathematical induction as follows:

i. Basis step: P (a), P (b), P (c) are true; and

ii. Inductive step: (∀k ∈ Z+)P (k) =⇒ P (k + d) is true.

What should the values for a, b, c, d?

Solution. Clearly, a = 7, b = 9, c = 10 and d = 4.

∗ ∗ ∗ ∗ ∗

Problem 5. Find the mistake in the following “proof” that purports to show that every
non-negative integer power of every non-zero real number is 1.

“Proof”. Let r be any non-zero real number and let the predicate P (n) be

P (n) : rn = 1.

Basis step: P (0) is true because r0 = 1 by definition of 0-th power.
Inductive step: P (k − 1) and P (k) =⇒ P (k + 1).
Suppose that rk−1 = 1 and rk = 1. This is the induction hypothesis. We must show

that rk+1 = 1. Now

rk+1 = rk+k−(k−1) =
rk · rk
rk−1

=
1 · 1
1

= 1.

Thus, rk+1 = 1. Hence, the inductive step is proven.

Solution. Since the inductive step requires P (k− 1) and P (k), the basis step should also
show that P (1) holds. However, P (1) is clearly false, since r1 ̸= 1 in general.
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Problem Set 4

Problem 1. Prove that for every pair of irrational numbers p and q such that p < q,
there is an irrational x such that p < x < q.

Proof. Since Q is dense in R, it follows that Q+
√
2 is also dense in R. Hence, there must

exist some irrational x (of the form q +
√
2, where q ∈ Q) such that p < x < q.

∗ ∗ ∗ ∗ ∗

Problem 2. Show that there is one and only one integer t such that t, t+2, t+4 are all
prime numbers.

Solution. Let T = {t, t+ 2, t+ 4}. Observe that T forms a complete residue system
modulo 3. Hence, 3 ∈ T .
Case 1 . If t = 3, then T = {3, 5, 7}, which are all prime.
Case 2 . If t+ 2 = 3, then t = 1 which is not prime.
Case 3 . If t+ 4 = 3, then t = −1 which is not prime.
Thus, t, t+ 2 and t+ 4 are all prime only when t = 3.

∗ ∗ ∗ ∗ ∗

Problem 3. Show that there exist integers x and y that satisfy

(2n+ 1)x+ (9n+ 4)y = 1

for every integer n.

Proof 1. Observe that

gcd(2n+ 1, 9n+ 4) = gcd(2n+ 1, n) = gcd(1, n) = 1.

Thus, by Bézout’s identity, there exist integers x and y such that

(2n+ 1)x+ (9n+ 4)y = 1

for all integers n.

Proof 2. Rearranging, we get

x =
1− (9n+ 4)y

2n+ 1
.

Let y = 2k for some integer k. Then

x =
1− 18nk − 8k

2n+ 1
=

k + 1

2n+ 1
− 9k.

Taking k = 2n, we have x = 1 − 9k = 1 − 18n and y = 2k = 4n. Indeed, one can verify
that

(2n+ 1)x+ (9n+ 4)y = (2n+ 1)(1− 18n) + (9n+ 4)(4n) ≡ 1.

∗ ∗ ∗ ∗ ∗

Problem 4. Given n real numbers a1, a2, . . . , an, show that there exists an ai (1 ≤ i ≤ n)
such that ai is greater than or equal to the mean value of the n numbers.
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Solution. Let m be the mean of the n real numbers. Seeking a contradiction, suppose
there does not exist an ai such that ai ≥ m. Then ak < m for all 1 ≤ k ≤ n, from which
it follows that

m =
a1 + a2 + · · ·+ an

n
<

m+m+ · · ·+m

n
= m,

a contradiction. Thus, there must exist some ai greater than or equal to m.

∗ ∗ ∗ ∗ ∗

Problem 5. Determine whether the two statements below are true or false. Justify your
answers.

(a) There is an irrational number a such that for all irrational numbers b, ab is rational.

(b) For every irrational number a, there is an irrational number b such that ab is rational.

Solution.

Part (a). The statement is false. There are uncountably many irrationals, so there are
uncountably many products ab, where b is irrational. However, there are countably many
rationals. Hence, there must exist some irrational b such that ab is irrational.

Part (b). The statement is true. Take b = 1/a, which is irrational if a is irrational. Then
ab = 1 which is rational.

∗ ∗ ∗ ∗ ∗

Problem 6. Prove that there are infinitely many prime numbers that are congruent to 3
modulo 4.

Solution. Seeking a contradiction, suppose there are finitely many prime numbers con-
gruent to 3 modulo 4. Label them p1, p2, . . . , pn. Now consider

P = 2 (p1p2 . . . pn) + 1 ≡ 2 (3n) + 1 ≡ 3 (mod 4).

By construction, pi ∤ P for all 1 ≤ i ≤ n. Thus, P must also be a prime with residue 3
modulo 4, a contradiction. Thus, there are infinitely many primes congruent to 3 modulo
4.

∗ ∗ ∗ ∗ ∗

Problem 7. Prove that, for any positive integer n, there is a perfect square m2 such that
n ≤ m2 ≤ 2n.

Solution. Seeking a contradiction, suppose there exists an n ∈ Z+ such that there does
not exist a perfect square in [n, 2n]. Then there exists some m ∈ Z such that m2 < n and
2n < (m+ 1)2. Putting the two inequalities together,

2m2 < 2n < (m+ 1)2 =⇒ 2m2 + 2 ≤ (m+ 1)2 =⇒ (m− 1)2 ≤ 0,

which immediately implies m = 1. However, we can rule this possibility out, since 1 ≤
12 ≤ 2. Thus, such an m cannot exist, a contradiction. Thus, for all n ∈ Z+, there must
exist a perfect square m2 such that n ≤ m2 ≤ 2n.

∗ ∗ ∗ ∗ ∗

Problem 8.

(a) For any positive integer a and real number t, it is given that t can be written as
an+ p where n is an integer and a > p ≥ 0. Prove that

∫ a

0

⌊
x+ t

a

⌋
dx = t.
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(b) For any positive integers a and b and real number x,

(i) prove that ⌊⌊x/a⌋
b

⌋
=
⌊ x

ab

⌋
,

and

(ii) find ∫ ab

0
(fg(x)− gf(x)) dx,

where f(x) = ⌊(x+ a)/b⌋ and g(x) = ⌊(x+ b)/a⌋.

Solution.

Part (a). Writing t = an+ p, we have

∫ a

0

⌊
x+ t

a

⌋
dx =

∫ a

0

⌊
x+ an+ p

a

⌋
dx =

∫ a

0

(
n+

⌊
x+ p

a

⌋)
dx = an+

∫ a

0

⌊
x+ p

a

⌋
dx.

Now observe that ⌊
x+ p

a

⌋
=

{
0, x ∈ [0, a− p],

1, x ∈ [a− p, a].

Thus,

∫ a

0

⌊
x+ t

a

⌋
dx = an+

∫ a

0

⌊
x+ p

a

⌋
dx = an+

(∫ a−p

0
0 dx+

∫ a

a−p
1 dx

)
= an+ p = t.

Part (b).

Part (b)(i). Write x = a(bd+ r2) + r1, where d, r1, r2 ∈ Z with 0 ≤ r1 < a and 0 ≤ r2 < b.
Then ⌊⌊x/a⌋

b

⌋
=

⌊
bd+ r2

b

⌋
= d,

and ⌊ x

ab

⌋
=

⌊
abd+ ar2 + r1

ab

⌋
= d+

⌊
ar2 + r1

ab

⌋
.

Since
ar2 + r1 ≤ a(b− 1) + (a− 1) = ab− 1 < ab,

it follows that ⌊ x

ab

⌋
= d.

Thus, ⌊⌊x/a⌋
b

⌋
= d =

⌊ x

ab

⌋
,

as desired.

Part (b)(ii). Note that

fg(x) =

⌊⌊(x+ b)/a⌋+ a

b

⌋
=

⌊⌊
(x+ b+ a2)/a

⌋

b

⌋
=

⌊
x+

(
b+ a2

)

ab

⌋
.

Using the result from part (a), we have

∫ ab

0
fg(x) dx =

∫ ab

0

⌊
x+

(
b+ a2

)

ab

⌋
dx = b+ a2.
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Similarly,

gf(x) =

⌊⌊(x+ a)/b⌋+ b

a

⌋
=

⌊⌊
(x+ a+ b2)/b

⌋

a

⌋
=

⌊
x+

(
a+ b2

)

ab

⌋
.

Using the result from part (a),

∫ ab

0
gf(x) dx =

∫ ab

0

⌊
x+

(
a+ b2

)

ab

⌋
dx = a+ b2.

Thus, ∫ ab

0
(fg(x)− gf(x)) dx =

(
b+ a2

)
−
(
a+ b2

)
.

∗ ∗ ∗ ∗ ∗

Problem 9. Let S = {1, 2, . . . , 50} and let D be a subset of S of size 27.

(a) Show that there are 25 subsets of S of the form {a, a+ 5} whose union is S. Apply
the pigeonhole principle to prove that D must contain two numbers that differ by
exactly 5.

(b) Prove that D must contain two numbers that differ by exactly 6. Show that D does
not necessarily contain two numbers that differ by exactly 7.

(c) Determine the maximum possible size of a subset of S that contains no four consec-
utive numbers.

(d) Determine the maximum possible size of a subset of S that contains no two numbers
whose sum is a multiple of 10.

Solution.

Part (a). Let
L = {1, . . . , 5} ∪ {11, . . . , 15} ∪ · · · ∪ {41, . . . 45} .

For each a ∈ L, define la = {a, a+ 5}. Then

S =
⋃

a∈L
la.

Since |L| = 25, there are 25 subsets of S of the form {a, a+ 5} whose union is S.
All 27 elements of D must be placed into the 25 subsets la. Since 27 > 25, by the

pigeonhole principle, at least one subset must have both its elements in D. That is, D
contains two numbers that differ by exactly 5.

Part (b). Let

L = {1, . . . , 6} ∪ {13, . . . , 18} ∪ · · · ∪ {37, . . . , 42} ∪ {43, 44} .

For each a ∈ L, define la = {a, a+ 6}. Note that |L| = 26, and

S =
⋃

a∈L
la.

All 27 elements of D must be placed into the 26 subsets la. Since 27 > 26, by the
pigeonhole principle, at least one subset must have both its elements in D. That is, D
contains two numbers that differ by exactly 6.
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However, D does not necessarily contain two numbers that differ by exactly 7. For
instance, the set

{1, . . . , 7} ∪ {15, . . . , 21} ∪ {29, . . . , 35} ∪ {43, . . . , 48}

contains 27 elements such that no two differ by exactly 7.

Part (c). Let D be a subset of S that contains no four consecutive numbers. At best,
every group of four consecutive numbers have 3 elements in D, i.e. |D| ≤ 3

4 × |S| = 37.5,
i.e. |D| ≤ 37. Indeed, we can construct such a set with 37 elements:

D = {1, 2, 3} ∪ {5, 6, 7} ∪ {9, 10, 11} ∪ · · · ∪ {45, 46, 47} ∪ {49, 50} .

Part (d). Let D be a subset of S that contains no two numbers whose sum is a multiple of
10. Minimally, D contains all integers that have units digit {1, 2, 3, 4} or {6, 7, 8, 9} (both
have the same number of elements). We can then add on a number with units digit 0 and
another with units digit 5; we cannot have multiple numbers with units digit 0 or 5 since
we can sum them to get a multiple of 10. Thus, the maximum size of D is

max |D| = 4× 50

10
+ 2 = 22.
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Problem Set 5

Problem 1. Let a, b and n > 1 be integers. Prove that if m > 1 is a divisor of n and
a ≡ b (mod n), then a ≡ b (mod m).

Proof. Since m is a divisor of n, there exists some integer k such that n = mk. Since a ≡ b
(mod n), there exists some integer l such that

a− b = ln = (lk)m.

Since lm is an integer, by definition, a ≡ b (mod m).

∗ ∗ ∗ ∗ ∗

Problem 2. Prove that if 3 ∤ a, then 3 | a2 + 5.

Proof. Since 3 ∤ a, by Fermat’s Little Theorem, a2 + 5 ≡ 1 + 5 ≡ 0 (mod 3). Hence,
3 | a2 + 5.

∗ ∗ ∗ ∗ ∗

Problem 3. If m and n are any two integers with the same parity, then 4 | m2 − n2.

Proof. Since m and n have the same parity, both m + n and m − n are even. Hence,
m2 − n2 = (m+ n)(m− n) have two factors of 2, thus it is divisible by 4.

∗ ∗ ∗ ∗ ∗

Problem 4. For any integers n, if 3 divides 1 + n+ n2, then n ≡ 1 (mod 3).
Extension. If p is a prime and p | 1 + n+ n2 + · · ·+ np−1, then n ≡ 1 (mod p).

Proof. Since 3 | 1 + n+ n2, we have 3 ∤ n. Hence, by Fermat’s Little Theorem,

0 = 1 + n+ n2 ≡ 2 + n (mod 3).

Thus, n ≡ 1 (mod 3).

Proof of Extension. We have

0 ≡ 1 + n+ n2 + · · ·+ np−1 =
np − 1

n− 1
(mod p).

Since p is prime, Z/pZ is an integral domain, so np − 1 ≡ 0 (mod p). Invoking Fermat’s
Little Theorem, n− 1 ≡ 0 (mod p) and the desired result immediately follows.

∗ ∗ ∗ ∗ ∗

Problem 5. Prove that there is no smallest positive rational number.

Proof. Seeking a contradiction, suppose there exists a smallest positive rational number,
say x = m/n, where m,n ∈ Z+ (WLOG) and n ̸= 0. Consider x/2 = m/2n. Clearly, x/2
is positive and rational. Thus, 0 < x/2 < x, contradicting the minimality of x. Hence,
there is no smallest positive rational number.

∗ ∗ ∗ ∗ ∗

Problem 6. A sequence is defined by a1 = 2, a2 = 4, an+2 = 5an+1 − 6an for all n ≥ 1.
Prove that a2 = 2n for all n ∈ Z+.
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Proof. The characteristic equation of an is m2 − 5m+ 6 = (m− 3)(m− 2). Hence,

an = A · 2n +B · 3n

for some constants A and B. From the initial conditions,

a1 = 2 = 2A+ 3B, a2 = 4 = 4A+ 9B.

Solving, we get A = 1 and B = 0. Thus, an = 2n.

∗ ∗ ∗ ∗ ∗

Problem 7. Let f1, f2, . . . denote the Fibonacci sequence. Show that, for all n ∈ Z+,
f2 + f4 + · · ·+ f2n = f2n+1 − 1.

Proof. Let P (n) be the statement f2 + f4 + · · ·+ f2n = f2n+1 − 1. Since f2 = 1 = 2− 1 =
f3 − 1, P (1) is true. Likewise, since f2 + f4 = 1 + 3 = 5− 1 = f5 − 1, P (2) is also true.

Suppose P (k − 1) and P (k) are true for some positive integer k. Then

f2 + f4 + · · ·+ f2k + f2k+2 = f2k+1 − 1 + f2k+2 = f2k+3 − 1,

whence P (k + 1) is true. Thus, by strong induction, the desired result holds.

∗ ∗ ∗ ∗ ∗

Problem 8. Show that if m and m+2 are both primes with m > 3, then m+1 is divisible
by 6.

Proof. For primes greater than 3, the only possible residues modulo 6 are 1 and 5. This
immediately gives m ≡ 5 (mod 6), whence m+ 1 ≡ 0 (mod 6).

∗ ∗ ∗ ∗ ∗

Problem 9. Let a, b be integers, not both zero. If gcd(a, b) = 1, show that the possible
values for gcd(a+ b, a− b) can be 1 and 2.

Proof. Let b = a− k for some integer k. Then

1 = gcd(a, b) = gcd(a, a− k) = gcd(a,−k) = gcd(a, k) .

Note also that
gcd(a+ b, a− b) = gcd(2a, a− b) = gcd(2a, k) .

If k is odd, then gcd(2, k) = 1 so

gcd(2a, k) = gcd(2, k)× gcd(a, k) = 1.

If k is even, then gcd(2, k) = 2 so

gcd(2a, k) = gcd(2, k)× gcd(a, k) = 2.
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Analysis 1.1 Functions and Graphs

Tutorial A1.1 Set 1

Problem 1. The function f is defined for all x ∈ R by

f(x) =

{
k, |x| ≤ l,

0, |x| > l,

where k and l are positive constants.
Sketch on three separate diagrams, using the same scales for each, the graph of the

function g defined by

g(x) =
f(x+ a) + f(x− a)

2

in the cases a = l/4, a = 3l/4 and a = 3l/2.

Solution.

−5l
4

−3l
4

3l
4

5l
4

k
2

k

O x

y a = l/4

−7l
4

−l
4

l
4

7l
4

k
2

k

O x

y a = 3l/4
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−5l
2

−l
2

l
2

5l
2

k
2

k

O x

y a = 3l/2

∗ ∗ ∗ ∗ ∗

Problem 2. Prove that

(a) ⌊√x⌋ =
⌊√

⌊x⌋
⌋
,

(b) ⌈√x⌉ =
⌈√

⌈x⌉
⌉
.

Is ⌈√x⌉ =
⌈√

⌊x⌋
⌉
? If so, give a proof. If not, provide a counterexample.

Proof of (a). Let n = ⌊√x⌋, where n ∈ Z. By the definition of the floor function,

n ≤ √
x < n+ 1.

Squaring, we get
n2 ≤ x < (n+ 1)2.

Taking the floor, we have
n2 ≤ ⌊x⌋ ≤ x < (n+ 1)2.

Rooting, we have
n ≤

√
⌊x⌋ < n+ 1.

Once again, by the definition of the floor function, n =
⌊√

⌊x⌋
⌋
. Thus,

⌊√
x
⌋
= n =

⌊√
⌊x⌋
⌋
.

Proof of (b). Let n = ⌈√x⌉, where n ∈ Z. By the definition of the ceiling function,

n− 1 <
√
x ≤ n.

Squaring, we get
(n− 1)2 < x ≤ n2.

Taking the ceiling, we have
(n− 1)2 < x ≤ ⌈x⌉ ≤ n2.

Rooting, we have
n− 1 <

√
⌈x⌉ ≤ n.
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Once again, by the definition of the ceiling function, n =
⌈√

⌈x⌉
⌉
. Thus,

⌈√
x
⌉
= n =

⌈√
⌈x⌉
⌉
.

Part (c). It is not true that ⌈√x⌉ =
⌈√

⌊x⌋
⌉
. Take x = 1.21. Then

⌈√
x
⌉
=
⌈√

1.21
⌉
= ⌈1.1⌉ = 2,

but ⌈√
⌊x⌋
⌉
=
⌈√

⌊1.1⌋
⌉
=
⌈√

1
⌉
= ⌈1⌉ = 1.

∗ ∗ ∗ ∗ ∗

Problem 3. Given that f : R → R such that for all x, y ∈ R \ {0}, f(xy) = f(x) + f(y),
find the values of f(1) and f(−1). Hence, show that f is even. Give an example of a
function that satisfies the above properties and sketch its graph.

Solution. Taking x = 1, we see that

f(y) = f(1) + f(y) =⇒ f(1) = 0.

Taking x = y = −1,
f(1) = f(−1) + f(−1) =⇒ f(−1) = 0.

Taking y = −1,
f(−x) = f(x) + f(−1) = f(x).

Thus, by definition, f is even.
An example of f is f(x) = ln |x|.

−1 1O

x

y y = ln |x|

∗ ∗ ∗ ∗ ∗

Problem 4. If f and g are convex functions, show that the function h given by h(x) =
f(x)g(x) is not necessarily a convex function with a suitable example.

Solution. Let f(x) = x2 and g(x) = x2 − 1. Then h(x) = x2
(
x2 − 1

)
is clearly not

convex.
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Problem 5. For a triangle ABC with corresponding angles a, b and c, show that

sin a+ sin b+ sin c ≤ 3
√
3

2

and determine when equality holds.

Proof. Since y = sinx is concave, by Jensen’s inequality,

√
3

2
= sin

π

3
= sin

a+ b+ c

3
≥ sin a+ sin b+ sin c

3
.

The desired inequality follows immediately.
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Tutorial A1.1 Set 2

Problem 1. The functions f , g are defined on R such that for any x, y ∈ R,

f(x− y) = f(x)g(y)− f(y)g(x) and f(1) ̸= 0.

(a) Prove that f is an odd function.

(b) If f(1) = f(2), find the value of g(1) + g(−1).

Solution.

Part (a). Let x = y. Then

f(0) = f(x)g(x)− f(x)g(x) = 0.

Let y = 0. Then

f(x) = f(x)g(0)− f(0)g(x) = f(x)g(0) =⇒ g(0) = 1.

Let x = 0. Then
f(−y) = f(0)g(y)− f(y)g(0) = −f(y).

Thus, f is odd.

Part (b). Let x = 1 and y = −1. Then

f(2) = f(1)g(−1)− f(−1)g(1).

Since f is odd, we have f(−1) = −f(1). Further, we are given f(2) = f(1). Hence,

f(1) = f(1)g(−1) + f(1)g(1) =⇒ g(−1) + g(1) = 1.

∗ ∗ ∗ ∗ ∗

Problem 2. The function h is defined for x ∈ R by

h(x) = x cosx, 0 ≤ x ≤ π

2

with the additional properties

h(−x) = h(x) and h(π + x) = −h(x).

Sketch the graph of h for −2π ≤ x ≤ 2π.

Solution.

−2π −3
2 π −π −1

2 π 1
2π

π 3
2π

2πO

x

h(x)
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Problem 3. Functions f and g are defined for x ∈ R by

f(x) = ax+ b, g(x) = cx+ d,

where a, b, c and d are constants with a ̸= 0. Given that gf = f−1g, show that at least
one of the following statements is true:

• g is a constant function,

• f2 is the identity function,

• g2 is the identity function.

Proof. Note that f−1 = (x− b)/a. Hence, the condition gf = f−1g implies that

c (ax+ b) + d =
(cx+ d)− b

a
.

Comparing coefficients of x and constant terms, we see that

c

a
= ac and

d− b

a
= bc+ d.

Case 1 : c = 0. Then g(x) = d is a constant function.
Case 2 : c ̸= 0. Then 1/a = a =⇒ a = ±1.
Case 2a: a = −1. Then f(x) = −x + b, whence f2(x) = −(−x + b) + b = x is the

identity function.
Case 2b: a = 1. Then d− b = bc+ d =⇒ b(c+ 1) = 0. If b = 0, then f(x) = x is the

identity function. If c = −1, then g(x) = −x + d, whence g2(x) = −(−x + d) + d = x is
the identity function.

∗ ∗ ∗ ∗ ∗

Problem 4. Let f : Q → Z be a function satisfying the following:

• For any x, y ∈ Q, we have f(x+ y) = f(x) + f(y),

• For any r ∈ Z and any x ∈ Q, we have f(rx) = rf(x).

(a) (i) Explain why for any n ∈ Z, we have f(1/n) ∈ Z.
(ii) Suppose that 0 ̸= f(1). Let p ∈ Z be a prime such that p ∤ f(1). By writing

f(1) as f(p · 1/p), explain why f(1/p) cannot be an integer. Hence, prove that
f(1) = 0.

(b) Show that for any a ∈ Q, f(a) = 0.

Solution.

Part (a).

Part (a)(i). f(1/n) ∈ Im f = Z.
Part (a)(ii). Suppose f(1) ̸= 0. Then there exists a prime p such that p ∤ f(1). Then

f(1) = f

(
p · 1

p

)
= pf

(
1

p

)
=⇒ f

(
1

p

)
=

f(1)

p
.

Since p ∤ f(1), it follows that f(1/p) is not an integer. However, this contradicts (a)(i).
Hence, our assumption that f(1) ̸= 0 is false, i.e. f(1) = 0.
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Part (b). From the second property, it follows that for any r ∈ Z,

f(r) = f(r · 1) = rf(1) = 0.

Let a ∈ Q. Write a = α/β, where α, β ∈ Z with β ̸= 0. Then

f(a) =
1

β
βf(a) =

1

β
f(βa) =

1

β
f(α) = 0.

∗ ∗ ∗ ∗ ∗

Problem 5. Let f : R → R be an additive function, i.e. for any x, y ∈ R, we have
f(x+ y) = f(x) + f(y).

(a) (i) Show that f(0) = 0.

(ii) Prove that for any n ∈ Z and any x ∈ R, we have f(nx) = nf(x).

(iii) Prove that for any r ∈ Q and any x ∈ R, we have f(rx) = rf(x).

(iv) Deduce that for any r, x ∈ R, we have f(rx) = rf(x).

(b) Use (a)(iv) to show that if there exists M ∈ R+ such that |f(x)| ≤ M for all x ∈ R,
then f is identically zero.

(c) Let g : R → R be a periodic function with period T > 0, and suppose that there
exists a ∈ R such that |g(x)| ≤ N for all x ∈ [a, a+ T ]. Let n be the largest integer
such that a+ nT ≤ y. Prove that |g(x)| ≤ N for all x ∈ R.

(d) Suppose further that g is an additive function. Show that there exists α ∈ R such
that g(x) = αx for all x ∈ R.

Solution.

Part (a).

Part (a)(i). Taking x = y = 0,

f(0) = f(0) + f(0) =⇒ f(0) = 0.

Part (a)(ii). For n ∈ N0, we have

f(nx) = f(x+ x+ · · ·+ x︸ ︷︷ ︸
n times

) = f(x) + f(x) + · · ·+ f(x)︸ ︷︷ ︸
n times

= nf(x).

Now, observe that

0 = f(0) = f(nx+ (−nx)) = f(nx) + f(−nx) =⇒ f(−nx) = −f(nx) = −nf(x).

Thus, f(nx) = nf(x) for all n ∈ Z.
Part (a)(iii). Let b be a non-zero integer. Then

f(x) = f



x

b
+ · · ·+ x

b︸ ︷︷ ︸
b times


 = f

(x
b

)
+ · · ·+ f

(x
b

)

︸ ︷︷ ︸
b times

= bf
(x
b

)
.

Thus,

f
(x
b

)
=

1

b
f(x).

Let r ∈ Q. Without loss of generality, write r = a/b, where a, b ∈ Z and b ≥ 1. Then

f(rx) = f
(ax

b

)
= af

(x
b

)
=

a

b
f(x) = rf(x).

Part (a)(iv). Since Q is dense in R, it follows that we have f(rx) = rf(x) for all r, x ∈ R.
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Part (b). Seeking a contradiction, suppose f(x) ̸= 0 for some x ∈ R. Then f(kx) = kf(x)
is unbounded, a contradiction. Thus, f(x) must be identically zero.

Part (c). For all x ∈ R, we have

a ≤ x− kT < a+ T

where k = ⌊(x− a)/T ⌋. Since g has period T , it follows that

|g(x)| = |g(x− kT )| ≤ N.

Part (d). By part (b), it must be that g(x) ≡ 0. Thus, α = 0.
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Analysis 1.2 Differentiation

Tutorial A1.2 Set 1

Problem 1. Let f(x) = xe/ex, where x > 0. Find the maximum value of f(x) and hence
prove that eπ > πe.

Solution. Note that f ′(x) = xee−x (e/x− 1). For stationary points, f ′(x) = 0. Since
x > 0, this only occurs when e/x − 1, whence x = e. By the first derivative test, we see
that this is a maximum. Thus, the maximum value of f(x) is f(e) = 1.
Note that f(x) is decreasing for x > e. Since π > e, it follows that

πe

eπ
= f(π) < f(e) = 1 =⇒ πe < eπ.

∗ ∗ ∗ ∗ ∗

Problem 2. By applying Rolle’s Theorem on the function f(x) = e−x − sinx, show that
there is at least one real root of ex cosx = −1 between any two real roots of ex sinx = 1.

Proof. Let α be a root of ex sinx = 1. Then

eα sinα = 1 =⇒ 1− eα sinα = 0 =⇒ e−α − sinα = 0.

Hence, α is also a root of f(x) = 0.
Let α1 and α2 be two distinct roots of ex sinx = 1. Then α1 and α2 are also roots of

f(x) = 0, i.e. f(α1) = f(α2) = 0. By Rolle’s Theorem, it follows that there exists some
β ∈ (α1, α2) such that

f ′(β) = −e−β − cosβ = 0 =⇒ cosβ = −e−b =⇒ e−b cosβ = −1.

Hence, β is a root of ex cosx = −1. Thus, there is at least one real root of ex cosx = −1
(given by β) between any two real roots of ex sinx = 1 (given by α1 and α2).

∗ ∗ ∗ ∗ ∗

Problem 3. By using the Theorem of the Mean, show that

π

6
+

√
3

15
< arcsin 0.6 <

π

6
+

1

8
.

Proof. Let f(x) = arcsinx. By the Theorem of the Mean, there exists some c ∈ (0.5, 0.6)
such that

f ′(c) =
f(0.6)− f(0.5)

0.6− 0.5
=⇒ 1√

1− c2
=

arcsin 0.6− π/6

0.1
.

Observe that 1/
√
1− x2 is increasing on (0.5, 0.6). Hence,

2
√
3

3
=

1√
1− 0.52

<
1√

1− c2
<

1√
1− 0.62

=
5

4
.

Thus,
2
√
3

3
<

arcsin 0.6− π/6

0.1
<

5

4
=⇒ π

6
+

√
3

15
< arcsin 0.6 <

π

6
+

1

8
.
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Problem 4. Show that the line with gradient m through the point (t, 2t) is a tangent to
the curve xy = k2, where k ̸= 0, if t2(2−m)2+4mk2 = 0. Hence, or otherwise, investigate
how the number of tangents from the point (t, 2t) to the curve xy = k2 varies as t varies.

Solution. Note that y = k2/x. Hence, y′ = −k2/x2. The tangent to y = k2/x at
(x0, k

2/x0) is thus given by

y − k2

x0
= −k2

x20
(x− x0) =⇒ y = −k2

x20
x+

2k2

x0
.

Meanwhile, the line l with gradient m passing through (t, 2t) has equation y = mx+ (2−
m)t. Thus, for l to be tangent to y = k2/x, we require

−k2

x20
= m and

2k2

x0
= (2−m)t.

Eliminating x0, we see that

(2−m)2t2

m
=

4k4/x20
−k2/x20

= −4k2 =⇒ t2(2−m)2 + 4mk2 = 0.

Expanding this quadratic in m, we have

t2m2 +
(
4k2 − 4t2

)
m+ 4t2 = 0. (1)

Notice that the number of tangents from the point (t, 2t) to the curve xy = k2 is exactly
the number of possible m’s, which is determined by the discriminant of the quadratic in
(1). One can easily calculate this discriminant as

∆ =
(
4k2 − 4t2

)
= 4

(
t2
) (

4t2
)
= 16k2

(
k2 − 2t2

)
.

We now examine the number of tangents case by case. Without loss of generality,
suppose k > 0.
Case 1 . Suppose there are two tangents. Then D > 0 =⇒ k2 − 2t2 > 0. Thus,

− 1√
2
k < t < 1√

2
k.

Case 2 . Suppose there is one tangent. Then D = 0 =⇒ k2−2t2 = 0. Thus, t = ± 1√
2
k.

Case 3 . Suppose there are no tangents. Then D < 0 =⇒ k2 − 2t2 < 0. Thus,
t < − 1√

2
k or t > 1√

2
k.

∗ ∗ ∗ ∗ ∗

Problem 5.

(a) Let f(t) = et/t. Show that the minimum value of f(t) occurs when t = 1.

(b) With the aid of a diagram, or otherwise, prove that if ex/x = ey/y, where y > x > 0,
then xy < 1.

Solution.

Part (a). Note that f ′(t) = (t− 1)et/t2. For stationary points, f ′(t) = 0, which can only
occur when t = 1. By the first derivative test, we see that this is a minimum. Hence, the
minimum value of f(t) is f(1) = e.

Part (b). Taking logarithms on both sides, we get

x− lnx = y − ln y =⇒ x− y = ln
x

y
.
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Let u = x/y. Since 0 < x < y, it follows that 0 < u < 1. Substituting this into our
equation yields

uy − y = lnu =⇒ y =
lnu

u− 1
=⇒ x =

u lnu

u− 1
.

Thus,

xy =
u ln2 u

(u− 1)2
.

Let the RHS be g(u).

1

1

O

u

g(u)

From the above graph, it is clear that the maximum value of g(u) is 1, whence xy < 1.

∗ ∗ ∗ ∗ ∗

Problem 6. By differentiating the series (1+x)n with respect to x, where n is an integer
greater than 1, show that

n∑

r=1

r

(
n

r

)
= n2n−1.

Find a similar expression for the sum

n∑

r=1

r(r − 1)

(
n

r

)
.

Hence, or otherwise, show that

n∑

r=1

r2
(
n

r

)
= n(n+ 1)2n−2.

Solution. Note that

(1 + x)n =
n∑

r=1

(
n

r

)
xr.

Differentiating with respect to x, we have

n(1 + x)n−1 =
n∑

r=1

r

(
n

r

)
xr−1. (1)

Taking x = 1, we see that
n∑

r=1

r

(
n

r

)
= n2n−1.
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Differentiating (1) once more, we have

n(n− 1)(1 + x)n−2 =

n∑

r=1

r(r − 1)

(
n

r

)
xr−2.

Taking x = 1,
n∑

r=1

r(r − 1)

(
n

r

)
= n(n− 1)2n−2.

Thus,

n∑

r=1

r2
(
n

r

)
=

n∑

r=1

[r(r − 1) + r]

(
n

r

)
= n2n−1 = n(n− 1)2n−2 + n2n−1

= n(n− 1)2n−2 + n(2)2n−2 = n(n+ 1)2n−2.
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Problem 1. Let f be a differentiable function on (0,∞) and suppose that

lim
x→∞

(
f(x) + f ′(x)

)
= L.

By considering f(x) = exf(x)
ex , show that limx→∞ f(x) = L and limx→∞ f ′(x) = 0.

Proof. By L’Hôpital’s Rule,

lim
x→∞

exf(x)

ex
= lim

x→∞
exf ′(x) + exf(x)

ex
= lim

x→∞
(
f(x) + f ′(x)

)
= L.

Hence,
lim
x→∞

f ′(x) = lim
x→∞

(
f(x) + f ′(x)

)
− lim

x→∞
f(x) = L− L = 0.

∗ ∗ ∗ ∗ ∗

Problem 2. It is given that the functions f(x) and g(x) are non-constant, differentiable
functions that are defined on R, and f(0) = f(2) = g(0) = g(2) = 0. Suppose that
g′′(x) ̸= 0 for all x ∈ (0, 2).

(a) Show that g(x) ̸= 0 for all x ∈ (0, 2).

(b) Using part (a), or otherwise, prove that there exists d ∈ (0, 2) such that

f(d)

g(d)
=

f ′′(d)
g′′(d)

.

Solution.

Part (a). By way of contradiction, suppose g(x0) = 0 for some x ∈ (0, 2). Then g(0) =
g(x0) = g(2) = 0. By Rolle’s Theorem, there exists some x1 ∈ (0, x0) and x2 ∈ (x0, 2)
such that

g′(x1) = 0 and g′(x2) = 0.

Applying Rolle’s Theorem once more, we see that there exists some x3 ∈ (x1, x2) such
that g′′(x3) = 0, a contradiction. Thus, g(x) ̸= 0 for all x ∈ (0, 2).

Part (b). Let
h(x) = f(x)g′′(x)− g(x)f ′′(x).

Clearly, h(x) is continuous on [0, 2]. Note also that h(0) = h(2) = 0. We now integrate
h(x) over (0, 2):

∫ 2

0
h(x) dx =

∫ 2

0
f(x)g′′(x) dx−

∫ 2

0
g(x)f ′′(x) dx.

Integrating by parts, the first integral reduces to

∫ 2

0
f(x)g′′(x) dx =

[
f(x)g′(x)

]2
0
−
∫ 2

0
f ′(x)g′(x) dx = −

∫ 2

0
f ′(x)g′(x) dx.

Similarly, the second integral reduces to

∫ 2

0
g(x)f ′′(x) dx =

[
g(x)f ′(x)

]2
0
−
∫ 2

0
f ′(x)g′(x) dx =

∫ 2

0
f ′(x)g′(x) dx.
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Thus, ∫ 2

0
h(x) dx = −

∫ 2

0
f ′(x)g′(x) dx+

∫ 2

0
f ′(x)g′(x) dx = 0. (1)

If h(x) is not identically zero, then from (1), it follows that h(x) attains positive and
negative values in (0, 2). Thus, by the Intermediate Value Theorem, there exists some
d ∈ (0, 2) such that h(d) = 0. If h(x) is identically zero, then h(d) = 0 for all d ∈ (0, 2).
In any case, we get

f(d)

g(d)
=

f ′′(d)
g′′(d)

upon rearrangement.

∗ ∗ ∗ ∗ ∗

Problem 3. Let f : [0, 1] → R be a differentiable function defined on [0, 1]. Suppose that

f ′(c) = f ′′(c) = f ′′′(c) = 0

and f (4)(c) > 0 for some c ∈ (0, 1).

(a) Let g : [a, b] → R be a function that is twice differentiable on (a, b), where a < b.
Suppose that there exists d ∈ (a, b) such that g′(d) = 0 and g′′(d) > 0. With the aid
of a diagram, explain why there exists s > 0 such that for all x ∈ [d−s, d+s]\{d} ⊆
[a, b], g(x) > g(d).

(b) Hence, show that f attains a minimum point at x = c.

(c) Write down a similar result for f to attain a maximum point when x = c.

Solution.

Part (a).

d− s d+ sd
g(d)

x

y y = g(x)

From the above diagram, it is immediately clear that there exists some s > 0 such that
for all x ∈ [d− s, d+ s] \ {d} ⊆ [a, b], g(x) > g(d).

Part (b). Take g(x) = f ′′(x). Since g′(c) = f ′′′(c) = 0 and g′′(c) = f (4)(c) > 0, by (a),
there exists s > 0 such that f ′′(x) > f ′′(c) for all x ∈ [c − s, c + s] \ {c} ⊆ [0, 1]. This
means that f(c) is a minimum.

Part (c). f attains a maximum point when x = c if f (4)(c) < 0.
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Problem 4. Let f : [0, 1] → R be a differentiable function such that f(0) = 0, f(1) = 1.
Prove that there exists c, d ∈ (0, 1) such that c ̸= d and

f ′(c)
c2

+
f ′(d)
d

= 5.

Proof. Consider the function g(x) = f(x) − x3. Since g(0) = 0 and g(1) = 0, by Rolle’s
Theorem, there exists a c ∈ (0, 1) such that

g′(c) = 0 =⇒ f ′(c)− 3c2 = 0 =⇒ f ′(c)
c2

= 3.

Similarly, consider the function h(x) = f(x) − x2. Since h(0) = h(1) = 0, by Rolle’s
Theorem, there exists a d ∈ (0, 1) such that

h′(d) = 0 =⇒ f ′(d)− 2d = 0 =⇒ f ′(d)
d

= 2.

Thus, there exists distinct c, d ∈ (0, 1) such that

f ′(c)
c2

+
f ′(d)
d

= 5.
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Problem 1.

(a) Let

I =

∫ a

0

f(x)

f(x) + f(a− x)
dx.

Use a substitution to show that

I =

∫ a

0

f(a− x)

f(x) + f(a− x)
dx

and hence evaluate I in terms of a. Use this result to evaluate the integrals

∫ 1

0

ln(x+ 1)

ln(2 + x− x2)
dx and

∫ π/2

0

sinx

sin(x+ π/4)
dx.

(b) Using a suitable substitution, evaluate

∫ 2

1/2

sinx

x (sinx+ sin 1/x)
dx.

Solution.

Part (a). Under the substitution u = a− x, we have

I =

∫ a

0

f(x)

f(x) + f(a− x)
dx = −

∫ 0

a

f(a− u)

f(a− u) + f(u)
du =

∫ a

0

f(a− u)

f(a− u) + f(u)
du.

Renaming the dummy variable back to x, we have

I =

∫ a

0

f(a− x)

f(x) + f(a− x)
dx

as desired.
Observe that

2I =

∫ a

0

f(x)

f(x) + f(a− x)
dx+

∫ a

0

f(a− x)

f(x) + f(a− x)
dx =

∫ a

0
dx = a,

so I = a/2.
We have
∫ 1

0

ln(x+ 1)

ln(2 + x− x2)
dx =

∫ 1

0

ln(x+ 1)

ln((x+ 1)(2− x))
dx =

∫ 1

0

ln(x+ 1)

ln(x+ 1) + ln(2− x)
dx.

Let f(x) = ln(1 + x). Then

∫ 1

0

ln(x+ 1)

ln(2 + x− x2)
dx =

∫ 1

0

f(x)

f(x) + f(1− x)
dx =

1

2
.
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We have
∫ π/2

0

sinx

sin(x+ π/4)
dx =

2√
2

∫ π/2

0

sinx

sinx+ cosx
=

2√
2

∫ π/2

0

sinx

sinx+ sin(π/2− x)
.

Let f(x) = sinx. Then

∫ π/2

0

sinx

sin(x+ π/4)
dx =

2√
2

f(x)

f(x) + f(π/2− x)
=

2√
2
· π/2

2
=

π

2
√
2
.

Part (b). Let

I =

∫ 2

1/2

sinx

x (sinx+ sin 1/x)
dx. (1)

Under the substitution x 7→ 1/x, we have

I =

∫ 1/2

2

sin 1/x

(1/x) (sin 1/x+ sinx)

(
− 1

x2

)
dx =

∫ 2

1/2

sin 1/x

x (sinx+ sin 1/x)
dx. (2)

Adding (1) and (2) together,

2I =

∫ 2

1/2

sinx

x (sinx+ sin 1/x)
dx+

∫ 2

1/2

sin 1/x

x (sinx+ sin 1/x)
dx

=

∫ 2

1/2

1

x
dx = [lnx]21/2 = 2 ln 2.

Thus, I = ln 2.

∗ ∗ ∗ ∗ ∗

Problem 2.

(a) Show that
d

dx

(
1√
2
arctan

tanx√
2

)
=

1

1 + cos2 x
.

(b) Use (a) to show that ∫ π

0

x

1 + cos2 x
dx =

π2

2
√
2
.

Solution.

Part (a). We have

d

dx

(
1√
2
arctan

tanx√
2

)
=

1√
2

(
1

1 + (tanx/
√
2)2

)(
1√
2
sec2 x

)

=
1

2

(
1

1 + tan2(x) /2

)(
1

cos2 x

)
=

1

2 + tan2 x

1

cos2 x
=

1

2 cos2 x+ sin2 x
=

1

1 + cos2 x
.

Part (b). Let the target integral be I. Note that

I =

∫ π

0

x

1 + cos2 x
dx =

∫ π/2

0

x

1 + cos2 x
dx+

∫ π

π/2

x

1 + cos2 x
dx.

Applying the transformation x 7→ π − x to the second integral, we get

I =

∫ π/2

0

x

1 + cos2 x
dx+

(
π

∫ π/2

0

1

1 + cos2 x
dx−

∫ π/2

0

x

1 + cos2 x
dx

)

= π

∫ π/2

0

1

1 + cos2 x
dx = π

[
1√
2
arctan

tanx√
2

]π/2

0

.
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The x = 0 term vanishes, so

I =
π√
2

lim
x→π

2
−
arctan

tanx√
2

.

As x → (π/2)−, tanx → ∞. Thus, arctan tanx√
2

→ π
2 , whence

I =
π√
2
· π
2
=

π2

2
√
2
.

∗ ∗ ∗ ∗ ∗

Problem 3. (In this question all indices n are integers)
Let

In =

∫ π/2

0
sinn x dx, n ≥ 0.

(a) Show that

In =
n− 1

n
In−2, n ≥ 2.

(b) Use (a) to show that

I2n+1 =
2 · 4 · 6 · · · (2n)

3 · 5 · 7 · · · (2n+ 1)
, n ≥ 1.

(c) Use (a) to show that

I2n =
1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · (2n)
π

2
, n ≥ 1.

(d) Use (a) or (c) to show that

I2n+2

I2n
=

2n+ 1

2n+ 2
, n ≥ 1.

(e) By considering the integral and comparing sink+1 x with sink x, show that I2n+2 ≤
I2n+1 ≤ I2n, n ≥ 1.

(f) Use (d) and (e) to show that

2n+ 1

2n+ 2
≤ I2n+1

I2n
, n ≥ 1.

Hence, deduce that

lim
n→∞

I2n+1

I2n
= 1.

(g) Use (b), (c) and (f) to show that

2

1
· 2
3
· 4
3
· 4
5
· 6
5
· 6
7
· · · = π

2
.

Solution.
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Part (a). Note that

In =

∫ π/2

0
sin2 x sinn−2 x dx =

∫ π/2

0

(
1− cos2 x

)
sinn−2 dx

= In−2 −
∫ π/2

0
cosx

(
cosx sinn−2 x

)
dx.

Integrating by parts, we obtain

In = In−2 −
([

cosx sinn−1 x

n− 1

]π/2

0

+
1

n− 1

∫ π/2

0
sinn x dx

)
.

We thus have

In = In−2 −
1

n− 1
In =⇒ In =

n− 1

n
In−2.

Part (b). Observe that

I2n+1 =
2n

2n+ 1
I2n−1 =

2n

2n+ 1
· 2n− 2

2n− 1
I2n−3 = · · · = 2n

2n+ 1
· 2n− 2

2n− 1
. . .

2

3
I1.

Since

I1 =

∫ π/2

0
sinx dx = [− cosx]

π/2
0 = 1,

we conclude that

I2n+1 =
2 · 4 · 6 · · · (2n)

3 · 5 · 7 · · · (2n+ 1)
.

Part (c). Observe that

I2n =
2n− 1

2n
I2n−2 =

2n− 1

2n
· 2n− 3

2n− 2
I2n−4 = · · · = 2n− 1

2n
· 2n− 3

2n− 2
. . .

1

2
I0.

Since

I0 =

∫ π/2

0
sin0 x dx =

π

2
,

we conclude that

I2n =
1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · (2n)
π

2
.

Part (d). We have

I2n+2 =
2n+ 1

2n+ 2
I2n =⇒ I2n+2

In
=

2n+ 1

2n+ 2
.

Part (e). Since |sinx| ≤ 1, it follows that sinn x ≥ sinn+1 x for all real x. This in turn
implies that In+1 ≤ In. Thus,

I2n+2 ≤ I2n+1 ≤ I2n.

Part (f). Dividing the inequality in (e) throughout by I2n, we have

2n+ 1

2n+ 2
≤ I2n+2

I2n
=

I2n+1

I2n
≤ I2n

I2n
= 1.

Taking the limit as n → ∞, we see that

1 = lim
n→∞

2n+ 1

2n+ 2
≤ lim

n→∞
I2n+1

I2n
≤ 1.
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Thus, by the Squeeze Theorem, it follows that

lim
n→∞

I2n+1

I2n
= 1.

Part (g). The above limit implies that

lim
n→∞

I2n+1 = lim
n→∞

I2n.

Thus,
2 · 4 · 6 · · ·
3 · 5 · 7 · · · =

1 · 3 · 5 · · ·
2 · 4 · 6 · · ·

π

2
.

Rearranging, we recover the Wallis product:

π

2
=

2

1
· 2
3
· 4
3
· 4
5
· 6
5
· 6
7
. . . .

∗ ∗ ∗ ∗ ∗

Problem 4. It is given that the following integrals converge. Evaluate the following
integrals.

∫ ∞

1

3x− 1

4x3 − x2
dx.(a)

∫ ∞

0
x2e−x dx.(b)

∫ ∞

−∞

1

4x2 + 9
dx.(c)

Solution.

Part (a). Let I be the target integral. We have

I =

∫ ∞

1

3x− 1

4x3 − x2
dx =

∫ ∞

1

3x− 1

x2 (4x− 1)
dx =

∫ ∞

1

(
4x− 1

x2 (4x− 1)
− x

x2 (4x− 1)

)
dx

=

∫ ∞

1

1

x2
dx−

∫ ∞

1

1

x (4x− 1)
dx =

[
−1

x

]∞

1

−
∫ ∞

1

1

x (4x− 1)
dx

= 1−
∫ ∞

1

1

x (4x− 1)
dx = 1−

∫ ∞

1

1

(2x− 1/4)2 − (1/4)2
dx.

Under the substitution u = 2x− 1/4, the integral evaluates to

I = 1− 1

2

∫ ∞

7/4

1

u2 − (1/4)2
du = 1− 1

2

[
1

2(1/4)
ln

(
u− 1/4

u+ 1/4

)]∞

7/4

= 1− ln
4

3
.

Part (b). Integrating by parts, we have
∫ ∞

0
x2e−x dx =

[
−e−x

(
x2 + 2x+ 2

)]∞
0

= 2.

Part (c). Let I be the target integral. We have

I =

∫ ∞

−∞

1

4x2 + 9
dx =

∫ ∞

0

2

(2x)2 + 32
dx.

Under the substitution u = 2x, the integral evaluates to

I =

∫ ∞

0

1

u2 + 32
du =

[
1

3
arctan

u

3

]∞

0

=
π

6
.
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Problem 5. Determine which of the following integrals converge.
∫ ∞

0

dx√
x2 + 1

,(a)

∫ ∞

−∞

2 dx√
ex + e−x

.(b)

Solution.

Part (a). Clearly, the integral
∫∞
0

1
x dx diverges. Since

lim
x→∞

1/
√
x2 + 1

1/x
= 1,

by the limit comparison test, it follows that
∫∞
0

dx√
x2+1

also diverges.

Part (b). Note that the integral

∫ ∞

0
e−x/2 dx = −2

[
e−x/2

]∞
0

= 2

converges. Since

lim
x→∞

4/
√
ex + e−x

e−x/2
= lim

x→∞
4√

1 + e−2x
= 4,

by the limit comparison test, it follows that

∫ ∞

−∞

2 dx√
ex + e−x

=

∫ ∞

0

4 dx√
ex + e−x

converges.
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Problem 1. Let I =
∫ 2π
0

1
2−cosx dx. Explain the error in the following argument:

Since |cosx| ≤ 1, it follows that 1/(2−cosx) > 0, and, interpreting the integral
as an area, it follows that I is positive. However, putting t = tan(x/2),

I =

∫ tanπ

tan 0

2
1+t2

2− 1−t2

1+t2

dt = 2

∫ 0

0

1

1 + 3t2
dt = 0.

Thus, the positive number I is equal to 0.

Prove that I =
∫ π
0

1
2−cosx dx, and deduce that I = 2π

√
3

3 .

Solution. t = tan(x/2) is discontinuous at x = π. Hence, direct substitution is not
allowed.
Splitting I, we have

I =

∫ 2π

0

1

2− cosx
dx =

∫ π

0

1

2− cosx
dx+

∫ 2π

π

1

2− cosx
dx.

Applying the substitution x 7→ 2π − x on the latter integral,

I =

∫ π

0

1

2− cosx
dx+

∫ 0

π

1

2− cos(2π − x)
(−dx)

=

∫ π

0

1

2− cosx
dx+

∫ π

0

1

2− cosx
dx = 2

∫ π

0

1

2− cosx
dx.

Using the substitution t = tan(x/2), we have

I = 2

∫ π

0

1

2− cosx
dx = 2

∫ ∞

0

2
1+t2

2− 1−t2

1+t2

dt = 4

∫ ∞

0

1

1 + 3t2
dt

= 4

[
1√
3
arctan

(√
3x
)]∞

0

=
4√
3
· π
2
=

2π
√
3

3
.

∗ ∗ ∗ ∗ ∗

Problem 2. Without using G.C., evaluate

∫ π/2

0
sinx cos 2x sin 3x dx,(a)

∫ 2

1

1

x+
√
x
dx.(b)

Solution.

Part (a). Note that

sinx cos 2x sin 3x = cos 2x

(
cos(3x− x)− cos(3x+ x)

2

)
=

1

2
cos2 2x− 1

2
cos 2x cos 4x

=
1

2

(
1 + cos 4x

2

)
− 1

2
cos 2x

(
1− 2 sin2 2x

)
=

1

4
+

cos 4x

4
− cos 2x

2
+ cos 2x sin2 2x.
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Hence,

I =

∫ π/2

0

(
1

4
+

cos 4x

4
− cos 2x

2
+ cos 2x sin2 2x

)
dx

=

[
x

4
+

sin 4x

16
− sin 2x

4
+

sin3 2x

6

]π/2

0

=
π

8
.

Part (b). Consider the substitution u = 1 +
√
x.

I =

∫ 2

1

1√
x (1 +

√
x)

dx =

∫ 1+
√
2

1

2 du

u
= 2 [lnu]1+

√
2

2 = 2 ln
1 +

√
2

2
.

∗ ∗ ∗ ∗ ∗

Problem 3. Let f : [0, 1] → R be a continuous and twice differentiable function on (a, b).
Suppose that ∫ 1

0
f(x) dx = f(0) = f(1).

(a) Let G(x) =
∫ x
0 f(t) dt. Explain why G′(x) = f(x).

(b) Let F (x) =
∫ x
0 [f(t)− f(1)] dt. Show that there exists c ∈ (0, 1) such that f(c) =

f(1).

(c) Hence, show that there exists d ∈ (0, 1) such that f ′′(d) = 0.

Solution.

Part (a). By the Fundamental Theorem of Calculus,

G′(x) =
d

dx

∫ x

0
f(t) dt = f(x).

Part (b). Note that F (x) = G(x)− xf(1). Notice further that

F (0) =

∫ 0

0
[f(t)− f(1)] dt = 0 and F (1) =

∫ 1

0
f(t) dt− f(1) = f(1)− f(1) = 0.

Since
F ′(x) = G′(x)− f(1) = f(x)− f(1),

by Rolle’s Theorem, there exists some c ∈ (0, 1) such that

F ′(c) = 0 =⇒ f(c)− f(1) = 0 =⇒ f(c) = f(1).

Part (c). By the Mean Value Theorem, there exists some c1 ∈ (0, 1) such that

f ′(c1) =
f(1)− f(0)

1− 0
= 0.

Likewise, there exists some c2 ∈ (0, 1) such that

f ′(c2) =
f(1)− f(c)

1− c
= 0.

Invoking Rolle’s Theorem on f ′(x), it follows that there exists some d ∈ (c1, c2) ⊆ (0, 1)
such that

f ′′(d) = 0.
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Problem 4.

(a) Let

In =

∫
1

xn (ax2 + bx+ c)
dx

for x > 0. Show that

aIn−2 + bIn−1 + cIn =
1

(1− n)xn−1
+ k

for n ≥ 2, where k is an arbitrary constant.

(b) Hence, find ∫
x3 + 2

x2 (x2 + 2)
dx.

(c) Let f(x), g(x) and h(x) be functions of x such that f ′(x) = x2g′(x) and h′(x) =(
1 + x4

)
g′(x)g(x). Use integration by parts to find the following:

∫
xg(x) dx,(a)

∫
xf(x)g(x) dx.(b)

Solution.

Part (a). We have

aIn−2 + bIn−1 + cIn

=

∫ (
a

xn−2 (ax2 + bx+ c)
+

b

xn−1 (ax2 + bx+ c)
+

c

xn (ax2 + bx+ c)

)
dx

=

∫ (
ax2

xn (ax2 + bx+ c)
+

bx

xn (ax2 + bx+ c)
+

c

xn (ax2 + bx+ c)

)
dx

=

∫
ax2 + bx+ c

xn (ax2 + bx+ c)
=

∫
1

xn
dx =

1

(1− n)xn−1
+ k.

Part (b). Let n = 2, a = 1, b = 0 and c = 2. Using the above result,

I0 + 2I2 = −1

x
+ k.

Rearranging,

∫
2

x2 (x2 + 2)
dx = 2I2 = −1

x
+ k −

∫
1

x2 + 2
dx

︸ ︷︷ ︸
I0

= −1

x
+ k − 1√

2
arctan

x√
2
.

Thus, the target integral is given by

∫
x3 + 2

x2 (x2 + 2)
dx =

∫
x

x2 + 2
dx+

∫
2

x2 (x2 + 2)
dx

=
1

2
ln
(
x2 + 2

)
− 1

x
+ k − 1√

2
arctan

x√
2
.

Part (c). For brevity, we write f(x) as f , g(x) as g, etc.
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Part (c)(i). Integrating by parts, we see that

∫
xg dx =

1

2
gx2 − 1

2

∫
x2g′ dx =

1

2
x2g − 1

2

∫
f ′ dx =

x2g − f

2
+ C.

Part (c)(ii). Using the above result to integrate by parts, we see that

∫
xfg dx =

x2fg − f2

2
− 1

2

∫ (
x2f ′g − ff ′) dx.

Clearly, ∫
ff ′ dx =

1

2
f2 + C.

Also, ∫
x2f ′g dx =

∫
x4g′g dx =

∫ (
h′ − g′g

)
dx = h− 1

2
g2 + C.

Putting everything together,

∫
xfg dx =

x2fg − f2

2
− 1

2

(
h− 1

2
g2 − 1

2
f2

)
+ C =

2x2fg − f2 − 2h+ g2

4
+ C.

∗ ∗ ∗ ∗ ∗

Problem 5.

(a) Show that if n > 0 then ∫ ∞

n

1

x2 + n2
dx =

π

4n
.

(b) Show that if 0 < a < b, then

∫ ∞

b

1

x2 + n2
dx ≤

∫ ∞

a

1

x2 + n2
dx.

(c) Hence, deduce that
N∑

n=1

1

n
>

4

π

∫ ∞

n

N

x2 +N2
dx,

where N is an integer, N > 1.

Solution.

Part (a). We have

∫ ∞

n

1

x2 + n2
dx =

[
1

n
arctan

x

n

]∞

n

=
1

n

(π
2
− π

4

)
=

π

4n
.

Part (b). Clearly,
∫ ∞

b

1

x2 + n2
dx =

π

4b
<

π

4a
=

∫ ∞

a

1

x2 + n2
dx.

Part (c). We have

N∑

n=1

1

n
> 1 =

4

π

(
N · π

4N

)
=

4

π

∫ ∞

n

N

x2 +N2
dx.
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Problem 6. The functions f : R → R and g : R → [−1,∞) are defined by

f(x) =

{
−x, x ≤ 0,

−x2, x > 0,
and g(x) =

{
2014ex, x < 0,

x− 1, x ≥ 0.

(a) Given that the function f is bijective, find f−1 in a similar form.

(b) By expressing fg(x) and gf(x) in a similar form, solve fg(x) > gf(x).

Given the greatest integer function h : R → Z such that h(x) = ⌊x⌋,

(c) Show that for n ∈ Z+,

∫ n

−∞
hg(x) dx = a ln b− ln(b!) +

n(n− c)

2
,

where a, b and c are integers to be determined.

Solution.

Part (a). For x ≤ 0, f(x) = −x ≥ 0, so f−1 = −x for x ≥ 0. For x > 0, f(x) = −x2 < 0,
so f−1 =

√−x for x < 0. Thus,

f−1(x) =

{
−x, x ≥ 0,√−x, x < 0.

Part (b). We have

fg(x) = f





2014ex, x < 0

x− 1, 0 ≤ x ≤ 1

x− 1, x > 1,

=





− (2014ex)2 , x < 0,

−(x− 1), 0 ≤ x ≤ 1,

−(x− 1)2, x > 1.

Similarly, we have

gf(x) =

{
−x, x ≤ 0,

−x2, x > 0,
=

{
−x− 1, x ≤ 0,

2014e−x2
, x > 0.

To solve the inequality fg(x) > gf(x), we consider the following cases:
Case 1 : x < 0. The inequality simplifies down to

− (2014ex)2 > −x− 1 =⇒ 20142e2x < x+ 1,

which is never satisfied for all x < 0.
Case 2 : 0 ≤ x ≤ 1. The inequality simplifies down to

−(x− 1) > 2014e−x2
,

which is clearly never satisfied since −(x− 1) < 0 for all x ∈ [0, 1], but 2014e−x2
> 0.

Case 3 : x > 1. The inequality simplifies down to

−(x− 1)2 > 2014e−x2
.

For identical reasons (the LHS is non-positive but the RHS is positive), this is never
satisfied.
Thus, we conclude that fg(x) > gf(x) has no solutions.
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Part (c). We have

∫ n

−∞
hg(x) dx =

∫ 0

−∞
hg(x) dx+

∫ n

0
hg(x) dx =

∫ 0

−∞
⌊2014ex⌋ dx

︸ ︷︷ ︸
I1

+

∫ n

0
⌊x− 1⌋ dx

︸ ︷︷ ︸
I2

.

We first consider I2. Observe that

⌊x− 1⌋ = k − 1, k ≤ x < k − 1.

Thus,

I2 =
n−1∑

k=0

(k − 1) =
n(n− 1)

2
− n =

n(n− 3)

2
.

We now consider I1. Under the transformation x 7→ −x, we obtain

I1 =

∫ ∞

0

⌊
2014e−x

⌋
dx.

Observe that ⌊
2014e−x

⌋
= k, ln

2014

k + 1
≤ x < ln

2014

k
.

Thus,

I1 =
2013∑

k=1

∫ ln(2014/k)

ln(2014/k+1)
k dx =

2013∑

k=1

k

(
ln

2014

k
− ln

2014

k + 1

)
=

2013∑

k=1

k [ln(k + 1)− ln k] .

Expanding this sum, we quickly see that it telescopes:

I1 = (ln 2− ln 1) + 2 (ln 3− ln 2) + 3 (ln 4− ln 3) + · · ·+ 2013 (ln 2014− ln 2013)

= 2013 ln 2014− (ln 1 + ln 2 + ln 3 + · · ·+ ln 2013) = 2013 ln 2014− ln 2013!.

Note that we can also write I1 as 2014 ln 2014− ln 2014!.
Putting everything together, we see that

∫ n

−∞
hg(x) dx = 2014 ln 2014− ln 2014! +

n(n− 3)

2
,

whence a = 2014, b = 2014 and c = 3.
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Analysis 1.4 Differential Equations

Tutorial A1.4 Set 1

Problem 1. The notation (1 +D)[n](y) is used to denote

y +

(
n

1

)
dy

dx
+

(
n

2

)
d2y

dx2
+ · · ·+ dny

dxn
.

Show that
(1 +D)[1]

[
(1 +D)[1](y)

]
= (1 +D)[2](y).

Use an integrating factor to solve the differential equation

(1 +D)[1](y) = x.

Use your solution of this equation to solve the differential equation

(1 +D)[2](y) = x.

Solution.

(1 +D)[1]
[
(1 +D)[1](y)

]
= (1 +D)[1]

(
y +

dy

dx

)
=

(
y +

dy

dx

)
+

(
dy

dx
+

d2y

dx2

)

= y +

(
2

1

)
dy

dx
+

d2y

dx2
= (1 +D)[2](y).

The differential equation (1 +D)[1](y) = x can be expanded as

dy

dx
+ y = x.

The integrating factor is e
∫

dx = ex. Multiplying through by ex, we get

d

dx
(exy) = ex

dy

dx
+ exy = xex.

Hence,

exy =

∫
xex dx = (x− 1) ex + C.

Thus, the general solution is
y = x− 1 + Ce−x.

We have
(1 +D)[2](y) = (1 +D)[1]

[
(1 +D)[1](y)

]
= x.

Using the above solution, we see that

(1 +D)[1](y) = x− 1 + Ce−x.

Once again, the integrating factor is ex. Multiplying it through yields

d

dx
(exy) = x− 1 + Ce−x.
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Thus,

exy =

∫
[(x− 1)ex + C] dx = (x− 2)ex + Cx+D.

Hence, the general solution is

y = x− 2 + (Cx+D) e−x.
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Problem 2.

(a) Use the substitution y = v/t to reduce the differential equation

2t2
d2y

dt2
+ t

dy

dt
− 3y = 0

for t > 0 to

2t
d2v

dt2
− 3

dv

dt
= 0.

(b) Using a suitable substitution, show that the differential equation

2t
d2v

dt2
− 3

dv

dt
= 0

can be reduced to

2t
dw

dt
− 3w = 0.

(c) Hence, find a general solution to the differential equation

2t2
d2y

dt2
+ t

dy

dt
− 3y = 0.

Solution.

Part (a). Note that y = v/t =⇒ v = yt. Differentiating with respect to t,

dv

dt
= t

dy

dt
+ y,

d2v

dt2
= t

d2y

dt2
+ 2

dy

dt
.

Since

2t2
d2y

dt2
+ t

dy

dt
− 3y = 2t

(
t
d2y

dt2
+ 2

dy

dt

)
− 3

(
t
dy

dt
+ y

)
= 0,

we have

2t
d2v

dt2
− 3

dv

dt
= 0

as desired.

Part (b). Let w = dv/dt. Then the DE becomes

2t
dw

dt
− 3w = 0.

Part (c). Note that the above DE can be written as

1

w

dw

dt
=

3

2t
.

Integrating with respect to t,

ln |w|+A =
3

2
ln |t| =⇒ w = Bt3/2.

Hence,

v =

∫
w dt =

∫
Bt3/2 dt = Ct5/2 +D.

Finally,

y =
v

t
= Ct3/2 +Dt−1.
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Tutorial A1.4 Set 2

Problem 1. Reduce the differential equation

x

y

dy

dx
+ ln

x2

y
= 2, y > 0,

to a differential equation in x and u, where u = y/x2. Hence, express y in terms of x and
an arbitrary constant. Find the equation of the solution curve that passes through the
point (x, y) = (1, e).

Solution. Note that u = y/x2 =⇒ y = ux2. Differentiating with respect to x,

dy

dx
= 2ux+ x2

du

dx
.

Substituting this into the given DE, we have

x

ux2

(
2ux+ x2

du

dx

)
+ ln

(
x2

ux2

)
= 2,

which simplifies to
1

u lnu

du

dx
=

1

x
.

Integrating both sides with respect to x yields

ln |lnu| = ln |x|+A =⇒ lnu = Bx =⇒ u = eBx =⇒ y = ux2 = x2eBx.

At (x, y) = (1, e), we have e = eB, whence B = 1. Thus, y = x2ex.

∗ ∗ ∗ ∗ ∗

Problem 2. Tn(x) is a polynomial of degree n in x defined by

Tn(x) = cos(n arccosx) ,

so that Tn(cos θ) = cos(nθ).

(a) Show that
T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x.

(b) Show that
Tn+1(x) = 2xTn(x)− Tn−1(x).

(c) Use the results in (a) and (b) to find T4(x).

Un(x) is a polynomial of degree n in x defined by

Un(x) =
sin(n+ 1)θ

sin θ

where x = cos θ.

(d) Show that
d

dx
Tn(x) = nUn−1(x).

(e) Show that
d

dx
Un−1(x) =

xUn−1(x)− nTn(x)

1− x2
.
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(f) Deduce that y = Tn(x) satisfies the differential equation

(
1− x2

) d2y
dx2

− x
dy

dx
+ n2y = 0.

Solution.

Part (a). Since
T2(cos θ) = cos 2θ = 2 cos2−1,

it follows that T2(x) = 2x2 − 1. Similarly, since

T3(cos θ) = cos 3θ = 4 cos3 x− 3 cosx,

it follows that T3(x) = 4x3 − 3x.

Part (b). Observe that

Tn+1(cos θ) = cos(n+ 1)θ = cosnθ cos θ − sinnθ sin θ

= 2 cosnθ cos θ − (cosnθ cos θ + sinnθ sin θ) = 2 cosnθ cos θ − cos(n− 1)θ.

Thus, Tn+1(x) = 2xTn(x)− Tn−1(x).

Part (c). We have

T4(x) = 2xT3(x)− T2(x) = 2x
(
4x3 − 3x

)
−
(
2x2 − 1

)
= 8x4 − 8x2 + 1.

Part (d). Since x = cos θ, we have sin θ =
√
1− x2. Hence,

Un(x) =
sin(n+ 1)θ

sin θ
=

sin((n+ 1) arccosx)√
1− x2

.

Thus, we have

d

dx
Tn(x) =

d

dx
cos(n arccosx) = − sin(n arccosx)

( −n√
1− x2

)

= n
sin(n arccosx)√

1− x2
= nUn−1(x).

Part (e). We have

d

dx
Un−1(x) =

d

dx

sin(n arccosx)√
1− x2

=
1

1− x2

[√
1− x2

(−n cos(n arccosx)√
1− x2

)
− sin(n arccosx)

( −x√
1− x2

)]

=
1

1− x2

[
−n cos(n arccosx) + x

sin(n arccosx)√
1− x2

]
=

−nTn(x) + xUn−1(x)

1− x2
.

Part (f). Note that y = Tn(x) implies y′ = nUn−1(x). Differentiating once more yields

y′′ = n

(
xUn−1(x)− nTn(x)

1− x2

)
=

nxUn−1(x)− n2Tn(x)

1− x2
=

xy′ − n2y

1− x2
.

Rearranging, we obtain (
1− x2

)
y′′ − xy′ + n2y = 0.
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Analysis 2.1 Limits

Tutorial A2.1

Problem 1. Evaluate the following limits:

lim
n→∞

3 + n2 − n3

1− 3n
√
n+ 5n3

,(a) lim
n→∞

n4

(√
1 +

1

n4
− 1

)
,(b)

lim
n→∞

3n + (−3)n

4n
,(c) lim

n→∞

n∏

k=2

(
1− 1

k2

)
,(d)

lim
n→∞

(
sin
(
n2 + 1

)

5
+

cos(2n)

4

)n

,(e) lim
n→∞

n∑

k=1

1

n2 + 3k
.(f)

∗ ∗ ∗ ∗ ∗

Problem 2. For each of the following statements, determine whether it is true or false.
If it is true, give a proof. If it is false, provide a counter-example.

(a) If {xn}∞n=1 and {yn}∞n=1 are both divergent, then {xn + yn}∞n=1 is divergent.

(b) If {xn}∞n=1 is convergent and {yn}∞n=1 is divergent, then {xn + yn}∞n=1 is divergent.

(c) If {xn}∞n=1 is convergent and {yn}∞n=1 is divergent, then {xnyn}∞n=1 is divergent.

(d) If limn→∞ 1
n (x1 + x2 + · · ·+ xn) = x, then limn→∞ xn = x.

Solution.

Part (a). False. Take xn = n and yn = −n. Clearly, both sequences are divergent (to ∞
and −∞ respectively), but their sum is the zero sequence.

Part (b). True. Seeking a contradiction, suppose {xn}∞n=1 is convergent, {yn}∞n=1 divergent
and {xn + yn}∞n=1 convergent. Then there exists finite constants x and s such that

x = lim
n→∞

xn and s = lim
n→∞

(xn + yn) .

This implies that
lim
n→∞

yn = lim
n→∞

(xn + yn − xn) = s− x

must also be finite, contradicting the divergence of {yn}∞n=1.

Part (c). False. Take xn = 0 (which is clearly convergent) and yn = n (which diverges to
∞). Then their product xnyn = 0 is clearly convergent.

Part (d). False. Take xn = (−1)n. Then

∣∣∣∣ limn→∞
x1 + x2 + · · ·+ xn

n

∣∣∣∣ = lim
n→∞

∣∣∣∣
x1 + x2 + · · ·+ xn

n

∣∣∣∣ ≤ lim
n→∞

1

n
= 0

so

lim
n→∞

x1 + x2 + · · ·+ xn
n

= 0,
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but
lim
n→∞

xn = lim
n→∞

(−1)n

does not exist.

∗ ∗ ∗ ∗ ∗

Problem 3. Use the result that the sequence {en}∞n=1 defined by en = (1+1/n)n converges
to e as n → ∞ to evaluate the following limits.

(a) lim
n→∞

(
1 +

1

4n+ 1

)2n+1

, (b) lim
n→∞

(
1 +

3

n

)n

, (c) lim
n→∞

(
1− 1

n

)n

.

Solution.

Part (a). Let

L = lim
n→∞

(
1 +

1

4n+ 1

)2n+1

.

Then

L2 = lim
n→∞

(
1 +

1

4n+ 1

)4n+2

= lim
n→∞

(
1 +

1

4n+ 1

)(
1 +

1

4n+ 1

)4n+1

= e,

so L =
√
e.

Part (b). Let

L = lim
n→∞

(
1 +

3

n

)n

= lim
n→∞

(
1 +

1

n/3

)n

.

Then

L1/3 = lim
n→∞

(
1 +

1

n/3

)n/3

= e,

so L = e3.

Part (c). Let

L = lim
n→∞

(
1− 1

n

)n

.

Then

Le = lim
n→∞

(
1− 1

n

)n(
1 +

1

n

)n

= lim
n→∞

(
1− 1

n2

)n

.

By Bernoulli’s inequality, one obtains the bound

1− n

n2
≤
(
1− 1

n2

)n

≤ 1.

Taking limits on both sides, we have

1 ≤ lim
n→∞

(
1− 1

n2

)n

≤ 1,

so by the Squeeze Theorem, Le = 1, which implies L = 1/e.
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Problem 4. Evaluate the following limits, without using L’Hôpital’s rule.

lim
t→6

8(t− 5)(t− 7),(a) lim
y→−3

(5− y)4/3,(b)

lim
y→2

y + 2

y2 + 5y + 6
,(c) lim

h→0

√
5h+ 4− 2

h
,(d)

lim
u→0

u4 − 1

u3 − 1
,(e) lim

x→0

1/(x− 1) + 1/(x+ 1)

x
,(f)

lim
x→4

4− x

5−
√
x2 + 9

.(g)

Solution.

Part (a). Clearly,
lim
t→6

8(t− 5)(t− 7) = 8(6− 5)(6− 7) = −8.

Part (b). Clearly,
lim

y→−3
(5− y)4/3 = (5− (−3))4/3 = 16.

Part (c). Clearly,

lim
y→2

y + 2

y2 + 5y + 6
=

2 + 2

22 + 5(2) + 6
=

1

5
.

Part (d). Observe that

lim
h→0

√
5h+ 4− 2

h
=

d

dx

√
5x+ 4

∣∣∣∣
x=0

=
5

2
√
5x+ 4

∣∣∣∣
x=0

=
5

4
.

Part (e). Clearly,

lim
u→0

u4 − 1

u3 − 1
=

−1

−1
= 1.

Part (f). We have

lim
x→0

1/(x− 1) + 1/(x+ 1)

x
= lim

x→0

2

(x− 1)(x+ 1)
=

2

(−1)(1)
= −2.

Part (g). Rationalizing, we obtain

lim
x→4

4− x

5−
√
x2 + 9

= lim
x→4

(4− x)
(
5 +

√
x2 + 9

)

16− x2
= lim

x→4

5 +
√
x2 + 9

4 + x
=

5 +
√
42 + 9

4 + 4
=

5

4
.

∗ ∗ ∗ ∗ ∗

Problem 5. Suppose that lim
x→0

f(x) = 1 and lim
x→0

g(x) = −5. Find the value of

lim
x→0

2f(x)− g(x)

[f(x) + 7]2/3
.

Solution. Clearly,

lim
x→0

2f(x)− g(x)

[f(x) + 7]2/3
=

2(1)− (−5)

(1 + 7)2/3
=

7

4
.

∗ ∗ ∗ ∗ ∗

Problem 6. Suppose that lim
x→4

f(x)− 5

x− 2
= 1. Find the value of lim

x→4
f(x).
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Solution. Trivially,

lim
x→4

f(x)− 5

x− 2
=

limx→4 f(x)− 5

4− 2
= 1 =⇒ lim

x→4
f(x) = 7.

∗ ∗ ∗ ∗ ∗

Problem 7. Suppose that lim
x→0

f(x)

x2
= 1. Find the values of lim

x→0

f(x)

x
and lim

x→0
f(x).

Solution. We have

lim
x→0

f(x)

x
= lim

x→0
x

[
f(x)

x2

]
= 0 · 1 = 0

and

lim
x→0

f(x) = lim
x→0

x2
[
f(x)

x2

]
= 02 · 1 = 0.

∗ ∗ ∗ ∗ ∗

Problem 8. Find the value of the following one-sided limits.

lim
x→−2+

(x+ 3)
|x+ 2|
x+ 2

,(a) lim
x→0+

1− cosx

|cosx− 1| ,(b)

lim
t→4+

(t− ⌊t⌋),(c) lim
t→4−

(t− ⌊t⌋),(d)

lim
h→0+

√
6−

√
5h2 + 11h+ 6

h
,(e) lim

x→0+

√
x3 + x2 + x sin

π

x
.(f)

Solution.

Part (a). Observe that

lim
x→−2+

(x+ 3)
|x+ 2|
x+ 2

= lim
x→−2+

(x+ 3) sgn(x+ 2) = (−2 + 3) sgn
(
0+
)
= 1.

Part (b). Observe that

lim
x→0+

1− cosx

|cosx− 1| = lim
x→0+

sgn(1− cosx) = sgn
(
0+
)
= 1.

Part (c). Clearly,
lim
t→4+

(t− ⌊t⌋) = 4− 4 = 0.

Part (d). Clearly,
lim
t→4−

(t− ⌊t⌋) = 4− 3 = 1.

Part (e). Observe that

lim
h→0+

√
6−

√
5h2 + 11h+ 6

h
= − d

dx

√
5x2 + 11x+ 6

∣∣∣∣
x=0

= − 10x+ 11

2
√
5x2 + 11x+ 6

∣∣∣∣
x=0

= − 11

2
√
6
.

Part (f). Since sin(π/x) ∈ [−1, 1], it follows that

0 = − lim
x→0

√
x3 + x2 + x ≤ lim

x→0

√
x3 + x2 + x sinπt ≤ lim

x→0

√
x3 + x2 + x = 0.

Thus, by the Squeeze Theorem, the limit is simply 0.
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Problem 9. Find the value of the following limits, without using L’Hôpital’s rule.

lim
x→0

x csc 2x

cos 5x
,(a) lim

x→0

x+ x cosx

sinx cosx
,(b)

lim
x→0

sin(1− cosx)

1− cosx
,(c) lim

x→0

x cot 4x

sin2 x cot2 2x
.(d)

Solution.

Part (a). Observe that

lim
x→0

x csc 2x

cos 5x
= lim

x→0

1

2

2x

sin 2x

1

cos 5x
=

1

2
.

Part (b). Observe that

lim
x→0

x+ x cosx

sinx cosx
= lim

x→0

x

sinx

1 + cosx

cosx
= 2.

Part (c). Let u = 1− cosx. Then

lim
x→0

sin(1− cosx)

1− cosx
= lim

u→0

sinu

u
= 1.

Part (d). Observe that

lim
x→0

x cot 4x

sin2 x cot2 2x
= lim

x→0

( x

sinx

)2( 4x

sin 4x

)(
sin 2x

2x

)2( cos 4x

cos2 2x

)
= 1.

∗ ∗ ∗ ∗ ∗

Problem 10. For what values of a and b is

g(x) =





ax+ b, x ≤ 0,

x2 + 3a− b, 0 < x ≤ 2,

3x− 5, x > 2

continuous at every x?

Solution. Equating the left and right limits at x = 0, we get

b = lim
x→0−

g(x) = lim
x→0+

g(x) = 3a− b.

Equating the left and right limit at x = 2, we get

4 + 3a− b = lim
x→2−

g(x) = lim
x→2+

g(x) = 1.

Solving these two linear equations simultaneous, we get a = b = −3/2.

∗ ∗ ∗ ∗ ∗

Problem 11. For what values of a and b is

f(x) =

{
(sinx−a)(cosx−b)

ex−1 , x ̸= 0,

5, x = 0

continuous at every x?
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Part (a). For the limit to exist and be finite, we require the numerator to be 0 as x → 0.
This gives −a(1− b) = 0, whence a = 0 or b = 1.

Case 1 . Suppose a = 0. Invoking L’Hôpital’s rule, we see that

lim
x→0

f(x) = lim
x→0

sinx (cosx− b)

ex − 1
= lim

x→0

cosx (cosx− b)− sin2 x

ex
= 1− b.

For f(x) to be continuous, we require 1− b = 5. Thus, a = 0 and b = −4.
Case 2 . Suppose b = 1. Invoking L’Hôpital’s rule, we see that

lim
x→0

f(x) = lim
x→0

(sinx− a) (cosx− 1)

ex − 1
= lim

x→0

cosx (cosx− 1)− sinx (sinx− a)

ex
= 0.

Since 0 ̸= 5, this case yields no solutions.
Hence, the only values of a and b that makes f(x) continuous over R is a = 0 and

b = −4.

∗ ∗ ∗ ∗ ∗

Problem 12. Find the value of the following limits.

lim
x→0

x2 sin(1/x)

sinx
,(a) lim

x→∞
2x3 + sin

(
x2
)

1 + x3
.(b)

Solution.

Part (a). Note that x sin(1/x) ∈ [−x, x]. Thus, by the Squeeze Theorem,

lim
x→0

x sin

(
1

x

)
= 0.

Hence, the limit in question is simply

lim
x→0

x2 sin(1/x)

sinx
= lim

x→0

( x

sinx

)[
x sin

(
1

x

)]
= 0.

Part (b). Note that
∣∣∣∣∣ limx→∞

sin
(
x2
)

1 + x3

∣∣∣∣∣ = lim
x→∞

∣∣∣∣∣
sin
(
x2
)

1 + x3

∣∣∣∣∣ ≤ lim
x→∞

1

1 + x3
= 0.

Thus,

lim
x→∞

2x3 + sin
(
x2
)

1 + x3
= lim

x→∞

(
lim
x→∞

2x3

1 + x3
+ lim

x→∞
sin
(
x2
)

1 + x3

)
= 2.

∗ ∗ ∗ ∗ ∗

Problem 13. Evaluate the limit

lim
x→1

(
1

lnx
− x2

x− 1

)
.

Solution. Let the limit be L. We have

L = lim
x→1

(
1

lnx
− x2

x− 1

)
= lim

x→1

x− 1− x2 lnx

(x− 1) lnx
.

Invoking L’Hôpital’s rule, we have

L = lim
x→1

1− 2x lnx− x

(x− 1)/x+ lnx
= lim

x→1

1− 2x lnx− x

x− 1 + x lnx
,
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where we multiplied the denominator by x = 1. Invoking L’Hôpital’s rule once more, we
obtain

L = lim
x→1

−1− 2− 2 lnx

1 + lnx+ 1
= −3

2
.

∗ ∗ ∗ ∗ ∗

Problem 14. Evaluate the limit

lim
n→∞

∑n
k=1

√
k∑n

k=1

√
n+ k

.

Solution. Observe that

lim
n→∞

n−3/2
n∑

k=1

√
k = lim

n→∞

n∑

k=1

1

n

√
k

n
=

∫ 1

0

√
x dx =

[
2

3
x3/2

]1

0

=
2

3
.

Likewise,

lim
n→∞

n−3/2
n∑

k=1

√
n+ k = lim

n→∞

n∑

k=1

1

n

√
1 +

k

n

=

∫ 1

0

√
1 + x dx =

[
2

3
(1 + x)3/2

]1

0

=
2

3

(
23/2 − 1

)
.

Thus, the limit in question is simply

lim
n→∞

∑n
k=1

√
k∑n

k=1

√
n+ k

= lim
n→∞

n−3/2
∑n

k=1

√
k

n−3/2
∑n

k=1

√
n+ k

=
2/3

(2/3)(23/2 − 1)
=

1

23/2 − 1
.
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Problem 1. The geometric progression U has terms u1, u2, u3, . . . , with common ratio r,
where |r| < 1. It is given that vi = u2i for i = 1, 2, 3, . . . .

(a) Show that
n∑

i=1

vi =
u1

1 + r

2n∑

i=1

ui.

It is given further that wi = vi − vi+1 for i = 1, 2, 3, . . . .

(b) Show that
n∑

i=1

wi = u1 (1− r)

2n∑

i=1

ui.

Let

SU =
∞∑

i=1

ui, SV =
∞∑

i=1

vi, SW =
∞∑

i=1

wi.

Show that

(c)
SU

SV
+

1

SU
=

2

u1
,

(d) SW = u21.

Solution.

Part (a). Note that ui = ri−1u1. Hence,

2n∑

i=1

ui =
2n∑

i=1

ri−1u1 = u1

(
1− r2n

1− r

)
.

Meanwhile, we have v1 = r2i−2u21. Thus,

n∑

i=1

vi =
n∑

i=1

r2i−2u21 = u21

(
1− r2n

1− r2

)
=

u1
1 + r

(
u1

1− r2n

1− r

)
=

u1
1 + r

2n∑

i=1

ui.

Part (b). We have
n∑

i=1

wi =
∑

i=1

(vi − vi+1) .

Quite clearly, this sum telescopes, giving

n∑

i=1

wi = v1 − vn+1 = u21
(
1− r2n

)
= u1 (1− r)

(
u1

1− r2n

1− r

)
= u1 (1− r)

2n∑

i=1

ui.
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Part (c). From part (a), we have

SV =
u1

1 + r
SU =⇒ SU

SV
=

1 + r

u1
.

Note also that

SU =
∞∑

i=1

ui =
∞∑

i=1

ri−1u1 =
u1

1− r
.

Thus,
SU

SV
+

1

SU
=

1 + r

u1
+

1− r

u1
=

2

u1
.

Part (d). From part (b), we have

SW = u1 (1− r)SU = u1 (1− r)
u1

1− r
= u21.

∗ ∗ ∗ ∗ ∗

Problem 2. For each of the following sequences, determine if it converges or diverges.
Take n = 1, 2, 3, . . . .

un = sin(nπ/2),(a) un = n3/3n,(b)

un = nn/n!,(c) un = (sinn)/n.(d)

Solution.

Part (a). Note that

un =





0, n ≡ 0, 2 (mod 4),

1, n ≡ 1 (mod 4),

−1, n ≡ 3 (mod 4).

Thus, un is divergent.

Part (b). Invoking L’Hôpital’s rule repeatedly,

lim
n→∞

un = lim
n→∞

n3

3n
=

3

ln 3
lim
n→∞

n2

3n
=

6

(ln 3)2
lim
n→∞

n

3n
=

6

(ln 3)3
lim
n→∞

1

3n
= 0.

Part (c). Let the limit be L. Then

lnL = lim
n→∞

(n lnn− lnn!) .

By Stirling’s approximation, lnn! = n lnn− n+O(lnn). Thus,

lnL = lim
n→∞

(n−O(lnn)) = lim
n→∞

O(n) ,

which diverges to ∞. Hence, L diverges to ∞.

Part (d). Note that ∣∣∣ lim
n→∞

un

∣∣∣ = lim
n→∞

|un| ≤ lim
n→∞

1

n
= 0.

Thus, the limit converges to 0.

∗ ∗ ∗ ∗ ∗

Problem 3. Show that the following series is divergent:

5 +
√
5 +

3
√
5 +

4
√
5 + . . . .
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Solution. We have ∞∑

i=1

51/i ≥
∞∑

i=1

11/i =
∞∑

i=1

1,

which clearly diverges to ∞.

∗ ∗ ∗ ∗ ∗

Problem 4.

(a) Show that
2k∑

n=2k−1+1

1

n
≥ 1

2

for every positive integer k.

(b) Show that
2k∑

n=1

1

n
≥ 1 + k/2

for every positive integer k.

(c) Hence, determine if the harmonic series converges or diverges.

Solution.

Part (a). We have

2k∑

n=2k−1+1

1

n
≥

2k∑

n=2k−1+1

1

2k
=

1

2k

(
2k − 2k−1

)
=

2k−1

2k
=

1

2
.

Part (b). We have

2k∑

n=1

1

n
= 1 +

k∑

i=1

2i∑

n=2i−1+1

1

n
≥ 1 +

k∑

i=1

1

2
= 1 +

k

2
.

Part (c). Observe that

∞∑

n=1

1

n
= lim

k→∞

2k∑

n=1

1

n
≥ lim

k→∞

(
1 +

k

2

)
,

which clearly diverges to ∞. Hence, the harmonic series diverges.

∗ ∗ ∗ ∗ ∗

Problem 5. Prove that the following sum of series is less than 3/2 using the formula for
the sum of an infinite geometric series:

1 +
1

3
+

1

42
+

1

53
+

1

64
+ . . . .

Part (a). Clearly,

1 +
1

3
+

1

42
+

1

53
+

1

64
+ · · · < 1 +

1

3
+

1

32
+

1

33
+

1

34
+ · · · = 1

1− 1/3
=

3

2
.
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Problem 6. The diagram below shows a sketch of the graph y = 1/xp, where p > 0,
p ̸= 1.

n n+ 1O

x

y y = 1/xp

By considering the area of appropriate rectangles and the area between the graph and
the x-axis, where n ≥ 1, show that

1

(n+ 1)p
<

1

1− p
(n+ 1)1−p − 1

1− p
n1−p <

1

np
.

Deduce that

1

2p
+

1

3p
+ · · ·+ 1

np
+

1

(n+ 1)p
<

1

1− p

[
(n+ 1)1−p − 1

]
< 1 +

1

2p
+ · · ·+ 1

(n− 1)p
+

1

np
.

Deduce the convergence of the series
∞∑

n=1

1

np

when

p = 1/2,(a) p = 2.(b)

Solution. The area of the big rectangle, denoted A1, is given by

A1 = base × height =

(
1

(n+ 1)− n

)(
1

np

)
=

1

np
.

Meanwhile, the area under the curve y = 1/xp from x = n to n+ 1, denoted A2, is given
by

A2 =

∫ n+1

n

1

xp
dx =

[
x1−p

1− p

]n+1

n

=
1

1− p

[
(n+ 1)1−p − n1−p

]
.

Lastly, the area of the small rectangle, denoted A3, is given by

A3 = base × height =

(
1

(n+ 1)− n

)(
1

(n+ 1)p

)
=

1

(n+ 1)p
.

From the above diagram, it is clear that A3 < A2 < A1. Thus,

1

(n+ 1)p
<

1

1− p
(n+ 1)1−p − 1

1− p
n1−p <

1

np
.

Summing the above result from n = 1 to n = m, we get

1

2p
+

1

3p
+ · · ·+ 1

np
+

1

(n+ 1)p
<

(n+ 1)1−p − 1

1− p
< 1 +

1

2p
+ · · ·+ 1

(n− 1)p
+

1

np
.

Note that the middle term telescopes.
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Part (a). When p = 1/2, we have

∞∑

m=1

1

mp
> lim

m→∞
(m+ 1)1/2 − 1

1/2
,

which diverges to ∞. Thus, the series diverges when p = 1/2.

Part (b). When p = 2, the sequence 1/x2 is strictly positive, so the series is strictly
increasing. Since

∞∑

m=1

1

mp
= 1 + lim

m→∞

[
1

2p
+

1

3p
+ · · ·+ 1

mp
+

1

(m+ 1)p

]
< 1 + lim

m→∞
(m+ 1)−1 − 1

−1
= 2,

the series is also bounded above. Thus, the series is convergent.

∗ ∗ ∗ ∗ ∗

Problem 7.

(a) Sketch the graph of y = 1/x and hence explain why

1

1
+

1

2
+

1

3
+ · · ·+ 1

n
>

∫ n+1

1

dx

x
.

(b) Sketch the graph of y = sinx and determine the largest constant a such that ax ≤
sinx for 0 ≤ x ≤ π/2.

(c) Part of a proof of convergence and divergence of series in a textbook is as follows:

Let n be an integer. Then

n∑

i=1

sin
1

i
≥ 2

π

n∑

i=1

1

i
≥ 2

π
ln(n+ 1) .

n∑

i=1

sin2
1

i
≤

n∑

i=1

1

i2
< 1 +

n∑

i=2

1

i(i− 1)
< 2.

Explain the second line of the proof. Hence, determine for every positive integer k,
if the series

sink
1

1
+ sink

1

2
+ sink

1

3
+ . . .

is convergent or divergent.

Solution.

Part (a).

k k + 1O

x

y y = 1/x
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Clearly, the area of the rectangle is greater than the area under the curve y = 1/x over
[k, k + 1]. Hence,

1

k
>

∫ k+1

k

1

x
dx.

Summing this result from k = 1 to k = n, we see that

1

1
+

1

2
+

1

3
+ · · ·+ 1

n
>

∫ n+1

1

dx

x
.

Part (b).

π/2
(
π
2 , 1
)
O

x

y y = sinx

From the above figure, the line y = 2x/π intersects the maximum point (π/2, 1). Hence,
the maximum such a is 2/π.

Part (c). From (b), we know that sinx ≥ 2x/π for all x ∈ [0, π/2]. Since 0 < 1/i < 1 < π/2
for all i = 1, 2, . . . , n, we have

n∑

i=1

sin
1

i
≥

n∑

i=1

2

π

1

i
=

2

π

n∑

i=1

1

i
.

From (a), we know that
n∑

i=1

1

i
>

∫ n+1

1

dx

x
= ln(n+ 1) .

Thus,
n∑

i=1

sin
1

i
≥ 2

π

n∑

i=1

1

i
≥ 2

π
ln(n+ 1) .

When k = 1, we have
∞∑

i=1

1

i
≥ lim

n→∞
2

π
ln(n+ 1) ,

which diverges. For k > 2, by the Cauchy-Schwarz inequality, we have

(
n∑

i=1

sin2
1

i

)k

≥
(

n∑

i=1

sink
1

i

)2

.

Thus,
n∑

i=1

sink
1

i
≤
(

n∑

i=1

sin2
1

i

)k/2

≤ (2)k/2 .
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Note also that sink(1/i) > 0 for all i > 1. Since our series is increasing and bounded
above, it is convergent.

∗ ∗ ∗ ∗ ∗

Problem 8. A sequence u1, u2, u3, . . . is given by

ur =





0, r = 2,

f(r − 1)− 2f(r − 3), r even, r ̸= 2,

f(r), r odd.

Let

Sn =
n∑

r=1

ur.

(a) Use the method of differences to find S2n.

It is given that f(r) = ln((r + 1)/r).

(b) Use your answer to part (a) to show that

S2n = − ln 2 + 2 ln

(
1 +

1

2n− 1

)
.

Hence, state the value of the sum to infinity.

(c) Find the smallest value of n for which S2n is within 10−2 of the sum to infinity.

(d) By considering the graph of y = 1/x for x > 0, show, with the aid of a sketch, that

1

2n
< u2n−1 <

1

2n− 1
, n ∈ Z+.

Solution.

Part (a). We begin by splitting the S2n into odd and even sums:

S2n =
n∑

m=1

u2m−1 +
n∑

m=2

u2m =
n∑

m=1

f(2m− 1) +

n∑

m=2

[f(2m− 1)− 2f(2m− 3)]

= f(1) + 2

n∑

m=2

[f(2m− 1)− f(2m− 3)] .

The resulting sum telescopes, giving

S2n = f(1) + 2 [f(2n− 1)− f(1)] = 2f(2n− 1)− f(1).

Part (b). Using (a), we have

S2n = 2 ln

(
2n

2n− 1

)
− ln 2 = − ln 2 + 2 ln

(
1 +

1

2n− 1

)
.

As n → ∞, ln(1 + 1/(2n− 1)) → ln 1 = 0. Thus, the sum to infinity is − ln 2.

Part (c). Consider

|S2n − (− ln 2)| ≤ 10−2 =⇒ 2 ln

(
1 +

1

2n− 1

)
≤ 10−2.

Using G.C., n ≥ 100.25, so the least n is 101.
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Part (d). Observe that

u2n−1 = f(2n− 1) = ln

(
2n

2n− 1

)
= ln(2n)− ln(2n− 1) =

∫ 2n

2n−1

1

x
dx,

which is the area under y = 1/x over [2n− 1, 2n]. Consider the following diagram:

2n− 1 2nO

x

y y = 1/x

The area under the curve is larger than the area of the smaller rectangle, but smaller
than the area of the larger rectangle. Hence,

1

2n
< u2n−1 <

1

2n− 1
.

∗ ∗ ∗ ∗ ∗

Problem 9. Use the Binomial Theorem to that for each n ∈ N,

(a) (i)

(
1 +

1

n

)n

≤
n∑

j=0

1

j!
,

(ii)

(
1 +

1

n

)n

≥
k∑

j=0

1

j!

(
1− 1

n

)(
1− 2

n

)
. . .

(
1− j − 1

n

)
for any k < n.

(b) Deduce that

e =

∞∑

j=0

1

j!
.

(c) Let

sn =
n∑

j=0

1

j!
.

Show that for any m,n ∈ N such that m > n, we have

sm − sn <
1

n (n!)
.

Hence, prove that

e−
n∑

j=0

1

j!
≤ 1

n (n!)
.
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(d) Use (c) to explain why 2 < e < 3.

(e) Conclude that e is irrational.

Solution.

Part (a).

Part (a)(i). By the Binomial Theorem,

(
1 +

1

n

)n

=
n∑

j=0

(
n

j

)
1

nj
=

n∑

j=0

n!

(n− j)!j!nj
.

Now observe that

n!

(n− j)!nj
=

n(n− 1)(n− 2) . . . (n− j + 1)

nj
=

(
1− 1

n

)(
1− 2

n

)
. . .

(
1− j − 1

n

)
.

A trivial upper bound is
n!

(n− j)!nj
≤ 1 · 1 . . . 1 = 1.

Thus, (
1 +

1

n

)n

=

n∑

j=0

n!

(n− j)!j!nj
≤

n∑

j=0

1

j!
.

Part (a)(ii). Substituting the expression for n!
(n−j)!nj we found into the sum, we obtain

(
1 +

1

n

)n

=
n∑

j=0

1

j!

(
1− 1

n

)(
1− 2

n

)
. . .

(
1− j − 1

n

)
.

Now observe that all the summands are strictly positive. Thus, the sequence of partial
sums is increasing. That is, for all positive integers k < n, we have

(
1 +

1

n

)n

=
n∑

j=0

1

j!

(
1− 1

n

)(
1− 2

n

)
. . .

(
1− j − 1

n

)

≥
k∑

j=0

1

j!

(
1− 1

n

)(
1− 2

n

)
. . .

(
1− j − 1

n

)
.

Part (b). From (a)(i) and (ii), we have

k∑

j=0

1

j!

(
1− 1

n

)(
1− 2

n

)
. . .

(
1− j − 1

n

)
≤
(
1 +

1

n

)n

≤
n∑

j=0

1

j!
.

As k, n → ∞, we have
∞∑

j=0

1

j!
≤ e ≤

∞∑

j=0

1

j!
.

By the Squeeze Theorem, we have

e =
∞∑

j=0

1

j!
.
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Part (c). Observe that

sm − sn =
1

(n+ 1)!
+

1

(n+ 2)!
+

1

(n+ 3)!
+ · · ·+ 1

m!

=
1

(n+ 1)!

[
1 +

1

n+ 2
+

1

(n+ 3)(n+ 2)
+ · · ·+ 1

m(m− 1) . . . (n+ 2)

]

<
1

(n+ 1)!

[
1 +

1

(n+ 1)
+

1

(n+ 1)2
+ . . .

]

=
1

(n+ 1)!

[
1

1− 1/(n+ 1)

]
=

1

(n+ 1)!

[
n+ 1

n

]
=

1

n (n!)
.

Note also that 1/j! > 0 for all natural j, so sm > sn. This gives the inequality

0 < sm − sn <
1

n (n!)
.

As m → ∞, we have

0 < e−
n∑

j=0

1

j!
<

1

n (n!)

for all n ∈ N.
Part (d). Taking n = 1, the above inequality becomes

0 < e−
(
1

0!
+

1

1!

)
<

1

1 (1!)
=⇒ 0 < e− 2 < 1 =⇒ 2 < e < 3.

Part (e). Seeking a contradiction, suppose e is rational. Write e = a/b, where a, b ∈ Z
with b ̸= 0. From part (d), e is not an integer, so b ̸= 1. Define

x = b!


e−

b∑

j=0

1

j!


 .

Note that x > 0.
Firstly, observe that we can write

x = a (b− 1)!−
b∑

j=0

b!

j!
.

Since b!/j! ∈ Z for all b ≥ j, it follows that x ∈ Z.
Now, observe that

0 < x = b!


e−

b∑

j=0

1

j!


 ≤ b!

(
1

b (b!)

)
=

1

b
< 1,

since b ̸= 1. This implies that x /∈ Z, a contradiction. Thus, e must be irrational.

∗ ∗ ∗ ∗ ∗

Problem 10.

(a) Taking x to be positive, expand
(
2 + x2

)1/2
in a series of decreasing powers of x, as

far as the term in x−5, and state the set of values of x for which the expansion is
valid.
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(b) Given that f(x) = a+ bx+ cx2 − x
(
2 + x2

)1/2
, where a, b and c are constants, and

that f(x) → 0 as x → ∞, show that a = 1, b = 0 and c = 1.

(c) Replacing a, b and c by the values given in (b), obtain an expression for the area
A(X) between the curve y = f(x) and the x-axis for 0 ≤ x ≤ X, where X > 0.

(d) Determine the limit A(X) as X → ∞.

Solution.

Part (a). We have

(
2 + x2

)1/2
= x

(
1 +

2

x

)1/2

= x

[
1 +

1

2

(
2

x2

)
+

(1/2)(−1/2)

2

(
2

x2

)2

+
(1/2)(−1/2)(−3/2)

6

(
2

x2

)3

+O
(
x−8

)
]

= x+ x−1 − 1

2
x−3 +

1

2
x−5 +O

(
x−7

)
.

The radius of convergence is given by
∣∣∣∣
2

x2

∣∣∣∣ =
2

x2
< 1 =⇒ x >

√
2.

Note that we reject x < −
√
2 since x > 0.

Part (b). Note that

f(x) = a+ bx+ cx2 − x
(
2 + x2

)1/2
= (a− 1) + bx+ (c− 1)x2 +O

(
x−2

)
.

For f(x) → 0 as x → ∞, we must have a − 1 = b = c − 1 = 0, whence a = 1, b = 0 and
c = 1.

Part (c). We now have

f(x) = 1 + x2 − x
(
2 + x2

)1/2
.

Note that f(x) is always positive:

1 + x2 − x
(
2 + x2

)1/2
> 0 ⇐⇒

(
1 + x2

)2
> x2

(
2 + x2

)

⇐⇒ 1 + 2x2 + x4 > 2x2 + x4

⇐⇒ 1 > 0.

Thus,

A(x) =

∫ X

0
|f(x)| dx =

∫ X

0

[
1 + x2 − x

(
2 + x2

)1/2]
dx

=

∫ X

0

(
1 + x2

)
dx− 1

2

∫ X

0

√
2 + x2 d

(
2 + x2

)
=

[
x+

x3

3
− 2

3

(
2 + x2

)3/2
]X

0

= X +
1

3
X3 − 1

3

(
2 +X2

)3/2
+

23/2

3
.

Part (d). Note that

1

3

(
2 +X2

)3/2
=

1

3

(
2 +X2

) (
2 +X2

)1/2
=

1

3

(
2 +X2

)(
X +X−1 − 1

2
X−3

)

=
1

3

(
3X +X3 +O

(
X−1

))
= X +

1

3
X3 +O

(
X−1

)
.
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Thus,

A(X) = −O
(
X−1

)
+

23/2

3
,

so

lim
X→∞

A(X) =
23/2

3
.

∗ ∗ ∗ ∗ ∗

Problem 11. Express
(
x2 + 2

)
/
(
x3 + 1

)
in partial fractions. Hence, or otherwise, show

that the coefficient of xn in the expansion in ascending powers of x of
(
1− x+ x2

)−1
is

given by 



(−1)m, n = 3m,

(−1)m, n = 3m+ 1,

0, n = 3m+ 2,

where m is a non-negative integer.

Solution. Note that

x2 + 2

x3 + 1
=

x2 + 2

(x+ 1) (x2 − x+ 1)
=

A

x+ 1
+

Bx+ C

x2 − x+ 1
.

By the cover-up rule, we immediately have A = 1. Multiplying through by x3 + 1, we get

x2 + 2 =
(
x2 − x+ 1

)
+ (x+ 1) (Bx+ C) .

Comparing constant terms, we get 2 = 1 + C =⇒ C = 1. Comparing x2 terms, we have
1 = 1 +B =⇒ B = 0. Thus,

x2 + 2

x3 + 1
=

1

x+ 1
+

1

x2 − x+ 1
.

Now observe that
1

x+ 1
=

∞∑

n=0

(−x)n =

∞∑

n=0

(−1)nxn

and

x2 + 2

x3 + 1
=
(
x2 + 2

) ∞∑

m=0

(
−x3

)m
=
(
x2 + 2

) ∞∑

m=0

(−1)mx3m

=
∞∑

m=0

(−1)mx3m+2 +
∞∑

m=0

2(−1)mx3m.

Hence,

1

x2 − x+ 1
=

x2 + 2

x3 + 1
− 1

x+ 1
=

∞∑

m=0

(−1)mx3m+2

︸ ︷︷ ︸
S1

+

∞∑

m=0

2(−1)mx3m

︸ ︷︷ ︸
S2

−
∞∑

n=0

(−1)nxn

︸ ︷︷ ︸
S3

.

Case 1 . Suppose n = 3m for some m ∈ N0. S1 does not contribute anything, while S2

contributes a coefficient of 2(−1)m and S3 contributes a coefficient of −(−1)n. Thus, the
coefficient of xn is

2(−1)m − (−1)n = 2(−1)m − (−1)3m = 2(−1)m − (−1)m = (−1)m.
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Case 2 . Suppose n = 3m+ 1 for some m ∈ N0. S1 and S2 do not contribute anything,
while S3 contributes a coefficient of −(−1)n. Thus, the coefficient of xn is

−(−1)n = −(−1)3m+1 = (−1)3m+2 = (−1)m.

Case 3 . Suppose n = 3m+2 for some M ∈ N0. S1 contributes a coefficient of (−1)m. S2

does not contribute anything. S3 contributes a coefficient of −(−1)n. Thus, the coefficient
of xn is

(−1)m − (−1)n = (−1)m − (−1)3m+2 = (−1)m − (−1)m = 0.

∗ ∗ ∗ ∗ ∗

Problem 12. The expansion of E = (1 + x)n/(1− x) in ascending powers of x, for small
values of x and for any real value of n, is denoted by

1 + p1(n)x+ p2(n)x
2 + · · ·+ pr(n)x

r + . . . .

Show that pr(n) is a polynomial in n of degree r, given by

pr(n) = 1 + n+
n(n− 1)

2
+

n(n− 1)(n− 2)

3!
+ · · ·+ n(n− 1)(n− 2) . . . (n− r + 1)

r!
.

By putting n = −1 in E and its expansion, and by using the factor theorem, or otherwise,
show that

(a) when r is odd, (n+ 1) is a factor of the polynomial pr(n).

(b) when r is even, (n+ 1) is a factor of the polynomial pr(n)− 1.

(c) Deduce that if f(n) and g(n) are any polynomials in n such that

F (n) = [f(n) + g(n)] pr(n)− g(n),

then F (−1) = −g(−1) if r is odd and F (−1) = f(−1) if r is even.

(d) Prove that, if N is a positive integer, pr(N) = 2N for all r ≥ N .

Solution. Observe that

E =
(1 + x)n

1− x
=

(
n∑

i=0

(
n

i

)
xi

)


∞∑

j=0

xj


 =

∞∑

r=0


 ∑

i+j=r

(
n

i

)
xr.

Thus,

pr(n) =
∑

i+j=r

(
n

i

)
=

r∑

i=0

(
n

i

)
=

(
n

0

)
+

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

r

)

= 1 + n+
n(n− 1)

2
+

n(n− 1)(n− 2)

3!
+ · · ·+ n(n− 1)(n− 2) . . . (n− r + 1)

r!
.

Observe that

pr(−1) = 1− 1 +
(−1)(−2)

2!
+ · · ·+ (−1)(−2) . . . (−r)

r!
= 1− 1 + 1 + 1 + · · · ± 1.

Since pr(n) has degree r, there are r + 1 terms above.

Part (a). When k is odd, there are an even number of terms, so pr(−1) = 0. By the
Factor Theorem, it follows that x+ 1 is a factor of pr(n).
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Part (b). When k is even, there are an odd number of terms, so pr(−1) = 1, whence
pr(−1)− 1 = 0. By the Factor Theorem, it follows that x+ 1 is a factor of pr(n)− 1.

Part (c). If r is odd, we have

F (−1) = [f(−1) + g(−1)] pr(−1)︸ ︷︷ ︸
0

−g(−1) = −g(−1).

If r is even,

F (−1) = [f(−1) + g(−1)] pr(−1)︸ ︷︷ ︸
1

−g(−1) = f(−1) + g(−1)− g(−1) = f(−1).

Part (d). For all r ≥ N ,

pr(N) =

r∑

i=0

(
N

i

)
=

N∑

i=0

(
N

i

)
+

r∑

i=N+1

(
N

i

)
= 2N + 0 = 2N .
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Analysis 3 Inequalities

Tutorial A3

Problem 1. If a, b, c are sides of a triangle, show that

a

b+ c− a
+

b

a+ c− b
+

c

a+ b− c
≥ 3.

Proof. Let

x =
a+ b− c

2
, y =

b+ c− a

2
, z =

c+ a− b

2
.

By the triangle inequality, we have x, y, z > 0. Hence, by AM-GM,

2
√
xy ≤ x+ y, 2

√
yz ≤ y + z, 2

√
zx ≤ z + x,

so
8xyz ≤ (x+ y)(y + z)(z + x).

Replacing x, y, z with their corresponding definitions in a, b, c, we get

(x+ y)(y + z)(z + x)

8xyz
=

abc

(b+ c− a) (a+ c− b) (a+ b− c)
≥ 1.

Thus, by AM-GM,

a

b+ c− a
+

b

a+ c− b
+

c

a+ b− c
≥ 3abc

(b+ c− a) (a+ c− b) (a+ b− c)
≥ 3

as desired.

∗ ∗ ∗ ∗ ∗

Problem 2.

(a) For some positive integer n, let x1 ≤ x2 ≤ · · · ≤ xn and y1 ≤ y2 ≤ · · · ≤ yn be real
numbers. By considering the sum of all n2 terms of the form (xi−xj)(yi−yj), prove
that

n∑

i=1

xiyi ≥
1

n

(
n∑

i=1

xi

)(
n∑

i=1

yi

)
.

(b) Let a triangle have angles A, B, C and let the lengths of the opposite sides be a, b,
c. By applying the result of (a), prove that aA+ bB + cC ≥ 1

3π(a+ b+ c).

(c) Let a, b, c be three positive numbers such that a2 + b2 + c2 = 1. By applying the
result of part (a) with

{xi} =

{
a+ b

c
,
c+ a

b
,
b+ c

a

}
,

find the maximum possible value of

(a+ b)
(
a2 + b2

)

c
+

(c+ a)
(
c2 + a2

)

b
+

(b+ c)
(
b2 + c2

)

a
.
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Solution.

Part (a). Because x1 ≤ x2 ≤ · · · ≤ xn and y1 ≤ y2 ≤ · · · ≤ yn, we have

n∑

i=1

n∑

j=1

(xi − xj)(yi − yj) ≥ 0.

Meanwhile, we can manipulate the sum as

n∑

i=1

n∑

j=1

(xi − xj)(yi − yj) =

n∑

i=1

n∑

j=1

(xiyi + xjyj − xiyj − xjyi)

= 2
n∑

i=1

n∑

j=1

xiyi − 2
n∑

i=1

n∑

j=1

xiyj

= 2n
n∑

i=1

xiyi − 2

(
n∑

i=1

xi

)


n∑

j=1

yj


 .

Thus,

2n

n∑

i=1

xiyi − 2

(
n∑

i=1

xi

)


n∑

j=1

yj


 ≥ 0,

and our inequality follows immediately.

Part (b). Without loss of generality, suppose a ≤ b ≤ c. Consider the sine rule:

sinA

a
=

sinB

b
=

sinC

c
.

We now show that A ≤ B ≤ C.
Case 1 . If C ≥ π/2, then A,B < π/2. Since sin θ is increasing on [0, π/2], it is obvious

by the sine rule that we must have A ≤ B, so A ≤ B < π/2 ≤ C.
Case 2 . If C < π/2, then A,B,C ≤ π/2. Since sin θ is increasing on [0, π/2], it is

obvious by the sine rule that A ≤ B ≤ C.
We thus have a ≤ b ≤ c and A ≤ B ≤ C. Applying (a), we have

aA+ bB + cC ≥ 1

3
(a+ b+ c)(A+B + C) =

π

3
(a+ b+ c),

since the sum of angles in a triangle is A+B + C = π.

Part (c). Without loss of generality, assume a ≤ b ≤ c. Then

a+ b

c
≤ c+ a

b
≤ b+ c

a

and
a2 + b2 ≤ c2 + a2 ≤ b2 + c2.

Applying (a), we have

(a+ b)
(
a2 + b2

)

c
+

(c+ a)
(
c2 + a2

)

b
+

(b+ c)
(
b2 + c2

)

a

=
1

3
bp

a+ b

c
+

c+ a

b
+

b+ c

a

[(
a2 + b2

)
+
(
c2 + a2

)
+
(
b2 + c2

)]

=
2

3

(
a+ b

c
+

c+ a

b
+

b+ c

a

)(
a2 + b2 + c2

)

=
2

3

(
a+ b

c
+

c+ a

b
+

b+ c

a

)
.
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By AM-GM,

a+ b

c
+

c+ a

b
+

b+ c

a
≥ 3

3

√
(a+ b)(c+ a)(b+ c)

abc

≥ 3
3

√√√√
(
2
√
ab
)
(2
√
ca)
(
2
√
bc
)

abc

= 3 · 2 = 6.

Thus,
(a+ b)

(
a2 + b2

)

c
+

(c+ a)
(
c2 + a2

)

b
+

(b+ c)
(
b2 + c2

)

a
≥ 2

3
· 6 = 4.

The minimum value of 4 is attained when a = b = c = 3
√

1/3.

∗ ∗ ∗ ∗ ∗

Problem 3. By considering ai = n
√
xi for i = 1, . . . , n, show that for all positive real

numbers x1, x2, . . . , xn such that x1x2 . . . xn = 1, the following inequality holds:

1

n− 1 + x1
+

1

n− 1 + x2
+ · · ·+ 1

n− 1 + xn
≤ 1.

Proof. Observe that a1 . . . an = n
√
x1 . . . xn = 1, so

xi =
ani

a1 . . . an
=

an−1
i

a1 . . . ai−1ai+1 . . . an
.

By AM-GM, we have

a1 . . . ai−1ai+1 . . . an = n−1

√
an−1
1 . . . an−1

i−1 a
n−1
i+1 . . . an−1

n

≤ an−1
1 + · · ·+ an−1

i−1 + an−1
i+1 + · · ·+ an−1

n

n− 1
.

Thus,

xi ≥
(n− 1) an−1

i

an−1
1 + · · ·+ an−1

i−1 + an−1
i+1 + · · ·+ an−1

n
.

It follows that

n− 1 + xi ≥ n− 1 +
(n− 1) an−1

i

an−1
1 + · · ·+ an−1

i−1 + an−1
i+1 + · · ·+ an−1

n

=
(n− 1)

(
an−1
1 + · · ·+ an−1

n

)

an−1
1 + · · ·+ an−1

i−1 + an−1
i+1 + · · ·+ an−1

n
.

Reciprocating, we see that

1

n− 1 + xi
≤ an−1

1 + · · ·+ an−1
i−1 + an−1

i+1 + · · ·+ an−1
n

(n− 1)
(
an−1
1 + · · ·+ an−1

n

) =

∑n
k=1 ak − ai

(n− 1)
∑n

k=1 ak
.

Summing over i = 1, . . . , n, we finally get

1

n− 1 + x1
+ · · ·+ 1

n− 1 + xn
≤

n∑

i=1

∑n
k=1 ak − ai

(n− 1)
∑n

k=1 ak
=

(n− 1)
∑n

k=1 ak
(n− 1)

∑n
k=1 ak

= 1.
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Problem 4.

(a) For all positive real numbers x, y, z, prove that

(
x

y

)2

+
(y
z

)2
+
( z
x

)2
≥ x

z
+

y

x
+

z

y
≥ 3.

(b) (i) Let a = (a1, a2, a3)
T and b = (b1, b2, b3)

T be two non-zero vectors. By con-
sidering the scalar product of a and b, or otherwise, prove that

(
3∑

i=1

aibi

)2

≤
(

3∑

i=1

a2i

)(
3∑

i=1

b2i

)

and state the necessary condition for equality to hold.

(ii) Hence, for all positive real numbers x, y, z, prove that

x+ y + z ≤ 2

(
x2

y + z
+

y2

z + x
+

z2

x+ y

)
.

Solution.

Part (a). We begin with the first inequality. Clearly,

a2 + b2 ≥ 2ab, b2 + c2 ≥ 2bc, c2 + a2 ≥ 2ca.

Adding these three inequalities and dividing by two yields

a2 + b2 + c2 ≥ ab+ bc+ ca.

Now, let

a =
x

y
, b =

y

z
, c =

z

x
.

Then (
x

y

)2

+
(y
z

)2
+
( z
x

)2
≥ x

z
+

y

x
+

z

y

as desired.
We now prove the second inequality. By AM-GM,

x

z
+

y

x
+

z

y
≥ 3 3

√
xyz

zxy
= 3.

Putting both inequalities together, we have

(
x

y

)2

+
(y
z

)2
+
( z
x

)2
≥ x

z
+

y

x
+

z

y
≥ 3.

Part (b).

Part (b)(i). Observe that

(a · b)2 = (a1b1 + a2b2 + a3b3)
2 =

(
3∑

i=1

aibi

)2

.

We also have
(a · b)2 = (|a| |b| cos θ)2 ,
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where θ is the angle between the two vectors. Since cos2 t ∈ [0, 1], it follows that

(
3∑

i=1

aibi

)2

= (a · b)2 ≤ |a|2 |b|2 =
(
a21 + a22 + a23

) (
b21 + b22 + b23

)
=

(
3∑

i=1

a2i

)(
3∑

i=1

b2i

)
.

Equality holds when cos θ = ±1, i.e. when a is parallel to b. Equivalently, ai = kbi for all
i = 1, 2, 3, where k is a constant.

Part (b)(ii). From part (b)(i), we have

[(y + z) + (z + x) + (x+ y)]

(
x2

y + z
+

y2

z + x
+

z2

x+ y

)
≥ (x+ y + z)2 .

The first term on the LHS is simply 2(x+ y+ z), so dividing both sides by x+ y+ z yields
the desired inequality:

2

(
x2

y + z
+

y2

z + x
+

z2

x+ y

)
≥ x+ y + z.

∗ ∗ ∗ ∗ ∗

Problem 5. Prove by induction, the AM-GM inequality for general n.

Proof. Let P (n) be the statement

1

n

n∑

i=1

xi ≥
n∏

i=1

x
1/n
i

for all x1, . . . , xn > 0.
Note that P (1) is trivially true:

1

1

∑
i = 11xi = x1 =

1∏

i=1

x
1/1
i .

P (2) can also be easily proven:

(x1 − x2)
2 ≥ 0 =⇒ x21 + x22 − 2x1x2 ≥ 0 =⇒ x21 + 2x1x2 + x22

4
≥ x1x2

=⇒
(
x1 + x2

2

)2

≥ x1x2 =⇒ x1 + x2
2

≥ √
x1x2.

Suppose P (k) is true for some k ∈ N. We now show that P (k) =⇒ P (2k). By our
inductive hypothesis,

1

2n

2n∑

i=1

xi =
1

2

[
1

n

n∑

i=1

xi +
1

n

2n∑

i=n+1

xi

]
≥ 1

2

(
n∏

i=1

x
1/n
i +

2n∏

i=n+1

x
1/n
i

)
.

By P (2), we have

1

2n

2n∑

i=1

xi ≥

√√√√
n∏

i=1

x
1/n
i

2n∏

i=n+1

x
1/n
i =

2n∏

i=1

x
1/2n
i .

Thus, P (k) =⇒ P (2k).
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Suppose now that P (k+1) is true for some k+1 ∈ N. We now show that P (k+1) =⇒
P (k). Taking

xk+1 =
x1 + · · ·+ xk

k
,

by P (k + 1), we have

x1 + · · ·+ xk +
x1+···+xk

k

k + 1
≥

k∏

i=1

x
1/(k+1)
i

(
x1 + · · ·+ xk

k

)1/(k+1)

.

The LHS simplifies to

x1 + · · ·+ xk
k

≥
k∏

i=1

x
1/(k+1)
i

(
x1 + · · ·+ xk

k

)1/(k+1)

,

so (
x1 + · · ·+ xk

k

)k/k+1

≥
k∏

i=1

x
1/(k+1)
i ,

Raising both sides to the (k + 1)/kth power, we finally have

x1 + · · ·+ xk
k

≥
k∏

i=1

xki ,

so P (k + 1) =⇒ P (k).
From the base cases P (1) and P (2), along with the results P (k) =⇒ P (2k) and

P (k + 1) =⇒ P (k), it stands to reason that P (k) is true for all k ∈ N.

∗ ∗ ∗ ∗ ∗

Problem 6 (Nesbitt’s Inequality). For positive real numbers a, b, c, prove that

a

b+ c
+

b

c+ a
+

c

a+ b
≥ 3

2

using

(a) AM-GM inequality,

(b) Cauchy-Schwarz inequality.

Proof of (a). Let
x = a+ b, y = b+ c, z = c+ a.

By AM-GM,
z + x

y
+

y + z

x
+

x+ y

z
≥ 6 6

√
zxyzxy

yyxxzz
= 6.

Substituting a, b, c back in, we see that

2a+ b+ c

b+ c
+

a+ 2b+ c

c+ a
+

a+ b+ 2c

a+ b
= 3 +

2a

b+ c
+

2b

c+ a
+

2c

a+ b
≥ 6.

Our desired inequality follows immediately.
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Proof of (b). By Cauchy-Schwarz,

[(b+ c) + (c+ a) + (a+ b)]

(
1

b+ c
+

1

c+ a
+

1

a+ b

)
≥ (1 + 1 + 1)2 = 9,

so

(a+ b+ c)

(
1

b+ c
+

1

c+ a
+

1

a+ b

)
≥ 9

2
,

from which it immediately follows that

a

b+ c
+

b

c+ a
+

c

a+ b
≥ 9

2
− 3 =

3

2
.

∗ ∗ ∗ ∗ ∗

Problem 7 (Carlson’s Inequality). Consider n arbitrary real numbers x1, x2, . . . , xn.
Show that

(x1 + x2 + x3 + · · ·+ xn)
2 ≤ π2

6

(
x21 + 4x22 + 9x33 + · · ·+ n2x2n

)
.

You may use the well-known result
∑∞

r=1 1/r
2 = π2/6.

Proof. By Cauchy-Schwarz,

(
n∑

i=1

xi

)2

≤
(

n∑

i=1

1

i2

)(
n∑

i=1

i2x2i

)
≤
( ∞∑

i=1

1

i2

)(
n∑

i=1

i2x2i

)
,

so

(x1 + x2 + x3 + · · ·+ xn)
2 ≤ π2

6

(
x21 + 4x22 + 9x33 + · · ·+ n2x2n

)

as desired.

∗ ∗ ∗ ∗ ∗

Problem 8. Suppose x, y, z > 0 and x+ y + z = 1. Show that

1

x
+

4

y
+

9

z
≥ 36.

Proof. By Cauchy-Schwarz,

(x+ y + z)

(
1

x
+

4

y
+

9

z

)
≥ (1 + 2 + 3)2 .

Since x+ y + z = 1, we have our desired result.

∗ ∗ ∗ ∗ ∗

Problem 9 ( ). The Archimedean property of the real numbers states that for any
x ∈ R, there exists n ∈ N such that x < n.

The well-ordering principle states that any non-empty subset of positive integers S ⊆ Z+

has a smallest element.

(a) Let x, y ∈ R be such that 1 < x < y. Use the Archimedean property to show that
there exists n ∈ N such that ny > 1 + nx.
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(b) Let S = {m ∈ N : m > nx}. Use the well-ordering principle to show that there exists
m0 ∈ S such that m0 − 1 /∈ S, m0 − 1 ∈ N and m0 > nx.

(c) Deduce that there exists a rational number r ∈ Q such that x < r < y.

(d) Hence, prove that for any two real numbers x, y ∈ R satisfying x < y, there exists a
rational number t ∈ Q such that x < t < y.

(e) Deduce that for any two real numbers x, y ∈ R satisfying x < y, there exists an
irrational number u /∈ Q such that x < u < y.

Solution.

Part (a). Since x < y, we have y − x ̸= 0, so 1/(y − x) is real. By the Archimedean
property, there exists some n ∈ N such that

n >
1

y − x
=⇒ n(y − x) > 1 =⇒ ny > 1 + nx,

which is what we wanted.

Part (b). Since nx > 0, we clearly have S ⊆ Z+. By the well-ordering principle, there
exists a smallest element of S. Let m0 be this smallest element. Clearly, m0 ∈ S so
m0 > nx. Further, m0 − 1 /∈ S; if it were, then m0 − 1 would be the smallest element,
contradicting the minimality of m0.

Part (c). From (b), we have m0 − 1 ≤ nx. Adding 1 on both sides and invoking (a),

m0 ≤ nx+ 1 < ny =⇒ m0

n
< y.

Meanwhile, from (b), we also have

nx < m0 =⇒ x <
m0

n
.

Putting the two inequalities together, we see that

x <
m0

n
< y.

Taking r = m0/n, which is rational (m0, n ∈ N), we are done.

Part (d). Case 1 . If 1 < x < y, we are done by (c).
Case 2 . Suppose x < y < −1. Then 1 < −y < −x. Applying (c), there exists a rational

number −r such that −y < −r < −x, so x < r < y and we are done.
Case 3 . If x < 1 < y, we simply take r = 1.

Part (e). Case 1 . Suppose x or y is irrational. Without loss of generality, we take x to
be irrational. Taking

u =
x+m0/n

2
,

which is clearly irrational, we observe that

x <
x+m0/n

2
<

m0

n
< y,

and we are done.
Case 2 . Suppose both x and y are rational. Then we take

u = x+ (y − x)

√
2

2
,

which is clearly irrational and strictly between x and y since
∣∣√2/2

∣∣ < 1.
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Problem 10 ( ).

(a) Let f : [0,∞) → R be a strictly increasing differentiable function such that f(0) = 0.
With the aid of a diagram, prove Young’s inequality for increasing functions:

ab ≤
∫ a

0
f(x) dx+

∫ b

0
f−1(x) dx

for all a, b > 0.

(b) Prove Young’s inequality for products:

ab ≤ ap

p
+

bq

q
,

where 1/p+ 1/q = 1. Deduce that

|ab|
cd

≤ |a|p
cpp

+
|b|q
dqq

for any a, b ∈ R and c, d > 0.

Hölder’s inequality states that if p, q > 1 is such that 1/p+ 1/q = 1, then

n∑

i=1

|aibi| ≤
(

n∑

i=1

|ai|p
)1/p( n∑

i=1

|bi|q
)1/q

for any a1, a2, . . . , an, b1, b2, . . . , bn ∈ R and any n ∈ N.

(c) Let r ≥ 1, n ∈ N and let c1, c2, . . . , cm, d1, d2, . . . , dm ∈ R.
(i) Explain why

m∑

i=1

|ci + di|p ≤
m∑

i=1

[
(|ci|+ |di|) |ci + di|p−1

]
.

(ii) Show that q(p− 1) = p.

(iii) Using Hölder’s inequality, prove the Minkowski inequality:

m∑

i=1

|ci + di|p ≤



(

m∑

i=1

|ci|p
)1/p

+

(
m∑

i=1

|di|p
)1/p



p

.

(iv) Hence, show that the following weighted inequality holds for all w1, . . . , wn > 0:

(
m∑

i=1

|ci + di|pwi

)1/p

≤
(

m∑

i=1

|ci|pwi

)1/p

+

(
m∑

i=1

|di|pwi

)1/p

.
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Solution.

Part (a).

a

b

∫ b

0
f−1(x) dx

∫ a

0
f(x) dx

O

x

y y = f(x)

The sum of the areas represented by the two integrals is bigger than the area of the
rectangle, ab.

Part (b). Take f(x) = xp−1, which is strictly increasing with f(0) = 0. Note that
f−1(x) = x1/(p−1). By (a), for all a, b > 0,

ab ≤
∫ a

0
xp−1 dx+

∫ b

0
x

1
p−1 dx =

ap

p
+

p− 1

p
b

p
p−1 =

ap

p
+

aq

q
,

where q = p/(p− 1). Note that we indeed have 1/p+ 1/q = 1:

q =
p

p− 1
=⇒ 1

q
+

p− 1

p
= 1− 1

p
=⇒ 1

p
+

1

q
= 1.

Under the transformations a 7→ |a| /c, b 7→ |b| /d, we see that

|ab|
cd

≤ |a|p
cpp

+
|b|q
dqq

for all a, b ∈ R and c, d > 0.

Part (c).

Part (c)(i). The triangle inequality states that |ci|+ |di| ≥ |ci + di|. So
m∑

i=1

[
(|ci|+ |di|) |ci + di|p−1

]
≥=

m∑

i=1

|ci + di| |ci + di|p−1 =

m∑

i=1

|ci + di|p .

Part (c)(ii). Since q = p/(p− 1), we trivially have q(p− 1) = p.

Part (c)(iii). From (a),

m∑

i=1

|ci + di|p ≤
m∑

i=1

[
(|ci|+ |di|) |ci + di|p−1

]

=

m∑

i=1

|ci| |ci + di|p−1 +
m∑

i=1

|di| |ci + di|p−1 .
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Applying Hölder’s inequality on both sums, we see that

m∑

i=1

|ci + di|p

≤
(

m∑

i=1

|ci|p
)1/p( m∑

i=1

|ci + di|(p−1)q

)1/q

+

(
m∑

i=1

|di|p
)1/p( m∑

i=1

|ci + di|(p−1)q

)1/q

=



(

m∑

i=1

|ci|p
)1/p

+

(
m∑

i=1

|di|p
)1/p



(

m∑

i=1

|ci + di|p
)1/q

Dividing both sides by (
∑m

i=1 |ci + di|p)1/q, we have our desired inequality:

(
m∑

i=1

|ci + di|p
)1/p

=

(
m∑

i=1

|ci + di|p
)1−1/q

≤
(

m∑

i=1

|ci|p
)1/p

+

(
m∑

i=1

|di|p
)1/p

.

Part (c)(iv). Take c 7→ cw1/p, d 7→ dw1/p and invoke (c)(ii).
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Analysis 4 Complex Numbers

Tutorial A4

Problem 1. Show that if n,m ∈ Z+, then the equations zn = 1 + i and zm = 2− i have
no common solutions for z ∈ C.

Solution. Seeking a contradiction, suppose there exists some z ∈ C that satisfies the
given equations. Then we have

|z|n = |1 + i| =
√
2

and
|z|m = |2− i| =

√
5,

so
|z|2mn = 2m = 5n,

but this is a clear contradiction of the Fundamental Theorem of Algebra, so such a z
cannot exist, i.e. the two equations have no common solutions.

∗ ∗ ∗ ∗ ∗

Problem 2. Let z and w be complex numbers such that |z| = |w| = r > 0. Show that

Re

(
z + w

z − w

)
= 0.

Solution. Let z = reiθ and w = reiφ. Then

z + w

z − w
=

eiθ + eiφ

eiθ − eiφ
=

ei(θ−φ)/2 + e−i(θ−φ)/2

ei(θ−φ)/2 − e−i(θ−φ)/2
=

2 cos
(
θ−φ
2

)

2i sin
(
θ−φ
2

) = −i cot

(
θ − φ

2

)
,

which is purely imaginary, so the claim holds.

∗ ∗ ∗ ∗ ∗

Problem 3. Suppose that the complex number z satisfies the equation 5 (z + i)n =
(4 + 3i) (1 + iz)n. Show that z is purely real.

Solution. Taking the modulus on both sides, we see that

5 |z + i|n = 5 |1 + iz|n =⇒ |z + i| = |1 + iz| = |z − i| .

The locus of z is the perpendicular bisector of the points representing i and −i, i.e. the
real axis. Hence z is purely real.

∗ ∗ ∗ ∗ ∗

Problem 4. Given that w + z = w |z|, where w, z ∈ C with |w| > 1, show that

(
|z|+ |w|

1− |w|

)(
|z| − |w|

1 + |w|

)
= 0.
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Solution. Solving for w, we get

w =
z

|z| − 1
=⇒ |w| = |z|

||z| − 1| .

Note that |z| ̸= 1, for we would get w + z = w, whence z = 0, a contradiction. We thus
have two cases to examine:
Case 1 : |z| − 1 > 0. Then

|w| = |z|
|z| − 1

=⇒ |z| = |w|
|w| − 1

=⇒ |z| − |w|
|w| − 1

= 0.

Case 2 : |z| − 1 < 0. Then

|w| = |z|
1− |z| =⇒ |z| = |w|

1 + |w| =⇒ |z| − |w|
1 + |w| = 0.

Putting both cases together, we see that

(
|z|+ |w|

1− |w|

)(
|z| − |w|

1 + |w|

)
= 0

as desired.

∗ ∗ ∗ ∗ ∗

Problem 5. Let z be a complex number such that |z| = 1. Find the minimum and
maximum value of ∣∣∣z5 + (z∗)3 + 6z

∣∣∣− 2
∣∣z4 + 1

∣∣ .

Solution. Let z = eiθ, where θ ∈ [0, 2π). Then

∣∣∣z5 + (z∗)3 + 6z
∣∣∣ =

∣∣∣e5iθ + e−3iθ + 6eiθ
∣∣∣ =

∣∣∣e4iθ + e−4iθ + 6
∣∣∣

= |2 cos(4θ) + 6| =
∣∣4 cos2(2θ) + 4

∣∣ = 4 cos2(2θ) + 4

and ∣∣z4 + 1
∣∣ =

∣∣∣e4iθ + 1
∣∣∣ =

∣∣∣e2iθ + e−2iθ
∣∣∣ = |2 cos(2θ)| .

Thus, the given expression is equal to
∣∣∣z5 + (z∗)3 + 6z

∣∣∣− 2
∣∣z4 + 1

∣∣ = 4 cos2(2θ)− 4 |cos(2θ)|+ 4.

Case 1 : cos(2θ) ≥ 0. Then our expression becomes

4 cos2(2θ)− 4 cos(2θ) + 4 = 4

(
cos(2θ)− 1

2

)2

+ 3,

which attains a maximum of 4 (when cos(2θ) = 1) and a minimum of 3 (when cos(2θ) =
1/2).

Case 2 : cos(2θ) < 0. Then our expression becomes

4 cos2(2θ) + 4 cos(2θ) + 4 = 4

(
cos(2θ) +

1

2

)2

+ 3,

which once again attains a maximum of 4 (when cos(2θ) = −1) and a minimum of 3 (when
cos(2θ) = −1/2).
Thus, the global maximum is 4, while the global minimum is 3.
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Problem 6.

(a) If z∗1 , z
∗
2 denote the conjugates of the complex numbers z1, z2, show that (z1+ z2)

∗ =
z∗1 + z∗2 and (z1z2)

∗ = z∗1z
∗
2 .

(b) Given the equation az+ bz∗ = c, where a, b, c ∈ C, deduce the equation a∗z∗+ b∗z =
c∗. If |a| ≠ |b|, show that

z =
a∗c− bc∗

|a|2 − |b|2
.

(c) If |a| = |b|, show that no solution for z exists unless c = λ (a+ b) or c = bµi for some
λ, µ ∈ R.

(d) Find the solution for z of the equation

(7 + i) z + 5 (1− i) z∗ = 3− i

in the form z = p + tq, where p and q are fixed complex numbers and t is a real
parameter.

Solution.

Part (a). Let z1 = a+ bi and z2 = c+ di, where a, b, c, d ∈ R. Then

(z1 + z2)
∗ = [(a+ c) + (b+ d) i]∗ = (a+ c)− (b+ d) i = (a− bi) + (c− di) = z∗1 + z∗2 ,

and

(z1z2)
∗ = [(ac− bd) + (ad+ bc) i]∗ = (ac− bd)− (ad+ bc) i = (a− bi) (c− di) = z∗1z

∗
2 .

Part (b). Taking conjugates, we get

a∗z∗ + b∗z = c∗.

We thus get the system of equations
{

az + bz∗ = c,

a∗z∗ + b∗z = c∗
.

This can be represented with the following matrix equation:
(
a b
b∗ a∗

)(
z
z∗

)
=

(
c
c∗

)
.

Assuming that |a| ≠ |b|, the determinant of the matrix is

det

(
a b
b∗ a∗

)
= aa∗ − bb∗ = |a|2 − |b|2 ̸= 0,

so we can invert it to get
(
z
z∗

)
=

1

|a|2 − |b|2
(

a∗ −b
−b∗ a

)(
c
c∗

)
=⇒ z =

a∗c− bc∗

|a|2 − |b|2
.

Part (c). If |a| = |b|, then the determinant of the above matrix is zero, so it is not
invertible. We hence turn to Gaussian elimination to solve the matrix equation. Let
a = reiθ and b = reiφ. Then

(
a b c
b∗ a∗ c∗

)
=

(
reiθ reiφ c
re−iφ re−iθ c∗

)
→

ei(θ+φ)R2

(
reiθ reiφ c

reiθ reiφ c∗ei(θ+φ)

)
.
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For there to be solutions, we require

c = c∗ei(θ+φ) =⇒ c2 = |c|2 ei(θ+φ) =
|c|2
r2

ab =⇒ c = λ
√
ab

for some real λ. All that remains is to show that
√
ab can always be expressed as a real

multiple of either a+ b or bi.
Let α = arg(a) and β = arg(b), with |a| = |b| = r.
Case 1 . Suppose α ̸= β (mod π). Then

a+ b = r
(
eiα + eiβ

)
= rei(α+β)/2

[
ei(α−β)/2 + e−i(α−β)/2

]
= 2r cos

(
α− β

2

)
ei(α+β)/2,

so

arg(a+ b) =
α+ β

2
= arg

(√
ab
)
,

so
√
ab is a real multiple of a+ b in this case.

Case 2 . Suppose α = β (mod π). Since |a| = |b|, we are left with two possibilities:
either a = b or a = −b. If a = b, then we very clearly have

√
ab

a+ b
=

a

2a
=

1

2
∈ R,

so
√
ab is a real multiple of a+ b. Likewise, if a = −b, then

√
ab

bi
=

√
−b2

bi
=

bi

bi
= 1 ∈ R,

so
√
ab is a real multiple of bi.

Part (d). By inspection,

3− i =
1

4
[(7 + i) + (5− 5i)] ,

so z = 1/4 is a particular solution to the above equation. Now consider the associated
homogeneous equation:

(7 + i) z + (5− 5i) z∗ = 0.

Multiplying by z yields

z2 (7 + i) + |z|2 (5− 5i) = 0 =⇒ z2 =

∣∣z2
∣∣

5
(−3 + 4i) =

|z|2
5

(1 + 2i)2 .

Thus, the complementary solution is z = t (1 + 2i), where t is a real parameter (namely,
t = |z| /

√
5). The general solution is thus

z =
1

4
+ t (1 + 2i) .

∗ ∗ ∗ ∗ ∗

Problem 7. The point P represents the complex number p in an Argand diagram, and
the points Q and R represent the roots of the equation (z + p)2 + n2p2 = 0, where n is a
real positive real constant. Show that

(a) PQ = PR = (4 + n2)1/2 |p|,

(b) the angle between the lines PQ and PR is 2 arctan(n/2).
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The point S is such that PQSR is a rhombus.

(c) Find, in terms of p, the complex number represented by S.

(d) Find the value of n for which PQSR is a square.

Solution.

Part (a). Manipulating the given equation, we see that

(z + p)2 + n2p2 = 0 =⇒ z = −p± inp.

Without loss of gerenality, take q = −p+ inp and r = −p− inp. Then

PQ = |q − p| = |−2p+ inp| = |p| |−2 + in| .

and
PR = |r − p| = |−2p− inp| = |p| |2 + in| .

Since −2+in and 2+in are reflections of each other in the imaginary axis, their magnitudes
are clearly equal, so PQ = PR. But

PR = |p| |2 + in| = |p|
√
22 + n2 = |p|

√
4 + n2,

so
PQ = PR = |p|

(
4 + n2

)1/2
.

Part (b). Observe that

arg(q − p) = arg(−2p+ inp) = arctan

(
np

−2

)
= − arctan

(n
2

)
,

and

arg(r − p) = arg(−2p− inp) = arctan

(−np

−2p

)
= arctan

(n
2

)
.

Thus, the difference in the angle between the lines PQ and PR is

|arg(q − p)− arg(r − p)| =
∣∣∣− arctan

(n
2

)
− arctan

(n
2

)∣∣∣ = 2arctan
(n
2

)
.

Part (c). Since PQSR is a rhombus,

−→
PS =

−→
PR+

−→
RS =

−→
PR+

−−→
PQ.

Rewriting in complex number form, we have

s− p = (r − p) + (q − p) =⇒ s = r + q − p = (−p+ inp) + (−p− inp)− p = 3p.

Part (d). For PQSR to be a square, the angle between PQ and PR must be π/2. Thus,

2 arctan
(n
2

)
=

π

2
=⇒ n = 2 tan

(π
4

)
= 2.

∗ ∗ ∗ ∗ ∗

Problem 8. The complex number z has real part x and imaginary part y. Show that

(a) tan(arg(z − 1)) = y
x−1 ,
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(b) tan(arg(1− 4/z)) = 4y
x2+y2−4x

.

The points P and Q in an Argand diagram represent z and 4/z respectively.

(c) Given that the line PQ passes through the point representing 1 + 0i, show that

y = 0 or (x− 4)2 + y2 = 12.

Sketch the locus of P .

(d) Show that, for any position of P on this locus for which y ̸= 0,

∣∣∣∣1−
1

z

∣∣∣∣ =
√
3

2
.

Solution.

Part (a). We have

tan(arg(z − 1)) = tan(arg((x− 1) + iy)) = tan arctan

(
y

x− 1

)
=

y

x− 1
.

Part (b). We have
1

z
=

z∗

|z|2
=

x− iy

x2 + y2
,

so

tan

(
arg

(
1− 4

z

))
= tan

(
arg

(
x2 + y2 − 4x+ 4iy

x2 + y2

))
= tan arctan

(
4y

x2 + y2 − 4x

)

=
4y

x2 + y2 − 4x
.

Part (c). Note that P and Q are on opposite sides of the real axis (since arg(z) =
− arg(4/z)). Thus, we have

arg

(
1− 4

z

)
= arg(z − 1) .

From the previous parts, we obtain

y

x− 1
=

4y

x2 + y2 − 4x
.

Thus, y = 0 is clearly a solution. If y ̸= 0, then further maniupulation yileds

x2 + y2 − 4x = 4x− 4 =⇒ x2 − 8x+ 16 + y2 = 12 =⇒ (x− 4)2 + y2 = 12.

4

√
12

O

Re

Im Locus of P
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Part (d). Let R(z) be the statement “the points representing z, 4/z and 1 are collinear”.
Note that this is equivalent to the statement “the points representing 4/z, 4/(4/z) and 1
are collinear”. Thus,

R(z) ⇐⇒ R

(
4

z

)
.

From the previous part, if z ∈ C \ R, then

R(z) =⇒ |z − 4| =
√
12 = 2

√
3.

As such, if R(z) is true (i.e. z lies on the locus of P ), then

R(z) =⇒ R

(
4

z

)
=⇒

∣∣∣∣
4

z
− 4

∣∣∣∣ = 2
√
3 =⇒

∣∣∣∣1−
1

z

∣∣∣∣ =
1

2

√
3

as desired.

∗ ∗ ∗ ∗ ∗

Problem 9. The complex numbers a, b, c are represented in an Argand diagram by
the points A, B and C respectively. The triangle ABC is equilateral and is labelled
anticlockwise. Show that

(a) (c− a)eiπ/3 = c− b,

(b) (c− a)e−iπ/3 = b− a,

(c) a2 + b2 + c2 = bc+ ca+ ab.

Given that a = −4 + 4i and b = 4− 2i, use the result in (c) to show that

(c− i)2 = k (3 + 4i)2

where k is real. Hence, find c in exact form.

Solution.

Part (a). Consider the figure below.

A

B

C

Clearly, rotating
−→
AC 60◦ clockwise results in

−−→
BC, so

(c− a) eiπ/3 = c− b.

Part (b). Referring to the above figure, we also see that rotating
−→
AC 60◦ counterclockwise

results in
−−→
AB, so

(c− a) e−iπ/3 = b− a.

Part (c). Multiplying the above two results, we get

c2−2ac+a2 = (c− a)2 = (c− b) (b− a) = cb−ac−b2+ab =⇒ a2+b2+c2 = ab+bc+ac.
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Using (c), we have

(−4 + 4i)2 + (4− 2i)2 + c2 = (4− 2i) c+ (−4 + 4i) c+ (−4 + 4i) (4− 2i) ,

which simplifies to

(c− i)2 = c2 − 2ic− 1 = −21 + 72i = 3 (−7 + 24i) = 3 (3 + 4i) .

Thus, k = 3. Taking square roots, we see that c = i ±
√
3 (3 + 4i). Drawing both

possibilities on an Argand diagram, along with a and b, we reject the negative branch, so
c = i +

√
3 (3 + 4i).

A

B

C+

C−

O

Re

Im

∗ ∗ ∗ ∗ ∗

Problem 10. The point Z in an Argand diagram represents the variable complex number
z, and a is a fixed non-zero complex number.

(a) Given that |z| = |z − 6a|, sketch the locus of Z.

(b) Given that |z| = 2 |z − 3a|, show that |z − 4a| = 2 |a|, and hence sketch the locus of
Z.

P and Q, represent the complex numbers p and q, are the common points of the loci in
(a) and (b). Find arg(p/q), given that it is positive.

Solution.

Part (a).

6a

|

|

O

Re

Im Locus of Z
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Part (b). Let L be the locus of Z and P an arbitrary point on L. Define F (3a), A =
L ∩OF , B = L ∩ (OF extended) and Q on OP extended.

A BO

P

Q

F

L = Ω

Since P,A ∈ L, we have
OP

PF
=

OA

AF
=

|z|
|z − 3a| = 2.

Thus, by the angle bisector theorem, it follows that ∠APF bisects ∠OPF .
Similarly, since P,B ∈ L, we have

OP

PF
=

OB

BF
= 2.

Thus, by the angle bisector theorem, it follows that ∠FPB bisects ∠FPQ.
Hence,

∠APB = ∠APF + ∠FPB =
∠OPF + ∠FPQ

2
= 90◦.

Since P is arbitrary, by the converse of Thale’s theorem, it follows that L lies on a circle.
By symmetry, OB contains the diameter of the circle. Elementary calculations show
that A(2a) and B(6a), so the center of the circle is (2a + 6a)/2 = 4a and the radius is
|4a− 2a| = |2a|. Call this circle Ω, so L ⊆ Ω.

By inverting the above argument and invoking the converse of the angle bisector theorem
(and Thale’s theorem), we see that Ω ⊆ L, so we must have L = Ω. The complex equation
for Ω (and thus L) is given by |z − 4a| = 2 |a| as desired.

A

B

F

P

Q

θ
θ

O

Re

Im

Let θ = ∠POF = ∠QOF . Then

sin θ =
PF

OF
=

|z − 3a|
|z| =

1

2
=⇒ θ =

π

3
.
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Thus,

arg

(
p

q

)
= arg(p)− arg(q) = 2θ =

π

3
.

∗ ∗ ∗ ∗ ∗

Problem 11.

Z1

Z2
Z3

O

Re

Im

The complex numbers z1 = x1 + iy1, z2 = x2 + iy2, z3 = x3 + iy3, where xk, yk ∈ R
and |zk| = 1 for k = 1, 2, 3 are represented by the points Z1, Z2 and Z3 on the Argand
diagram above.

(a) Express the complex numbers z1, z2, z3 in exponential form, where α = arg(z1),
β = arg(z2), γ = arg(z3).

(b) Using part (a), show that arg(z1z2) = α+ β.

(c) Without using the property that ∠Z2OZ3 = 2∠Z2Z1Z3, find the value of ∠Z2Z1Z3

in terms of β and γ.

(d) Hence, or otherwise, prove that ∠Z2OZ3 = 2∠Z2Z1Z3.

Solution.

Part (a). We have
z1 = eiα, z2 = eiβ, z3 = eiγ .

Part (b). We have

arg(z1z2) = arg
(
eiαeiβ

)
= arg

(
ei(α+β)

)
= α+ β.

Part (c). Observe that

arg(z2 − z1) = arg
(
eiβ − eiα

)
= arg

(
ei

α+β
2

(
ei

β−α
2 − e−i β−α

2

)

︸ ︷︷ ︸
2i Im ei

β−α
2

)
=

α+ β + π

2
.

Similarly,

arg(z3 − z1) = arg
(
eiγ − eiα

)
=

α+ γ + π

2
.

Thus,

∠Z2Z1Z3 = |arg(z2 − z1)− arg(z3 − z1)| =
∣∣∣∣
α+ β + π

2
− α+ γ + π

2

∣∣∣∣ =
∣∣∣∣
β − γ

2

∣∣∣∣ .
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Part (d). It is clear that

∠Z2OZ3 = |arg z2 − arg z3| = |β − γ| = 2

∣∣∣∣
β − γ

2

∣∣∣∣ = 2∠Z2Z1Z3.

∗ ∗ ∗ ∗ ∗

Problem 12. The complex numbers z1, z2, . . . , z6 are represented by six distinct points
P1, P2, . . . , P6 in the Argand diagram. Express the following statements in terms of com-
plex numbers:

(a)
−−−→
P1P2 =

−−−→
P5P4 and

−−−→
P2P3 =

−−−→
P6P5;

(b)
−−−→
P2P4 is perpendicular to

−−−→
P3P6.

(c) If (a) holds, show that
−−−→
P3P4 =

−−−→
P1P6.

Suppose that (a) and (b) both hold, and that z1 = 0, z2 = 1, z3 = z, z5 = i and z6 = w.

(d) Show that if P1P2P3P4P5P6 forms a convex hexagon, then Re(z) + Re(w) = 1 with
Re(z) > 1 and Re(w) < 0.

(e) Find the distance between P3 and P6 when tan∠P3P2P6 = −2/3.

Solution.

Part (a). We have

z2 − z1 = z4 − z5 and z3 − z2 = z5 − z6.

Part (b). We have that z4 − z2 is perpendicular to z6 − z3. Hence,
(
Re(z4 − z2)
Re(z4 − z2)

)
·
(
Re(z6 − z3)
Im(z6 − z3)

)
= Re(z4 − z2)Re(z6 − z3) + Im(z4 − z2) Im(z6 − z3) = 0.

Part (c). Adding both equations in (a), we have z3 − z1 = z4 − z6, so z4 − z3 = z6 − z1,

implying
−−−→
P3P4 =

−−−→
P1P6.

Part (d).
w = z6 = z5 + z2 − z3 = i + 1− z =⇒ w + z = 1 + i.

Comparing real parts, we have

Re(w) + Re(w) = 1.

Now observe that
z4 = z2 − z1 + z5 = 1− 0 + i = 1 + i.

Further, because
−−−→
P2P4 is perpendicular to

−−−→
P3P6, we must have Im(z) = Im(w) = 1/2. We

can represent this on the following Argand diagram:

P1 P2

P3

P4P5

P6

Re

Im
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Clearly, for P1P2P3P4P5P6 to be a convex hexagon, we must have Re(w) < Re(z1) = 0
and Re(z) > Re(z2) = 1.

Part (e). Since z4 − z3 = z6 − z1, we have Re(z4 − z3) = Re(z6 − z1). Let this modulus of
this common value be a. Then z6 = −a+ i/2 and z3 = 1+ a+ i/2. It is hence clear that

tan arg z6 =
1/2

−a
and tan arg z3 =

1/2

a+ 1
.

Thus,

−2

3
= tan∠P3P2P6 = tan(arg z6 − arg z3) =

tan arg z6 − tan arg z3
1 + tan arg z6 tan arg z3

=

1/2
−a − 1/2

a+1

1 + 1/2
−a

1/2
a+1

.

Solving, we get

2a2 − a− 2 = 0 =⇒ a =
1 +

√
17

4
,

where we reject the negative branch since a ≥ 0. Thus,

P3P6 = 2a+ 1 =
3 +

√
17

2
.

∗ ∗ ∗ ∗ ∗

Problem 13. Let z, w be complex numbers such that w = (z − 1)/(z + 1).

(a) Prove that w lies within the unit circle in the Argand diagram if and only if Re z ≥ 0.

(b) (i) Suppose that w lies within the unit circle in the Argand diagram. Show that
|1− w|2Re z = 1− |w|2.

(ii) Hence, prove that if Re z ̸= −1, then w satisfies the equation

∣∣∣∣w − Re z

Re z + 1

∣∣∣∣ =
∣∣∣∣

1

Re z + 1

∣∣∣∣ .

(iii) Show instead that if Re z = −1, then w satisfies the equation w + w∗ − 2 = 0.
Hence, explain why the locus representing w is a vertical line passing through
x = 1.

Solution.

Part (a). For w to lie within the unit circle, we require |w| ≤ 1, but

|w| = |z − 1|
|z + 1| ≤ 1 ⇐⇒ |z − 1| ≤ |z + 1| .

But this is a standard locus, corresponding precisely to the region of the Argand diagram
where the real part is non-negative, so |w| ≤ 1 if and only if Re(z) ≥ 0.

Part (b).

Part (b)(i). Note that

|z + 1|2 = (z + 1) (z∗ + 1) = |z|2 + z + z∗ + 1,

and
|z − 1|2 = (z − 1) (z∗ − 1) = |z|2 − z − z∗ + 1.
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Hence,

1− |w|2

|1− w|2
=

1−
∣∣∣ z−1
z+1

∣∣∣
2

∣∣∣1− z−1
z+1

∣∣∣
2 =

|z + 1|2 − |z − 1|2

|(z + 1)− (z − 1)|2

=

(
|z|2 + z + z∗ + 1

)
−
(
|z|2 − z − z∗ + 1

)

4
=

z + z∗

2
= Re z,

and we immediately get our desired identity upon clearing denominators.

Part (b)(ii). From the previous part, we have Re(z) |1− w|2 = 1− |w|2, so

Re(z)
(
1− w − w∗ + |w|2

)
= 1− |w|2 .

Expanding and simplifying, we have

(1 + Re(z)) |w|2 − Re(z)w − Re(z)w∗ = 1− Re(z) .

Dividing throughout by 1 + Re(z) yields

|w|2 − Re(z)

Re(z) + 1
w − Re(z)

Re(z) + 1
w∗ =

1− Re(z)

Re(z) + 1
.

Hence, ∣∣∣∣w − Re(z)

Re(z) + 1

∣∣∣∣
2

=
1− Re(z)

Re(z) + 1
+

(
Re(z)

Re(z) + 1

)2

=
1

(Re(z) + 1)2
.

The desired result follows immediately.

Part (b)(iii). If Re(z) = −1, we have

|w|2 − 1 = |1− w|2 = 1− w − w∗ + |w| =⇒ w + w∗ − 2 = 0.

Rewriting, we have
2Re(w) = 2 =⇒ Re(w) = 1.

Hence, the locus of w is the vertical line passing through x = 1.

∗ ∗ ∗ ∗ ∗

Problem 14. Let z1, z2 be complex numbers such that arg(z1) , arg(z2) ∈ (0, π/4).

(a) Show that the function A(x) = arctanx is an increasing function on R.

(b) Suppose that a, b, c, d are positive real numbers such that a/b < c/d. Prove that

a

b
<

a+ c

b+ d
<

c

d
.

(c) Prove that

min{arg(z1) , arg(z2)} < arg(z1 + z2) < max{arg(z1) , arg(z2)} .

Solution.

Part (a). We have
d

dx
A(x) =

1

1 + x2
> 0

for all x ∈ R. Hence, A(x) is increasing on R.
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Part (b). Since a/b < c/d, we have

a <
cb

d
=⇒ a+ c <

cb+ cd

d
=⇒ a+ c

b+ d
<

c

d
.

Similarly, we have

ad

b
< c =⇒ ad+ ab

b
< a+ c =⇒ a

b
<

a+ c

b+ d
.

Chaining both inequalities yields

a

b
<

a+ c

b+ d
<

c

d
.

Part (c). Let z1 = b+ ai, z2 = d+ ci. If a/b = c/d, then z1 and z2 are scalar multiples of
each other, so

arg(z1 + z2) = arg(z1) ∈
(
0,

π

4

)
.

Else, without loss of generality, take a/b < c/d. From (b), we know that

a

b
<

a+ c

b+ d
<

c

d
.

Further, from (a), we can apply arctan on all sides of the inequality to get

arctan
a

b
< arctan

a+ c

b+ d
< arctan

c

d
.

But

arg(z1) = arctan
a

b
, arg(z2) = arctan

c

d
, arg(z1 + z2) = arctan

a+ c

b+ d
,

so

min{arg(z1) , arg(z2)} = arg(z1) < arg(z1 + z2) < arg(z2) = max{arg(z1) , arg(z2)} .

∗ ∗ ∗ ∗ ∗

Problem 15. The complex number z ̸= i satisfies the equation |z − i/2| = 1/2, and
w = iz/(i − z).

(a) Show that w is real.

(b) Show that the points representing w, z and i on the Argand diagram are collinear.

Illustrate (a) and (b) on an Argand diagram.

Solution.

Part (a). Let z = x + iy where x, y ∈ R. The locus of z is a circle centered at (0, 1/2)
with radius 1/2, so

x2 +

(
y − 1

2

)2

=
1

22
=⇒ |z|2 = x2 + y2 = y.

Hence,

w =
iz

i − z
=

iz (−i − z∗)

|i − z|2
=

z − |z|2 i
|i − z|2

=
(x+ iy)− y i

|i − z|2
=

x

|i − z|2
∈ R.
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Part (b). Observe that

|i − z|2 = (i − z) (−i − z∗) = 1 + |z|2 + iz − iz∗ = 1 + y + i (x+ iy)− i (x− iy) = 1− y.

Hence,

arg(i− w) = − x

1− y
+ i = arctan

y − 1

x
.

But

arg(i − z) = arg(−x+ i(1− y)) = arctan
y − 1

x
,

so arg(i − w) = arg(i − z), from which it follows that the points representing w, z and i
on the Argand diagram are collinear.

1
2 i

i

Z

WO

Re

Im

∗ ∗ ∗ ∗ ∗

Problem 16. Let

zk = cos

(
2kπ

n

)
+ i sin

(
2kπ

n

)
,

where k ̸= 0. Show that the set
{
(zk)

t : t = 1, 2, . . . , n
}
has exactly n elements if and only

if k and n do not have any common prime factors.

Solution. Let

Z =
{
(zk)

t : t = 1, 2, . . . , n
}
=

{
exp

(
2π i

kt

n

)
: t = 1, 2, . . . , n

}
.

Note that the n = 1 case is trivial, so we take n > 1. It suffices to show that |Z| < n ⇐⇒
gcd(n, k) > 1.

We begin with the forwards direction. Suppose |Z| < n. Then there exist distinct
t1, t2 ∈ {1, . . . , n} such that zt1k = zt2k . Without loss of generality, suppose t1 > t2. Then

exp

(
2π i

kt1
n

)
= exp

(
2π i

kt2
n

+ 2πmi

)

for some integer m. Taking logarithms, we have

2π i
kt1
n

= 2π i
kt2
n

+ 2πmi =⇒ k (t1 − t2) = mn.

Seeking a contradiction, suppose gcd(k, n) = 1. Then we necessarily have

n | t1 − t2.
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But this is impossible, since 1 ≤ t1 − t2 ≤ n− 1. Thus, we conclude that gcd(k, n) > 1 as
desired.

Now, suppose that gcd(k, n) > 1. Define d = gcd(n, k). Then n = dn′ and k = dk′ for
some integers n′ and k′. Note that

d > 1 =⇒ n′ =
n

d
< n =⇒ n′ + 1 ≤ n.

Additionally, n′ + 1 > 1. Hence, we can select t = n′ + 1, whence we get

zn
′+1

k = exp

(
2π i

k(n′ + 1)

n

)
= exp

(
2π i

k′(n′ + 1)

n′

)
= exp

(
2π ik′ + 2π i

k′

n′

)

= exp

(
2π i

k′

n′

)
= exp

(
2π i

k

n

)
= z1k.

But n′ + 1 ̸= 1, so there is a duplicate element in Z and we immediately have |Z| < n.

∗ ∗ ∗ ∗ ∗

Problem 17.

(a) Show that for any θ ∈ R, we have

sin θ =
2 tan θ

2

1 + tan2 θ
2

and cos θ =
1− tan2 θ

2

1 + tan2 θ
2

.

(b) Let z ∈ C be a complex number such that |z| = 1 and z ̸= −1. By writing z in
trigonometric form, prove that z = (1 + it)/(1− it) for some t ∈ R.

Solution.

Part (a). We have

2 tan θ
2

1 + tan2 θ
2

=
2 sin θ

2 cos
θ
2

cos2 θ
2 + sin2 θ

2

= 2 sin
θ

2
cos

θ

2
= sin θ

and
1− tan2 θ

2

1 + tan2 θ
2

=
cos2 θ

2 − sin2 θ
2

cos2 θ
2 + sin2 θ

2

= cos2
θ

2
− sin2

θ

2
= cos θ.

Part (b). We have z = cos θ + i sin θ for some θ ∈ [0, 2π) \ {π}. Let t = tan2(θ/2). Then

z = cos θ + i sin θ =
1− t2 + 2it

1 + t2
=

(1 + it)2

(1 + it) (1− it)
=

1 + it

1− it
.

∗ ∗ ∗ ∗ ∗

Problem 18. Let z be a complex number satisfying the equation zn = z + z∗ for some
positive integer n. By expressing zn in polar form, show that there are exactly n solutions
to the equation if and only if n ̸≡ 1 (mod 4).

Solution. Let z = reiθ, where r ≥ 0 and θ ∈ [0, 2π). Then the given equation can be
rewritten as

rneinθ = 2r cos θ.

If r = 0, we obtain the trivial solution z = 0. For the rest of the proof, we simply take
z ̸= 0, i.e. r > 0. Then

rn−1einθ = 2 cos θ,
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which immediately implies einθ ∈ R, so nθ = kπ for some integer k, whence

rn−1 = 2 (−1)k cos
kπ

n
.

For k to yield a solution, we require the RHS to be positive, so k must satisfy

(−1)k cos
kπ

n
> 0. (∗)

If k fulfils this condition, then the solution it generates is given by

zk =
n−1

√
2 (−1)k cos

kπ

n
eikπ/n.

Observe that if z satisfies the given equation, then so must z∗. Hence, the number of
solutions given by θ ∈ (0, π) is equal to the number of solutions given by θ ∈ (π, 2π). Note
also that θ = π/2 corresponds to the trivial solution z = 0. Thus, for the remainder of this
proof, we consider only the case where θ = 0, π (i.e. z ∈ R), θ ∈ (0, π/2) and θ ∈ (π/2, π).
Case 1 : n ≡ 0 (mod 4). Let n = 4m. θ = 0 gives the real solution z = n−1

√
2, while

θ = π does not yield any solution (it does not satisfy (∗)). Consider now θ ∈ (0, π/2), i.e.
k = 1, 2, . . . , 2m− 1. For (∗) to hold, we must have k even, so we have m− 1 valid values
of k:

k = 2, 4, . . . , 2m− 2.

Consider now θ ∈ (π/2, π), i.e. k = 2m+ 1, 2m+ 2, . . . , 4m− 1. For (∗) to hold, we must
have k odd, so we have another m valid values of k:

k = 2m+ 1, 2m+ 3, . . . , 4m− 1.

Now observe that because the first set of k’s is even and the second set of k’s is odd, the
symmetry around θ = π/2 (k = 2m) is broken, so these two sets of k’s must yield distinct
zk. Altogether, we have a total of 4m = n distinct solutions:

θ Unique solutions in interval Remarks

0 1 z = n−1
√
2

(0, π/2) m− 1

π/2 1 z = 0

(π/2, π) m

π 0

(π, 3π/2) m Conjugate of (π/2, π)

3π/2 0 Counted already (z = 0)

(3π/2, 2π) m− 1 Conjugate of (0, π/2)

Case 1 : n ≡ 2 (mod 4). Let n = 4m+ 2. θ = 0 gives the real solution z = n−1
√
2, while

θ = π does not yield any solution. Consider now θ ∈ (0, π/2), i.e. k = 1, 2, . . . , 2m. For
(∗) to hold, we must have k even, so we have m valid values of k:

k = 2, 4, . . . , 2m.

Consider now θ ∈ (π/2, π), i.e. k = 2m+ 2, 2m+ 3, . . . , 4m+ 1. For (∗) to hold, we must
have k odd, so we have another m valid values of k:

k = 2m+ 3, 2m+ 5, . . . , 4m+ 1.

Once again, the difference in parity between the two sets of k’s ensures that they corre-
spond to different zk’s. Altogether, we have a total of 4m+ 2 = n distinct solutions:
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θ Unique solutions in interval Remarks

0 1 z = n−1
√
2

(0, π/2) m

π/2 1 z = 0

(π/2, π) m

π 0

(π, 3π/2) m Conjugate of (π/2, π)

3π/2 0 Counted already (z = 0)

(3π/2, 2π) m Conjugate of (0, π/2)

Case 1 : n ≡ 3 (mod 4). Let n = 4m + 3. θ = 0, π give the real solutions z = ± n−1
√
2.

Consider now θ ∈ (0, π/2), i.e. k = 1, 2, . . . , 2m+1. For (∗) to hold, we must have k even,
so we have m valid values of k:

k = 2, 4, . . . , 2m.

Consider now θ ∈ (π/2, π), i.e. k = 2m+ 2, 2m+ 3, . . . , 4m+ 2. For (∗) to hold, we must
have k odd, so we have another m valid values of k:

k = 2m+ 3, 2m+ 5, . . . , 4m+ 1.

Again, the difference in parity between the two sets of k’s ensures that they correspond
to different zk’s. Altogether, we have a total of 4m+ 3 = n distinct solutions:

θ Unique solutions in interval Remarks

0 1 z = n−1
√
2

(0, π/2) m

π/2 1 z = 0

(π/2, π) m

π 1 z = − n−1
√
2

(π, 3π/2) m Conjugate of (π/2, π)

3π/2 0 Counted already (z = 0)

(3π/2, 2π) m Conjugate of (0, π/2)

Case 1 : n ≡ 1 (mod 4). Let n = 4m + 1. θ = 0, π give the real solutions z = ± n−1
√
2.

Consider now θ ∈ (0, π/2), i.e. k = 1, 2, . . . , 2m. For (∗) to hold, we must have k even, so
we have m valid values of k:

k = 2, 4, . . . , 2m.

Consider now θ ∈ (π/2, π), i.e. k = 2m+1, 2m+3, . . . , 4m. For (∗) to hold, we must have
k odd, so we have another m valid values of k:

k = 2m+ 1, 2m+ 5, . . . , 4m− 1.

Again, the difference in parity between the two sets of k’s ensures that they correspond
to different zk’s. Altogether, we have a total of 4m+ 3 = n+ 2 distinct solutions:
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θ Unique solutions in interval Remarks

0 1 z = n−1
√
2

(0, π/2) m

π/2 1 z = 0

(π/2, π) m

π 1 z = − n−1
√
2

(π, 3π/2) m Conjugate of (π/2, π)

3π/2 0 Counted already (z = 0)

(3π/2, 2π) m Conjugate of (0, π/2)

∗ ∗ ∗ ∗ ∗

Problem 19. Let

w =
z − s

1− s∗z
,

where z = e2π i/3 and s is a complex number such that π/2 < arg s < 2π/3 and |s| = |z − s|.
Show that |w| = 1 and 2π/3 < arg(w) < π.

Solution. We note that z∗ = 1/z, so

w =
z − s

1− s∗z
=

z − s

z (1/z − s∗)
=

z − s

z (z∗ − s∗)
=

z − s

z (z − s)∗
.

From here, we easily conclude that

|w| = |z − s|
|z| |(z − s)∗| =

|z − s|
|(z − s)∗| = 1.

Next, we observe that

argw = arg(z − s)− arg(z)− arg((z − s)∗) = 2 arg(z − s)− 2π

3
.

Consider now the locus of s. Let W (w), A(w/2) and B(i/
√
3). One can verify that w/2

and i/
√
3 are the solutions to arg(s) = arg(z − s) when arg s = 2π/3, π/2 respectively.

W

A
B

|

|
||

||

O

Re

Im Locus of s

From the above diagram, it is clear that inf arg(z − s) is attained at A, so

inf arg(z − s) =
2π

3
.
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Meanwhile, sup arg(z − s) is attained at B. Using the property that |s| = |z − s|, we see
that △OBW is isosceles, with

∠BOW = ∠BWO = argw − π

2
=

π

6
.

Hence, ∠WBO = π − 2(π/6) = 2π/3, whence

sup arg(z − s) = 2π − 2π

3
− π

2
=

5π

6
.

Thus,

arg(z − s) ∈
(
2π

3
,
5π

6

)
=⇒ argw = 2arg(z − s)− 2π

3
∈
(
2π

3
, π

)
.
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9758 H2 Mathematics

9758 JC1 Weighted Assessment 1

Problem 1. The curve C has parametric equations

x = t2 + t, y = 4t− t2, −2 < t < 1.

(a) Sketch C, indicating the coordinates of the end-points and the axial intercepts (if
any) of this curve.

(b) Find the coordinates of the point(s) of intersection between C and the line 8y−12x =
5.

Solution.

Part (a).

−5

(2,−12)

(2, 3)

O

x

y C

Part (b).

28y − 12x = 8(4t− t2)− 12(t2 + t) = 5 =⇒ −20t2 + 20t− 5 = 0

=⇒ t2 − t+
1

4
= 0 =⇒

(
t− 1

2

)2

= 0 =⇒ t =
1

2
.

When t = 1/2, we have that x = 3/4 and y = 7/4. Thus, C and the line 8y − 12x = 5
intersect at (3/4, 7/4).

∗ ∗ ∗ ∗ ∗

Problem 2.

(a) Without using a calculator, solve 4
3+2x−x2 ≤ 1.

(b) Hence, solve 4
3+2|x|−x2 ≤ 1.
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Solution.

Part (a).

4

3 + 2x− x2
≤ 1 =⇒ 4

x2 − 2x− 3
≥ −1

=⇒ 4

(x− 3)(x+ 1)
+ 1 =

4 + (x− 3)(x+ 1)

(x− 3)(x+ 1)
=

(x− 1)2

(x− 3)(x+ 1)
≥ 0

We thus have that x = 1 is a solution. In the case when (x− 1)2 > 0,

1

(x− 3)(x+ 1)
≥ 0 =⇒ (x− 3)(x+ 1) ≥ 0

whence x < 1 or x > 3. Putting everything together, we have

x < −1 or x = 1 or x > 3.

Part (b).
4

3 + 2 |x| − x2
≤ 1 =⇒ 4

3 + 2 |x| − |x|2
≤ 1.

From part (a), we have that |x| < −1, |x| = 1 or |x| > 3.
Case 1 : |x| < −1. Since |x| ≥ 0 this case yields no solutions.
Case 2 : |x| = 1. We have x = 1 or x = −1.
Case 3 : |x| > 3. We have x > 3 or x < −3.
Thus,

x < −3 or x = −1 or x = 1 or x > 3.

∗ ∗ ∗ ∗ ∗

Problem 3. The curve C1 has equation

y =
2x2 + 2x− 2

x− 1
.

(a) Sketch the graph of C1, stating the equations of any asymptotes and the coordinates
of any axial intercepts and/or turning points.

The curve C2 has equation

(x− a)2

12
+

(y − 6)2

b2
= 1

where b > 0. It is given that C1 and C2 have no points in common for all a ∈ R.

(b) By adding an appropriate curve in part (a), state the range of values of b, explaining
your answer.

(c) The function f is defined by

f(x) =
2x2 + 2x− 2

x− 1
, x < 1.

(i) By using the graph in part (a) or otherwise, explain why the inverse function
f−1 does not exist.
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(ii) The domain of f is restricted to [c, 1) such that c is the least value for which
the inverse function f−1 exists. State the value of c and define f−1 clearly.

Solution.

Part (a).

−1.62 0.62

2

x = 1

y =
2x

+ 4

(2, 10)

(a, 6)
1

b

O

x

y C1

C2

Part (b). Observe that C2 describes an ellipse with vertical radius b and horizontal
radius 1. Furthermore, the ellipse is centred at (a, 6). Since C1 and C2 have no points
in common for all a ∈ R, the maximum y-value of the ellipse corresponds to the y-
value of the minimum point (2, 10) of C1. Similarly, the minimum y-value of the ellipse
corresponds to the y-value of the maximum point (0, 2) of C1. Thus, 2 < y < 10, whence
b < min {|6− 2| , |6− 10|} = 4. Thus, 0 < b < 4.

Part (c).

Part (c)(i). Observe that f(−1.62) = f(0.618) = 0. Hence, there exist two different values
of x in Df that have the same image under f . Thus, f is not one-one. Hence, f−1 does
not exist.

Part (c)(ii). Clearly, c = 0. We now find f−1.

f(x) =
2x2 + 2x− 2

x− 1
=⇒ xf(x)− f(x) = 2x2 + 2x− 2

=⇒ 2x2 +
[
2− f(x)

]
x+

[
f(x)− 2

]
= 0 =⇒ x =

f(x)− 2±
√

f(x)2 − 12f(x) + 20

4
.

Replacing x 7→ f−1(x), we get

f−1(x) =
x− 2±

√
x2 − 12x+ 20

4
.

Note that Df = Rf−1 = [0, 1). We thus take the positive root. Also note that Rf =
Df−1 = (−∞, 2]. Hence,

f−1 : x 7→ x− 2 +
√
x2 − 12x+ 20

4
, x ∈ R, x ≤ 2.
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9758 JC1 Weighted Assessment 2

Problem 1. Differentiate arccos
(√

1− 4x
)
with respect to x, simplifying your answer.

Solution.

d

dx
arccos

(√
1− 4x

)
= − 1√

1− (1− 4x)

( −4

2
√
1− 4x

)
=

2√
4x

√
1− 4x

=
1√

x− 4x2
.

∗ ∗ ∗ ∗ ∗

Problem 2. It is given that x and y satisfy the equation xy2 = ln
(
x2ey

)
− 2e

x .

(a) Verify that (e, 0) satisfies the equation.

(b) Hence, show that at y = 0, dy
dx = k

e , where k is a constant to be determined.

Solution.

Part (a). Substituting x = e and y = 0 into the given equation,

LHS = e · 02 = 0, RHS = ln
(
e2 · e0

)
− 2e

e
= 2− 2 = 0.

Since the LHS is equal to the RHS, (e, 0) satisfies the equation.

Part (b). From the given equation, we have

xy2 = 2 lnx+ y − 2e

x
.

Implicitly differentiating yields

x

(
2y

dy

dx

)
+ y2 =

2

x
+

dy

dx
+

2e

x2
.

Substituting x = e and y = 0 into the above equation gives

0 =
2

e
+

dy

dx
+

2e

e2
=⇒ dy

dx
=

−4

e
.

Thus, k = −4.

∗ ∗ ∗ ∗ ∗

Problem 3. A toy manufacturer wants to make a toy in the shape of a right circular cone
with a cylinder drilled out, as shown in the diagram below. The cylinder is inscribed in
the cone. The circumference of the top of the cylinder is in contact with the inner surface
of the cone and the base of the cylinder is level with the base of the cone. The base radius
of the cylinder is r cm and the base radius of the cone is 6 cm. The height of the cylinder,
BC, is h cm and the height of the cone, AC is 9 cm.
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A

B

C

h

r

6 cm

9 cm

Using differentiation, find the minimum volume of the toy, V cm3, in terms of π.

Solution.

A (0, 9)

B

C r

h

6 cm

9 cm

l1

Consider the diagram above. Let C be the origin. Note that l1 has gradient −9
6 = −3

2 .
Hence, l1 has equation

l1 : y = 9− 3

2
x.

When x = r, we have y = 9 − 3
2r. Thus, the height of the cylinder is

(
9− 3

2r
)
cm. Let

the volume of the cylinder be V1 cm3.

V1 = πr2h = πr2
(
9− 3

2
r

)
= 9πr2 − 3

2
πr3.

For stationary points, dV1
dr = 0.

dV1

dr
= 0 =⇒ 18πr − 9

2
πr2 = 0 =⇒ 9

2
πr(4− r) = 0.



1152 9758 H2 Mathematics

Hence, V1 has a stationary point when r = 4. Note that we reject r = 0 since r > 0.

r 4− 4 4+

dV1
dr +ve 0 −ve

By the first derivative test, V1 attains a maximum when r = 4. Hence,

minV = Volume of cone−maxV1 =

[
1

3
π
(
62
)
(9)

]
−
[
9π
(
42
)
− 3

2
π
(
43
)]

= 60π.

Thus, the minimum volume of the toy is 60π cm3.

∗ ∗ ∗ ∗ ∗

Problem 4. A curve C has parametric equations

x = 2θ + sin 2θ, y = cos 2θ, 0 ≤ θ ≤ π.

(a) Find dy
dx , expressing your answer in terms of only a single trigonometric function.

(b) Hence, find the coordinates of point Q, on C, whose tangent is parallel to the y-axis.

Solution.

Part (a). Note that dx
dθ = 2 + 2 cos 2θ while dy

dθ = −2 sin 2θ. Hence,

dy

dx
=

dy/dθ

dx/dθ
=

−2 sin 2θ

2 + 2 cos 2θ
= − sin 2θ

1 + cos 2θ

= − 2 sin θ cos θ

1 + (2 cos2 θ − 1)
= −2 sin θ cos θ

2 cos2 θ
= − sin θ

cos θ
= − tan θ.

Part (b). Since the tangent at Q is parallel to the y-axis, the derivative dy/dx = − tan θ
must be undefined there. Hence, cos θ = 0 =⇒ θ = π/2. Substituting θ = π/2 into the
given parametric equations, we obtain x = π and y = −1, whence Q(π,−1).

∗ ∗ ∗ ∗ ∗

Problem 5.

(a) A function is defined as f(x) = a(2− x)2 − b, where a and b are positive constants
such that a < 1 and b > 4.

State a sequence of transformations that will transform the curve with equation
y = x2 on to the curve with equation y = f(x).

(b) The diagram shows the graph of y = g(x). The lines x = 3 and y = 2 − x are
asymptotes to the curve, and the graph passes through the points (0, 0) and (5, 0).

(5, 0)

x = 3

y =
2−

x

O

x

y y = g(x)
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Sketch the graph of y = 1
g(x) , indicating clearly the coordinates of any axial intercepts

(where applicable) and the equations of any asymptotes.

(c) Given the graphs of y = |h(x)| and y = h(|x|) below, sketch the two possible graphs
of y = h(x).

x = 1

y = 2

O

x

y

y = |h(x)|

x = 1x = −1

y = −2

O

x

y

y = h(|x|)

Solution.

Part (a).

1. Translate the graph 2 units in the positive x-direction.

2. Scale the graph by a factor of a parallel to the y-axis.

3. Translate the graph b units in the negative y-direction.

Part (b).

(3, 0)

x = 5

y = 0

x = 0

O

x

y y = 1/g(x)
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Part (c).

x = 1

y = −2

O

x

y y = h(x)

x = 1

y = 2

O

x

y y = h(x)

9758 JC1 Promotional Examination

Problem 1. A dietitian in a hospital is to arrange a special diet meal composed of Food
A, Food B and Food C. The diet is to include exactly 7800 units of calcium, 80 units of
iron and 7.5 units of vitamin A. The number of units of calcium, iron and vitamin A for
each gram of the foods is indicated in the table.

Units Per Gram

Food A Food B Food C

Calcium 15 20 24

Iron 0.2 0.15 0.28

Vitamin A 0.015 0.02 0.02

Find the total weight of the foods, in grams, of this special diet.

Solution. Let a, b, and c represent the weight of Food A, B, and C respectively, in grams.
We have the following system of equations:





15a+ 20b+ 24c = 7800

0.2a+ 0.15b+ 0.28c = 80

0.015a+ 0.02b+ 0.02c = 7.5

Using G.C., a = 160, b = 180 and c = 75. Hence, the total weight of the foods is
160 + 180 + 75 = 415 grams.



9758 JC1 Promotional Examination 1155

Problem 2. By expressing 3x2+2x−12
x−1 − (x + 2) as a single simplified fraction, solve the

inequality
3x2 + 2x− 12

x− 1
≥ x+ 2,

without using a calculator.

Solution.

3x2 + 2x− 12

x− 1
− (x+ 2) =

3x2 + 2x− 12− (x+ 2)(x− 1)

x− 1

=
3x2 + 2x− 12− (x2 + x− 2)

x− 1
=

2x2 + x− 10

x− 1
=

(x− 2)(2x+ 5)

x− 1
.

Consider the inequality.

3x2 + 2x− 12

x− 1
≥ x+ 2 =⇒ 3x2 + 2x− 12

x− 1
− (x+ 2) ≥ 0

=⇒ (x− 2)(2x+ 5)

x− 1
≥ 0 =⇒ (x− 2)(2x+ 5)(x− 1) ≥ 0

Hence, −5/2 ≤ x < 1 or x ≥ 2.

∗ ∗ ∗ ∗ ∗

Problem 3.

(a) Given that
∑n

r=1 r
2 = n

6 (n+1)(2n+1), evaluate
∑n

r=−n(r+1)(r+3) in terms of n.

(b) Using standard series from the List of Formulae (MF27), find the range of values of

x for which the series
∑∞

r=1
(−1)r+1xr

r2r converges. State the sum to infinity in terms
of x.

Solution.

Part (a).

n∑

r=−n

(r + 1)(r + 3) =

2n∑

r=0

(r − n+ 1)(r − n+ 3) =

2n∑

r=0

[
r2 + r(4− 2n) + (n2 − 4n+ 3)

]

=
(2n)(2n+ 1)(4n+ 1)

6
+ (4− 2n)

(2n)(2n+ 1)

2
+ (n2 − 4n+ 3)(2n+ 1)

= (2n+ 1)

[
n(4n+ 1)

3
+ (4− 2n)(n) + (n2 − 4n+ 3)

]
=

2n+ 1

3

(
n2 + n+ 9

)
.

Part (b).
∞∑

r=1

(−1)r+1xr

r2r
=

∞∑

r=1

(−1)r+1(x/2)r

r
= ln

(
1 +

x

2

)
.

Range of convergence: −1 < x/2 ≤ 1 =⇒ −2 < x ≤ 2.

∗ ∗ ∗ ∗ ∗

Problem 4. The curve C has parametric equations

x = − 2

t− 1
, y =

4

t+ 1
, t < 1, t ̸= ±1.

(a) Sketch a clearly labelled diagram of C, indicating any axial intercepts and asymptotes
(if any) of this curve.
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(b) Find also its Cartesian equation, stating any restrictions where applicable.

Solution.

Part (a).

(0, 0)

x = 1

y = 2

O

x

y C

Part (b). Note that x = − 2
t−1 =⇒ t = − 2

x + 1. Hence,

y =
4

(−2/x+ 1) + 1
=

4x

−2 + 2x
=

2x

x− 1
.

Thus,

y =
2x

x− 1
, x ̸= 1, x > 0.

∗ ∗ ∗ ∗ ∗

Problem 5.

(a) Find, using an algebraic method, the exact roots of the equation
∣∣3x2 + 5x− 8

∣∣ =
4− x.

(b) On the same axes, sketch the curves with equations y =
∣∣3x2 + 5x− 8

∣∣ and y = 4−x.
Hence, solve exactly the inequality

∣∣3x2 + 5x− 8
∣∣ < 4− x.

Solution.

Part (a). Case 1 : 3x2 + 5x− 8 = 4− x.

3x2 + 5x− 8 = 4− x =⇒ 3x2 + 6x− 12 = 0 =⇒ x2 + 2x− 4 = 0.

By the quadratic formula, we get

x = −1±
√
5.

Case 2 : 3x2 + 5x− 8 = −(4− x).

3x2 + 5x− 8 = −4 + x =⇒ 3x2 + 4x− 4 = (3x− 2)(x+ 2) = 0 =⇒ x =
2

3
or − 2.

Hence, the roots are x = −1±
√
5, 2/3 and −2.

Part (b).
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−1−
√
5 −1 +

√
52

3
−2

8

4

O

x

y y =
∣∣3x2 + 5x− 8

∣∣
y = 4− x

From the graph, −1−
√
5 < x < −2 or 2

3 < x < −1 +
√
5.

∗ ∗ ∗ ∗ ∗

Problem 6.

(a) The transformations A, B and C are given as follows:

A: A reflection in the x-axis.

B: A translation of 1 unit in the positive y-direction.

C: A translation of 2 units in the negative x-direction.

A curve undergoes in succession, the transformations A, B and C, and the equation
of the resulting curve is y = 2x+1

2x+2 . Determine the equation of the curve before the
transformations, expressing your answer as a single fraction.

(b) The diagram shows the curve y = f(x). The lines x = −2, x = 2 and y = 3
2x are

asymptotes to the curve. The curve has turning points at (−3,−5) and (3, 5). It
also has a stationary point of inflexion at the origin O.

(−3,−5)

(3, 5)

x = −2 x = 2

y
=
3
2
x

O

x

y y = f(x)

(i) State the range of values of x for which the graph is concave downwards.

(ii) Sketch the graph of y = 1
f(x) .

(iii) Sketch the graph of y = f ′(x).

Solution.
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Part (a). Observe that

A : y 7→ −y =⇒ A−1 : y 7→ −y

B : y 7→ y − 1 =⇒ B−1 : y 7→ y + 1

C : x 7→ x+ 2 =⇒ C−1 : x 7→ x− 2

Hence,

y =
2x+ 1

2x+ 2

C−1

7−−−→ y =
2(x− 2) + 1

2(x− 2) + 2
=

2x− 3

2x− 2

B−1

7−−−→ y + 1 =
2x− 3

2x− 2

A−1

7−−→ −y + 1 =
2x− 3

2x− 2

Thus,

y = 1− 2x− 3

2x− 2
=

1

2x− 2
.

Part (b).

Part (b)(i). From the graph, we clearly have

x < −2 or 0 < x < 2.
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Part (b)(ii).

2−2
(−3,−1/5)

(3, 1/5)

O x

y y = 1/f(x)

Part (b)(iii).

-3 3

x = −2 x = 2

y = 3/2

O

x

y y = f(x)

∗ ∗ ∗ ∗ ∗

Problem 7. A curve has parametric equations

x = 3u2, y = 6u.

(a) Find the equations of the normal to the curve at the point P
(
3p2, 6p

)
, where p is a

non-zero constant.

(b) The normal meets the x-axis at Q and the y-axis at R. Find the coordinates of Q
and of R.

(c) Find two possible expressions for the area bounded by the normal and the axes in
terms of p, stating the range of values of p in each case.

(d) Given that p is positive and increasing at a rate of 2 units/s, find the rate of change
of the area of the triangle in terms of p.

Solution.

Part (a). Note that
dy

dx
=

dy/du

dx/du
=

6

6u
=

1

u
.

At u = p, the gradient of the normal is hence − 1
1/p = −p. Thus, the equation of the

normal at P is
y − 6p = −p

(
x− 3p2

)
.
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Part (b). At Q, y = 0. Hence, x = 6 + 3p2, whence Q(6 + 3p2, 0). At R, x = 0. Hence,
y = 6p+ 3p2, whence R(0, 6p+ 3p2).

Part (c). When p > 0, the area of the triangle is 1
2(6p+3p3)(6+3p2) units2. When p < 0,

the area of the triangle is −1
2(6p+ 3p3)(6 + 3p2) units2.

Part (d). Let the area of the triangle be A unit2. Since p > 0, we have

A =
1

2
(6p+ 3p3)(6 + 3p2).

Thus,
dA

dp
=

1

2

[
(6p+ 3p3)(6p) + (6 + 3p2)(6 + 9p2)

]
=

9

2

(
5p4 + 12p2 + 4

)
.

Hence, the rate of change of area of the triangle is

dA

dt
=

dA

dp
· dp
dt

= 9
(
5p4 + 12p2 + 4

)
units2/s.

∗ ∗ ∗ ∗ ∗

Problem 8. The shaded region R is bounded by the lines y = 2x, y = 3
2 , the x-axis and

the curve y =
√

3x2−1
x2 .

1√
3

3
4

2√
3

3
2

R

O

x

y
y =

√
(3x2 − 1)/(x2)

y = 2x

(a) By using the substitution x = 1√
3
sec θ, find the exact value of

∫ 2/
√
3

1/
√
3

√
3x2−1
x2 dx.

(b) Hence, find the exact area of the shaded region R.

(c) Find the volume of the solid generated when R is rotated through 2π radians about
the x-axis, giving your answer in 3 decimal places.

Solution.

Part (a). Note that

x =
1√
3
sec θ =⇒ dx =

1√
3
sec θ tan θ dθ,

with the bounds of integration going from θ = 0 to π/3.

∫ 2/
√
3

1/
√
3

√
3x2 − 1

x2
dx =

∫ π/3

0

√
tan2 θ
1
3 sec

2 θ

1√
3
sec θ tan θ dθ =

∫ π/3

0
tan2 θ dθ

=

∫ π/3

0

(
sec2 θ − 1

)
dθ = [tan θ − t]

π/3
0 =

√
3− π

3
.
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Part (b).

AreaR =
1

2

[
2√
3
+

(
2√
3
− 3

4

)]
3

2︸ ︷︷ ︸
area of trapezium

−
∫ 2/

√
3

1/
√
3

√
3x2 − 1

x2
dx =

π

3
− 9

16
units2.

Part (c).

Volume =
1

3
π

(
3

2

)2(3

4

)

︸ ︷︷ ︸
volume of cone

+π

(
2√
3
− 3

4

)(
3

2

)2

︸ ︷︷ ︸
volume of cylinder

−π

∫ 2/
√
3

1/
√
3

(√
3x2 − 1

x2

)2

dx

= 1.907 units3.

∗ ∗ ∗ ∗ ∗

Problem 9. It is given that y = arccos(2x) arcsin(2x), where −0.5 ≤ x ≤ 0.5, and
arccos(2x) and arcsin(2x) denote their principal values.

(a) Show that
(
1− 4x2

) d2y
dx2 − 4x

(
dy
dx

)
+ 8 = 0. Hence, find the MacLaurin series for y

up to and including the term in x3, giving the coefficients in exact form.

(b) Use your expansion from part (a) and integration to find an approximate value for∫ 0.2
0.1

(
2
x

)3
arccos(2x) arcsin(2x) dx, correct to 4 decimal places.

(c) A student, Adam, claims that the approximation in part (b) is accurate. Without
performing any further calculations, justify whether Adam’s claim is valid.

(d) Suggest one way to improve the accuracy of the approximated value obtained in part
(b).

Solution.

Part (a). Differentiating y with respect to x,

y′ = 2

(
arccos(2x)− arcsin(2x)√

1− 4x2

)
.

Differentiating once more,

y′′ =
2√

1− 4x2

(
− 4√

1− 4x2

)
+

2 [arccos(2x)− arcsin(2x)] (−8x)

−2 (1− 4x2)3/2

=
1

1− 4x2

[
−8 + 4x · 2 [arccos(2x)− arcsin(2x)]√

1− 4x2

]
=

1

1− 4x2
(
−8 + 4xy′

)
.

Hence, (
1− 4x2

)
y′′ − 4xy′ + 8 = 0.

Differentiating with respect to x, we get
(
1− 4x2

)
y′′′ − 12xy′′ − 4y′ = 0.

Evaluating y, y′, y′′ and y′′′ at x = 0, we get

y(0) = 0, y′(0) = π, y′′(0) = −8, y′′′(0) = 4π.

Hence,

y = πx− 4x2 +
2

3
πx3 + · · · .

.



1162 9758 H2 Mathematics

Part (b).

∫ 0.2

0.1

(
2

x

)3

arccos(2x) arcsin(2x) dx = 8

∫ 0.2

0.1
x−3 arccos(2x) arcsin(2x) dx

≈ 8

∫ 0.2

0.1
x−3

[
πx− 4x2 +

2

3
πx3

]
dx = 8

∫ 0.2

0.1

(
πx−2 − 4x−1 +

2

3
πx

)
dx

= 8

[
−π

x
− 4 ln |x|+ 2

3
πx

]0.2

0.1

= 105.1585 (4 d.p.).

Part (c). Adam’s claim is valid. Since the approximation for arccos(2x) arcsin(2x) is
accurate for x near 0, and we are integrating over (0.1, 0.2) (which is close to 0), the
integral approximation should also be accurate.

Part (d). Consider more terms in the MacLaurin series of y = arccos(2x) arcsin(2x) and
use the improved series in the approximation for the integral.

∗ ∗ ∗ ∗ ∗

Problem 10. The function f is defined by

f : x 7→ 3 sin

(
2x− 1

6
π

)
, 0 ≤ x ≤ k.

(a) Show that the largest exact value of k such that f−1 exists is 1
3π. Find f−1(x).

(b) It is given that k = 1
3π. In a single diagram, sketch the graphs of y = f(x) and

y = f−1(x), labelling your graphs clearly.

The function h is defined by h : x 7→ 3 sin
(
2x− 1

6π
)
, 0 ≤ x ≤ 1

3π, x = 1
12π.

Another function g is defined by g : x 7→
∣∣3− 1

x

∣∣, −3 ≤ x ≤ 3, x ̸= 0.

(c) Explain clearly why gh exists. Find gh(x) and its range.

(d) Supposing (gh)−1 exists for some restriction, find the exact value of x for which
(gh)−1(x) = 0. Show your working clearly.

Solution.

Part (a). For f−1 to exist, f must be one-one. Since 1
3π is the first maximum point of f ,

it is the largest value of k.
Let y = f(x).

3 sin

(
2x− 1

6
π

)
= y =⇒ sin

(
2x− 1

6
π

)
=

y

3

=⇒ 2x− 1

6
π = arcsin

(y
3

)
=⇒ x =

1

2
arcsin

(y
3

)
+

1

12
π.

Hence,

f−1(x) =
1

2
arcsin

(x
3

)
+

1

12
π.
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Part (b).

π
12

π
12

(
−3

2 , 0
)

(
0,−3

2

)

(
π
3 , 3
)

(
3, π3

)

y
=
x

O

x

y y = f(x)

y = f−1(x)

Part (c). Since Rh = [−3
2 , 0) ∪ (0, 3] and Dg = [−3, 0) ∪ (0, 3], we have Rh ⊆ Dg, whence

gh exists.

gh(x) = g

[
3 sin

(
2x− 1

6
π

)]
=

∣∣∣∣∣3−
1

3 sin
(
2x− 1

6π
)
∣∣∣∣∣ .

When h(x) = 1
3 , gh(x) = 0. When x → 1

12π, gh(x) → ∞. Hence, Rgh = [0,∞).

Part (d).

gh−1(x) = 0 =⇒ x = gh(0) =

∣∣∣∣∣3−
1

3 sin
(
−1

6π
)
∣∣∣∣∣ =

11

3
.

∗ ∗ ∗ ∗ ∗

Problem 11.

(a) (i) Express 2x
(x+1)(x2+1)

= A
x+1+

Bx+c
x2+1

, where A, B and C are constants to be found.

(ii) Evaluate
∫ 1
0

ln(1+x2)
(x+1)2

dx, giving your answer in the form aπ − ln b, where a and

b are positive constants to be found.

(b) Find
∫
sin3(kx) dx, where k is a constant.

Solution.

Part (a).

Part (a)(i). Clearing denominators, we have

2x = A(x2 + 1) + (Bx+ C)(x+ 1) = (A+B)x2 + (B + C)x+ (A+ C).

Comparing coefficients of x2, x and constant terms, we have





A+B = 0

B + C = 2

A+ C = 0

Hence, A = −1, B = 1 and C = 1, giving

2x

(x+ 1)(x2 + 1)
= − 1

x+ 1
+

x+ 1

x2 + 1
.
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Part (a)(ii). Note that
x+ 1

x2 + 1
=

1

2

(
2x

x2 + 1
+

2

x2 + 1

)
.

Hence,

∫ 1

0

2x

(x+ 1)(x2 + 1)
dx =

∫ 1

0

[
− 1

x+ 1
+

1

2

(
2x

x2 + 1
+

2

x2 + 1

)]
dx

=

[
− ln |x+ 1|+ 1

2

(
ln
(
x2 + 1

)
+ 2arctanx

)]1

0

= − ln 2

2
+

π

4
.

Thus,

∫ 1

0

ln
(
1 + x2

)

(x+ 1)2
dx =

[
− ln

(
1 + x2

)

x+ 1

]1

0

+

∫ 1

0

2x

(x+ 1)(x2 + 1)
dx

= − ln 2

2
+

(
− ln 2

2
+

π

2
.

)
= − ln 2 +

π

4
.

Hence, a = 1
4 and b = 2.

Part (b). Note that sin 3u = 3 sinu− 4 sin3 u, whence sin3 u = 3 sinu−sin 3u
4 .

∫
sin3(kx) dx =

∫
3 sin(kx)− sin(3kx)

4
dx =

−3 cos(kx) + 1
3 cos(3kx)

4k
+ C.

∗ ∗ ∗ ∗ ∗

Problem 12. Alan wants to sign up for a triathlon competition which requires him to
swim for 1.5 km, cycle for 30 km and run for 10 km. He plans a training programme
as follows: In the first week, Alan is to swim 400 m, cycle 1 km and run 400 m. Each
subsequent week, he will increase his swimming distance by 50 m, his cycling distance by
15% and his running distance by r%.

(a) Given that Alan will run 829.44 m in Week 5, show that r = 20. Hence, determine
the distance that Alan will run in Week 20, giving your answer to the nearest km.

(b) Determine the week when Alan first achieves the distances required for all three
categories of the competition.

During a particular running practice, Alan plans to run q metres in the first minute.
The distance he covers per minute will increase by 80 m for the next four minutes. Sub-
sequently, he will cover 6% less distance in a minute than that in the previous minute.

(c) Show that the distance, in metres, Alan will cover in the sixth minute is 0.94q+300.8,
and hence find the minimum value of q, to the nearest metre, such that he can
eventually complete 10 km.

While training, Alan suffers from inflammation and needs medication. The concen-
tration of the medicine in the bloodstream after administration can be modelled by the
recurrence relation

Cn+1 = Cne
−(p+ 1

n+100),

where n represents the number of complete hours from which the medicine is first taken
and p is the decay constant.
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(d) The dosage of the medicine prescribed for Alan is 200 mg and the concentration of
the medicine dropped to approximately 168 mg one hour later. It is given that his
pain will be significant once the concentration falls below 60 mg. Determine after
which complete hour he would feel significant pain and should take his medicine
again.

Solution.

Part (a). Let Rn m be the distance ran in the nth week. We have R1 = 400 and
Rn+1 =

(
1 + r

100

)
Rn, whence

Rn = 400
(
1 +

r

100

)n−1
.

Since R5 = 829.44, we have

400
(
1 +

r

100

)4
= 829.44 =⇒

(
1 +

r

100

)4
= 2.0736 =⇒ 1 +

r

100
= 1.2 =⇒ r = 20.

Hence,
R20 = 400 · 1.219 = 12779.2 = 13000,

rounded to the nearest thousand. Hence, Alan will run 13 km in week 20.

Part (b). Let Sn, Cn be the distance swam and cycled in week n, respectively, in metres.
We have S1 = 400 and Sn+1 = Sn + 50, whence

Sn = 400 + (n− 1)50.

Consider Sn ≥ 1500. Then n ≥ 23.
We have C1 = 1000 and Cn+1 = 1.15Cn, whence

Cn = 1000
(
1.15n−1

)
.

Consider Cn ≥ 30000. Then n ≥ log1.15 30 = 25.3.
Consider Rn ≥ 10000. Then n ≥ 1 + log1.2 25 = 18.7.
Hence, the minimum n required is 26. Thus, in week 26, Alan will achieve all distances

required.

Part (c). The distance Alan will run in the 6th minute is (q+4·80)(1−0.06) = 0.94q+300.8.
Let dn be the distance travelled in the nth minute, where n ≥ 6. We have d6 =

0.94q + 300.8 and dn+1 = (1− 0.06)dn, whence

dn = 0.94n−6d6.

The total distance Alan will eventually travel is thus given by

5q + 80(4 + 3 + 2 + 1) +
∞∑

n=6

(0.94)n−6d6 = 5q + 800 +
0.94q + 300.8

1− 0.94
.

Let the above expression be greater than 10000. Then q ≥ 202.581. Hence, min q = 203.

Part (d). We have C0 = 200 and C1 = 168. We hence have

168 = 200e−(p+ 1
100

),

whence p = 0.16435. Using G.C., the first time Cn ≤ 60 occurs when n = 7. Thus, after
7 complete hours, Alan will feel significant pain and should take his medicine again.
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9758 JC2 Weighted Assessment 1

Problem 1. A study of the ant population living in the forest is being conducted. It is
suggested that the population of ants, x thousand at time t years, can be modelled by the
differential equation

dx

dt
= kx(4− x),

where k is a constant. When t = 0, then population size is 1000. It is also known that
dx/dt = 0.75 when the population size is 1500.

(a) Show that k = 0.2.

(b) Find an expression for x in terms of t.

(c) Explain what happens to the ant population in the long run.

Solution.

Part (a). We have

dx

dt

∣∣∣∣
x=1.5

= k(1.5)(4− 1.5) = 0.75 =⇒ k =
0.75

1.5(4− 1.5)
= 0.2.

Part (b). Rearranging the given DE, we have

x

4− x

dx

dt
= 0.2.

Integrating both sides with respect to t,
∫

1

x(4− x)
dx =

∫
0.2 dt = 0.2t+ C1.

Splitting the LHS using partial fractions yields
∫

1

x(4− x)
dx =

1

4

∫ (
1

x
+

1

4− x

)
dx =

1

4
(lnx− ln(4− x)) + C2 =

1

4
ln

x

4− x
+ C2.

Note that x has an unstable equilibrium at x = 0 and a stable equilibrium at x = 4. Since
x(0) = 1 ∈ (0, 4), it follows that x(t) ∈ (0, 4) for all t ≥ 0. Thus, x > 0 and 4 − x > 0.
Hence,

1

4
ln

x

4− x
+ C2 = 0.2t+ C1 =⇒ ln

x

4− x
=

4

5
t+ C3 =⇒ x

4− x
= C4e

4t/5.

Since x(0) = 1, we have C4 = 1/3. Simple algebraic manipulation yields the final expres-
sion

x =
4e4t/5

3 + e4t/5
.

Part (c). Observe that

lim
t→∞

x = lim
t→∞

4e4t/5

3 + e4t/5
= lim

t→∞
4

3e−4t/5 + 1
=

4

1
= 4.

Thus, in the long run, the ant population will approach 4 thousand.

∗ ∗ ∗ ∗ ∗

Problem 2. The equations of the lines l1 and l2 are

r =



5
1
3


+ s



−2
1
−4


 , s ∈ R and r =



−3
0
6


+ t



c
d
2


 , t ∈ R

respectively, where c and d are real constants.
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(a) Find c and d if the lines l1 and l2 are parallel.

(b) For c = 0 and d = 2,

(i) determine if lines l1 and l2 intersect. Find the acute angle between them.

(ii) find the shortest distance of the point (−3, 0, 6) from l1.

Solution.

Part (a). If l1 and l2 are parallel, so are their direction vectors. Thus,



c
d
2


 = k



−2
1
−4




for some k ∈ R. Comparing the z-coordinates, we see that 2 = −4k, whence k = −1/2.
Thus, c = −(1/2)(−2) = 1 and d = −(1/2)(1) = −1/2.

Part (b).

Part (b)(i). Equating the two, we have



5
1
3


+ s



−2
1
−4


 =



−3
0
6


+ t



0
2
2


 =⇒



−2
1
−4


+ t




0
−2
−2


 =



−8
−1
3


 .

This gives the system 



−2s = −8

s− 2t = −1

−4s− 2t = 3

.

Using G.C., we see that this system has no solutions. Thus, l1 and l2 do not have a
common point, whence they do not intersect.
Let θ be the acute angle between l1 and l2. Then

cos θ =

∣∣∣(−2, 1, −4)T · (0, 2, 2)T
∣∣∣

∣∣∣(−2, 1, −4)T
∣∣∣
∣∣∣(0, 2, 2)T

∣∣∣
=

6√
21

√
8
.

Thus, θ = 62.4◦ (1 d.p.).

Part (b)(ii). Let
−→
OA = (5, 1, 3)T and

−−→
OB = (−3, 0, 6)T. Then

−−→
AB =

−−→
OB −−→

OA =



−3
0
6


−



5
1
3


 =



−8
−1
3


 .

Let N be the foot of perpendicular from B to l1. The shortest distance is thus given by

BN =

∣∣∣∣∣∣
−−→
AB × (−2, 1, −4)T∣∣∣(−2, 1, −4)T

∣∣∣

∣∣∣∣∣∣
=

1√
21

∣∣∣∣∣∣




1
−38
−10



∣∣∣∣∣∣
=

√
1545√
21

= 8.58 units (3 s.f.).

∗ ∗ ∗ ∗ ∗

Problem 3. OABC is a rhombus, where
−→
OA = a,

−−→
OC = c and O is the origin. The point

M lies on AB, between A and B, such that
−−→
AM = k

−−→
AB, where k is a positive constant.

The point N lies on BC, between B and C, such that
−−→
NC = s

−−→
BC, where s is a positive

constant. The area of triangle OAM is λ times the area of triangle OMN .
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(a) Show that OB is perpendicular to AC.

(b) By finding the area of triangle OAM and OMN in terms of a and c, find λ in terms
of k and s.

(c) The point P divides MN in the ratio 3 : 2. It is given that
−−→
OP = 3

−−→
PB. Find the

values of k and s.

Solution.

Part (a). Note that −−→
OB =

−→
OA+

−−→
AB =

−→
OA+

−−→
OC = a+ c.

Further, −→
AC =

−−→
OC −−→

OA = c− a.

Thus,

−−→
OB · −→AC = (a+ c) · (c− a) = a · a− a · a+ c · c− c · a = c · c− a · a = |c|2 − |a|2 = 0,

where in the last step we used the fact that |a| = |c| since OABC is a rhombus.

Part (b). Note that

−−→
OM =

−→
OA+

−−→
AM =

−→
OA+ k

−−→
AB = a+ kc.

Also, −−→
ON =

−−→
OC −−−→

NC =
−−→
OC − s

−−→
BC =

−−→
OC − s

−→
AO = c+ sa.

Thus, we have

[△OAM ] =
1

2

∣∣∣−→OA×−−→
OM

∣∣∣ = 1

2
|a× (a+ kc)| = 1

2
|a× a+ ka× c| = k

2
|a× c| .

Similarly,

[△OMN ] =
1

2

∣∣∣−−→OM ×−−→
ON

∣∣∣ = 1

2
|(a+ kc)× (c+ sa)|

=
1

2
|a× c+ sa× a+ kc× c+ ksc× a| = 1

2
|a× c− ksa× c| =

∣∣∣∣
1− ks

2

∣∣∣∣ |a× c| .

Because k, s ∈ (0, 1), it follows that 1−ks ∈ (0, 1) too. We can hence remove the modulus
sign, whence we obtain

k

2
|a× c| = λ

(
1− ks

2
|a× c|

)
=⇒ λ =

k

1− ks
.
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Problem 1. Futsal is a type of indoor football game. A futsal club has 12 players of
which 8 are local players and 4 are foreign players. Each of the 12 players is either a
goalkeeper, defender, winger or striker.
Of the 8 local players, 1 is a goalkeeper, 2 are defenders, 2 are wingers and 3 are strikers.

Of the 4 foreign players, 1 is a goalkeeper, 1 is a defender and 2 are wingers.

(a) All the players of the club stand in a line for photo taking. Find the number of
different possible arrangements if no two foreign players are next to each other.

(b) All the players of the club sit in a circle for a pre-game talk. Find the number of
different possible arrangements if the players of the same position are seated together,
and a goalkeeper must not sit next to a winger.

(c) A team comprises 1 goalkeeper, 1 defender, 2 wingers are 1 striker. Find the number
of ways the futsal club can form a team if it includes exactly 3 foreign players.

Solution.

Part (a). First, arrange the local players in a line. There are 8! ways to do so. Next, slot
in the foreign players into the 9 available slots. There are 9P 4 ways to do so. Thus, the
required answer is 8! · 9P 4 = 121927680.

Part (b). First, group players by their position. Next, we arrange the non-goalkeepers in
a circle. There are (3 − 1)! ways to do so. Next, we slot in the goalkeeper group. Note
that there is only 1 way to do so. Now, note that there are 2 goalkeepers, 3 defenders, 4
wingers and 3 strikers. There are hence 2! 3! 4! 3! ways to arrange the players within their
groups. Altogether, the required answer is (3− 1)! · 1 · 2! 3! 4! 3! = 3436.

Part (c). We split our analysis into three cases, depending on which foreign players are
selected.
Case 1 : 1 goalkeeper, 1 defender, 1 winger. There are 1C1 · 1C1 · 2C1 ways to select

the foreign players. There are a further 2C1 · 3C1 ways to select the remaining winger and
striker from the local players. In this case, we have a total of

1C1 · 1C1 · 2C1 · 2C1 · 3C1 = 12

ways to choose the players.
Case 2 : 1 goalkeeper, 2 wingers. There are 1C1 · 2C2 ways to select the foreign players.

There are a further 2C1 · 3C1 ways to select the remaining defender and striker from the
local players. In this case, we have a total of

1C1 · 2C2 · 2C1 · 3C1 = 6

ways to choose the players.
Case 3 : 1 defender, 2 wingers. There are 1C1 · 2C2 ways to select the foreign players.

There are a further 1C1 · 3C1 ways to select the remaining goalkeeper and striker from the
local players. In this case, we have a total of

1C1 · 2C2 · 1C1 · 3C1 = 3

ways to choose the players.
Altogether, there are 12 + 6 + 3 = 21 ways to choose the players.
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Problem 2. Do not use a calculator in answering this question.

(a) Find the complex numbers w and z which satisfy the following simultaneous equa-
tions.

2iz − w = −7 and (2− i) z − 3iw∗ = 10i.

Give your answers in the form a+ bi, where a and b are real numbers.

(b) One of the roots of the equation 3x3 − 28x2 + 58x+ c = 0, where c is real, is 5 + i.

(i) Find the other roots of the equation and the value of c.

(ii) Deduce the roots of the equation −3iw3 + 28w2 + 58iw + c = 0, where c takes
the value obtained in (i).

(iii) Suppose the points P and Q represent the complex numbers 5 + i and −5− i
respectively. State the geometrical relationship between the points P and Q.

Solution.

Part (a). Let z = x+ iy, where x, y ∈ R. From the first equation, we get

w = 2iz + 7 = 2i (x+ iy) + 7 = (7− 2y) + i (2x) .

Substituting this into the second equation, we obtain

(2− i) (x+ iy)− 3i (7− 2y − 2ix) = 10i =⇒ (−4x+ y) + i (−x+ 8y) = 31i.

Comparing real and imaginary parts, we have
{
−4x+ y = 0

−x+ 8y = 31
,

whence x = 1 and y = 4. Thus, z = 1 + 4i and w = −1 + 2i.

Part (b).

Part (b)(i). Since the coefficients of the polynomial are real, by the conjugate root theorem,
(5 + i)∗ = 5− i is also a root. Let α be the other root. By Vieta’s formula,

(5 + i) + (5− i) + α =
28

3
=⇒ α = −2

3
.

Invoking Vieta’s formula once more,

(5 + i) (5− i)

(
−2

3

)
= − c

3
=⇒ c = 52.

Part (b)(ii). Observe that the given polynomial is equivalent to

−3iw3 + 28w2 + 58iw + c = 3 (iw)3 − 28 (iw)2 + 58 (iw) + 52.

Thus,

iw = 5 + i, 5− i, −2

3
=⇒ w = 1− 5i, −1− 5i,

2

3
i.

Part (b)(iii). The points are reflections of each other in the origin.

∗ ∗ ∗ ∗ ∗

Problem 3. The line l1 has equation

−x+ 1

2
= 8− y =

3− z

5

and the line l2 passes through the points A(−1,−2, 3) and B(−9, 4, 1). The plane p1 has
equation ax+ by = 17, where a and b are real constants. It is given that l1 lies on p1.
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(a) Show that a = −1 and b = 2.

(b) The line l2 meets the xz-plane at point C. Find the coordinates of C.

(c) Another plane p2 is parallel to p1 and contains C. Find, in scalar product form, an
equation of the third plane p3 which is a reflection of p1 in p2.

Solution.

Part (a). The Cartesian equation of l1 can be rewritten as

x+ 1

−2
=

y − 8

−1
=

z − 3

−5
,

so l1 has vector equation

l1 : r =



−1
8
3


+ λ



2
1
5


 , λ ∈ R.

Further, p1 has equation

p1 : r ·



a
b
0


 = 17.

Since l1 lies on p1, we have




−1
8
3


+ λ



2
1
5




 ·



a
b
0


 = 17 =⇒ (−a+ 8b) + λ (2a+ b) = 17.

For this to hold true for all λ ∈ R, we require
{
−a+ 8b = 17

2a+ b = 0
,

which gives a = −1 and b = 2.

Part (b). Note that

−−→
AB =



−9
4
1


−



−1
−2
3


 = −2




4
−3
1


 .

Thus, l2 has vector equation

l2 : r =



−1
−2
3


+ µ




4
−3
1


 , µ ∈ R.

Let C(x, 0, z). Since C lies on the xz-plane, its y-component is 0, so C corresponds to
µ = −2/3, which gives C(−11/3, 0, 7/3).

Part (c). Let F and G be a point on p1 and p3 respectively such that

−−→
OC =

−−→
OF +

−−→
OG

2
.

Then

−−→
OG ·



−1
2
0


 =

(
2
−−→
OC −−−→

OF
)
·



−1
2
0


 = 2



−1
2
0


 ·



−11/3

0
7/3


− 17 = −29

3
.
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Thus, the equation of p3 is

p3 : r ·



−1
2
0


 = −29

3
.
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Problem 1. Show that

(n−1)2+3∑

r=1

(32r − n+ 1) =
a

b

(
729 · 9(n−1)2 − 1

)
− c(n− 1)3 − d(n− 1)

where a, b, c and d are constants to be determined.

Solution.

(n−1)2+3∑

r=1

(32r − n+ 1) =

(n−1)2+3∑

r=1

9r −
(n−1)2+3∑

r=1

(n− 1)

=
9
(
9(n−1)2+3 − 1

)

9− 1
− (n− 1)

[
(n− 1)2 + 3

]

=
9

8

(
729 · 9(n−1)2 − 1

)
− (n− 1)3 − 3(n− 1).

∗ ∗ ∗ ∗ ∗

Problem 2. Do not use a calculator in answering this question.
The sequence of positive numbers, un, satisfies the recurrence relation:

un+1 =
√
2un + 3, n = 1, 2, 3, . . . .

(a) If the sequence converges to m, find the value of m.

(b) By using a graphical approach, explain why m < un1 < un when un > um. Hence,
determine the behaviour of the sequence when u1 > m.

Solution.

Part (a). Observe that

lim
n→∞

un = lim
n→∞

√
2un−1 + 3 =

√
2 lim
n→∞

un−1 + 3 =
√
2 lim
n→∞

un + 3.

Since the sequence converges to m, we have limn→∞ un = m. Thus,

m =
√
2m+ 3 =⇒ m2 = 2m+ 3 =⇒ m2 − 2m− 3 = (m− 3)(m+ 1) = 0.

Thus, m = 3 or m = −1. Since un is always positive, we take m = 3.

Part (b).
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3 un > 3

3
3

un+1

un

O

un

un+1 un+1 =
√
2un + 3

un+1 = un

From the graph, if un > 3, then 3 < un+1 < un. Hence, the sequence decreases and
converges to 3.

∗ ∗ ∗ ∗ ∗

Problem 3. Two expedition teams are to climb a vertical distance of 8100 m from the
foot to the peak of a mountain. Team A plans to cover a vertical distance of 400 m on
the first day. On each subsequent day, the vertical distance covered is 5 m less than the
vertical distance covered in the previous day. Team B plans to cover a vertical distance
of 800 m on the first day. On each subsequent day, the vertical distance covered is 90% of
the vertical distance covered in the previous day.

(a) Find the number of days required for Team A to reach the peak.

(b) Explain why Team B will never be able to reach the peak.

(c) At the end of the 15th day, Team B decided to modify their plan, such that on each
subsequent day, the vertical distance covered is 95% of the vertical distance covered
in the previous day. Which team will be the first to reach the peak of the mountain?
Justify your answer.

Solution.

Part (a). The vertical distance Team A plans to cover in a day can be described as a
sequence in arithmetic progression with first term 400 and common difference −5. In order
to reach the peak, the total vertical distance covered by Team A has to be greater than
8100 m. Hence,

n

2
(2(400) + (n− 1)(−5)) ≥ 8100.

Using G.C., n ≥ 24. Hence, Team A requires 24 days to reach the peak.

Part (b). The vertical distance Team B plans to cover in the nth day can be described by
the sequence Un in geometric progression with first term 800 and common ratio r = 0.9.
Let SU

n be the nth partial sum of Un. Since |r| < 1, the sum to infinity of exists and is
equal to

SU
∞ =

800

1− 0.9
= 8000.

Hence, Team B will never be able to surpass 8 km in height. Thus, they will not reach
the peak no matter how long they take.
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Part (c). The new vertical distance covered by Team B after Day 15 can be described by
the sequence Vn in geometric progression with first term U15 and common ratio r = 0.95.
Let SV

n be the nth partial sum of Vn. Then,

SV
n =

U15 · 0.95 [1− (0.95)n]

1− 0.95
.

Note that

SU
n =

800 [1− (0.9)n]

1− 0.9
.

Hence, after Day 15, Team B has to climb another 8000 − SU
15 = 1747.13 metres. Since

U15 = 183.01, we have the inequality

183.01 · 0.95 [1− (0.95)n]

1− 0.95
≥ 1747.13.

Using G.C., n ≥ 14. Hence, Team B will need at least 15 + 14 = 29 days to reach the
peak. Thus, team A will reach the peak first.

∗ ∗ ∗ ∗ ∗

Problem 4. The function f is given by f(x) = x2 − 3x + 2 − e−x. It is known from
graphical work that this equation has 2 roots x = α and x = β, where α < β.

(a) Show that f(x) = 0 has at least one root in the interval [0, 1].

It is known that there is exactly one root in [0, 1] where x = α.

(b) Starting with x0 = 0.5, use an iterative method based on the form

xn+1 = p
(
x2n + q − e−xn

)

where p and q are real numbers to be determined, to find the value of α correct to 3
decimal places. You should demonstrate that your answer has the required accuracy.

It is known that the other root x = β lies in the interval [2, 3].

(c) With the aid of a clearly labelled diagram, explain why the method in (b) will fail to
obtain any reasonable approximation to β, where x0 is chosen such that x0 ∈ [2, 3],
x0 ̸= β.

To obtain an approximation to β, another approach is used.

(d) Use linear interpolation once in the interval [2, 3] to find a first approximation to
β, giving your answer to 2 decimal places. Explain whether this approximate is an
overestimate or underestimate.

(e) With your answer in (d) as the initial approximate, use the Newton-Raphson method
to obtain β correct to 3 decimal places. Your process should terminate when you
have two successive iterates that are equal when rounded to 3 decimal places.

Solution.

Part (a). Observe that f(0) = 1 > 0 and f(1) = −e−1 < 0. Since f is continuous and
f(0)f(1) < 0, there must be at least one root to f(x) = 0 in the interval [0, 1].
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Part (b). Let f(x) = 0. Then,

x2 − 3x+ 2− e−x = 0 =⇒ x2 + 2− e−x = 3x =⇒ x =
1

3

(
x2 + 2− e−x

)
.

Hence, we should use an iterative method based on the form

xn+1 =
1

3

(
x2n + 2− e−xn

)
.

Starting with x0 = 0.5,

n xn n xn

0 0.5 6 0.60494

1 0.54782 7 0.60662

2 0.57396 8 0.60759

3 0.58871 9 0.60817

4 0.59718 10 0.60851

5 0.60208 11 0.60870

Since f(0.6085) = 0.000606 > 0 and f(0.6095) = −0.000632 < 0, we have that α ∈
(0.6085, 0.6095). Thus, α = 0.609 (3 d.p.).

Part (c).

α β x0 > βx0 < β
O

x

y y = 1
3(x

2 + 2− e−x)
y = x

From the diagram, we see that whether we chose x0 < β or x0 > β, the approximates
move away from the root β. In fact, if we choose x0 < β, the approximates converge to
the root α instead.

Part (d). Using linear interpolation on the interval [2, 3],

x1 =
2f(3)− 3f(2)

f(3)− f(2)
= 2.06 (2 d.p.).

Thus, β = 2.06 (2 d.p.).
Observe that f(2.06) = −0.039 < 0 and f(3) = 1.950 > 0. Hence, β ∈ (2.06, 3). Thus,

β = 2.06 is an underestimate.

Part (e). Observe that f ′(x) = 2xx− 3 + e−x. Using the Newton-Raphson method with
x1 = 2.06,

n xn
1 2.06

2 2.11118

3 2.10935

4 2.10935
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Hence, β = 2.109 (3 d.p.).

9649 JC1 Weighted Assessment 2

Problem 1. Referred to the origin O, points A and B have position vectors a and b
respectively where a and b are non-zero and non-parallel vectors. The point C is such

that
−−→
OC = m

−→
OA where m is a constant. The point D lies on AB produced such that B

divides AD in the ratio 1 : 2.

(a) Express the area of triangle ADC in the form k |a× b|, where k is an expression in
terms of m. Show your working clearly.

(b) If
−→
AC is a unit vector, give a geometrical interpretation of the value of

∣∣∣b×−→
AC
∣∣∣

and find the possible values of m in terms of |a|.

Solution.

Part (a).

−−→
OC = m

−→
OA = ma =⇒ −→

AC =
−−→
OC −−→

OA = ma− a = (m− 1)a.

By the Ratio Theorem,

−−→
OB =

−−→
OD + 2 · −→OA

1 + 2
.

Hence, −−→
OD = 3

−−→
OB − 2

−→
OA = 3b− 2a =⇒ −−→

AD =
−−→
OD −−→

OA = 3b− 3a.

Thus,

Area△ADC =
1

2

∣∣∣−→AC ×−−→
AD

∣∣∣ = 1

2
|(m− 1)a× (3b− 3a)| = 3

2
|m− 1| |a× (b− a)|

=
3

2
|m− 1| |a× b− a× a| = 3

2
|m− 1| |a× b|

whence k = 3
2 |m− 1|.

Part (b). Since
−→
AC is parallel to a, if

−→
AC is a unit vector, then

−→
AC = â. Hence,∣∣∣b×−→

AC
∣∣∣ = |b× â| is the shortest distance from B to the line OA.

Since
−→
AC is a unit vector, we have

∣∣∣−→AC
∣∣∣ = |(m− 1)a| = 1 =⇒ |m− 1| = 1

|a| =⇒ m = 1± 1

|a| .

∗ ∗ ∗ ∗ ∗

Problem 2. Marine biologist experts calculated that when the concentration of chemical
X in a sea inlet reaches 6 milligrams per litre (mg/l), the level of pollution endangers
marine life. A factory wishes to release waste containing chemical X into the inlet. It
claimed that the discharge will not endanger the marine life, and they provided the local
authority with the following information:

• There is no presence of chemical X in the sea inlet at present.
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• The plain is to discharge chemical X on a weekly basis into the sea inlet. The
discharge, which will be done at the beginning of each week, will result in an increase
in concentration of 2.3 mg/l of chemical X in the inlet.

• The tidal streams will remove 7% of chemical X from the inlet at the end of every
day.

(a) Form a recurrence relation for the concentration level of chemical X, un, at the
beginning of week n. Hence, find the concentration at the beginning of week n.

(b) Should the local authority allow the factory to go ahead with the discharge if they
are concerned with the marine life at the sea inlet? Justify your answer.

Solution.

Part (a). We have
un = 0.937un−1 + 2.3, u0 = 0.

Let k be the constant such that un + k = 0.937(un−1 + k). Then k = 2.3
0.937−1

. Hence,

un − 2.3

1− 0.937
= 0.937

(
un−1 −

2.3

1− 0.937

)
= 0.937n

(
u0 −

2.3

1− 0.937

)
= −2.3 · 0.937n

1− 0.937

=⇒ un =
2.3

1− 0.937
− 2.3 · 0.937n

1− 0.937
.

Part (b).

lim
n→∞

un = lim
n→∞

(
2.3

1− 0.937
− 2.3 · 0.937n

1− 0.937

)
=

2.3

1− 0.937
= 5.77 (3 s.f.).

Since 5.77 < 6, if the local authority’s only concern is marine life, they should allow the
factory to go ahead with the discharge.

∗ ∗ ∗ ∗ ∗

Problem 3. Referred to the origin O, the position vector of the point A is 3i − 2j − 6k
and the Cartesian equation of the line l1 is x− 1 = 2− y = 2z + 6.

(a) Find the position vector of the foot of perpendicular from A to l1.

Line l2 has the vector equation r = (−1, 6, −1)T + µ (−6, 6, −3)T, where µ ∈ R.

(b) Find the shortest distance between l1 and l2.

(c) Given that l2 is the reflection of l1 about the line l3, find the vector equation of the
line l3.

Solution.

Part (a). Note that l1 has vector equation

l1 : r =




1
2
−3


+ λ




2
−2
1


 , λ ∈ R

Let F be the foot of perpendicular from A to l1. Since F is on l1,
−−→
OF = (1, 2, −3)T +

λ (2, −2, 1)T for some λ ∈ R. Thus,

−→
AF =

−−→
OF −−→

OA =




1
2
−3


+ λ




2
−2
1


−




3
−2
−6


 =



−2
4
3


+ λ




2
−2
1


 .
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Note also that
−→
AF is perpendicular to l1. Hence,





−2
4
3


+ λ




2
−2
1




 ·




2
−2
1


 = 0 =⇒ −9 + 9λ = 0 =⇒ λ = 1.

Thus,

−−→
OF =




1
2
−3


+




2
−2
1


 =




3
0
−2


 .

Part (b). Note that (−6, 6, −3)T ∥ (2, −2, 1)T. Hence, l2 is parallel to l1. Hence, the
shortest distance between l1 and l2 is the perpendicular distance from a point on l1 to l2,
which is

∣∣∣
[
(1, 2, −3)T − (−1, 6, −1)T

]
× (2, −2, 1)T

∣∣∣
∣∣∣(2, −2, 1)T

∣∣∣
=

1√
9

∣∣∣∣∣∣




2
−4
−2


×




2
−2
1



∣∣∣∣∣∣

=
2

3

∣∣∣∣∣∣



−1
2
1


×




2
−2
1



∣∣∣∣∣∣
=

2

3

∣∣∣∣∣∣




4
3
−2



∣∣∣∣∣∣
=

2

3

√
29 units.

Part (c). Observe that l3 passes through the midpoint of (1, 2, −3)T and (−1, 6, −1)T,
which evaluates to

1

2






1
2
−3


+



−1
6
−1




 =




0
4
−2


 .

l3 is also parallel to both l1 and l2. Hence,

l3 : r =




0
4
−2


+ ν




2
−2
1


 , ν ∈ R.

∗ ∗ ∗ ∗ ∗

Problem 4. A first order recurrence relation is given as

un+1

[
un +

(
1

2

)n]
+ un

[(
1

2

)n+1

− 10

]
= 10

(
1

2

)n

−
(
1

2

)2n+1

− 16

where u1 = 1.

(a) Using the substitution un = vn
vn−1

−
(
1
2

)n
where vn−1 ̸= 0, show that the recurrence

relation can be expressed as a second order recurrence relation of the form vn+1 +
avn + 16vn−1 = 0, where a is a constant to be found.

(b) By first solving the second order recurrence relation in (a), find an expression for un
in terms of n.

(c) Describe what happens to the value of un for large values of n.
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Solution.

Part (a). Substituting in vn for un into the LHS of the recurrence relation, we get

un+1

[
un +

(
1

2

)n]
+ un

[(
1

2

)n+1

− 10

]

=

[
vn+1

vn
−
(
1

2

)n+1
][

vn
vn−1

]
+

[
vn
vn−1

−
(
1

2

)n][(1

2

)n+1

− 10

]

=
vn+1

vn−1
− 10

(
vn
vn−1

)
−
(
1

2

)2n+1

+ 10

(
1

2

)n

.

Cancelling terms from the RHS, we get

vn+1

vn−1
− 10

(
vn
vn−1

)
= −16 =⇒ vn+1 − 10vn + 16vn−1 = 0.

Hence, a = −10.

Part (b). Consider the characteristic equation of vn.

x2 − 10x+ 16 = (x− 2)(x− 8) = 0.

Hence, 2 and 8 are the roots of the characteristic equation. Thus,

vn = A · 2n +B · 8n.

Consider u1.

u1 =
v1
v0

− 1

2
= 1 =⇒ 2A+ 8B

A+B
=

3

2
=⇒ 4A+ 16B

A+B
= 3 =⇒ A = −13B.

Now observe that

vn
vn−1

=
A · 2n +B · 8n

A · 2n−1 +B · 8n−1
=

−13 · 2n + 8n

−13 · 2n−1 + 8n−1
= 8

(−13 · 2n + 8n

−52 · 2n + 8n

)

= 8

(
1 +

39 · 2n
−52 · 2n + 8n

)
= 8− 312 · 2n

52 · 2n − 8n
.

Thus,

un =
vn
vn−1

−
(
1

2

)n

= 8− 312 · 2n
52 · 2n − 8n

−
(
1

2

)n

.

Part (c).

lim
n→∞

un = lim
n→∞

[
8− 312 · 2n

52 · 2n − 8n
−
(
1

2

)n]
= 8.

Thus, un converges to 8 for large values of n.

9649 JC1 Promotional Examination

Problem 1. Given that z = f(x, y) is a differentiable function and f(x, y) = k is the
level curve of f that passes through the point P , show that the gradient vector ∇f is
perpendicular to the tangent of the level curve at P .
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Solution. Let x and y be parametrized t. Implicitly differentiating f(x, y) = k with
respect to t, we obtain

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
= 0 =⇒

(
∂f/∂x
∂f/∂y

)
·
(
dx/dt
dy/dt

)
= 0.

Observe that (∂f/∂x, ∂f/∂y)T is exactly∇f . Taking t = x, we also have (dx/dt, dy/dt)T =
(1, dy/dx)T, which is the tangent vector of the level curve at P . Since the dot product of
the two vectors is 0, they must be perpendicular.

∗ ∗ ∗ ∗ ∗

Problem 2. A harvesting model is given by dP
dt = (20 − P )

(
P 2 − 30P + h

)
where P is

the population of the resource at time t and h is the constant harvest rate. It is given
that at t = 0, P = 50. Find the range of values of h such that P = 20 in the long run.

Solution. Let f(P ) = (20 − P )
(
P 2 − 30P + h

)
. For P = 20 in the long run, we need

f(P ) < 0 for all P ∈ (20, 50]. Observe that 20 − P < 0 for all P ∈ (20, 50]. We hence
need P 2 − 30P + h > 0 for all P ∈ (20, 50]. However, observe that P 2 − 30P + h is
strictly increasing after P > 15. Thus, we only require the quadratic to be non-negative
at P = 20, whence 202 − 30(20) + h ≥ 0, giving h ≥ 200.

∗ ∗ ∗ ∗ ∗

Problem 3.

(a) Describe the locus given by |2i + 1 + iz| = |4i − 5− z|.
S is the set of complex numbers z for which

|2i + 1 + iz| ≥ |4i − 5− z| and |z + 2− 3i| ≤
√
13.

(b) On a single Argand diagram, shade the region corresponding to S.

(c) Find the set of values of arg(z − 8i).

Solution.

Part (a). Note that |2i + 1 + iz| = |2− i + z| = |z − (−2 + i)|. We hence have

|z − (−2 + i)| = |z − (−5 + 4i)| ,

which describes the perpendicular bisector of the line segment joining (−2, 1) and (−5, 4).
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Part (b).

6

8

(−5, 4)

(−2, 1)

(−2, 3)

√
13

S

O

Re

Im

Part (c). Clearly, min arg(z − 8i) = −π
2 (where z = 6i). Let A(−2, 3) and B(0, 8). Let C

be the point on the circle such thatBC is tangent to the circle. We have ∠ABO = arctan 2
5 .

Since AB =
√
52 + 22 =

√
29, we also have ∠CBA = arcsin

√
13√
29
. Thus,

max arg(z − 8i) = −π

2
− arctan

2

5
− arcsin

√
13√
29

= −2.68,

whence
−2.68 ≤ arg(z − 8i) ≤ −π

2
.

∗ ∗ ∗ ∗ ∗

Problem 4. A tuition agency is designing a revision programme to help students to
prepare for their A-level examinations. There are three types of revisions that the agency
can run each day: Basic, Intermediate and Challenging. Due to resource constraints, the
Challenging revision cannot be run consecutively. The revision programme consists of n
days. Let an be the number of possible programmes for the duration.

(a) Explain why an = 2(an−1 + an−2).

(b) Solve the recurrence relation and find an in terms of n.

(c) For a 10 days revision programme, given that both the 1st and 10th days consist of
the Challenging revision, find the number of possible programmes.

Solution.

Part (a). Suppose the nth day ran Basic or Intermediate. The agency was hence free
to run any programme on the n − 1th day, thus contributing 2 · an−1 total programmes
towards an.

Now suppose the nth day ran Challenging. The agency could have only ran Basic or
Intermediate on the n − 1th day. This hence contributes 1 · 2 · an−2 total programmes
towards an.

Hence, an = 2an−1 + 2an−2 = 2(an−1 + an−2).

Part (b). Consider the characteristic polynomial of the second-order recurrence relation:

x2 − 2x− 2 = 0 =⇒ x = 1±
√
3.
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Hence,

an = A
(
1 +

√
3
)n

+B
(
1−

√
3
)n

for some constants A and B.
Observe that a0 = 1 (since there is only one way to do nothing). This gives A+B = 1.
Also observe that a1 = 3. Hence, (A+B) +

√
3(A−B) = 3.

Solving, we get A = 1
2 + 1√

3
and B = 1

2 − 1√
3
. Thus,

αn =

(
1

2
+

1√
3

)(
1 +

√
3
)n

+

(
1

2
− 1√

3

)(
1−

√
3
)n

.

Part (c). Since the first day ran Challenging, there are only two options for the second
day (Basic and Intermediate). Likewise, since the tenth day ran Challenging, there are
only two options for the ninth day. The remaining six days are free. This gives a total of
2 · 2 · a6 = 1792 possibilities.

∗ ∗ ∗ ∗ ∗

Problem 5. The curve C1 has equation

(
x2 + y2

)3/2
= 2x2.

(a) Show that the polar equation of C1 is r = 1 + 2 cos 2θ.

The curve C2 has polar equation r = 1 + sin θ.
The diagram below shows the region R enclosed by C1 and C2.

RR
O

θ = 0

θ = π
2 r = 1 + 2 cos 2θ

r = 1 + sin θ

(b) Find the exact area of R.

(c) Find the perimeter of R.

Solution.

Part (a).

(
x2 + y2

)3/2
= 2x2 =⇒

(
r2
)3/2

= 2(r cos θ)2 =⇒ r = 2 cos2 θ = 1 + 2 cos 2θ.

Part (b). Observe that t = −π
2 is tangent to the pole to both C1 and C2. Now consider

the intersections of C1 and C2.

2 cos2 θ = 2− 2 sin2 θ = 1 + sin θ =⇒ 2 sin2 θ + sin θ − 1 = (2 sin θ − 1)(sin θ + 1) = 0.

We hence have sin θ = 1
2 or sin θ = −1, whence θ = 1

6π,
5
6π,−1

2π.
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AreaR = 2

(
1

2

∫ π/6

−π/2

[
(1 + cos 2θ)2 − (1 + sin θ)2

]
dθ

)

=

∫ π/6

−π/2

(
1 + 2 cos 2θ + cos2 2θ − 1− 2 sin θ − sin2 θ

)
dθ

=

∫ π/6

−π/2

(
2 cos 2θ +

1 + cos 4θ

2
− 2 sin θ − 1− cos 2θ

2

)
dθ

=

∫ π/6

−π/2

(
5

2
cos 2θ +

1

2
cos 4θ − 2 sin θ

)
dθ

=

[
5

4
sin 2θ +

1

8
sin 4θ + 2 cos θ

]π/6

−π/2

=
27

16

√
3 units2.

Part (c). Observe that for C1,
dr
dθ = −2 sin 2θ, while for C2,

dr
dθ = cos θ. Hence, the

perimeter of R is

2

∫ π/6

−π/2

(√
(1 + cos 2θ)2 + (−2 sin 2θ)2 +

√
(1 + sin θ)2 + cos2 θ

)
dθ = 11.7 units.

∗ ∗ ∗ ∗ ∗

Problem 6. A civil engineer is designing a decorative water feature for a garden. The
profile of the water feature is modelled by the curve y = sin

(
x2
)
, for −√

π ≤ x ≤ √
π. The

region R is bounded by this curve and the x-axis.

(a) To create the actual water feature, the region R is rotated by π radians about the
y-axis forming a symmetrical, bowl-shaped structure. Find the exact volume of the
water feature.

(b) Water is poured into the bowl of the water feature at a rate of 2 units3 per second.
Given that the bowl is initially empty, find the rate of change of the depth of the

water when the depth is at
√
3
2 units.

(c) The engineer also needs to know the total length of the curved surface of the profile
of the water feature. Estimate, to 4 decimal places, the arc length of the profile
curve from x = 0 to x = 1.25 using Simpson’s rule with 4 strips.

Solution.

Part (a).

Volume = 2π

∫ √
π

0
x sin

(
x2
)
dx = π

[
− cos

(
x2
)]√π

0
= 2π units3.

Part (b). Let the depth of the water be h. We have V = π
∫ h
0 arcsin(y) dy, whence

dV
dh = π arcsin(h). Hence,

dh

dt
=

dV/dt

dV/dh
=

2

π arcsin(h)
.

When h =
√
3
2 , we have dh

dt = 2
π·π/3 . Thus, the rate of change of the depth of water is 6

π2

units/s.
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Part (c). Note that dy
dx = 2x cos

(
x2
)
. Hence, the arc length is given by

∫ 1.25

0

√
1 + (2x cos(x2))2 dx.

Let f(x) =
√

1 + (2x cos(x2))2. By Simpson’s rule, the arc length is approximately

1.25− 0

3 · 4

[
f(0) + f

(
5

16

)
+ 2f

(
10

16

)
+ 4f

(
15

16

)
+ f(1.25)

]
= 1.6671 units (4 d.p.).

∗ ∗ ∗ ∗ ∗

Problem 7. It is given that y = f(x) satisfies the following differential equation:

(
x3 + 1

)
y
dy

dx
+ 3x2y2 = 2, where y = 2 when x = 0.

(a) By using the substitution z = y2, solve the differential equation and find the value
of y when x = 1.

(b) A point on the graph, initially at x = 1, varies such that x is increasing at a rate

of e
√
t units/s, where t represents time in seconds. Show that dy

dt = −19
12e

√
t at that

instance and use the Euler’s method with step length 0.2 to find an approximation
of the value of y when t = 1.

(c) Explain whether the approximation in part (b) is an underestimation or an overes-
timation of the true value.

Solution.

Part (a). Note that z′ = 2y · y′. Hence,

(
x3 + 1

)
y
dy

dx
+ 3x2y2 =

(
x3 + 1

) 1
2
z′ + 3x2z = 2 =⇒ z′ +

6x2

x3 + 1
z =

4

x3 + 1
.

The integrating factor is hence

I.F. = exp

∫
6x2

x3 + 1
dx = exp

(
2 ln
(
x3 + 1

))
=
(
x3 + 1

)2
.

Multiplying through, we get

(
x3 + 1

)2
z′ + 6x2

(
x3 + 1

)
z =

d

dx

[(
x3 + 1

)2
z
]
= 4

(
x3 + 1

)

=⇒
(
x3 + 1

)2
z =

∫
4
(
x3 + 1

)
dx = x4 + 4x+ C =⇒ y2 =

x4 + 4x+ C

(x3 + 1)2
.

When x = 0, y = 2, giving C = 4. Hence,

y =

√
x4 + 4x+ 4

(x3 + 1)2
.

When x = 1, y = 3
2 .
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Part (b).

(
x3 + 1

)
y
dy

dx
+ 3x2y2 =

(
13 + 1

)(3

2

)
dy

dx
+ 3

(
12
)(3

2

)2

= 2

=⇒ dy

dx
= −19

12
=⇒ dy

dt
= −19

12
· dx
dt

= −19

12
e
√
t.

Let f(y, t) = −19
12e

√
t, t0 = 0, y0 = 1.5. Using Euler’s method with h = 0.2,

yn+1 = yn + 0.2f(tn, yn)

Using G.C.,

y1 = 1.1833, y2 = 0.68808, y3 = 0.09204, y4 = −0.59503, y5 = −1.36958.

Hence, when t = 1, y ≈ −1.37.

Part (c). Observe that
√
t > 0 and e

√
t > 0 for all t ∈ R. Thus,

d2y

dt2
= −19

12

1

2
√
t
e
√
t < 0,

whence y is concave downwards, making the approximation an overestimate.

∗ ∗ ∗ ∗ ∗

Problem 8.

(a) Use De Moivre’s theorem to find a polynomial expression for cos 5θ in terms of u,
where u = cos θ.

(b) Write down the five values of θ, 0 ≤ θ ≤ π, for which cos 5θ = 0.

(c) Find in trigonometric form, the roots of the equation 16z4 − 20z2 + 5 = 0.

(d) Express the roots found in part (c) in exact surd form. Hence, find the value of

sin2
π

10
+ sin2

3π

10
+ sin2

7π

10
+ sin2

9π

10
.

Solution.

Part (a).

cos 5θ = Re (cos θ + i sin θ)5

= cos5 θ − 10 cos3 θ sin2 θ + 5 cos θ sin4 θ

= cos5 θ − 10 cos3 θ
(
1− cos2 θ

)
+ 5 cos θ

(
1− cos2 θ

)2

= cos5 θ − 10 cos3 θ
(
1− cos2 θ

)
+ 5 cos θ

(
1− 2 cos2 θ + cos4 θ

)

= 16 cos5 θ − 20 cos3 θ + 5 cos θ = 16u5 − 20u3 + 5u.

Part (b).

θ =
π

10
,
3π

10
,
5π

10
,
7π

10
,
9π

10
.

Part (c).
16z4 − 20z2 + 5 = 0 =⇒ 16z5 − 20z3 + 5z = 0, z ̸= 0.

Let z = cos θ. Then cos 5θ = 0, whence θ = π
10 ,

3π
10 ,

5π
10 ,

7π
10 ,

9π
10 . Hence,

z = cos
π

10
, cos

3π

10
, cos

7π

10
, cos

9π

10
.

Note that we reject z = cos 5π
10 since z ̸= 0.
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Part (d). By the quadratic formula,

z2 =
5±

√
5

8
=⇒ z = ±

√
5±

√
5

8
.

The corresponding trigonometric forms are

cos
π

10
=

√
5 +

√
5

8
, cos

3π

10
=

√
5−

√
5

8

cos
7π

10
= −

√
5−

√
5

8
, cos

9π

10
= −

√
5 +

√
5

8
.

Hence,

sin2
π

10
+ sin2

3π

10
+ sin2

7π

10
+ sin2

9π

10
= 4−

(
cos2

π

10
+ cos2

3π

10
+ cos2

7π

10
+ cos2

9π

10

)

= 4−
(
5 +

√
5

8
+

5−
√
5

8
+

5−
√
5

8
+

5 +
√
5

8

)
= 4− 20

8
=

3

2
.

∗ ∗ ∗ ∗ ∗

Problem 9. Suppose the complex number w is a root of the equation z9 − 1 = 0.

(a) (i) Express all the roots of this equation in the form wn, n ∈ Z, 0 ≤ n ≤ 8, where
w is a complex number to be determined.

(ii) Show that
∑8

r=0w
r = 0.

(iii) Show that w2 + w7 = 2 cos 4π
9 .

(iv) Using the results above, deduce that 16 cos 2π
9 cos 4π

9 cos 6π
9 cos 8π

9 = 1.

Let point O be the origin, and points A, B and C represent the complex numbers w2,
2iw2 and w

u∗ respectively, where u = 1
3

(
cos 5π

18 − i sin(5π) 18
)
.

(b) (i) Find the modulus and arguments of the complex numbers w
u∗ and 2iw2, and

illustrate the points A, B and C on a clearly labelled Argand diagram.

(ii) Find the area of triangle ABC.

Solution.

Part (a).

Part (a)(i).

z9 − 1 = 0 =⇒ z9 = e2πni =⇒ z = e2πni/9.

Hence, the roots are wn, where w = e2π i/9.

Part (a)(ii).
8∑

r=0

wr =
w9 − 1

w − 1
=

1− 1

w − 1
= 0

Part (a)(iii).

w2 + w7 = w2 + w−2 = 2 cos

(
2 · 2π

9

)
= 2 cos

4π

9
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Part (a)(iv).

16 cos
2π

9
cos

4π

9
cos

6π

9
cos

8π

9
=
(
w + w8

) (
w2 + w7

) (
w3 + w6

) (
w4 + w5

)

=
(
w5 + w6 + w12 + w13

) (
w5 + w8 + w10 + w13

)

=
(
w10 + w13 + w15 + w18

)
+
(
w11 + w14 + w16 + w19

)

+
(
w17 + w20 + w22 + w25

)
+
(
w18 + w21 + w23 + w26

)

=
(
w + w4 + w6 + 1

)
+
(
w2 + w5 + w7 + w

)

+
(
w8 + w2 + w4 + w7

)
+
(
1 + w3 + w5 + w8

)

= 2
(
1 + w + w2 + w3 + w4 + w5 + w6 + w7 + w8

)
−
(
w3 + w6

)

= −2 cos
6π

9
= 1.

Part (b).

Part (b)(i). Note that w2 = e4π i/9. Hence,
∣∣w2
∣∣ = 1 and argw2 = 4π

9 . Likewise,
∣∣2iw2

∣∣ = 2
and arg

(
2iw2

)
= 4π

9 + π
2 = 17

18π. Lastly, note that

w

u∗
=

uw

uu∗
=

1/3 · e−5π i/18 · e2π i/9
1/9

= 3e−iπ/18,

whence
∣∣ w
u∗

∣∣ = 3 and arg
(
w
u∗

)
= − π

18 .

A

B

C

4π
9

12

3
O

Re

Im

Part (b)(ii). Observe that B, O and C are collinear. Hence,

[△ABC] =
1

2
(1) (2 + 3) =

5

2
units2.

∗ ∗ ∗ ∗ ∗

Problem 10. The diagram below shows the elevation view of a single vertical tower
cable-stayed-inclined bridge which stretches across a river. The bridge deck is supported
by the tower, a main cable, and four smaller cables. Points are defined relative to an origin
O, the point of intersection between the main cable and the deck. The x-, y- and z-axes
are in the directions east, north and vertically upwards respectively, with units in metres.
The deck of the bridge is modelled as a plane. Points P and Q are on this plane and have
coordinates (20, 0, 1) and (40, 4, 2) respectively.



9649 JC1 Promotional Examination 1189

O

A

C
R

x

z

(a) Find the Cartesian equation of the plane.

Point A is at the top of the vertical tower and has coordinates (20, 1, 20). Point C is
the intersection of the tower and the deck. The tower and the five cables are attached on
the deck along the line passing through Points O and C.

(b) The bridge is considered stable if the distance between C and the foot of perpen-
dicular from A to the deck does not exceed 1 m. Comment whether the bridge is
stable. Show your working clearly.

(c) One of the cables, which is installed at a point R, has the same length as the main
cable. Find the coordinates of R.

(d) Find the acute angle that the deck makes with the horizontal plane.

Solution.

Part (a). Observe that (20, 0, 1)T and (40, 4, 2)T are parallel to the plane. Note that



20
0
1


×



40
4
2


 =



−4
0
80


 ∥



−1
0
20


 .

Hence, the vector equation of the plane is

r ·



−1
0
20


 = 0,

whence the Cartesian equation is −x+ 20z = 0, y ∈ R.
Part (b). Observe that

−→
AC = k (0, 0, 1)T for some k ∈ R. Hence,

−−→
OC = (20, 1, 20− k)T.

Since C lies on the deck, we have



20
1

20− k


 ·



−1
0
20


 = 0,

whence k = 19 and
−−→
OC = (20, 1, 1)T.

Let F be the foot of perpendicular of A to the deck. Note that
−−→
OF · (−1, 0, 20)T = 0

and
−→
AF = λ (−1, 0, 20)T for some λ ∈ R. Thus,




20
1
20


+ λ



−1
0
20




 ·



−1
0
20


 = 0, =⇒ λ = −380

401
=⇒ −−→

OF =
1

401



8400
401
420


 .
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Hence,

−−→
FC =



20
1
1


− 1

401



8400
401
420


 =⇒

∣∣∣−−→FC
∣∣∣ =

√
0.9482 + 02 + (−0.0474)2 = 0.949 < 1.

The bridge is thus stable.

Part (c). We have
∣∣∣−→AR

∣∣∣ =
∣∣∣−→OA

∣∣∣ =
√
202 + 12 + 201 =

√
801. Since O, C and R are

collinear, we also have
−−→
OR = µ (20, 1, 1)T for some µ ∈ R. Thus,

∣∣∣−→AR
∣∣∣ =

∣∣∣∣∣∣
µ



20
1
1


−



20
1
20



∣∣∣∣∣∣
=
√

(20µ− 20)2 + (µ− 1)2 + (µ− 20)2 =
√
801.

Using G.C., µ = 2.09, whence R(41.9, 2.09, 2.09).

Part (d). Let θ be the acute angle between the deck and the horizontal. Note that the
horizontal plane has normal vector (0, 0, 1)T. Thus,

cos θ =

∣∣∣(0, 0, 1)T − (−1, 0, 20)T
∣∣∣

∣∣∣(0, 0, 1)T
∣∣∣
∣∣∣(−1, 0, 20)T

∣∣∣
=

20√
401

=⇒ θ = 2.9◦ (2 d.p.).

∗ ∗ ∗ ∗ ∗

Problem 11. A nuclear reactor plant is built to meet the increased demand for electricity
due to a particular country’s economic developments. The cooling tower of the nuclear
reactor is as shown in the figure below. The curved surface area of the cooling tower is
modelled by rotating the region enclosed by a part of a hyperbolic curve about an axis.
The height of the tower is 130 m.

130 m

O

g

z g2

402
− (z−80)2

502
= 1

The equation of the hyperbolic curve is given as g2

402
− (z−80)2

502
= 1 where g is the axis

that represents the ground and z is the axis that represents the height of the reactor. The
curve surface area of the tower is formed by rotating the region bounded by the hyperbolic
curve, the line z = 130 and the g axis about the z-axis by π radians. The external curved
surface area of the tower is to be painted with weather resistant paint.

(a) Find the external curved surface area of the tower. Leave your answer to the nearest
m2.
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The ground is now represented by the x-y plane.

(b) Find the Cartesian equation that models the surface of the tower in terms of z, y
and z.

Before the paint can be applied, a robot is programmed to go around the tower to clean
and polish its surface. Assuming that the robot is negligible compared to the tower, it can
be viewed as a point on the curved surface of the tower.

(c) Given that the robot is at (40, 40, 30) and is about the move in the direction of
(3, −4)T parallel to the x-y plane, determine whether the robot will be ascending or
descending in height.

The robot is now at (40, 40, 130) on the surface of the tower. A signal needs to be
transmitted from the ground to the robot such that the signal travels in a straight line
and its direction must be normal to the surface of the tower where the robot is at.

(d) Find the coordinates on the ground where the signal can be transmitted to the robot.

Solution.

Part (a). Note that g =

√
402

[
(z−80)2

502
+ 1
]
. Using G.C.,

Area = 2π

∫ 130

0
g

√
1 +

(
dg

dz

)2

dz ≈ 45552 units2.

Part (b). For every constant value of z, we will have the value of g such that x2+y2 = g2.
Hence,

x2 + y2

402
− (z − 80)2

502
= 1.

Part (c). Implicitly differentiating the above expressing with respect to x and y, we have

∂z

∂x
=

(
5

4

)2 x

z − 80
,

∂z

∂y
=

(
5

4

)2 y

z − 80
.

Evaluating at (40, 40, 30), we have that ∇z = −5
4 (1, 1)

T. Hence,

∇z · 1√
32 + 52

(
3
−4

)
=

1

4
> 0.

Thus, the robot is ascending.

Part (d). At (40, 40, 130), we have ∇z = (5/4, 5/4)T. The equation of the tangent plane
at that point is hence

z = 130 +
5

4
(x− 40) +

5

4
(y − 40),

which has vector equation

r ·




5
5
−4


 = −120.

The line of the signal is hence given by

r =




40
40
130


+ λ




5
5
−4


 , λ ∈ R.

Setting z = 0, we have λ = 130/4, whence x = y = 405/2. The required coordinates are
thus

(
405
2 , 4052 , 0

)
.
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9649 JC2 Weighted Assessment 1

Problem 1. A popular food chain Dunman Fried Chicken (DFC) is giving out 9 types
of LaTuTu dolls as a promotional item. Each customer will randomly get any one of the
9 types of dolls when they purchase a meal. Suppose a customer has already collected r
different types of dolls where r = 1, 2, 3, . . . , 8. Let Xr be the random variable denoting
the additional number of dolls that needs to be collected by the customer until he gets a
different type of doll from his current collection of r types of dollts. It can be assumed
that the food chain has many dolls for each type.

(a) Find P[Xr ≤ n] in terms of n.

(b) Given that it took 6 attempts for the customer to collect the (r+1)th doll, find the
probability that the customer takes either less than 9 or more than 12 attempts in
total to collect the (r + 1)th and (r + 2)th dolls.

(c) If the customer gets a type of doll that he already possessed, he will sell the doll at
a loss of $2, after taking into account the cost of purchasing a meal for DFC. There
is no loss if the customer gets a different type of doll when he purchases a meal.
Find the expected amount of money that he will lose for him to collect the entire
collection of dolls.

Solution.

Part (a). The probability of getting a different doll is (9 − r)/9 = 1 − r/9. Thus,
Xr ∼ Geo(1− r/9). Hence,

P[Xr > n] = P[first n trials all failures] =
(r
9

)n
.

Thus,

P[Xr ≤ n] = 1− P[Xr > n] = 1−
(r
9

)n
.

Part (b). The desired probability is

P[Xr +Xr+1 < 9 or Xr +Xr+1 > 12 | Xr = 6] = P[Xr+1 < 3 or Xr+1 > 6]

= P[Xr+1 < 3] + P[Xr+1 > 6] = 1−
(
r + 1

9

)2

+

(
r + 1

9

)6

.

Part (c). Note that E[Xr] = 1/(1 − r/9). Hence, the expected number of attempts is
given by

1 +

8∑

r=1

E[Xr] = 1 +

8∑

r=1

1

1− r/9
=

7129

280
.

Hence, the expected amount of money that he will lose is

2

(
7129

280
− 8

)
= $32.92 (2 d.p.).

∗ ∗ ∗ ∗ ∗

Problem 2. A car salesman receives $1000 commission for each new car that he sells
and $600 for each used car that he sells. The weekly number of new cars that he sells has
a Poisson distribution with mean 3 and, independently, the number of used cars that he
sells has a Poisson distribution with mean 2.
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(a) Find the probability that his commission in a week is exactly $3000.

(b) Calculate the mean and variance of the salesman’s weekly commission and determine
whether the commission has a Poisson distribution.

(c) The salesman sold a total of 16 cars in 4 weeks. Find the probability that he sold
less than half of it in the first week.

Solution. Let the number of new and used cards sold in a week be N and U respectively.
Then N ∼ Po(3) and U ∼ Po(5).

Part (a). For his weekly commission to be exactly $3000, he must either sell only 3 new
cars, or only 5 used cards. The required probability is thus

P[N = 3 | U = 0] + P[N = 0]P[U = 5] = 0.0321 (3 s.f.).

Part (b). Let his weekly commission be C. Then C = 1000N + 600U . The mean is

E[C] = 1000E[N ] + 600E[U ] = 1000(3) + 600(2) = 4200.

However, the variance is

Var[C] = 10002Var[N ] + 6002Var[U ] = 10002(3) + 6002(2) = 3720000.

Since E[C] ̸= Var[C], it follows that C does not follow a Poisson distribution.

Part (c). Let X be the number of cars sold in the first week. Then X ∼ B(16, 1/4). The
required probability is thus

P[X < 8] = 0.973 (3 s.f.).

∗ ∗ ∗ ∗ ∗

Problem 3. The variables x, y and z are related by the two differential equations

dy

dx
− 2y + z = 4 sin(2x) , (1)

dz

dx
− 8y + 2z = 2 cos(2x) . (2)

When x = 0, y = z = 0.

(a) Show that the system of differential equations can be reduced to the second-order
differential equation

d2y

dx2
+ 4y = 6 cos(2x) + 8 sin(2x) .

(b) Hence, solve the differential equation in (a) to find y in terms of x. Hence, find z in
terms of x.

Solution.

Part (a). Differentiating (1) with respect to x,

d2y

dx2
− 2

dy

dx
+

dz

dx
= 8 cos(2x) .

Taking (2) - 2(1) and rearranging, we have

dz

dx
= 4y + 2

dy

dx
+ 2 cos(2x)− 8 sin(2x) .
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Substituting this into (3) yields

d2y

dx2
− 2

dy

dx
+

(
4y + 2

dy

dx
+ 2 cos(2x)− 8 sin(2x)

)
= 8 cos(2x) .

Rearranging, we get
d2y

dx2
+ 4y = 6 cos(2x) + 8 sin(2x) .

Part (b). The characteristic equation of the DE is m2+4 = 0, whence its roots are m±2i.
The complementary solution is thus

yc = A sin(2x) +B cos(2x) .

For the particular solution, we try yp = x [C sin(2x) +D cos(2x)]. Differentiating, we get

dyp
dx

= 2x [C cos(2x)−D sin(2x)] + [C sin(2x) +D cos(2x)] .

Differentiating once more, we get

d2yp
dx2

= −4x [C sin(2x) +D cos(2x)] + 4 [C cos(2x)−D sin(2x)] .

Substituting this into the DE, we obtain

− 4x [C sin(2x) +D cos(2x)] + 4 [C cos(2x)−D sin(2x)]

+ 4x [C sin(2x) +D cos(2x)] = 6 cos(2x) + 8 sin(2x) .

Simplifying,

C cos(2x)−D sin(2x) =
3

2
cos(2x) + 2 sin(2x) .

Comparing coefficients, we see that C = 3/2 and D = −2. Thus, the general solution for
y is

y = yc + yp = A sin(2x) +B cos(2x) +
3

2
x sin(2x)− 2x cos(2x) .

When x = 0, y = 0. Thus, B = 0.
Differentiating y, we get

dy

dx
= 2A cos(2x) + 3x cos(2x) +

3

2
sin(2x) + 4x sin(2x)− 2 cos(2x) .

Substituting the initial conditions into (1), we see that dy/dx = 0 when x = 0. Thus,
2A− 2 = 0, whence A = 1. Thus,

y = sin(2x) +
3

2
x sin(2x)− 2x cos(2x) .

Substituting our expressions for y and dy/dx into (1) and simplifying, we see that

z =
9

2
sin(2x)− 7x cos(2x)− x sin(2x) .
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Problem 1. The matrix A is given by

A =




8 3 −12
−5 −2 8
10 4 −15


 .

(a) By performing elementary row operations on the matrix
(
A I

)
, showing all neces-

sary working, find A−1.

(b) Solve the equation

(
x y z w

)



8 3 −12
−1 2 k
−5 −2 8
10 4 −15


 =

(
2 −2 1

)
,

where k is a real constant, leaving your answers in terms of k where appropriate.

Solution.

Part (a). We have




8 3 −12 1 0 0
−5 −2 8 0 1 0
10 4 −15 0 0 1


→

2R1+3R2

−5R1+4R3

2R2+R3



1 0 0 2 3 0
0 1 0 −5 0 4
0 0 1 0 2 1


 ,

so

A−1 =




2 3 0
−5 0 4
0 2 1


 .

Part (b). Rearranging rows, we see that

(
x z w y

)( A
−1 2 k

)
=
(
2 −2 1

)
.

Post-multiplying by A−1, we get

(
x z w y

)( I
−12 2k − 3 k + 8

)
=
(
14 8 −7

)
.

We thus get the system of equations





x− 12y = 14

(2k − 3) y + z = 8

(k + 8) y + w = −7

.

Let y = t ∈ R. The solution to the equation is thus




x
y
z
w


 =




14 + 12t
t

8− (2k − 3)t
−7− (k + 8)t


 .
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Problem 2.

(a) A square matrix A of order n is said to be skew symmetric if AT = −A. Prove that
a skew symmetric matrix is not invertible if n is odd.

(b) Let T be the linear transformation such that

T : R3 → R3 and T (x) = Ax,

where

A =



0 −1 −5
1 0 a
5 b 0


 ,

where a and b are real numbers. It is given that the nullity of T is 1.

(i) Show that A must be a skew symmetric matrix.

(ii) Find the kernel of T in terms of a.

(iii) State a basis, in terms of a where appropriate, for the range space of T and
give a geometrical interpretation of your answer of the range space of T .

Solution.

Part (a). Note that

detA = detAT = det(−A) = (−1)n detA.

For odd n, detA = −detA so detA = 0, whence A is not invertible.

Part (b).

Part (b)(i). Since the nullity of T , is 1, the rows of A must be linearly dependent. That
is, there exist λ, µ ∈ R such that

λ




0
−1
−5


+ µ



1
0
a


 =



5
b
0


 .

From the first and second rows, we immediately have λ = −b and µ = 5. Substituting
this into the third row, we get a = −b. Thus,

A =



0 −1 −5
1 0 a
5 −a 0




and is skew symmetric.

Part (b)(ii). Consider Av = 0, where v = (x, y, z)T ∈ R3. Then



0 −1 −5
1 0 a
5 −a 0





x
y
z


 =



0
0
0


 =⇒





y + 5z = 0

x+ az = 0

5x− ay = 0

.

Let z = λ ∈ R. From the first two equations, we see that y = −5λ and x = −aλ. Thus, v
is of the form λ(−a,−5, 1)T, whence the kernel of T is given by

kerT =



v ∈ R3 : v = λ



−a
−5
1


 , λ ∈ R



 .
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Part (b)(iii). A basis is 





0
1
5


 ,



−5
a
0





 .

Note that the range and null spaces of T are orthogonal. Thus, the range space of T is
the plane normal to (−a, −5, 1)T that passes through the origin.

∗ ∗ ∗ ∗ ∗

Problem 3. A company invests its funds in 3 interdependent sectors of Manufacturing,
Research and Development, and Services. While these sectors had typically generated
good profits of 200 million each monthly, the company is concerned that recent and rapid
changes in the economic conditions in the country will very quickly negatively affect the
returns from these sectors.

To model the possible profits from the sectors given the current conditions, the com-
pany’s analyst suggested the following systems of equations:

Mn+1 =
2

3
Mn − 1

3
Rn +

1

3
Sn,

Rn+1 =
1

2
Mn − 1

6
Rn − 1

2
Sn,

Sn+1 =
5

6
Mn − 5

6
Rn +

1

6
Sn,

whereMn, Rn and Sn are the profits (in millions) earned from the Manufacturing, Research
and Development, and Services respectively after n months.
The system of equations may be written in the form Pn+1 = APn, where Pn =

(Mn, Rn, Sn)
T and A is an appropriate matrix.

(a) Evaluate P1 and P2.

(b) Determine the eigenvalues and the corresponding eigenvectors of A.

(c) Use your answers above to explain why the company’s concern is valid.

The company decide to re-strategise its position in the 3 sectors, following which the
analyst revises the model to the following:

Mn+1 = 2Mn −Rn + Sn,

Rn+1 =
3

2
Mn − 1

2
Rn − 3

2
Sn,

Sn+1 =
5

2
Mn − 5

2
Rn +

1

2
Sn,

which may be expressed in the form Pn+1 = BPn, where B is an appropriate matrix.

(d) Write down the eigenvalues of B.

(e) Explain, with appropriate working, the profit trend the company will see arising
from the 3 sectors after re-strategising.

Solution.

Part (a). Note that

A =
1

6



4 −2 2
3 −1 −3
5 −5 1


 .
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The first few values of Pn are

P0 =



200
200
200


 , P1 =




133.33
−33.333
33.333


 , P2 =



111.11
55.556
144.44


 .

Part (b). Let the characteristic polynomial of A be χ(λ) = λ3 − a2λ
2 + a1λ− a0. Then

a0 = |A| = −2

9
,

a1 =
1

62

(∣∣∣∣
4 −2
3 −1

∣∣∣∣+
∣∣∣∣
−1 −3
−5 1

∣∣∣∣+
∣∣∣∣
4 2
5 1

∣∣∣∣
)

=
−5

9
,

a2 =
1

6
(|4|+ |−1|+ |1|) = 2

3
.

Thus, χ(λ) = λ3 − 2
3λ

2 − 5
9λ+ 2

9 , which has roots λ = 1, λ = −2/3 and λ = 1/3.
Let x be a non-zero eigenvector of A.
Case 1 : λ = 1. Consider


1
6



4 −2 2
3 −1 −3
5 −5 1


−



1 0 0
0 1 0
0 0 1




x = 0.

Using G.C., x = (1, 0, 1)T.
Case 2 : λ = −2/3. Consider


1
6



4 −2 2
3 −1 −3
5 −5 1


+

2

3



1 0 0
0 1 0
0 0 1




x = 0.

Using G.C., x = (0, 1, 1)T.
Case 3 : λ = 1/3. Consider


1
6



4 −2 2
3 −1 −3
5 −5 1


− 1

3



1 0 0
0 1 0
0 0 1




x = 0.

Using G.C., x = (1, 1, 0)T.
Thus, A = QDQ−1, where

Q =



1 0 1
0 1 1
1 1 0


 and D =



1 0 0
0 −2/3 0
0 0 1/3


 .

Part (c). Note that

lim
n→∞

Pn = lim
n→∞

AnP0 = lim
n→∞

QDnQ−1P0 = Q



1 0 0
0 0 0
0 0 0


Q−1P0 =



100
0

100


 .

Thus, in the long run, profits from Manufacturing and Services will fall from $200 million
to $100 million, while profits from Research and Development will completely vanish.
Hence, the companies concern is valid.

Part (d). Clearly, B = 3A, so its eigenvalues are 3, −2 and 1.
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Part (e). Note that B = Q(3D)Q−1. Thus,

Pn = AnP0 = Q(3D)nQ−1P0

=



1 0 1
0 1 1
1 1 0





3n 0 0
0 (−2)n 0
0 0 1


 1

2




1 −1 1
−1 1 1
1 1 −1


 200



1
1
1




= 200




3n + 1
(−2)n + 1
3n + (−2)n


 .

Profits from Manufacturing and Services will increase greatly over time. However, Re-
search and Development will fluctuate between earning large profits and incurring large
losses.
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9820 Timed Practice 1

Problem 1. At a school charity bazaar, students sell chicken nuggets in boxes of 5 or 11.
Customers can buy any combination of boxes of 5 or 11 chicken nuggets.

(a) Show that it is possible to buy exactly k chicken nuggets, for all integer values of k
between 40 and 44 inclusive.

(b) Use mathematical induction to show that it is possible to buy exactly k chicken
nuggets for all integer values of k greater than or equal to 40.

(c) Determine if it is possible to buy exactly 39 chicken nuggets.

(d) In the general case where they sell chicken nuggets in boxes of p1 or p2, where p1
and p2 are distinct primes, show that it is not possible to buy exactly p1p2 − p1 − p2
chicken nuggets.

Solution.

Part (a).

k Boxes of 5 Boxes of 11

40 8 0

41 6 1

42 4 2

43 2 3

44 0 4

Part (b). Let P (5n + r) be the statement “it is possible to buy exactly 5n + r chicken
nuggets”, where n ∈ Z and r ∈ {0, 1, 2, 3, 4}. From part (a), the statement holds for n = 8
and r ∈ {0, 1, 2, 3, 4}. We now induct on n. Suppose P (5k + r) is true for some k ∈ Z.
Then there exist positive integers x and y such that

5x+ 11y = 5k + r.

It follows that
5 (k + 1) + r = 5 (x+ 1) + 11y.

Hence, taking (x+1) boxes of 5 chicken nuggets and y boxes of chicken nuggets, we obtain
exactly 5(k + 1) + r chicken nuggets. Hence, P (5k + r) =⇒ P (5(k + 1) + r). This
closes the induction. We thus conclude that we can get exactly m chicken nuggets for all
m ≥ 8 · 5 = 40.

Part (c). By way of contradiction, suppose we can buy exactly 39 chicken nuggets. Then
there exist positive integers x and y such that

5x+ 11y = 39.
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Reducing modulo 5, we see that

y ≡ 4 (mod 5),

so min y = 4. Thus,
min (5x+ 11y) ≥ 11min y = 44 > 39.

Thus, such a y cannot exist. Therefore, we cannot buy exactly 39 nuggets.

Part (d). By way of contradiction, suppose we can buy exactly p1p2 − p1 − p2 nuggets.
Then there exist positive integers x and y such that

p1x+ p2y = p1p2 − p1 − p2.

Reducing modulo p1, we see that

p2y ≡ −p2 (mod p1) =⇒ p2 (y + 1) ≡ 0 (mod p1).

Because p1 and p2 are distinct, they must be coprime, so

y + 1 ≡ 0 (mod p1).

It follows that min y = p1 − 1. Thus,

min (p1x+ p2y) ≥ p2min y = p2 (p1 − 1) = p1p2 − p2 > p1p2 − p1 − p2.

Thus, such a y cannot exist. Therefore, we cannot buy exactly p1p2 − p1 − p2 nuggets.

∗ ∗ ∗ ∗ ∗

Problem 2. Let g(x) = a0 + a1x + a2x
2 + · · · + anx

n be a polynomial with integer
coefficients, that is, a0, a1, . . . , an ∈ Z, with a0, an ̸= 0.

(a) (i) By writing

g(x) = xn
( a0
xn

+
a1

xn−1
+

a2
xn−1

+ · · ·+ an−1

x
+ an

)
,

explain why as x → ∞, either g(x) → ∞ or g(x) → −∞.

(ii) Let
P = {p : p is a prime and ∃ k ∈ Z such that p | g(k)} .

Show that P contains infinitely many elements.

(b) Show that there exists an integer m > 2025 such that |g(m)| is not prime.

Solution.

Part (a).

Part (a)(i). Note that for all k ∈ R and r ∈ N, we have

lim
x→∞

k

xr
= 0.

Thus,

lim
x→∞

g(x) = lim
x→∞

xn
( a0
xn

+
a1

xn−1
+

a2
xn−1

+ · · ·+ an−1

x
+ an

)
= lim

x→∞
anx

n,

which approaches ∞ if an > 0, or −∞ if an < 0.



1202 9820 H3 Mathematics

Part (a)(ii). By way of contradiction, suppose P is finite, say P = {p1, . . . , pk}. Then for
all m ∈ Z, either g(m) = 0 or, by the Fundamental Theorem of Arithmetic,

g(m) = ±pa11 pa22 . . . pakk ,

where ai ∈ Z+
0 . By part (a)(i), there exists some M ∈ N such that g(m) ≥ 0 for all

m ≥ M . Define

S =
∞∑

m=M

1

g(m)1/n
.

Since g is a polynomial of degree n, it can take on a given value at most n times. Thus,
for a given set of integers a1, a2, . . . , ak,

g(m)1/n = p
a1/n
1 p

a2/n
2 . . . p

ak/n
k

for at most n values of m. We thus obtain the following estimate:

S ≤
∞∑

a1,...,ak=0

n

p
a1/n
1 . . . p

ak/n
k

= n
k∏

r=1

∞∑

ar=0

p−ar/n
r = n

k∏

r=1

1

1− p
−1/n
r

,

which is finite. But this is a clear contradiction, since

1

g(m)1/n
∼ 1

a
1/n
n x

,

so S diverges like the harmonic series. Thus, P must be infinite.

Part (b). By way of contradiction, suppose |g(m)| for all integers m > 2025. Let p =
|g(m)|, which is prime, and t ∈ N. Observe that

g(m+ tp) =

n∑

i=0

ai (m+ tp)i ≡
n∑

i=0

aim
i = g(m) ≡ 0 (mod p).

Since m+ tp > 2025, by our assumption, g(m+ tp) must also be prime. Thus,

±p = g(m) = g(m+ p) = g(m+ 2p) = g(m+ 3p) = . . . ,

so there are infinitely many solutions to the equation g(x) = ±p. However, because g is
a polynomial of degree n, there are at most 2n solutions to g(x) = ±p, a contradiction.
Thus, there must exist some m > 2025 such that |g(m)| is not prime.
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9820 Timed Practice 1

Problem 1.

(a) Given that x ≥ 1, y ≥ 1, x ≥ 1, and x−1 + y−1 + z−1 = 2, by using the Cauchy-
Schwarz inequality, prove that

√
x+ y + z ≥

√
x− 1 +

√
y − 1 +

√
z − 1.

(b) If w, x, y, z are positive integers, using the AM-GM inequality, find the maximum
possible value of

wxyz

(w + x+ y) (x+ y + z) (y + z + w) (z + w + x)
.

Solution.

Part (a). By the Cauchy-Schwarz inequality,

(√
x− 1 +

√
y − 1 +

√
z − 1

)2
≤
(
x− 1

x
+

y − 1

y
+

z − 1

z

)
(x+ y + z) .

From the given condition, we see that

x− 1

x
+

y − 1

y
+

z − 1

z
=

(
1− 1

x

)
+

(
1− 1

y

)
+

(
1− 1

z

)
= 3− 2 = 1.

Thus, √
x− 1 +

√
y − 1 +

√
z − 1 ≤

√
1
√
x+ y + z =

√
x+ y + z

as desired.

Part (b). By the AM-GM inequality, w + x+ y ≥ 3 3
√
wxy. Thus,

wxyz∏
cyc (w + x+ y)

≤ wxyz∏
cyc 3

3
√
wxy

=
wxyz

34 3
√

w3x3y3z3
=

1

34
.

Thus, the maximum is 3−4, which occurs when w = x = y = z.

∗ ∗ ∗ ∗ ∗

Problem 2. Prove that, for any positive integers n and r,

1
n+rCr+1

=
r + 1

r

(
1

n+r−1Cr
− 1

n+rCr

)
.

Hence, determine
∞∑

n=1

1
n+rCr+1

in terms of r, and use the result obtained to deduce that

∞∑

n=2

1
n+2C3

=
1

2
.
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Solution. Observe that

r + 1

r

(n+rCr+1
n+r−1Cr

−
n+rCr+1
n+rCr

)
=

r + 1

r




(n+1)!
(r+1)!(n−1)!

(n+r−1)!
r!(n−1)!

−
(n+r)!

(r+1)!(n−1)!

(n+r)!
r!n!




=
r + 1

r

(
n+ r

r + 1
− n

r + 1

)

=
n+ r

r
− n

r
= 1.

Dividing through by n+rCr+1, we get

1
n+rCr+1

=
r + 1

r

(
1

n+r−1Cr
− 1

n+rCr

)
.

Hence, the required sum telescopes to

∞∑

n=1

1
n+rCr+1

=
r + 1

r

∞∑

n=1

(
1

n+r−1Cr
− 1

n+rCr

)

=
r + 1

r

(
1

rCr
− 1

r+1Cr
+

1
r+1Cr

− 1
r+2Cr

+ . . .

)
=

r + 1

r

1
rCr

=
r + 1

r
.

Thus, we have
∞∑

n=2

1
n+2C3

=
∞∑

n=1

1
n+2C3

− 1
3C3

=
2 + 1

2
− 1 =

1

2
.

∗ ∗ ∗ ∗ ∗

Problem 3.

(a) By using a suitable substitution or otherwise, find

∫
1

ex + 1
dx,

expressing your answer as a single logarithm.

(b) By considering the geometric series 1− t+ t2 − t3 + . . . , show that for |t| < 1,

ln(1 + t) =

∞∑

k=1

(−1)k+1tk

k
.

(c) Explain why for all n ∈ Z+,
lim
x→∞

xenx = 0.

(d) Prove that ∫ ∞

0

x

ex + 1
dx =

∞∑

k=1

(−1)k+1

k2
,

showing clearly at which step of your working you have used part (c). You may
interchange the summation and integral without justification.
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Solution.

Part (a). Dividing the integrand by ex, we see that

∫
1

ex + 1
dx =

∫
e−x

1 + e−x
dx = − ln

(
1 + e−x

)
+ C = ln

(
1

1 + e−x

)
+ C.

Part (b). Note that

1− t+ t2 − t3 + · · · =
∞∑

k=0

(−t)k =
1

1 + t
.

Integrating with respect to t,

ln(1 + t) =

∫ ∞∑

k=0

(−t)k dt =
∞∑

k=0

∫
(−t)k dt =

∞∑

k=0

−(−t)k+1

k + 1
+ C =

∞∑

k=1

(−1)k+1tk

k
+ C.

At t = 0, we see that C = 0, so

ln(1 + t) =
∞∑

k=1

(−1)k+1tk

k
.

Part (c). By L’Hôpital’s rule,

lim
x→∞

xe−nx = lim
x→∞

x

enx
= lim

x→∞
1

nenx
= 0.

Part (d). Integrating by parts, we see that

∫ ∞

0

x

ex + 1
dx =

∫ ∞

0

xe−x

1 + e−x
dx =

[
−x ln

(
1 + e−x

)]∞
0

+

∫ ∞

0
ln
(
1 + e−x

)
dx.

Notice that

lim
x→∞

−x ln
(
1 + e−x

)
= lim

x→∞
−x

∞∑

k=1

(−1)k+1e−kx

k
=

∞∑

k=1

(−1)k

k
lim
x→∞

xe−kx = 0,

where we used part (b) in the first equality, and part (c) in the last equality.
Our target integral is hence just

∫ ∞

0

x

ex + 1
dx =

∫ ∞

0
ln
(
1 + e−x

)
dx =

∫ ∞

0

∞∑

k=1

(−1)k+1e−kx

k
dx

=
∞∑

k=1

(−1)k+1

k

∫ ∞

0
e−kx dx =

∞∑

k=1

(−1)k+1

k

[
−1

k
e−kx

]∞

0

=
∞∑

k=1

(−1)k+1

k2
.
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