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Preface

About this Book

This book is a collection of notes and exercises based on the mathematics courses offered
at Dunman High School'. The scope of this book follows that of the 2025 H2 Mathemat-
ics (9758), H2 Further Mathematics (9649) and H3 Mathematics (9820) syllabi for the
Singapore-Cambridge A-Level examinations.

Notation

All definitions, results, recipes (methods) and examples are colour-coded green, blue,
purple and red respectively.

Challenging exercises are marked with a “4” symbol.

The area of a polygon A1 A,... A, is notated [A1A4s ... A,]. In particular, the area of a
triangle ABC' is notated [AABC].

For formatting reasons, an inline column vector is notated as (z, y, z)T.

Let n be a positive integer. Then [n] represents the set {1,2,...,n}.

Contributing

The source code for this book is available on GitHub at asdia0/TripleMath. Contribu-
tions are more than welcome.

1Tt must be stated that these notes are unofficial and are obviously not endorsed by the school.


https://www.seab.gov.sg/files/A%20Level%20Syllabus%20Sch%20Cddts/2025/8865_y25_sy.pdf
https://www.seab.gov.sg/files/A%20Level%20Syllabus%20Sch%20Cddts/2025/9649_y25_sy.pdf
https://www.seab.gov.sg/files/A%20Level%20Syllabus%20Sch%20Cddts/2025/9820_y25_sy.pdf
https://github.com/asdia0/TripleMath
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1 Equations and Inequalities

1.1 Quadratic Equations

In this section, we will look at the properties of quadratic equations as well as their roots.

Proposition 1.1.1 (Quadratic Formula). The roots a and 3 of a quadratic equation az?+
bxr 4+ ¢ = 0, where a # 0 can be found using the quadratic formula:

_ —bE VIV —dac

a, 8 5

Proof. Completing the square, we get
2 b2
a:v2+bx+c:a(x+) ——+c=0,

which rearranges as

- =
2a 2a v 2a
O

Definition 1.1.2. The expression under the radical, b?>—4ac, is known as the discriminant
and is denoted A.

Proposition 1.1.3 (Nature of Roots).
o If A > 0, the roots are real and distinct.
e If A =0, the roots are equal.

e If A <0, the roots are complex.

Proof. Let the roots to the quadratic equation az? + bx + ¢ = 0 be a and 3. By the
quadratic formula,
-b , VA

=—+ —.
a B 2a ~ 2a
Clearly, if A > 0, then v/D > 0, whence the two roots are different. If A = 0, then
VD = 0, whence a = 3 = —b/2a. If A < 0, then VD is not real, whence a and 3 are
complex. 0

Remark. Not only are a and 8 complex, but they are also complexr conjugates. We will
cover this later in §13.
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Proposition 1.1.4 (Vieta's Formula for Quadratics). Let a and 3 be the roots of the
quadratic az? 4+ bx + ¢ = 0, where a # 0. Then

oz—f—ﬁz—g, aﬁzg.

Proof. Since a and (8 are roots, we can rewrite the quadratic as

ax2+bx+c:a(:v—a)(x—ﬁ):a[mQ—(a%—ﬁ)x—l—aﬂ}.

Comparing coefficients yields

1.2 System of Linear Equations

Definition 1.2.1. A set of two or more equations to be solved simultaneously is called
a system of equations. If the system has only equations that contain unknowns of the
first degree, it is a system of linear equations.

Definition 1.2.2. A system of equations is said to be consistent if it admits solutions.
Conversely, if there are no solutions to the system, it is said to be inconsistent.

Example 1.2.3. The system

3z + 6y =3
3xr+8y=9
is consistent, since x = —5, y = 3 is a solution. On the other hand, the system
3z + 6y=3
6+ 12y =7

is inconsistent, as it does not admit any solutions (why?).

Proposition 1.2.4. If a system of linear equations is consistent, it either has a unique
solution or infinitely many solutions.

Proof. Geometrically, if a collection of lines has more than one common point, they must
all be equivalent. O

1.3 Inequalities

Fact 1.3.1 (Properties of Inequalities). Let a,b,c, € R.
e (transitivity) If @ > b and b > ¢, then a > c.
e (addition) If a > b, then a + ¢ > b+ c.

e (multiplication) If @ > b and ¢ > 0, then ac > be; if ¢ < 0, then ac < be.
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1.3.1 Solving Inequalities
In this section, we introduce two main methods of solving inequalities.

Recipe 1.3.2 (Graphical Method). Plot the function and observe which z-values satisfy
the inequality.

Recipe 1.3.3 (Test-Value Method).
1. Indicate the root(s) of the function on a number line (i.e. where f(z) = 0).
2. Choose an x-value within each interval as your test-value.

3. Using the test-value, evaluate whether the function is positive/negative within
that interval.

Note that the test-value method is only useful for inequalities where one side is 0, e.g.

f(z) > 0.
Sample Problem 1.3.4 (Test-Value Method). Solve the inequality 2z — z2 > —3.
Solution. In order to apply the test-value method, we must first make one side of the

inequality O:
2 —ax?> -3 = 22 -2 -3<0.

Since 22 — 22 — 3 = (z + 1)(z — 3), the critical values are z = —1 and = = 3. Picking
r= -2 2=0and z = 4 as our test-values, we see that 2> — 2z — 3 is only negative on
the interval (—1,3). Hence, the solution is [-1, 3]. O

In the case where the function is rational, i.e. f(z)/g(x), there is an additional method
we can use.

Recipe 1.3.5 (Clearing Denominators). Multiply the square of the denominator, i.e.
[9(x)]%, throughout the inequality.

Note that the square ensures that the sign of the inequality is preserved.

1.4 Modulus Function

Definition 1.4.1. The modulus function |z|, where x € R, is defined as

xz if x>0,
|z| = .
—x ifz<O.

The modulus function can be thought of as the “distance” between a number and the
origin (the number 0) on the real number line.

Fact 1.4.2 (Properties of Modulus Function). For any € R and k > 0,
o || >0.

|$2} = |z|* = 22 and Va2 = |z|.

lz| <k <= —k<z<k.

|z] =k <= xz=—-korz=EF.

|| >k <= x < —korxz>k.



2 Numerical Methods of Finding Roots

2.1 Bolzano’s Theorem

The following theorem forms the basis for finding roots numerically.

Theorem 2.1.1 (Bolzano's Theorem). Let f(x) be a continuous function on the interval
[a,b]. If f(a) and f(b) have opposite signs, i.e. f(a)f(b) < 0, then there exists at least
one real root in [a, b].

Additionally, if f(x) is strictly monotonic on [a,b], then there is exactly one real root
in [a, b].

2.2 Numerical Methods for Finding Roots

A numerical method for finding roots typically consists of two stages:
1. Estimate the location of the root

Obtain an initial approximate value of this root.

2. Improve on the estimate (via an iterative process)

An iterative process is a repetitive procedure designed to produce a sequence of ap-
proximations {z,} so that the sequence converges to a root. The process is continued
until the required accuracy is reached.

In this chapter, we will look at three numerical methods for finding roots, namely linear
interpolation, fixed point iteration and the Newton-Raphson method.

2.3 Linear Interpolation
Linear interpolation is a numerical method based on approximating the curve y = f(x) to

a straight line in the vicinity of the root. The approximate root of the equation f(z) =0
is the intersection of this straight line with the z-axis.

2.3.1 Derivation

Figure 2.1
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Suppose f(z) = 0 has exactly one root « in the interval [a, b], where f(a) and f(b) have
opposite signs. By the point-slope formula, the line connecting the points (a, f(a)) and

(b, f()) is given by

At the point (c,0),
f(b) — f(a af(b) —bf(a
NN (ORS00 _ af() ~bf(a)
b—a f(b) = f(a)
Linear interpolation can be repeatedly applied by replacing either the lower or upper
bound of the interval with the previously found approximation.

(c—a) = ¢

2.3.2 Convergence

Convergence of the approximations is guaranteed for linear interpolation. However, how
good the estimation is depends on how ”straight” the graph of y = f(x) is in [a, b, i.e. the
rate at which f’(z) is changing in [a,b]. This rate also affects the rate of convergence: if
f'(x) changes considerably, the rate of convergence is slow; if f/'(z) does not change much,
the rate of convergence is fast.

2.4 Fixed Point lteration

Fixed point iteration is used to find a root of an equation f(z) = 0 which can be written in
the form = = F'(z). The roots of the equation are the abscissae of the points of intersection
of the line y = z and y = F(x).

2.4.1 Derivation

Let « be a root to f(z) = 0. Since f(xz) = 0 can be written in the form z = F(z), we
clearly have a = F(a). Now observe that we can replace the argument o with F'(«):

a=F(a)=FoF(a)=FoFoF(a)=....
Hence,
a=FoFoFo---oF(x).
2.4.2 Geometrical Interpretation

Geometrically, fixed-point iteration can be seen as repeatedly "reflecting” the initial ap-
proximation point (x1, F'(z1)) about the line y = x, while keeping the resultant point on
the curve y = F(x).

/
/
% l
/ :

PN

[0) ) T3 x1

Figure 2.2
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2.4.3 Convergence

Convergence is not guaranteed. The rate at which the approximations converge to «
depends on the value of |F’(z)| near a. The smaller |F'(z)]| is, the faster the convergence.
It should be noted that fixed-point iteration fails if |F’(z)| > 1 near a.

Y

<

1

O T2 T1 T3

Figure 2.3: Divergence occurs when |F’'(z)| > 1 near a.

2.5 Newton-Raphson Method

The Newton-Raphson method is a numerical method that improves on linear interpolation
by considering the tangent line at the initial approximation to the root.

2.5.1 Derivation

Figure 2.4

Let a be a root to f(z) = 0. Consider the tangent to y = f(x) at the point where z = z;.
In most circumstances, the point (x3,0) where this tangent cuts the z-axis will be nearer to
the point («,0) than (z1,0) was. By the point-slope formula, the equation of the tangent
to the curve at x = x1 is

y— f(z1) = f'(x1)(z — 21).

Since (z2,0) lies on the tangent line, we have

_ f(z)

f'(@1)
By repeating the Newton-Raphson process, we are able to get better approximations to
a. In general,

Tn+l = Tp — f/(CL‘ )
n

T9 = X1




2.5 Newton-Raphson Method 11

2.5.2 Convergence

The rate of convergence when using the Newton-Raphson method depends on the first
approximation used and the shape of the curve in the neighbourhood of the root. In
extreme cases, these factors may lead to failure (divergence). The three main cases are:

e |f/(x1)] is too small (extreme case when f’(z1) = 0),
e f'(x) increases/decreases too rapidly (|f”(x)]| is too large),

e 1 is too far away from «.

9 O T o

Figure 2.5: Divergence occurs when x; is too far away from «.
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3 Functions

3.1 Definition and Notation

Definition 3.1.1. A function f is a rule or relation that assigns each and every element
of x € X to one and only one element y € Y. We write this as f : X — Y and read it
as “f maps x to Y”. X is called the domain of f, denoted Dy, while Y is called the
codomain of f. The elements of y that get mapped to under f is known as the range
of f, denoted Ry. Mathematically, Ry = {f(x) | x € Dy} .

To define a function, we must state its rule and specify the domain. There are two ways
to represent this:

fix—a?+1,zeR or f(zx)=2>4+1,zeR.
N—— —_— ) ——~
the rule Dy the rule Dy

Note that two functions are equal if and only if they have the same rule and domain.
For instance, the function g : 2 — 22 4 1, 2 € Z is not equal to f (as defined above) since
their domains are not equal (R # Z).

Note that f is not the same as f(z); f is a map, while f(x) is the value that f maps x
to.

3.2 Graph of a Function

Definition 3.2.1. The graph of f(z) is the collection of all points (x,y) in the xy-plane
such that the values = and y satisfy y = f(z).

Proposition 3.2.2 (Vertical Line Test). A relation f is a function if and only if every
vertical line x = k, k € Dy cuts the graph of y = f(x) at one and only one point.

Proof. By definition, a function f is a relation which maps each element in the domain to
one and only one image. d

3.3 One-One Functions

Definition 3.3.1. A function is said to be one-one if no two distinct elements in the
given domain have the same image under f. Mathematically,

11 # 22 = f(z1) # f(22).
Equivalently, f is one-one if f(z1) = f(x2) implies z1 = .

Proposition 3.3.2 (Horizontal Line Test). A function f is one-one if and only if any
horizontal line y = k, k € Ry cuts the graph of y = f(x) at one and only one point.

Proof. We only prove the backwards case as the forwards case is trivial. Suppose y = k
and y = f(x) intersect more than once. Then there exist two distinct elements 21 and x5
in D such that f(x1) = f(x2), whence f is not one-one. O
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Proposition 3.3.3 (Strict Monotonicity Implies One-One). All strictly monotone functions
are one-one.

Proof. Seeking a contradiction, assume that there exists a strictly increasing function
f :+ X — Y which is not one-one. Then there exists x1,x2 € X such that x1 # 2o —
f(x1) = f(x2). Without loss of generality, assume x1 < x9, since f is strictly increasing.
Then f(z1) < f(x2), a contradiction. Therefore, all strictly increasing functions are one-
one. Similarly, all strictly decreasing functions are one-one. O

To prove that a function is not one-one, it is sufficient to provide a specific counter-
example.

3.4 Inverse Functions

Definition 3.4.1. Let f : X — Y be a function. Its inverse function, f~1:Y — X is a
function that undoes the operation of f. Mathematically, for all z € Dy,

fTlly) =2 = fl2)=yv.
Fact 3.4.2 (Properties of Inverse Function).
e ! exists if and only if f is one-one.
e Dy =Ry and Ry = Dy

e The graphs of f and f~! are reflections of each other in the line y = z.

.
y . —
. Yy =
.
. _
e 7:1
. Y
p
.
.
.
.
p
.
4
.
A\
.
.
.
)
.
.
.
.
, .
p
.
. X
7
10
.
.
.
.
.
.
. /
. /
s [
. |

Figure 3.1: The graphs of f and f~! are reflections of each other in the line y = x.

3.5 Composite Functions

Definition 3.5.1. Let f and g be functions. Then the composite function gf is defined
by
9f(x) =g(f(x)) =go f(x), =€ Dy

Proposition 3.5.2 (Existence of Composite Function). The composite function gf exists
when Ry C D,.

Proof. Suppose Ry € Dg. Then there exists some element y in Ry that is not in Dy.
Let the pre-image of y under f be z. Then gf(x) = g(y) is undefined, whence gf is not
well-defined and is hence not a function. O
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Note that in general, composition of functions is not commutative, i.e. fg # gf.
We write the composition of f with itself n times as f"(x). For instance, ff(x) =
f(f(x)) can be written as f2(x). This should not be confused with [f(x)]".

3.5.1 Composition of Inverse Function

Suppose f : x — y has an inverse f~! : y — 2. By the definition of an inverse function.

flof@)=Ffof(z) =2

Though f~'f and ff~! have the same rule, they may have different domains. This is
because Dy-1y = Dy, while Dyy-1 = Dy-1.
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4 Graphs and Transformations

4.1 Characteristics of a Graph

When we sketch a graph, we need to take note of the following characteristics and indicate
them on the sketch accordingly:

e Axial intercepts. z- and y-intercepts.
e Stationary points. Maximum, minimum points and stationary points of inflexion.
e Asymptotes. Horizontal, vertical and oblique asymptotes.

When sketching a graph, the shape and any symmetry must be clearly seen.

4.2 Asymptotes

Definition 4.2.1. An asymptote is a straight line such that the distance between the
curve and the line approaches zero at the extreme end(s) of a graph, i.e. the curve
approaches the line but never touches it at these ends.

Definition 4.2.2. Let a and b be constants.

e If x — 400, y — a, then the line y = a is a horizontal asymptote.
o If x — a, y — +o00, then the line x = a is a vertical asymptote.

o If x — +00, y — (ax + b) — 0, then the line y = ax + b is an oblique asymptote.

4.3 Even and Odd Functions

Definition 4.3.1. A function f(z) is even if and only if f(—z) = f(z) for all x in its
domain.

Geometrically, a function is even if and only if the graph y = f(x) is symmetrical about
the y-axis.

Definition 4.3.2. A function f(z) is odd if and only if f(—z) = —f(x) for all z in its
domain.

Geometrically, a function is odd if and only if the graph y = f(x) is symmetrical about
the origin.

4.4 Graphs of Rational Functions

A rational function f is a ratio of two polynomials P(z) and Q(x), where Q(z) # 0.
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4.4.1 Rectangular Hyperbola

A rectangular hyperbola is a hyperbola with asymptotes that are perpendicular to each
other. The general formula for a rectangular hyperbola is y = ‘C‘;fig, where a, b, c and d
are constants. Note that the curve y = ggis has a vertical asymptote x = —d/c and a
horizontal asymptote y = a/c. The two possible shapes of a rectangular hyperbola are

shown below.

y=a/c__
======cc--o----- I e
/0
|
r=—d/c)
1l
Figure 4.1: Hyperbolas of the form y = ‘;ﬁ_’g

4.4.2 Hyperbolas of the Form y = —afﬂzgfrc
A hyperbola of the form y = %ﬁ“, where a, b, ¢, d and e are constants, has one vertical

and one oblique asymptote. The vertical asymptote has equation z = —e/d. To deduce
the oblique asymptote, we must first convert the equation to the form y = px + g + #Jre
(via long division or otherwise). These graphs will generally take one of the two forms
below, which can be easily deduced by checking the axial intercepts.

o 7
4
r=—e/di | |Y p
| 7
o p 7
v 7
l 74
| /4
| e
| v
7
I o
| s 7
| P - /
| . / X
T 7z l
/. /
10
. /
ot
g [
S | |
)z R
Ve l |
v | i
Sz i
ez I |
Vs 1
7 ‘
Vi |
7 —_ |
Jy=pr+q |
Z | |
ax+br+c

Figure 4.2: Hyperbolas of the form y = Tote
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4.5 Graphs of Basic Conics

A conic is a curve that can be formed by intersecting a right circular conical surface with
a plane. We will examine four types of conics: parabola, circle, ellipse and hyperbola.
When sketching graphs of conics, it is important to identify their unique characteristics.

4.5.1 Parabola

2

Parabolas are curves with equations y = az? or « = by?, where a and b are constants.

Y a>0
—a<0

Figure 4.3: Parabolas with equation y = ax?.

Parabolas with equation y = az? have a line of symmetry z = 0 and a vertex at the
origin.

Y b>0
—b<0

Figure 4.4: Parabolas with equation x = by?.

Parabolas with equation 2 = by? have a line of symmetry y = 0 and a vertex at the
origin.

4.5.2 Circle

A circle is a set of all points in a plane which are the same distance (radius r) from a fixed
point (centre). A basic circle with centre at the origin O and radius r is shown below.
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Figure 4.5: Circle with equation 22 4 y? = r2.

Any straight line that passes through the centre of the circle is a line of symmetry. The
above circle has vertices at (r,0), (—r,0), (0,7) and (0, —r).
In general,

e the standard form of the equation of a circle with centre at (h, k) and radius r is
(x — h)? + (y — k)? = r2, where r > 0.

e the general form of the equation of a circle is Az? + Ay?> + Bx +Cy + D = 0.

4.5.3 Ellipse

An ellipse is a circle that has been scaled parallel to the - and/or y-axes. The standard

form of the equation of an ellipse centred at (0,0) is z—i + Z—j =1, where a,b > 0. a and b
are known as the horizontal and vertical radii respectively.

Y

. . . . 2
Figure 4.6: Ellipse with equation i—; + 7;—2 =1
The lines of symmetry for the above ellipse are the - and y-axes, while its vertices are
(av 0)7 (_a70)7 (07 b) and (07 _b)
In general,
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e the standard form of the equation of an ellipse with centre at (h, k) and radius r is

7(36;2’1)2 + 7(@’;2}9)2 =1, where r > 0.

e the general form of the equation of an ellipse is Az? + Bz? + Cx + Dy + E = 0.

4.5.4 Hyperbola
The hyperbola is a conic with two oblique asymptotes. The standard form of a hyperbola

2 2
centred at the origin O is either "Z—; —=1lor % — 2—2 = 1, where a,b > 0, depending on

bz T
the orientation of the hyperbola.

v
7/
<
N
N\
¥
o

NN Z = Y- —
Q\i\ y z a2 b2 ].
A i R 2 1
N y=bxr/a. b2 T a2 —
N s
N g

N I 7

. .
—a NN a x€X

ol
y N

p N

=b N
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////7,,/ y = —b$ @\\;t\\
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7 AN
7 N
e AN
7 AN
Z N
Figure 4.7

Both hyperbolas have the origin as their centres, the z- and y-axes as their lines of
symmetry, and their two oblique asymptotes are y = :I:g:v. The hyperbola with equation
x2 2

2y — % = 1 has vertices (—a,0) and (a,0), i.e. a is the horizontal distance from the centre

to the vertices. Similarly, the hyperbola with equation % — "”—z = 1 has vertices (0,—b)
b a
and (0,b), i.e. b is the vertical distance from the centre to the vertices.
In general,

e the standard form of the equation of a hyperbola with centre at (h, k) and radius r

iS (3352}7')2 _ (y;f)2 — 1 or 7(?4;5)2 — 7(3:;2}1)2 = 1 Where a, b > 0

e the general form of the equation of a hyperbola is Az? — Bx? + Cx + Dy + E = 0.

4.6 Parametric Equations

Definition 4.6.1. A set of parametric equations define a curve by expressing the coor-
dinates (z,y) in terms of an independent variable ¢ (the parameter), i.e. x = f(¢) and

y=g(t).

Example 4.6.2 (Parametric Equations of a Circle). The parametric equations = = cos 6,
y =sin6, 6 € [0, 27) defines a unit circle.

Note that changing the domain of the parameter may change the shape of the curve,
even if the same pair of parametric equations are used. Using the above example, if we
instead take 6 € [0, 7) the resulting curve is that of a semicircle.

To convert a pair of parametric equations to Cartesian form, the parameter must be
eliminated. This can be done by either expressing ¢ in terms of 2 and/or y.
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Example 4.6.3 (Parametric to Cartesian via Substitution). Consider the parametric equa-
tions @ = t2 +2t, y = > — 2t. Observe that & —y = 4¢t, whence t = (x — y)/4. Thus, the
Cartesian equation of the resulting curve is

- (5)

2<$;y>.

A similar process is used to convert implicit Cartesian equations into parametric form.
Note that explicit Cartesian equations can be trivially converted: simply take x = t.

4.7 Basic Linear Transformations

4.7.1 Translation

For a > 0,

How y = f(z) was
transformed

Graphical effect on
y=f(z)

Effect on = or y values

y replaced with y — a

Translated a units in the
positive y-direction.

(z,y) = (z,y +a)

y replaced with y + a

Translated a units in the
negative y-direction.

(1:73/) = (.’E,y— CL)

x replaced with = — a

Translated a units in the
positive z-direction.

(z,y) = (z + a,y)

x replaced with = + a

Translated a units in the
negative x-direction.

(IE,y) — (‘T - a’ay)

4.7.2 Reflection

For a > 0,

How y = f(z) was
transformed

Graphical effect on
y = f(z)

Effect on = or y values

y replaced with —y

Reflected in the z-axis.

(IL‘,y) — (1‘, _y)

x replaced with —x

Reflected in the y-axis.

(x,y) — (—$,y)

4.7.3 Scaling

For a > 0,

How y = f(z) was
transformed

Graphical effect on
y = f(z)

Effect on = or y values

y replaced with y/a

Scaled by a factor of a
parallel to the y-axis.

(z,y) — (z,ay)

x replaced with x/a

Scaled by a factor of a
parallel to the z-axis.

(z,y) = (az,y)
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4.8 Relating Graphs to the Graph of y = f(z)

4.8.1 Graph of y = |f(z)|
Note that

y= If(x)IZ{

Recipe 4.8.1 (Graph of y = |f(x)]). To obtain the graph of y = |f(x)| from the graph
of y = f(x),

e Retain the portion of y = f(z) above the z-axis.

e Reflect in the z-axis the portion of y = f(z) below the z-axis.

Example 4.8.2 (Graph of y = |f(z)|). Consider the following graph of y = f(z).

(-1, 22)

Figure 4.8

Reflecting the portion of the curve below the z-axis, we get the following graph of

y = |f(2)].

Figure 4.9
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4.8.2 Graph of y = f(|z])

Note that
f(x) x>0,

y—f(lx!)—{f(_x) N

Recipe 4.8.3 (Graph of y = f(|z])). To obtain the graph of y = f(|z|) from the graph
of y = f(x),

e Retain the portion of y = f(z) where x > 0.

e Delete the portion of y = f(x) where x < 0.

e Copy and reflect in the y-axis the portion of y = f(x) where x > 0.

Example 4.8.4 (Graph of y = f(|z])). Let the graph of y = f(z) be as in Fig. 4.8.
Following the above steps, we see that the graph of y = f(|z|) is

v y = f(le)

Figure 4.10

4.8.3 Graph of y =1/f(x)

There are several key features and behaviours that we must note when drawing the graph

of y =1/f(x).
e If y = f(z) increases, 1/f(x) decreases and vice versa.

e For a minimum point (a,b) where b # 0 on the graph of y = f(z), it corresponds to
a maximum point (a,1/b) on the graph of y = 1/f(z) and vice versa.

f(zx), it corresponds to a vertical

For an z-intercept (a,0) on the graph of y =
) and vice versa.

asymptote x = a on the graph of y = 1/f(z

Oblique asymptotes on the graph of y = f(x) become horizontal asymptotes at y = 0
on the graph of y = 1/f(x).

Example 4.8.5 (Graph of y = 1/f(x)). Let the graph of y = f(x) be as in Fig. 4.8.
Following the above pointers, we see that the graph of y = 1/f(z) is
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y=1/f(x)

Figure 4.11
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5 Polar Coordinates

5.1 Polar Coordinate System

Definition 5.1.1. Let the pole (or origin) be a point O in the plane. Let the initial line
(or polar axis) be a half-line starting at O. Let P be any other point in the plane. Then
P has polar coordinates (r,6), where r is the distance from O to P and 6 is the angle
between the initial line and the line OP.

6=1

P(r,0)

Figure 5.1

There are some conventions regarding the pole and the initial line.
e The initial line is usually drawn horizontally to the right.

e The polar angle 6 is positive if measured in the anti-clockwise direction from the
initial line and negative in the clockwise direction.

o If P =0, then r = 0, and we may use (0,6) to represent the pole for any value of 6.

Recall that in the Cartesian coordinate system, each point has a unique representation.
This is not the case in the polar coordinate system. For example, the point (1, %r) could
also be written as (1, %ﬂ) or as (—1, iw). In general, because a complete anti-clockwise
rotation is given by the angle 27, the point (r,0) can also be represented by (r, 6 + 2n)
and (—7, (2n + 1)), where n is any integer.

To avoid this ambiguity, it is common to restrict to 0 < 0 < 27 or —7 < § < 7 and to

take r > 0.
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5.2 Relationship between the Polar and Cartesian Coordinate
Systems

Suppose the point P has Cartesian coordinates (x,y) and polar coordinates (r,6). From
the figure above, we have

x . Y
cosf = —, sinf ==,
r r

Thus
9y
T =171cosb, = rsiné.

Note that while the above were deduced from the case where r > 0 and 0 < § < 7, these
equations are valid for all values of r and 6.
From the figure, we also have

r? =22 +4% tanf = g,
x

which allows us to find » and # when x and y are known.

5.3 Polar Curves

Definition 5.3.1. The graph of a polar equation r = f(6) consists of all points P(r,6)
whose coordinates satisfy the equation.

Fact 5.3.2 (Symmetry of Polar Curves).

e [f the equation is invariant under 6 — —60, the curve is symmetric about the polar
axis.

e If the equation is invariant under r — —r, or when 8 — 6 + m, the curve is
symmetric about the pole (i.e. the curve remains unchanged when rotated by
180° about the origin).

e If the equation is invariant when 6§ — 7w — 6, the curve is symmetric about the
vertical line 6 = 7.

e If r is a function of cosnf only, the curve is symmetric about the horizontal half
lines 6 = %7[‘, kelZ.

e If r is a function of sin nf only, the curve is symmetric about the vertical half-lines
0= 2’;—“7, ke Z.

n

e If only even powers of r occur in the equation, the curve is symmetric about the
pole.

Proposition 5.3.3 (Tangents to Polar Curves). The gradient of the tangent to a polar
curve r = f(#) at any point is

% _ r'sinf 4 rcosd

dr  1'cosf —rsinf’
Proof. Recall that
T =rcosb, y =rsinf.
Differentiating with respect to 0,

d d
d—Z:r'cosﬁ—rsinﬁ, d—gzr’sinﬁ—i—rcosﬁ.
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Thus,
dy dy/d0  r'sinf+rcosd

dr  dxz/d0  1'cosf —rsin’

O

Remark. To find horizontal tangents (i.e. dy/dz = 0), we can solve dy/df = 0 (provided
dz/df # 0). Likewise, to find vertical tangents (i.e. dy/dz undefined), we can solve
dz/df = 0 (provided dy/df # 0). Lastly, if we are looking for tangent lines at the pole,
where r = 0, the equation simplifies to

dy

I tan @,

provided dr/df # 0.
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6 Sequences and Series

6.1 Sequences

Definition 6.1.1. A sequence or progression is a set of numbers uy,us, us, ..., Uy, ..
arranged in a defined order according to a certain rule. In general, u,, is called the nth
term.

Remark. A sequence can be thought of as a function with domain Z.

Definition 6.1.2. A sequence is said to be finite if it terminates; otherwise it is an infinite
sequence.

Definition 6.1.3. If an infinite sequence u,, approaches a unique value [ as n — oo, then
the sequence is said to converge to [. We say that [ is the limit of u,. A sequence that
does not converge is said to diverge.

When describing sequences, one should identify
e Trends (increasing/decreasing, constant, alternating)

e Long-run behaviour of an infinite sequence (convergent or divergent)

6.2 Series

Definition 6.2.1. A series is the sum of the terms of a sequence u,,. The sum to n terms
is denoted by S, i.e.
Sp=u1 +us+ -+ Up_1+ Up.

Similar to sequences, a series can be finite or infinite. If a series is infinite, it can further
be categorized as convergent or divergent.

6.3 Arithmetic Progression

Definition 6.3.1. An arithmetic progression (AP) is a sequence u,, in which each term
differs from the preceding term by a constant called the common difference. The first
term of an AP is usually denoted by a and the common difference by d. Mathematically,

Up =a+ (n—1)d.

Definition 6.3.2. An arithmetic series is obtained by adding the terms of an arithmetic
progression.

Proposition 6.3.3. The nth term S, of an arithmetic series is given by

n(a+1)

Sn: 2 )

where [ is the last term of the AP, i.e.
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Proof. Note that for all integers k € [1,n],
U+ tUp—gr1=[a+(k—=1)d+a+(n—k)d=a+a+(n—1)d =a+1.
Hence, by pairing the kth term with the (n — k + 1)th term, we get

n(a+l).

25, = (u1+up)+(ua+up—1)+- -+ (Un—1+u2) +(up+w) =n(a+1) = S, = 5

O

6.4 Geometric Progression

Definition 6.4.1. A geometric progression (GP) is a sequence u,, in which each term is
obtained form the preceding one by multiplying a non-zero constant, called the common
ratio. The first term of a GP is usually denoted by a and the common ratio by 7.
Mathematically,

Up = ar™ L.
Remark. In the case where r = 1, the geometric progression becomes an arithmetic pro-
gression.

Definition 6.4.2. A geometric series is the sum of the terms of a geometric progression.

Proposition 6.4.3. The nth term S,, of a geometric series is given by

a(l—r™)
g === 7)
n 1—r 5
where r # 1. If the series is infinite, the sum to infinity S, exists only if |r| < 1 and is
given by

a
Soo = 1—r
Proof. By the definition of a series, we have
Sp=a+ar+--+ar" % +ar" . (1)
Multiplying both sides by r yields
rS, =ar+ar’>+---+ar™ ' 4+ ar”. (2)

Subtracting (2) from (1), we have

a(l — 7"”)‘

1-r)Sp,=a—ar" = S, = =

Suppose |r| < 1. In the limit as n — oo, we have r™ — 0. Hence,

_a(l-0) o«
Soe = 1—r 1—7
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6.5 Sigma Notation

Definition 6.5.1. The series ug+ug41+- - - +uy, can be denoted using ¥ (sigma) notation
as

m
Uk+uk+1+"‘+umzzu7“-
r=k

Here, r is called the index, and can be replaced with any letter. & is the lower limit of
r, while m is the upper limit of . There are a total of m — k + 1 terms in the sum.

Fact 6.5.2 (Properties of Sigma Notation).

n

n n
Z(ur tu) = Zur :EZUT.
r=1 r=1 r=1
n n
Z cu, = cZuT.
r=1 r=1

n n m—1
g urzg ur—E Up, N >m > 1.
r=m r=1 r=1

Fact 6.5.3 (Standard Series). The sum of the following standard series can be quoted
and applied without proof. Note that m = ¢ — p + 1 is the number of terms being
summed.

e Series of constants

q
E a = ma.
r=p

e Arithmetic series

q
m
ZTZE(ZH—Q)-
r=p

o Geometric series
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7 Recurrence Relations

Definition 7.0.1. A recurrence relation is an equation that defines a sequence based on
a rule that gives the next term as a function of the previous term(s).

7.1 First Order Linear Recurrence Relation with Constant
Coefficients
Definition 7.1.1. A first order linear recurrence relation with constant coefficients is
a recurrence relation of the form
Up = aUp—1 + b,

where a and b are constants. If b = 0, the recurrence relation is said to be homogeneous.

There are two main ways to solve the above recurrence relation: by converting the
recurrence relation into a geometric progression, or solving by procedure.

7.1.1 Converting to Geometrical Progression

Recipe 7.1.2 (Converting to Geometrical Progression). Let k be the constant such that
Un +k=a(up,—1+k).

Then we clearly have k = a—fl. We now define a new sequence v, = u, + k. This turns
our recurrence relation into
Up = AUp—1,

whence v,, is in geometric progression. Thus, v, = v1a™ '. Writing this back in terms
of u,, we get
U + k= (up +k)a™ b = u, = (ug +k)a" — k.

Example 7.1.3 (Solving by GP). Consider the recurrence relation

1
up =0, u,= §un_1—|—10, n > 1.

Let k£ be the constant such that

1
un—I—k:ﬁ(unfl—i—k).

Then
10

k= = —20.
1/2 -1 0

We hence have 1
Up — 20 = 3 (Up—1 — 20),

whence the sequence {u, — 20} is in geometric progression with common ratio 1/2.
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Thus,

1 n—1
up, — 20 = (u; — 20) <2> .

Rearranging, we obtain the solution

=-20 L ”*1+20__40 L n+20
Up = 5 = 5 .

7.1.2 Solving by Procedure

Definition 7.1.4. Given a first order linear recurrence relation with constant coefficients

Up = AUp—1 + b,

® u, = au,_1 is the associated homogeneous recurrence relation.

(c)

e u;’ = Ca” is the general solution of the associated homogeneous recurrence rela-

tion and is called the complementary solution.

° u%p) = k is the particular solution to the recurrence relation.

Fact 7.1.5 (Solving by Procedure). The general solution is given by

Uy = u'd +uP) = Ca” + k.
Example 7.1.6 (Solving by Procedure). Consider the recurrence relation

1
u =0, u,= §un_1+10, n>1.

Observe that the associated homogeneous recurrence relation is u, = %un_l.
the complementary solution is
1 n

for some arbitrary constant C. Let the particular solution be u&” ) — k. Then
1
]{;:§k~|—10 = k = 20.

Hence, the general solution is

Uy = u® +uP = C (;) + 20.

Using the initial condition u; = 0, we have

1
02C(§> +20 = C = -40.

1\ "

Thus,

Hence,
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7.2 Second Order Linear Homogeneous Recurrence Relation
with Constant Coefficients

Definition 7.2.1. A second order linear homogeneous recurrence relation with con-
stant coefficients is a recurrence relation of the form

Up = AUp—1 + bup_2,

where a and b are constants.

Recipe 7.2.2 (Solving by Procedure). To solve the recurrence relation
Uy = AUp_1 + bup_2,

1. Form the quadratic equation

22 —ar—b=0.

This is called the characteristic equation.
2. Find the roots o and 3 of this characteristic equation.

3. Then u, has the general solution
o u, = Aa"™ + Bp", if a # [ (distinct roots, may be real or non-real).

e u, = (A+ Bn)a", if a = [ (real and equal roots).

e u, = Ar"cosnf + Br*sinnb, if a = re'’ and § = re~1% (non-real roots).

Proof. For un41 = puy + qun—1 with given initial conditions u; and us, let the constant k
be such that

Unt1 — kup = (p — k) (up — kup—1). (1)

Note that this is a GP. Comparing coefficients of u,_1, we get
(p—kk=-q = k*—pk—q=0.

This is the characteristic equation. Let the roots to the characteristic equation be k = «
and k = 8. By Vieta’s formulas,
—-Pp
at+f=—(—)=
==(F)

Now, using the fact that (1) is in GP, we get
Uyt — Ky = (p— k)" Hug — kuy). (2)
Substituting £ = « into (2), we obtain
Uni1 — oty = B (ug — auy) . (3a)
Substituting k = /5 into (2), we obtain
n—l (ug — Buy) . (3b)

We now analyse the case where o = 8 and « # 3 separately.
Case 1: a = (. Since the two roots are equal, (3a) and (3b) are equivalent. Taking
either,

Un+1 — /Bun =«

Un+1 Up,
an—l an—?

Upt]1 — QUy = a"_l(uQ —auy) = = Uy — Q.
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The sequence {aﬁf’ig} is hence in AP with common difference us — auy. Invoking the

closed form for AP, we obtain

u u o/ U
a”iQ = 7_11 + (n—D(ug — o) = uy = ™2 (a—_ll +(n—1)(uz — au1)> )
Simplifying,
2
w= | (22 2) (2= ) n| " = 4+ B,
a o« a a

Case 2: « # (3. Observe that (312:(5%) yields

" Hug — Buy) — B Hug — aul)‘

a—pf

Up =

Simplifying, we have

fu2—Bur| , Ug — QUL | o o n
“”_[am—ﬁ)]“ +[B(ﬁ—a)]ﬁ = Ao’ + B

We now consider the case where o and § are non-real. By the conjugate root theorem,
we can write o = re'? and § = re~1?. Substituting this into the above result, we have

U, = A (rele) +B (re_19> =" (Ae”“9 + Be_me) .
By Euler’s identity,

up =1"[(A+ B)cosnb + i(A — B)sinnf| = Cr" cosnf + Dr" sinnf.
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8 Vectors

8.1 Basic Definitions and Notations

Definition 8.1.1. A vector is an object that has both magnitude and direction. Geo-
metrically, we can represent a vector by a directed line segment P(), where the length
of the line segment represents the magnitude of the vector, and the direction of the line
segment represents the direction of the vector. Vectors are typically denoted by bold
print (e.g. a) or by ]@

Definition 8.1.2. The magnitude of a vector a is the length of the line representing a,
and is denoted by |a|.

Definition 8.1.3. Two vectors a and b are said to be equal vectors if they both have
the same magnitude and direction. a and b are said to be negative vectors if they have
the same magnitude but opposite directions.

Definition 8.1.4 (Multiplication of a Vector by a Scalar). Let A be a scalar. If A > 0, then
Aa is a vector of magnitude A |a| and has the same direction as a. If A < 0, then \a is
a vector of magnitude —\ |a| and is in the opposite direction of a.

Definition 8.1.5. The zero vector is the vector with a magnitude of 0 and is denoted 0.

Definition 8.1.6. Let a and b be non-zero vectors. Then a and b are said to be parallel
if and only if b can be expressed as a non-zero scalar multiple of a. Mathematically,

allb < (AAeR\{0}): b=ia

Definition 8.1.7. A unit vector is a vector with a magnitude of 1. Unit vectors are
typically denoted with a hat (e.g. a).
Observe that for any non-zero vector a, the unit vector parallel to a is given by

a

a=
a

Definition 8.1.8. The Triangle Law of Vector Addition states that

AB + BC = AC.

Geometrically, we add two vectors a and b by placing them head to tail, taking the
resultant vector as their sum.

B b

C
T
A + b

a

Figure 8.1

We subtract vectors by adding a + —(b).
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Definition 8.1.9. The angle between two vectors refers to the angle between their
directions when the arrows representing them both converge or both diverge.

Definition 8.1.10. A free vector is a vector that has no specific location in space. The
position vector of some point A relative to the origin O is unique and is denoted OA.
A displacement vector is a vector that joins its initial position to its final position. For
instance, OA is the displacement vector from O to A.

Definition 8.1.11. A set of vectors are said to be coplanar if their directions are all
parallel to the same plane.

Fact 8.1.12. Any vector c that is coplanar with a and b can be expressed as a unique
linear combination of a and b, i.e.

3A\peR): c=ia+ pb.

Theorem 8.1.13 (Ratio Theorem). If P divides AB in the ratio A : p, then

O? pra+ Ab
At

Proof. Since P divides AB in the ratio A : u, we have

A A
AP = A = b —a).
A+ A+u( a)

Thus,

OP —OA+ AP —at+— (b—a)=2tAD
A At p

Corollary 8.1.14 (Mid-Point Theorem). If P is the mid-point of AB, then

0? a+b

8.2 Vector Representation using Cartesian Unit Vectors

8.2.1 2-D Cartesian Unit Vectors

Definition 8.2.1 (2-D Cartesian Unit Vectors). In the 2-D Cartesian plane, i = (1, 0)" is
defined to be the unit vector in the positive direction of the z-axis, while j = (0, 1)T is
defined to be the unit vector in the positive direction of the y-axis.

Thus, if P is the point with coordinates (a,b), then we can express O? in terms of the
unit vectors i and j. In particular, O? = ai + bj.

Proposition 8.2.2 (Magnitude in 2-D).
()

Proof. Follows immediately from Pythagoras’ theorem. O
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8.2.2 3-D Cartesian Unit Vectors

Definition 8.2.3 (3-D Cartesian Unit Vectors). In the 3-D Cartesian plane, i = (1, 0, O)T,
j=1(0,1,0)" and k = (0, 0, 1)" denote the unit vectors in the positive direction of the
x, y and z-axes respectively.

Proposition 8.2.4 (Magnitude in 3-D).

a
b||=Va®+0b2+c2
c
Proof. Use Pythagoras’ theorem twice. O

Fact 8.2.5 (Operations on Cartesian Vectors). To add vectors given in Cartesian unit
vector form, the coefficients of i, j and k are added separately.

T T2 T+ x2
yi |+ lyv2 ] =1v1+y
21 ) Z21 + 22

Subtraction and scalar multiplication follows immediately.

8.3 Scalar Product

Definition 8.3.1. The scalar product (or dot product) of two vectors a and b is defined
by
a-b =|a||b|cos,

where 6 is the angle between the two vectors (note that 0 <6 < 7).

Remark. a- b is called the scalar product as the result is a real number (a scalar). It is
also called the dot product because of the notation.

Fact 8.3.2 (Algebraic Properties of Scalar Product). Let a, b and ¢ be vectors and let
A € R. Then

e (commutative) a-b =Db-a.

e (distributive over addition) a-(b+c)=a-b+a-c.

e a-a=|a’

e (Aa)-b=a-(Ab) = A(a-b).
Proposition 8.3.3 (Geometric Properties of Scalar Product). Let a and b be non-zero
vectors, and let # be the angle between them.

e a-b=0ifand only if 0 = 7,ie. a Lb.

e a-b > 0 if and only if € is acute.

e a-b < 0 if and only if € is obtuse.

Proof. The sign of a - b is determined solely by cos 6. O
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Proposition 8.3.4 (Scalar Product in Cartesian Unit Vector Form).

X1 )
i || y2 | =112 + Y12 + 2122
21 22

Proof. Since i, j and k are pairwise perpendicular, their pairwise scalar products are 0.
That is,
i-j=j-k=k-i=0.

Hence, by the distributive property of the scalar product,
(x1i+ y1j + z1k) - (z2i + yoj + 22k) = x120i - i+ y1y2) - j + 2122k - k.

Lastly, since i, j and k are all unit vectors,

Thus,
T T2
Y1 Y2 | = T1x2 + Y1Y2 + 2122.
Z1 z9
O
8.3.1 Applications of Scalar Product
Proposition 8.3.5 (Angle between Two Vectors). Let 6 be the angle between two non-zero
vectors a and b. Then
p a-b
cosf = .
|a| bl
Proof. Follows immediately from the definition of the scalar product. O

Definition 8.3.6. Let a and b denote the position vectors of A and B respectively,
relative to the origin O. Let 6 be the angle between a and b, and let N be the foot of
the perpendicular from the point A to the line passing through O and B.

Then, the length ON is defined to be the length of projection of the vector a onto
the vector b. Also, ON is the vector projection of a onto b.

Proposition 8.3.7 (Length of Projection). The length of projection of a onto b is ‘a . B‘

Proof. Consider the case where 6 is acute.

A
a
0 7
B
O b N
Figure 8.2
From the diagram,

b b .
a a0 _ab

ON = OAcosf = |a| 7|a| ] = D)
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A similar argument shows that when 6 is obtuse, ON = —a - b. Hence, in any case,

ON:’a-B. u

Proposition 8.3.8 (Vector Projection). The vector projection of a onto b is (a - b)b.
Proof. Case 1: 6 is acute. Then O—]\; is in the same direction as b. Hence,
ON = [ON|b = (a-b)b.
Case 2: 0 is obtuse. Then (ﬁ is in the opposite direction as b. Hence,

ON = |ON] (-b) = —(a-b)(~b) = (a- b)b.

8.4 Vector Product

Definition 8.4.1. The vector product (or cross product) of two vectors a and b is
denoted by a x b and is defined by

ax b =|a||b|sinfn,

where 6 is the angle between a and b and n is the unit vector perpendicular to both a
and b, in the direction determined by the right-hand grip rule.

Remark. a x b is called the vector product as the result is a vector. It is also called the
cross product due to its notation.

Fact 8.4.2 (Algebraic Properties of Vector Product). Let a, b and ¢ be three vectors, and
0 be the angle between a and b.

e (anti-commutative) a x b = —b X a.

e (distributive over addition) a x (b +c¢) = (a x b) + (a x c).
e |a x b| = |a||b]sinb.

e (Aa) x b=ax (Ab) = A(a x b), where A € R.

Proposition 8.4.3 (Geometric Properties of Vector Product). Let a and b be non-zero
vectors and 6 be the angle between them.

e |a x b| =0 if and only if a || b.
e |a x b| = |a||b] if and only if a L b.
Proof. Follows from the definition of the vector product (consider § =0

L5, T). O

Proposition 8.4.4 (Vector Product in Cartesian Unit Vector Form).
z1 T2 Y122 — 212

yr | (Y2 | = | z1T2 — X122
21 Z2 T1Y2 — Y122
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Proof. From the geometric properties of the vector product, we have
ixi=jxj=kxk=0.

Furthermore, since i, j and k are pairwise perpendicular, by the right-hand grip rule, one
has
ixj=k, jxk=i, kxi=j.

Hence, by the distributive property of the vector product,
(al‘li + y1j + Zlk) X ($2i —+ ygj —+ ng)

= 2192k + w122(—j) + y172(—k) + Y1201 + 2179) + 21y2(—1)
= (y122 — 21y2)i + (2122 — x122)j + (212 — Y122)k.

8.4.1 Applications of Vector Product

Proposition 8.4.5 (Length of Side of Right-Angled Triangle). Let a and b denote the

position vectors of A and B respectively, relative to the origin O. Let 6 be the angle

between a and b, and let N be the foot of the perpendicular from A to OB. Then
AN = ’a X B‘ .

Proof. With reference to Fig. 8.2, we have

axb\_axb\_‘ -

AN = OAsinf = |a| ’|a\ b~ b axbl|.

O]

Proposition 8.4.6 (Area of Triangles and Parallelogram). Let ABCD be a parallelogram,
let a = ﬁ and b = ﬁ, and let 0 be the angle between a and b. Then

[AABCM:%hxb|

and
[ABCD] = |a x b|.

Proof. Recall that the formula for the area of a triangle is

1 1 1
[AABC| = Q(AB)(AC) sinf = 3 |a| [b|sinf = 3 la x b|.
Since the area of parallelogram ABCD is twice that of AABC, we immediately have

[ABCD] = |a x b].
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9 Three-Dimensional Vector Geometry

9.1 Lines

9.1.1 Equation of a Line

Definition 9.1.1. The vector equation of the line [ passing through point A with position
vector a and parallel to b is given by

r=a+ b, MeR,

where r is the position vector of any point on the line, and X is a real, scalar parameter.
The vector b is also called the direction vector of the line.

Remark. Note that a can be any position vector on the line and b can be any vector
parallel to the line. Hence, the vector equation of a line is not unique.

Definition 9.1.2. Let [ : r = a+ Ab, A € R. By writing r = (z, v, z)T, a= (a1, ag, CL3)T
and b = (by, ba, b3)", we have

T =aj + Ab
y=as+ Aba, AeER.
z=a3+ Abs

This set of three equations is known as the parametric equations of the line [.

Definition 9.1.3. From the parametric form of the line [, by making A the subject, we

have
)\_:L‘—al_y—agzz—ag
b ba by

This equation is known as the Cartesian equation of the line [.

Remark. If by = 0, we simply have x = a1. A similar result arises when by = 0 or b3 = 0.

9.1.2 Point and Line
Proposition 9.1.4 (Relationship between Point and Line). A point C lies on a line l : r =
a+ Ab, A € R, if and only if

(3AeR): OC =a+ Ab.
Proof. Trivial. O

Proposition 9.1.5 (Perpendicular Distance between Point and Line). Let C be a point not
on the line [ : r = a+ Ab, A € R. Let F' be the foot of perpendicular from C to I. Then

CF:’ﬁxB‘.

Proof. Trivial (recall the application of the vector product in finding side lengths of right-
angled triangles). O
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Recipe 9.1.6 (Finding Foot of Perpendicular from Point to Line). Let F' be the foot of
perpendicular from C' to the line [ : r = a4+ Ab, A € R. To find O?, we use the fact that

e I lieson l, ie. 07:a+)\b for some A\ € R.

° ﬁ is perpendicular to [, i.e. ﬁ -b=0.

9.1.3 Two Lines

Definition 9.1.7. The relationship between two lines in 3-D space can be classified as
follows:

e Parallel lines: The lines are parallel and non-intersecting;
e Intersecting lines: The lines are non-parallel and intersecting;

e Skew lines: The lines are non-parallel and non-intersecting.

Remark. Note that parallel and intersecting lines are coplanar, while skew lines are non-
coplanar.

Recipe 9.1.8 (Relationship between Two Lines). Consider two distinct lines, I3 : r =
a+Ab, A eRandly:r=c+pud, p€R.

e [1 and [y are parallel lines if their direction vectors are parallel.

e /1 and [y are intersecting lines if there are unique values of A and p such that
a+ A\b=c+ ud.

e [5 and [y are skew lines if their direction vectors are not parallel and there are no
values of A and p such that a+ Ab = ¢ + ud.

Proposition 9.1.9 (Acute Angle between Two Lines). Let the acute angle between two
lines with direction vectors by and by be 8. Then

|b1 - by|

cosf = ———.
|b1] [ba|

Proof. Observe that we are essentially finding the angle between the direction vectors of

the two lines, which is given by
by - by

by | [ba|

However, to ensure that 6 is acute (i.e. cosf > 0), we introduce a modulus sign in the
numerator. Hence,

cosf =

|b1] [ba|
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9.2 Planes

9.2.1 Equation of a Plane

Definition 9.2.1. Suppose the plane 7 passes through a fixed point A with position
vector a, and w is parallel to two vectors by and bs, where b; and bs are not parallel
to each other. Then the vector equation (in parametric form) of 7 is given by

7r:r:a—|-)\b1+,ub2,

where r is the position vector of any point P on 7, and A and p are real parameters.

Definition 9.2.2. Suppose the plane 7 passes through a fixed point A with position
vector a, and 7 has normal vector n. Let P be an arbitrary point on 7. Then A
is perpendicular to the normal vector n, i.e. ﬁ -n = 0. Since AP = r — a, by the
distributivity of the scalar product, one has

r-n=a-n.

This is the scalar product form of the vector equation of 7, which is more commonly
written as

Let r = (z, y, z)T, a= (a1, ag, ag)T and n = (ny, ng, ng)T. Then
T:N1T + N2y + N3z = a1ny + azng + azng
is the Cartesian equation of 7, which is more commonly written as

T T + noy + n3z = d.

Recipe 9.2.4 (Converting between Forms). To convert from parametric form to scalar
product form, take n = by X by. To convert from the Cartesian equation to parametric
form, express x in terms of y and z, then replace y and z with A and p respectively.

Example 9.2.5 (Parametric to Scalar Product Form). Let the plane 7 have parametric
formr = (1,2, 3)T +A(4,5,6)" + (7,8, 9)". Then the normal vector to  is given by

4 7 -3 1
n=|5|x|8]=[6]]][-2
6 9 -3 1

Hence,
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whence 7 has scalar product form

Example 9.2.6 (Cartesian to Parametric Form). Let the plane 7 have Cartesian equation
r+y+2z=10.
Solving for « and replacing y and z with A and p respectively, we get
c=10—A—pu, y=A 2z=u.

Hence, 7 has parametric form

x 100—A—pu 10 -1 -1
r=|y| = A =0 ]+A|l 1 ) +p] 0], ApekR
z " 0 0 1

9.2.2 Point and Plane

Proposition 9.2.7 (Relationship between Point and Plane). A point lies on a plane if and
only if its position vector (or its equivalent coordinates) satisfies the equation of the
plane.

Proof. Trivial. O

Proposition 9.2.8 (Perpendicular Distance between Point and Plane). Let F' be the foot
of perpendicular from a point () to the plane m with vector equation 7 : r-n = d. Let
A be a point on m. Then QF, the perpendicular distance from @Q to , is given by

or = | o] - =0

n|
Proof. Note that QF is the length of projection of QA onto the normal vector n. Hence,

QF = [Q4 - a

follows directly from the formula for the length of projection. Now, observe that
o —
QA-n:OA-n—Oﬁ-n:d—q-n.

Hence,
—
o4 n

_ld—q-n|
| |

QF =

Corollary 9.2.9. OF, the perpendicular distance from the plane « to the origin O, is

or 1

In|’
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Recipe 9.2.10 (Foot of Perpendicular from Point to Plane). Let F be the foot of perpen-
dicular from a point ) to the plane m with vector equation 7 : r - n = d. To find the
position vector OF, we use the fact that

e (QF is perpendicular to m, i.e. Q? = An for some )\ € R, and

e I lies on , i.e. O?-n:d.

Example 9.2.11 (Foot of Perpendicular from Point to Plane). Let the plane 7 have equa-
tion w:r- (1, 2, 3)T = 10. Let Q(4,5,6), and let F' be the foot of perpendicular from @

to w. We wish to find ﬁ
Since QF is perpendicular to 7, we have

1
OF =x[2], rer
3
Hence,
4 1
OF =00+QF = [5] +1]2
6 3
Taking the scalar product on both sides, we get
1 4 1 1
10=0F-{2]=|5]+x]2 2| =32+ 14,
3 6 3 3
Thus, A = —11/7, whence
4 1 17
11 1
OF = 5] - — (2] ==13
6 3 9

9.2.3 Line and Plane

Fact 9.2.12 (Relationship between Line and Plane). Given a line [ : r = a+ Ab, A € R,
and a plane 7 : r - n = d, there are three possible cases:

e [ and 7 do not intersect. [ and 7 are parallel and have no common point.
e [ lies on 7. [ and 7 are parallel and any point on [ is also a point on .

e [ and 7 intersect once. [ and 7 are not parallel.

There are two methods to determine the relationship between a line and a plane.

Recipe 9.2.13 (Using Normal Vector).
e If [ and 7 do not intersect, then b-n =0 and a-n # d.
o I[f/lieson 7, then b-n=0and a-n =d.

e If [ and 7 intersect once, then b - n # 0.
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Recipe 9.2.14 (Solving Simultaneous Equations). Solve [ : r = a + Ab, A € R and
7 :r-n = d simultaneously.

e If there are no solutions, then [ and 7 do not intersect.
e [f there are infinitely many solutions, then [ lies on 7.
e If there is a unique solution, then [ and 7 intersect once.

Proposition 9.2.15 (Acute Angle between Line and Plane). Let 6 be the acute angle
between the line [ : r = a + Ab, A € R and the plane 7 : r-n = d. Then
b -

sinf = .
b| n|

Proof. We first find ¢, the acute angle between [ and the normal. Recall that

Since ¢ = T — 0, we have
2 )

9.2.4 Two Planes

Proposition 9.2.16 (Acute Angle between Two Planes). The acute angle 6 between two
planes 71 : r-n; = d; and 7o : r - ng = dy is given by

cos§ — 121 12|
| o]
Proof. Consider the following diagram.
no

n;

1 9 TI
\ .

Figure 9.1

It is hence clear that the acute angle between the two planes is equal to the acute angle
between the two normal vectors. Thus,
01 - my|

cosf = .
Iny | [ng|
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Fact 9.2.17 (Relationship between Two Planes). Given two distinct planes 7 : r-ny = d
and 7o : r - ng = do, there are two possible cases:

e 1 and 7 do not intersect. The two planes are parallel (n; || ng).

e 1 and 7 intersect at a line. The two planes are not parallel (n; }f ng).
Suppose the two planes are not parallel to each other. There are two methods to obtain
the equation of the line of intersection.

Recipe 9.2.18 (Via Cartesian Form). Write the equations of the two planes in Cartesian
form and solve the two equations simultaneously.

Recipe 9.2.19 (Via Normal Vectors). Observe that as the line of intersection [ lies on
both planes, [ is perpendicular to both the normal vectors n; and ns. Hence, [ is parallel
to their cross product, n; x ny. Thus, if we know a point on the line of intersection [
(say point A with position vector a), then the vector equation of [ is given by

l:r=a+ b, MeR,

where b is any scalar multiple of n; X nas.
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10 Matrices

Definition 10.0.1. An m x n matrix A is an array of numbers with m rows and n
columns, with A = (a;;), where a;; is the entry in row ¢ and column j.

ail ai2 o Aln

a1 a2 e a2n
A =

aml Am2 " Gmn

Example 10.0.2. If
1 2 3
A= (4 5 6) ’
then A is a 2 x 3 matrix with as; = 4.

Note that row and column vectors are effectively matrices with one row and one column
respectively.

10.1 Special Matrices

Definition 10.1.1. A null matrix is a matrix with all entries equal to 0. We denote the
m X n null matrix by 0,,xy, or simply 0.

Example 10.1.2. Examples of null matrices include
0 0 0 00
@ (o) Goo)
Definition 10.1.3. A square matrix of order n is a matrix with n rows and n columns.

Example 10.1.4. Examples of square matrices include
1 2 3

(4). @ (2)) 2 5 3

1 0 8

Definition 10.1.5. Given a square matrix A = (a;;), the diagonal of A (also called
the main, principal or leading diagonal) is the sequence of entries a11, a2z, ..., Gpy. The
entries a;; are called the diagonal entries while a;;, i # j are called non-diagonal entries.

Definition 10.1.6. A diagonal matrix is a square matrix whose non-diagonal entries are
zero, i.e. a;; = 0 whenever i # j.

Example 10.1.7. Examples of diagonal matrices include

@ (5 9):

S O N
O = O

0
0
0
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Definition 10.1.8. An identity matrix is a diagonal matrix whose diagonal entries are
all 1. We denote the identity matrix of order n by I, or simply as I.

Example 10.1.9. Examples of identity matrices include

Lo 100
I = (1), 12:<0 1), Is=10 1 0
001

Definition 10.1.10. A symmetric matrix is a square matrix such that a;; = a;; for all
i,
Example 10.1.11. Examples of symmetric matrices include

1 -1 0

0 4
(4), ( > -1 3 2
4 2 5 5

0

Definition 10.1.12. A square matrix (a;;) is upper triangular if a;; = 0 whenever ¢ > j;
and lower triangular if a;; = 0 whenever ¢ < j.

Example 10.1.13. Examples of triangular matrices include

N ERE A
(4)’833’ 6 0 00
-2 -1 0 1

The second matrix is an upper triangular matrix, while the third matrix is a lower
triangular matrix. The first matrix can be considered both an upper and lower triangular
matrix.

Note that a diagonal matrix is both an upper and lower triangular matrix.

10.2 Matrix Operations

10.2.1 Equality

Definition 10.2.1. Two matrices A and B are equal if and only if they have the same
size and their entries are identical.

10.2.2 Addition

Definition 10.2.2. Let A and B be matrices of the same size, and let C = A + B be
their sum. Then (c;;) = (ai; + bij). That is, to add two matrices (of the same size), we
simply add their corresponding entries.

Example 10.2.3.

1 2 3 1 2 3 2 4 6
4 5 6)+(2 46]=|6 9 12
7 8 9 3 6 9 10 14 18
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Fact 10.2.4 (Properties of Matrix Addition). The set of matrices forms an Abelian group
under addition.

e Matrix addition is commutative, i.e. A+ B =B + A.
e Matrix addition is associative, i.e. A+ (B+C)=(A+B)+C.
e The null matrix is the additive identity, ie. A+0=04+ A = A.

e All matrices have an additive inverse, i.e. A — A = 0.

10.2.3 Scalar Multiplication

Definition 10.2.5. Let A be a matrix and let A € R be a scalar. Then A(a;;) = (Aay;).
That is, to multiply a matrix by a scalar A, we simply multiply each entry by A.

Example 10.2.6.

1 2 3 2 4 6
214 5 6] =18 10 12
78 9 14 16 18

Fact 10.2.7 (Properties of Scalar Multiplication). Let a, 8 € R be scalars, and let A and
B be matrices of the same size.

Scalar multiplication is associative, i.e. a(8A) = (af)A.

e Scalar multiplication is distributive over addition, i.e. (o + 8)A = aA 4+ SA and
a(A + B) = aA + aB.

e 1 is the multiplicative identity, i.e. 1A = A.

e A =0.

10.2.4 Matrix Multiplication

Definition 10.2.8. Let A be an m X p matrix, and let B be a p x n matrix. Then the
matrix product C = AB is the m x n matrix with entries determined by

p
Cij = § @ik
k=1

fori=1,...,mand j =1,...,n. Here, ¢;; can be viewed as the dot product of the ith
row of A with the jth column of B.

-1 0 1 2
A=(70) wa mo(12).
Then the matrix product AB is given by

(DM OB) D@+ 00 (~1 -2
AB‘(<2><1>+<3><3> (2) )‘( >

Example 10.2.9. Let
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Meanwhile, the matrix product BA is given by

(D@ OO+ @) (36
BA‘<<3><—1>+<0><2> <3><o>+<o><3>>‘< )

Fact 10.2.10 (Properties of Matrix Multiplication).

Matrix multiplication is not commutative, i.e. AB # BA.

Matrix multiplication is associative, i.e. A (BC) = (AB)C.

Matrix multiplication is distributive over addition, i.e. A(B+ C) = AB + AC
and (B+ C)A =BA + CA.

e AB = 0 does not imply that A =0 or B=0.

e AB = AC does not imply that B = C, i.e. the cancellation law does not apply.

Definition 10.2.11 (Powers of Matrices). If A is a square matrix, and n is a non-negative
integer, we define A™ as follows:

I n =0,
A"=JAA.. A, n>1.
Y
n times

Here, I is the identity matrix of the same size as A.

Note that in general, (AB)™ # A"B", where B is also a square matrix of suitable size.

10.2.5 Transpose

Definition 10.2.12. The transpose of a matrix A = (a;;) is denoted AT and is given by
(aj;), i-e. the rows and columns are switched.

Example 10.2.13. Let

>

Il
[SIRNCR
o AN

Then
1 3 5
T _
A= (2 4 6) '
Fact 10.2.14 (Properties of Transpose). Let A be a matrix and let ¢ € R be a scalar.

e The transpose is an involution, i.e. (AT)T =A.
e The transpose is associative, i.e. (cA)T = cAT.
e The transpose is additive, i.e. (A +B)"T = AT 4 BT.

e The transpose reverses the order of matrix multiplication, i.e. (AB)T = BTAT.

Note also that A = AT if and only if A is a symmetric matrix.



56 10 Matrices

10.3 Solving Systems of Linear Equations
One use of matrix multiplication is to express a system of linear equations. For example,
> €T = .
21+ 519 — 623 = 5 L5 =6)\ 5

The system of equations on the left can be expressed as a matrix equation on the right.
What is great about a matrix equation is that we can express a large system of linear
equations in a very compact form Ax = b, where x and b are column vectors. In general,

a11x1 + -+ apey, = b1 ailr - Qip 1 by
a21x1 + -+ + apTy = bo a1 -+ Q2p x2 by
aAm1x1 + -+ GmpTn = bm Aml *°° Amn Tn bm
A X b

By translating a system of linear equations into a matrix equation, we can use the
power of linear algebra to systematically solve for x, which in turn will yield solutions
(x1,x2,...,2y) to our original system of linear equations. We now look at how to system-
atically solve such matrix equations of the form Ax = b using Gaussian elimination.

10.3.1 Elementary Row Operations

Definition 10.3.1. An elementary row operation on a matrix refers to one of the fol-
lowing actions performed on it:

e Interchanging row ¢ and row j, denoted R; <+ R;.
e Multiply row ¢ by a non-zero constant k, denoted kR;.

e Adding £ times of row 7 to row j, denoted R; + kR;.

Example 10.3.2. The following examples demonstrate the three elementary row opera-
tions. Observe how the elementary row operations are written directly to the left of the
corresponding rows.

1 2 3 1 2 3

4 5 6| 2RRs |7 8 9

7 8 9 4 5 6

1 2 3 10R; (10 20 30

4 5 6| — 4 5 6

7 8 9 7 8 9

1 2 3 1 2 3
4 5 6| — 4 5 6
7 8 9 R3s—T7TR1 0 -6 —12

Multiple elementary row operations can also be combined in a single step:

1 2 3 2R, (2 4 6
4 5 6| > >R-R1 | 3 3 3
7 8 9 2Rs \14 16 18
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10.3.2 Gaussian Elimination

Gaussian elimination (also known as Gauss-Jordan elimination, or row reduction) is a
systematic algorithm used to convert a system of equations into an equivalent system of
equations using elementary row operations. That is, the new system of equations has the
same solution as the origin system of equations.

Firstly, we rewrite our system of equations as an augmented matrix (A ‘ b):

a1+ -+ apTy = b1 air -+ aip | b1

a21x1 + -+ - + a2,y = bo asy -+ Qg | bo
: = (A[b) =

aAm1x1 + -+ QmpTn = bm Aml *°° Amn bm

The augmented part is the right-most column, separated by a vertical line to help remind
us that these numbers come from the constants in the linear equations (b).

Observe the equivalence between performing elementary row operations on this aug-
mented matrix versus what we might do algebraically to solve the system:

Operations on Equations Elementary Row Operations on
Augmented Matrix
swapping two equations swapping two rows
multiplying an equation by a non-zero multiplying a row by a non-zero constant
constant
adding a multiple of one equation to adding a multiple of one row to another
another equation row

The objective of Gaussian elimination is thus to repeatedly perform elementary row
operations to our augmented matrix until we get a form where we can easily solve for
TlyeeeyTp.

Row-Echelon Form

One such form we aim for is the row-echelon form.

Definition 10.3.3. A matrix is said to be in row-echelon form (REF) if

e the first non-zero term in any row (called a leading term) is always to the right
of the leading term of the previous row, and

e rows consisting of only zeros are at the bottom.

Example 10.3.4. Consider the following matrices:

1 3 4 5 1 3 4 5
A=1|0 4 2 8|, B=[1 4 2 8
00 0 5 0000

3]

A is in REF since all leading terms (coloured green) are to the right of the leading term
of the previous row. On the other hand, B is not in REF, since the leading term b9
(coloured red) is not to the right of the leading term by;.

Note that a matrix may have multiple row-echelon forms, i.e. REF is not unique.
Once we manipulate our augmented matrix into its REF, we can easily solve for our
solutions x1, ..., x, using back-substitution.
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Example 10.3.5. Consider the following augmented matrix, which has been manipulated
into its REF via elementary row operations:

1 1 3 9 r1+ 29+ 3x3=2

0 4 —4 4] = —4dxe — 4dx3=4.

0 0 -=151]9 1523 =9
From the third equation, we easily get 3 = —3/5. Substituting this into the second
equation, we get o = —2/5. Further substituting this into the first equation, we have

z, = 11/5.

Reduced Row-Echelon Form

Another form we typically aim for when performing Gaussian elimination is the reduced
row-echelon form.

Definition 10.3.6. A matrix is said to be in reduced row-echelon form (RREF) if it is
already in REF, with two further restrictions:

e all leading terms are 1, and

e a column with a leading term has zeroes for all other terms in that column.

Example 10.3.7. Consider the following matrices:
10 3 1 3 3
A=(0 1 4), B=1]|0 1 4
0 00 040

A is in RREF, since all leading terms (coloured green) are 1 and all other entries in
those columns are 0. However, B is not in RREF. This is because bos is a leading term,
but there are non-zero entries in that column (coloured red).

Unlike REF, the RREF of a matrix is unique.
By manipulating our augmented matrix into its RREF, we can easily obtain our solu-
tions 1,...,%y.

Example 10.3.8. Consider the following augmented, which has been manipulated into
RREF using elementary row operations:

1.0 314 1 +3x3 =4
01 4|8 = .
0000 To+4x3 =8
Letting x3 be a free parameter A € R, we have

1 =4—3\, 19=8—4\, x3=A

10.3.3 Consistent and Inconsistent Systems

Back in §1, we termed a system of linear equations consistent if it admits a solution, and
inconsistent if it does not. We also learnt that a consistent system of linear equations
either has a unique solution or infinitely many solutions. Using Gaussian elimination, we
can easily determine the number of solutions it admits.
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Proposition 10.3.9. Let (A’ | b’) be the RREF of (A | b).
e If A’ =1, the system has a unique solution.

e If the ith row of A’ is all zeroes, and b, = 0, then the system has infinitely many
solutions.

e If the ith row of A’ is all zeroes, and b, = 1, then the system has no solution.

The first statement is trivially true, since Ix = b’ = x = b’. To see why the second
and third statements are true, consider the following matrices:

1 0 31 1 0 311
B=|0 1 1|2, C=|0 1 1]2
0 0 0|0 0 0 0|1
B represents the system

T +3r3=1
T + 563:2.

In this case, we have more unknowns than equations, so we will obtain infinitely many
solutions (e.g. by taking x3 = A, where A € R is a free parameter). On the other hand,
the third row of C represents the equation

O0x1 + 0xo 4 Oz3 =1,

which is clearly impossible. Thus, there will be no solutions to the system.

10.3.4 Homogeneous Systems of Linear Equations

Recall that a system of linear equations is said to be homogeneous if all the constant terms
are zero. The corresponding matrix equation is thus Ax = 0. Clearly, every homogeneous
system has x = 0 as a solution. This solution is called the trivial solution. If there are
other solutions, they are called non-trivial solutions.

10.4 Invertible Matrices

While Gaussian elimination remains a good way of solving a system of linear equations,
looking at them as a matrix equation can also be useful.

The left side of Ax = b may be viewed as a matrix A acting on a vector x and sending
it to the vector b. Solving the matrix equation hence amounts to finding the pre-image of
b under A. This motivates us to find a multiplicative inverse to A.

Definition 10.4.1. The multiplicative inverse of a square matrix A, denoted A~!, has
the property
AT'A=AA=1

If such a matrix A~! exists, then A is said to be invertible, or non-singular.
If A~ exists, the solution for the equation Ax = b will simply be x = A~'b. Further,

this solution will be unique for each b (since A~! will not map b to multiple vectors).
We now state some properties regarding the inverse of a matrix:
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Fact 10.4.2 (Properties of Invertible Matrices). Let A and B be square matrices of the
same size. Let a € R be a scalar and let n be a non-negative integer.

e The inverse of a matrix is unique.
e If aA is invertible, then (aA)™' = 1A~1

If A is invertible, then (A‘l)_1 = A.

If AT is invertible, then (AT)_1 = (A_I)T.

e If AB is invertible, then (AB) ™' =B~ 1A~

o If A" is invertible, then (A")™' = A" = (A~1)".
We now discuss how to find the inverses of matrices.

10.4.1 Inverse of a 2 x 2 Matrix
Proposition 10.4.3 (2 x 2 Inverse Formula). Let

a b
A= (2 )
1 d —b
A7l = :
ad — be (—c a)

Notice that the 2 x 2 inverse formula is not valid in the case where ad — bc = 0. This
quantity, ad — bc, is called the determinant of the 2 x 2 matrix, and it plays a special role

in determining whether a matrix is invertible. We will discuss more about determinants
in the next chapter.

Then its inverse is given by

10.4.2 Inverse of an n x n Matrix

Though there is a general formula for the inverse of an n xn matrix, it is tedious to compute
for n > 3. Luckily, there is a general procedure that we can employ. This procedure rests
on the fact that any elementary row operation can be represented as a left-multiplication
by an elementary matrix.

Definition 10.4.4. An n X n matrix is an elementary matrix if it can be obtained from
the n x n identity matrix I,, by performing a single row operation.

Example 10.4.5. As an example, consider
1 2 3
A=1[|2 -1 3 6
1 4 0

If we add 3 times the 3rd row to the 1st row, we will obtain

1 0 2 3 Ri+3Rs (4 12 14 3
2 -1 3 6| — 2 -1 3 6
1 4 40 1 4 4 0
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Now observe that if we pre-multiply A by the elementary matrix

we get
1 0 3 1 0 2 3 4 12 14 3
BA=|0 1 0 2 -1 3 6]=12 -1 3 6/,
0 0 1 1 4 40 1 4 4 0

which is exactly the same result as doing the row operation.

The correspondence between elementary row operations and elementary matrices allows
us to construct the following algorithm to find the inverse of an invertible matrix A.

Recipe 10.4.6 (Finding Matrix Inverse). If A is invertible, then A~'A = I. If we can
find a sequence of elementary row operations, corresponding to successive matrix left-
multiplications of the elementary matrices Ei, Eo, ..., Eg, such that

Ey...EoE1A =1,

then we have E ... EoE; = A~1.

In practice, however, we will perform the left-multiplications on an augmented matrix

of the form (A ‘ I):
E;.. . EoE; (A |I) = (E...E:E1A |E.. . EEy) = (I| A7),

10.5 Determinant of a Matrix

The previous section showed the importance of invertibility and uses elementary row op-
erations to help us determine if a matrix is invertible. Here, we introduce the idea of the
determinant of a matrix and how this number tells us if a matrix is invertible.

Definition 10.5.1. The determinant of an n X n matrix A, denoted by

ail ai2 e Aln
a1 a2 o a2n
Gml Am2 - Amn

is the minimal polynomial (in the entries of A, i.e. a1, ajo, etc.) that is 0 if and only
if A is singular.

10.5.1 The 1 x 1 and 2 x 2 Determinant

For 1 x 1 matrices, (a)~! = (1/a), so the matrix has an inverse if and only if a # 0. Thus,
la| = a.
For 2times2 matrices, recall that

a B\ 11 d —b
c d ad—bc\—c a )’

The inverse hence does not exist when ad — bc = 0. Hence,
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10.5.2 Cofactor Expansion

Beyond the 2 x 2 matrix, the closed form of an n X n determinant becomes much more
unwieldy to remember and use. Luckily, there is a general procedure that we can use to
calculate the determinant of any n x n matrix.

Proposition 10.5.2 (Cofactor Expansion). Suppose we have an n x n matrix A = (a;;).
Let M;; be the (n — 1) x (n — 1) matrix obtained from A by deleting the ith row and
the jth column. Then the determinant of A is given by

aiy, n= 17
a11A11 + aplio + -+ apAin, n>1

)

det(A) = {

where A;; = (—1)""7 det(M,;) is the cofactor of entry a;;.

Note that the term (—1)**7 has value 1 when the sum of i and j is even, and —1 when
the sum is odd. This may be viewed as a “signed” array as follows:

+ - + -
-+ -+
+ -+ -
-+ -+

Example 10.5.3. Using the method of cofactor expansion along the first row, the deter-
minant of a 3 X 3 matrix
ail aiz ais
A= a2 ax a
azy a3z as3
is given by
a21 a2
azr as2

a1
a3l

a a
det(A) = all 22 - a2
azz a33

a3
+ a3
ass

The formula given by Proposition 10.5.2 is not unique: we can expand cofactors along
any row or column of the matrix to get the determinant. This is particularly useful when
a particular row/column contains many zeroes.

Example 10.5.4. Let

10 3
A=12 0 4
3 29

Expanding along the second column, we see that

2 4
39

1 3
39

1 3

det(A) = —0 ' 5 4

EEEER

10.5.3 Properties

We now look at the properties of determinants.
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Fact 10.5.5 (Properties of Determinants). Let A and B be square matrices of order n.

det(A) = det(AT).
det(A + B) # det(A) + det(B).

det(cA) = " det(A), where c is a scalar.
det(AB) = det(A) det(B).

If A is a triangular matrix, then det(A) is the product of the diagonal entries of
A.

A is invertible if and only if det(A) # 0.
If A is invertible, then det(A™!) = 1/det(A).

If A has a row or column of zeroes, then det(A) = 0.

Fact 10.5.6 (Effects of Elementary Row/Column Operations on Determinant).

If B is the matrix that results when a row/column of A is multiplied by a scalar
k, then det(B) = kdet(A).

If B is the matrix that results when two rows/columns of A are interchanged, then
det(B) = —det(A).

If B is the matrix that results when a multiple of one row/column of A is added
to another row/column, then det(B) = det(A).

The above results are a result of the fact that det(EA) = det(E) det(A), where E is an
elementary matrix.
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11 Linear Transformations

Definition 11.0.1. A linear transformation is a function 7" : R™ — R™ is a function that
satisfies the following two properties:

e T(u+v)="T(u)+ T(v) for all vectors u,v € R",

o T'(ku) = kT'(u) for all scalars k € R and vectors u € R™.

Taken together, these two properties mean that linear transformations preserve the
structure of linear combinations.

Proposition 11.0.2 (Linear Transformations Preserve Linear Combinations). Let k1, ..., k, €
R and vy,...,v, € R". Then

T(k1V1 —+ -+ ]{ITVT) = le(Vl) —+ -+ kTT(VT).

When k = 0, the second property of linear transformations also implies that 7'(0) = 0.
That is, a linear transformation must map 0 to 0.

Recipe 11.0.3 (Determining if a Function is a Linear Transformation). To determine if a
function f : R” — R™ is a linear transformation, we go through the following “checklist”,
arranged in increasing difficulty to see:

e Check if f(0) = 0.
o Check if f(kv) = kf(v).
e Check if f(u+v) = f(u)+ f(v).

If f passes the above checklist, we then proceed to show that f(kivi+kave) = ki f(v1)+
kaf(v2). This would immediately imply that f satisfies the two properties and is thus
a linear transformation.

Example 11.0.4. Let T : R? — R? be a function defined by

- x
T < ) =lz+ty

Yy T —y
Clearly, T(0) = 0, so T passes the first check. By inspection, T also satisfies the

remaining two checks. We are now confident that T is a linear transformation, so we
consider T'(kjvy + kava), where vi = (21, yl)T and vy = (z2, yg)T. Then

kix1 + koxo

kix1 + koxo
kiyr + k2y2> -

(k171 + kowa) + (k1y1 + kay2)

T(k:lvl + k2v2) =T (
(k1$1 + k2$2) — (k1y1 + k2y2)
z1 2
=k |lxi1+wn |tk |zty | = le(Vl) + kQT(Vg).

r1 — U1 T2 — Y2
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| Thus, T is indeed a linear transformation.

11.1 Matrix Representation
Observe that the transformation T' in the above example may also be written as

X v X
T<>: z+yl =11 1 <>
Y x— 1 -1/ ¥

Y

This is because matrix multiplication may also be seen as a form of linear transformation.

Proposition 11.1.1 (Matrix Multiplication is a Linear Transformation). Let A be an m x
n matrix. Then, multiplication by A will take an n-dimensional vector to an m-
dimensional vector, so T'(x) = Ax is a function from R™ to R™. Moreover, it is linear,
as for any x,y € R" and k € R,

T(x+y)=Ax+y)=Ax+ Ay =T(x) + T(y)

and

T(kx) = A(kx) = kAx = kT (x).

Surprisingly, there are no other examples of linear transformations from R™ to R™; ma-
trix multiplication is the only kind of linear transformation there is for functions between
finite-dimensional spaces:

Proposition 11.1.2. Let T : R™ — R™ be a linear transformation. Let x € R™. Then
T(x) = Ax for some m x n matrix A.

Proof. Let e; be the ith standard basis vector. Let x = (z1,...,z,) be an n-dimensional
vector. Then

T(x) =T(z1€1 + -+ zpey) = 1T (e1) + - + 2, T(ey) = (T(e1) -+ T(ep))x=Ax.

Since T'(e;) is an m-dimensional vector (by the definition of T'), it follows that A has m
rows and n columns, i.e. A is an m X n matrix. O
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11.2 Linear Spaces

Definition 11.2.1. A linear space (or vector space) over R is a set V equipped with
two operations, addition (+) and scalar multiplication (-), such that for any vectors
u,v,w € V and for all ¢,d € R, the following ten axioms are satisfied:

1. Closure under addition: u+v € V.

2. Addition is commutative: u+v =v +u.

3. Addition is associative: (u+v)+w =u+ (v+w).

4. Existence of additive identity: There is a zero vector, 0, such that 0 + u = u.
5. Existence of additive inverse: There is a vector —u such that u + (—u) = 0.
6. Closure under scalar multiplication: cu € V.

7. Scalar multiplication is distributive over vector addition: c(u + v) = cu + cv.
8. Scalar multiplication is distributive over scalar addition: (¢ + d)u = cu + du.
9. Scalar multiplication is associative: ¢(du) = (cd)u.

10. Existence of scalar multiplicative identity: There exists a scalar, 1, such that
lu=u.

One can think of a linear space as an Abelian group (under addition, Axioms 1-5) with
the added structure of “scalar multiplication” (Axioms 6-10).

11.2.1 Examples of Linear Spaces

Definition 11.2.2. The Euclidean n-space, denoted by R"”, is the set of all n-vectors
(ordered n-tuples) (u1,us, ..., uy,) of real numbers.

R™ = {(u1,...,un) [ u,...,uy € R}.

Proposition 11.2.3. R” is a linear space equipped with scalar addition and scalar mul-
tiplication.

R™ is the quintessential example of a linear space, and is the linear space that we will
deal with most. We can also generalize the above statements from vectors to matrices:

Proposition 11.2.4. The set of all m x n matrices with real entries forms a linear space
(equipped with matrix addition and scalar multiplication).

There are also more abstract examples of linear spaces:
Proposition 11.2.5. The set of all polynomials with real coefficients of at most degree
n > 0, forms a linear space under the usual addition and multiplication.

Lastly, there is the trivial vector space:

Definition 11.2.6. Let V' be a singleton, i.e. V' = {0}. Define 040 = 0 and k0 = O for
all scalars k. Then V is the zero vector space.
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11.3 Subspaces

Definition 11.3.1. Suppose V is a linear space under (+,-), and W C V. If W is also a
linear space under (4, -), then W is a subspace of V.

Example 11.3.2. Consider the set S = {(a,b,0) | a,b € R}. One can clearly show that
S is a linear space equipped with the usual addition and scalar multiplication. Since
S C R3, it follows that S is a subspace of R3.

Example 11.3.3. If V is a linear space, then V' and {0} are both subspaces of V.

Because subspaces inherit addition and multiplication, we do not need to check Axioms
2,3, 7,8 and 9. Further, Axiom 5 is guaranteed if Axiom 6 is valid. Thus, we really only
need to verify Axioms 1, 4 and 6 when testing for subspaces.

Recipe 11.3.4 (Test for Subspace). Let W be a non-empty subset of a linear space V.
Then W is a subspace of V if and only if the following conditions hold

e 0cW.
e (Closure under addition) For all u,v € W, we have u+v € W.

o (Closure under multiplication) For all ¢ € R and u € u, we have cu € W.

Conversely, to show that W is not a subspace, we can try to disprove any of the three
conditions. Typically, the first condition (0 € W) is the easiest to disprove. If that fails,
we construct a counter-example for closure under addition/multiplication.

Sample Problem 11.3.5. Let W be any plane in R? that passes through the origin.
Prove that W is a subspace of R3 under the standard operations.

Solution. Let
W={r=Xa+pub |\ uecR}.

e Taking A = u = 0, we see that 0 € W.

e Define r1 = Aja + p1b and ro = Aga + uob. Observe that
r1 +ro = (AMa+ pub) + (Aea+ peb) = (A1 + A2) a+ (u1 + u2) b.
Since A1+ A9, 1 + 2 € R, it follows that r{+ry € W, so W is closed under addition.

e Let kK € R. Then
kr =k (Aa+ pb) = (kN a+ (ku)b.

Since kX, ku € R, it follows that kr € W, so W is closed under multiplication.

Thus, W is a subspace of R3. O

Sample Problem 11.3.6. Let W be the set of vectors in R? whose length does not exceed
1. Determine whether W is a subspace of R3.

Solution. Take u = (1,0, 0)" and v = (0, 1, 0)". Since |u| = |v| = 1 < 1, they are both
elements of W. Now consider the length of u + v:

1 0 1
u+vi=[[o]+(1]||=]|1]l=V2>1
0 0 0
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Thus, u+v ¢ W, so W is not closed under addition. Thus, W is not a linear space, so
W is not a subspace of R3. O

In Sample Problem 11.3.5, we saw how any plane passing through the origin in R? is a
subspace. We can generalize this further:

’ Subspaces of R! ‘ Subspaces of R? ‘ Subspaces of R?
e {0} o {0} e {0}
o R! e Lines through the origin | e Lines through the origin
o R? e Planes through the origin
[ ]

RS

In fact, these are the only subspaces of R', R? and R3. Note that this pattern holds for
all R™.

11.4 Span and Linear Independence

11.4.1 Linear Spans

Definition 11.4.1. Let S = {v1,...,v,} be a non-empty subset of a linear space V.
Then the span of S, denoted span S or span{vy,...,v,}, is the set containing all linear
combinations of vectors of S. That is,

span S = span{vy,...,v,.} ={aivi + -+ a,v, | ai,...,a, € R}.
Note that span @ = {0}, since the sum of nothing is 0.
Example 11.4.2. Let vy, vy € R™. Then S = span{vy, vo} = {avy + bvy | a,b € R}.

e If vi and vy are non-parallel, then S represents a plane (parallel to vi and vs)
that passes through the origin in R™.

e If vi and vy are parallel, then S represents a line (parallel to both v; and vg) that
passes through the origin in R".

e If vi and vo are both 0, then S is simply the origin.

Proposition 11.4.3. Let S be a subset of a linear space V. Then span S is a subspace
of V.

Proof. Let S = {v1,...,v,}. By definition, we have
span S = {a1vi + - +a,v, | a,...,ar € R}.
e Taking a; = --- = a, = 0, we see that 0 € span S.
e Let a,b € span S. We can write
a=avi+---+av, and b=bvi+---+b-v,,
where ay,...,a.,01,...,b. € R. Now consider their sum:
at+b=(@vi+ ---+av,)+Oivi+---+bv,)=(a1+b)vi+ -+ (a +by) vy.

Since a1 + b1,...,a, + b, € R, it follows that a + b is also a linear combination of
Vi,...,Vp, i.e. a4+ b € span S. Thus, span S is closed under addition.
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e Let kK € R. Consider ka:
ka=k(a1vi+ -+ avy) =kayvy + -+ - + kayv,.

Since kai,...,ka, € R, it follows that ka € span.S. Thus, span.S is closed under
multiplication.

Thus, S is a subspace of V. O

A natural question to ask is “When is a vector in the span of a set of vectors?” For
instance, is

1 4 7
2 | € span 51,18 ?
3 6 9
It turns out this is equivalent to finding coefficients x1, x2 € R such that
4 7 1
1|5 +22 |8 =12
6 9 3

This, in turn, is equivalent to the matrix equation

4 7 .
5 8 <x1> =12
6 9/ \7? 3
Of course, we can use an augmented matrix and calculate its RREF to determine x; and
xI9:

4 711 1 0] 2

5 8121 =10 1|-1

6 9|3 0 0] 0
This gives 1 = 2 and z9 = —1, so

1 4 7

2 | € span 51,18

3 6 9

This leads us to the following result:
Proposition 11.4.4. The equation Ax = b has a solution if and only if b is a linear
combination of the columns of A, i.e. b is in the span of columns of A.

Sample Problem 11.4.5. Determine if R? is spanned by

1\ /1
s=<{1|2],(o
1/ \2

Solution. Let v = (a, b, c)T € R3. Consider the equation

1 1 A a
2]+ (0] = 20<1>:b
1 9 1 2/ \*2

Using row-operations on the resulting augmented matrix, we obtain
10 b/2

01 c—a
0 0|2a—0b/2—c

The system is only consistent when 2a — b/2 — ¢ = 0. That is, not all vectors v € R? can
be written as a linear combination of vectors in S. Thus, R? is not spanned by S. g
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Sample Problem 11.4.6. Determine if R? is spanned by

N /1y /1\ /1
s=<1(2].lo].[1],[o0
1/ \2/ \o/ \o

Solution. Let v = (a, b, C)T € R3. Consider the equation

1 1 1 1 1 1 1 T a— Ty
1|2 +22 [0 +a3 1] +24|0)] = |2 0 1 T | = b
1 2 0 0 1 2 0 T3 c

Since the matrix on the LHS has non-zero determinant, it is invertible, so there exist
x1,x2,x3, 4 € R such that the above equation is satisfied. That is to say, every vector in
R3 can be expressed as a linear combination of vectors in S. Thus, R? is spanned by S. O

11.4.2 Linear Independence

Consider the previous sample question. For different choices of x4, we get different values
of x1,x2,x3. That is, for a particular vector v, there is more than one way of expressing v
as a linear combination of the vectors in S. This is because the fourth vector, (1, 0, O)T,
is redundant as it is a linear combination of the other three vectors, i.e.

1 9 1 1 1 4 1
0] = —3 2|+ 3 0]+ 3 1
0 1 2 0
We say that S is linearly dependent.
Definition 11.4.7. A set of vectors {vy,..., vy} is linear dependent if there are coeffi-

cients cq,...,ck, not all zero, such that
vy + - +epvp =0.
Otherwise, the set of vectors is linearly independent.

Equivalently, the set of vectors are linearly dependent if at least one vector is expressible
as a linear combination of the other vectors.
Sample Problem 11.4.8. Determine if the following set of vectors is linearly indepen-
dent:

1\ /1
s=<{1|2],(o
1/ \e2

Solution. Consider the following equation:

1 1 0 AN 0
al2l+elo]l=10] = [2 0 (Cl): 0
1 2 0 1 2 2 0

Converting to RREF, we obtain

L0\ 0
0 1 <1>: 0
0 0/ \? 0

Thus, the only solutions are ¢; = ¢o = 0, so S is linearly independent. ([l
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Sample Problem 11.4.9. Determine if the following set of vectors is linearly indepen-

1 1 1 1
S =

— o
N
o
o

Solution. Consider the following equation:

1 1 1 1 0 1111 21 0
a2 +e|0])+e|l]+alof=(0] = (201 0] *]=]0
1 2 0 0 0 1200/ |7 0
C4
Converting to RREF, we obtain
100 —2/3 21 0
010 1/3 02 =|o
00 1 4/3 3 0
Cq
By backwards substitution, we obtain
c1 =2\ coa=A c3=4\ c4=—)
where A € R. Thus, there exist non-trivial solutions, so S is linearly dependent. O

We now outline a general strategy to test if a set of vectors is linearly independent.

Recipe 11.4.10 (Test for Linear Independence). We are given r vectors vy,...,v, € R"™.

Case 1. If r > n, then the r vectors must be linearly dependent.

Case 2. If r < n, we find x = (zq1, ..., xT)T such that Ax = 0 where A =
(v1 vr) is an n x r matrix. Whether the r vectors are linearly dependent be-
comes a question of whether the equation Ax = 0 has only the trivial solution x = 0.
To answer this question we can

e in general, use row operations to reduce A to REF. If there are exactly r non-zero
rows, then Ax = 0 has only the trivial solution.

e (if r = n) compute the determinant of A. If det A # 0, then Ax = 0 has only the
trivial solution.

Geometrical Interpretations of Linear Independence

In R?, two vectors u and v are linearly dependent if and only if they lie on the same line
(with their initial points at the origin).

\%

0 @)

Figure 11.1: Linearly independent Figure 11.2: Linearly dependent

In R3, three vectors u, v and w are linearly dependent if and only if they lie on the same
line or plane (with their initial points at the origin).
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11.5 Basis and Dimension

Definition 11.5.1. A basis S = {vy,...,v,} for a linear space V is a set of vectors such
that

e S spans V, and

e S is linearly independent.

Definition 11.5.2. Let e; = (1,0,...,0), ea = (0,1,0,...,0), ..., e, = (0,...,0,1).
The set {e1,ey,...,e,} is called the standard basis of R".

Sample Problem 11.5.3. Show that the set

1 0 0 1
0 1 2 0
5= 11'{-1]1"12]10
0 2 1 1

is a basis for R%.

Solution. We first show that S spans R*. Consider v = (a, b, c, d)T, where a, b, c,d € R.
Consider

1 0 0 1 a 1 0 0 1\ [k a
0 1 2 o] (o 01 20| (k] [0
Rl the| g R fo] TRlgl =l = (1 21 2 o k]| = |
0 9 1 1 d 0o 2 1 1) \& d

Since the matrix on the LHS has non-zero determinant, every v can be expressed as a
linear combination of the vectors of S. Thus, S spans R*.
We now show that S is linearly independent. Consider

1 0 0 1 0 10 0 1\ [k 0
0 1 2 o] |o 0 1 2 0|(k| (o
Rl PR [ R o[ tRlof = o] = |1 =1 2 of |k |~ |0
0 2 1 1 0 02 1 1) \k 0

Since the matrix on the LHS has non-zero determinant, the equation has only the trivial
solution. Thus, S is linearly independent. ]

One particularly useful property about bases is that there is only one way to build a
vector as a linear combination of given basis vector.

Theorem 11.5.4. If {vy,...,v,} is a basis for a linear space V', then every vector v € V
can be expressed in the form v = kjvy + - - - + k, v, in exactly one way.

While a linear space can have many bases, the number of basis vectors must be the
same. This number is called the dimension of V.

Definition 11.5.5. The dimension of a non-zero linear space V is the number of vectors
in a basis for V, and is denoted dim V. By convention, we define the dimension of the
zero linear space {0} to be 0.

As an example, the linear space R™ has dimension n (recall that the standard basis
consists of n vectors).
We now state several remarks relating spans, linear independence and bases.
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Proposition 11.5.6. Let V' be a linear space with finite dimension n, and let S C V.
o If |S| > n, then S is linearly dependent.
e If |S| < n, then S cannot span V.

e If |S| = n, then S is a basis of V if and only if S is linearly independent if and
only if S spans V.

The last property allows us to easily determine if a set is a basis of a linear space.

Proposition 11.5.7. Let V' be a linear space with finite dimension n, and let S C V be
finite.

e If S spans V but is not a basis of V, then it can be reduced to a basis by removing
certain vectors from S.

e If S is linearly independent but not a basis of V', then it can be enlarged to a basis
by adding in certain vectors from V.

11.6 Vector Spaces Associated with Matrices

11.6.1 Row Space, Column Space and Null Space

Given an m X n matrix, there are three special subspaces of R™ and R", namely the row
space, column space and null space.

Definition 11.6.1. Let A = (a);; be an m x n matrix. Define the row vectors of A to
be N
r, — (a,;l a2 ... am) .

Then the row space of A, denoted row A, is the span of the row vectors of A.

Because it is the span of vectors in R"™, it is a subspace of R™.

Definition 11.6.2. Let A = (a);; be an m x n matrix. Define the column vectors of A
to be .
aijd

azj
C; =

mJ

Then the column space of A, denoted col A, is the span of the column vectors of A.

Because it is the span of vectors in R™, it is a subspace of R™.

Definition 11.6.3. Let A be an m x n matrix. The null space of A is the solution set
to the homogeneous system of equations Ax = 0, i.e.

{x e R": Ax = 0}.

The null space is a subspace of R™.

| Proposition 11.6.4. The row space is orthogonal to the null space.

Proof. Let x be in the null space of A, and let y be in the row space of A. Let r; be the

1th row vector of A. Then
r|i-x 0

AX: E =

- X 0
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It follows that r; - x =0 for all 1 <7 < m. Thus,

m m
y-x= <Zk1rz> -X:Zk‘i(ri-x) =0,
i=1 i=1
so y and x are orthogonal. Thus, the row space is orthogonal to the null space. O

11.6.2 Range Space and Kernel

Let the linear transformation 7" : R® — R™ be represented by the m x n matrix A. In this
section, we will introduce two special subspaces related to T', namely the range space and
kernel of T'. These two subspaces are equal to the column and null spaces of A respectively.

Definition 11.6.5. The range space of T', denoted range 7', consists of all vectors b such
that Ax =b.

Proposition 11.6.6. range T is equal to the column space of A.

Proof. Consider the equation Ax = b. Let c¢; be the ith column vector of A. Then we
have

1
Ax:(c1 cn) | =xzici+ -+ a0, =b.
Tn
Any vector b € rangeT can be expressed as a linear combination of ¢, ...,¢,. Thus, b
is in the column space of A. Likewise, any vector b in the column space of A is also in
the range space of T'. Thus, rangeT is equal to the column space of A. O

Definition 11.6.7. The kernel of T', denoted ker T, is the set of all vectors x such that
Ax = 0.

Proposition 11.6.8. ker T is equal to the null space of A.

Proof. Trivial. O

11.6.3 Basis for Row Space

Definition 11.6.9. Two matrices A and B are said to be row-equivalent if their row
spaces are the same.

Proposition 11.6.10. A and its REF/RREF are row-equivalent.

Proof. Recall that an elementary row operation produces a new row that is a linear com-
bination of the old rows. Thus, elementary row operations do not change the row space
of a matrix. Since the REF/RREF of A can be obtained solely from elementary row
operations, it follows that A and its REF/RREF are row-equivalent. O

This result allows us to easily find the basis of the row space of A.

Recipe 11.6.11 (Finding Basis of Row Space). Let B be the REF/RREF of A. Then the
non-zero row vectors in B form a basis for the row space of A.

Example 11.6.12. Let
1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 21
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Its RREF is given by

10 -1 -2 0
o1 2 3 0
00 0 0 1
00 0 0 O

Thus, a row space basis of A is

[

—_
o W = O
—_ o ooo

11.6.4 Basis for Column Space

One way of finding a basis for the column space of A would be to find a basis for the row
space of AT. However, there is a much simpler approach, which we now derive.

Proposition 11.6.13. Row operations do not change the linear dependence on columns.

Proof. Suppose we have a matrix A = (01 cn). The linear independence of the
column vectors depends on the solution set x to the equation

rici+...zpc, =0 = Ax=0.

Suppose now that we perform row operations on A to obtain a new matrix A’. By writing
the above equation as an augmented matrix, we see that the row operations do not change
the solution set x!

(A‘O)—)(A"O) = z1¢) + - +x,c, = 0.

Thus, if ¢; and ¢; were originally linearly independent, the corresponding columns ¢ and
c;- will remain linearly independent. Likewise for columns that were originally linearly
dependent. Thus, row operations do not change linear dependence on columns. O

Note however, that row operations do not preserve the column space of A. For instance,

10 and 0 0
0 0 10
are row-equivalent, but their column spaces are entirely different.
As a consequence of the above result, we obtain the following corollaries:

Corollary 11.6.14. If A and B are row-equivalent, a given set of columns of A forms a
basis for col(A) if and only if the corresponding set of columns of B forms a basis for

col(B).

With this, we have our standard procedure for finding a basis for the column space of

A:

Recipe 11.6.15 (Finding Basis of Column Space). Let B be the REF/RREF of A. Look
at the columns of B with a leading entry. Then the corresponding columns of A form
a basis of col(A).
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Example 11.6.16. Let
1 2 3 4 5
6 7 8 9 10

A=111 12 13 14 15
16 17 18 19 21
Its RREF is given by
0 -1 -2 0
B_ |0 2 3 0|
0 0 0 0
0 0 0 0 0

The first, second and fifth columns of B contain a leading entry. Thus, the first, second
and fifth columns of A form a basis of col(A):

1 2 5
6 7 10
111711217115
16 17 21

11.6.5 Basis for Null Space

In the proof of Proposition 11.6.13, we saw how row operations do not change the solution
set of the equation Ax = 0. Hence, if B is the REF/RREF of A, then the equations
Ax = 0 and Bx = 0 will have the same solution set.

Recipe 11.6.17 (Finding Basis of Null Space). Let B be the REF/RREF of A. Then the
null space of A is the solution set x of Bx = 0.

Example 11.6.18. Let
1 2 3 4 5
6 7 8 9 10

A=111 12 13 14 15
16 17 18 19 21
Its RREF is given by
10 -1 -2 0
01 2 3 0
B=100 0 o0 1

00 0 0 O

We notice that columns 3 and 4 do not have leading entries. The variables corresponding
to these columns can thus be set as free variables.

X1 0
10 -1 -20 T9 0 T — T3 — 214 =0
Bx= |01 2 30 —lo| = 1273+ 3 -0
“loo o o0 1 i?’ " T2 7 4T3 T 9% -
00 0 0 0 4 z5 =0

xIs 0
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Setting x3 = s and x4 = t, we have

T s+ 2t 1 2
9 —2s — 3t —2 -3
x3 | = S =s| 1 |+t] O
T4 t 0 1
T5 0 0 0

Thus, the basis of the null space of A is

1 P
2| (-3
11,10
0 1
0 0

11.7 Rank and Nullity for Matrices

Definition 11.7.1. The row rank of A is the dimension of the row space of A. The
column rank of A is the dimension of the column space of A.

Proposition 11.7.2. Row and column ranks are equal.

Proof. Recall the procedure we took to find the basis for the row and column space of a
matrix:

e The column space basis consists of columns in the original matrix corresponding to
the leading entries in the REF/RREF.

e The row space basis consists of the rows of the REF/RREF corresponding to the
leading entries.

Since each leading entry corresponds to exactly one row and one column, the sizes of
the row and column spaces bases must be equal. Hence, the row and column ranks are
equal. ]

We give this common value a special name:

Definition 11.7.3. The rank of A is the dimension of the row/column space of A. It is
denoted by rank A.

Let A be an m x n matrix. Because the row rank is at most m, and the column rank is
at most n, we have that rank A < min{m,n}. If equality is achieved, we give A a special
name:

Definition 11.7.4. Let A be an m x n matrix. If rank A = min{m,n}, we say A has
full rank.

Proposition 11.7.5. rank(AB) < min{rank A, rank B}.

Proof. Every column in AB can be expressed as a linear combination of the columns of
A so col(AB) C col A. Taking dimensions, we see that

rank(AB) = dim col(AB) < dimcol A = rank A.

Similarly, every row in AB can be expressed as a linear combination of the rows of B, so
row(AB) C row B. Taking dimensions,

rank(AB) = dimrow(AB) < dimrow B = rank B.

Combining these two inequalities gives us what we want. O
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We can slightly extend the above result:
Proposition 11.7.6. If B is an invertible n x n matrix, then rank(AB) = rank(BA) =
rank A for all n x n matrices A.

Proof. Observe that
rank A = rank(ABB_l) <rank(AB) < rank A,
so rank(AB) = rank A. Similarly,
rank A = rank(B7'BA) < rank(BA) < rank A.
so rank(BA) = rank A. O

Definition 11.7.7. The nullity of A is the dimension of the null space of A. It is denoted
by nullity A.

Theorem 11.7.8 (Rank-Nullity Theorem). For an m X n matrix A,

rank A + nullity A = number of columns of A, n.

Proof. rank A is equal to the number of columns in the RREF that contains a leading
entry, while nullity A is equal to the number of columns in the RREF that does not
contain a leading entry. Thus, their sum must be the number of columns in the RREF,
which is n. O

We can determine the number of solutions to a system of linear equations using the
rank of its corresponding matrix:
Recipe 11.7.9 (Finding Number of Solutions). Let Ax = b be a system of linear equations
in n variables. Then

e if rank A = rank (A ‘ b) = n, the system if consistent and has a unique solution.

e if rank A = rank (A ‘ b) < n, then the system is consistent and has an infinite
number of solutions.

e ifrank A < rank (A ‘ b), then the system is inconsistent and thus has no solution.

In the case where the system is consistent, we can apply the following result to find all
possible solutions to the system:
Proposition 11.7.10. If x, is a particular solution of a consistent non-homogeneous
system Ax = b, then every solution of the system can be written in the form x = x,+x,
where x;, is a solution to the corresponding homogeneous system Ax = 0.

Proof. Let x, be a fixed solution of Ax = b, and let x be an arbitrary solution. Then
Ax=b and Ax,=b.
Subtracting these equations yields
A(x—x,) =0,

SO X — X) is a solution of the homogeneous system Ax = 0. Let {vy,..., v} form a basis
for the null space of A. Then there exist c¢q, ..., ¢ € R such that

X—Xp=1cC1V]1+- -+ V.
Letting x, = c1v1 + - - - + ¢, Vg, we see that
X =Xp+Xp

as desired. O
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11.8 Rank and Nullity for Linear Transformations

Definition 11.8.1. Let T be a linear transformation. The dimension of the range of T'
is called the rank of T" and the dimension of the kernel of T is called the nullity of T

Theorem 11.8.2 (Rank-Nullity Theorem for Linear Transformations). For a linear trans-
formation 7' : R™ — R", where T'(x) = Ax, we have

rank T" + nullity T = rank A + nullity A = n.

Proof. Recall that the range of T is the column space of A and the kernel of T is the null
space of A. Hence,

rank 7' = dimrange T’ = dim col A = rank A

and
nullity 7" = dim ker 7" = dim(null space of A) = nullity A.

By the Rank-Nullity Theorem for matrices, we have

rank 7'+ nullity 7' = rank A 4 nullity A = n.
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12 Eigenvalues, Eigenvectors and Diagonal
Matrices

12.1 Eigenvalues and Eigenvectors

Definition 12.1.1. Let A be an n X n matrix. Let the non-zero vector x € R” be such
that Ax is a scalar multiple of x. That is, x satisfies the equation

Ax = Mx

for some scalar A. The scalar X is an eigenvector of A, and x is the eigenvector of A
corresponding to .

12.1.1 Geometrical Interpretation

Let x be an eigenvector of A with eigenvalue A. Geometrically, this means A maps x
along the same line through the origin as x, but scaling it by a factor of A. If A < 0, the
direction is reversed.

Ax = Ax
X X
Ax=A
X X 5
X
0 O Ax = Mx
Figure 12.2: 0 < A <1 Figure 12.3: A < 0

Figure 12.1: A > 1

12.1.2 Finding Eigenvalues and Eigenvectors

Definition 12.1.2. The characteristic polynomial x(\) of an n x n matrix A is the n
degree polynomial in A given by

X(A) = det(A — AI).
The characteristic equation of A is
x(A) = 0.

Proposition 12.1.3. )\ is an eigenvalue of A if and only if it satisfies the characteristic
equation of A.

Proof. To find eigenvalues and eigenvectors, we must solve the equation Ax = Ax. Ma-
nipulating this equation, we see that

Ax—dx=(A-A)x=0.

Since x is non-zero, the null space of A — AI must be non-trivial. Thus, A — AI must be
singular, so

X(A) = det(A — AI) = 0.
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Thus, A satisfies the characteristic equation of A. O

Since the characteristic equation can be easily solved, we now have a straightforward
way of finding eigenvalues and eigenvectors.

Recipe 12.1.4 (Finding Eigenvalues and Eigenvectors). We solve the characteristic equa-
tion x(A) = det(A — AI) = 0 to find possible eigenvalues A\. For each A found, we find
its associated eigenvector(s) by finding the basis of the null space of A — AL

Sample Problem 12.1.5. Find the eigenvalues and eigenvectors of the matrix

()

Sample Problem 12.1.6. The characteristic polynomial is

1—-A 2

X(A) = det(A — AI) = det ( 54—

>:/\2—5)\—6:()\—6)()\+1).

Thus, the solutions to the characteristic equation x(\) =0 are A = 6 and A\ = —1.
Let x = (z, )| be a non-zero vector with Ax = Ax.
Case 1: A = 6. We have

(3 2)0)-0)

Solving, we get bx — 2y = 0. Taking x = 2 and y = 5, the corresponding eigenvector is

< — 2
={5)
Case 2: A = —1. We have

- (0)-0)

Solving, we get © + y = 0. Taking x = 1 and y = —1, the corresponding eigenvector is

(1),

If A is a 3 x 3 matrix, we can use cross products to easily find eigenvectors.

Sample Problem 12.1.7. Let
01
A=1|-1 2 3
0 2
Find the eigenvector of A corresponding to A = 1.

Sample Problem 12.1.8. Let x be the desired eigenvector. Consider

1 01
A-I)x=|-1 1 3]|x=
1 01

o O O
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By multiplying out the LHS, we get the following two equations:

These are precisely the equations of two planes, normal to (1, 0, 1)T and (—1, 1, S)T
respectively, that also pass through the origin. Thus, x lies on the line of intersection
between the two planes. The direction vector of this line is given by the cross product
of the two normal vectors, so

1 -1 -1
x=|0] x| 1 ]=]-4
1 3 1

Note that an n X n matrix may have less than n eigenvalues and eigenvectors. For

instance,
3 1
0 3

has the sole eigenvalue A\ = 3 with corresponding eigenvector (1, 0)7.
Also, one eigenvalue may have multiple corresponding eigenvectors. For instance,

—2
1

0
1
1 3

o N O

has eigenvalue A\ = 2, which corresponds to two linearly independent eigenvectors:

-1 0
X1 = 0 y X9 = 1
1 0

12.1.3 Useful Results

Proposition 12.1.9. Eigenvectors corresponding to distinct eigenvalues must be linearly
independent.

Proof. By way of contradiction, suppose the eigenvectors are linearly dependent. Let j be

the maximal j such that xi,...,x; are linearly independent. Then x;,1 can be expressed
as a linear combination of x1,...,x;:
Xj+1 = @1X1 + -+ + 45X, (1)

Applying A on both sides, we see that

)‘j+1xj+1 =a\x1+ -+ ajAij. (2)
Since X1, ..., x; are linearly independent, we can compare their coefficients in (1) and (2),
which gives
ai:ai)rz — )‘i:)\j+1
7+1

for all 1 <4 < j. But this clearly contradicts the supposition that the eigenvalues are
distinct. Thus, the eigenvectors must be linearly independent. O
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Proposition 12.1.10. If A is a triangular matrix, then the eigenvalues of A are the
entries on the principal diagonal of A.

Proof. Recall that the determinant of a triangular matrix is the product of its principal
diagonal entries. Thus,

X()\) = det(A — )\I) = (CLH — )\) (0422 — )\) e (ann — )\) y
whence the roots are A = a1, a9, ..., ayn- O

Proposition 12.1.11. Suppose x is an eigenvector of an n X n matrix A with correspond-
ing eigenvalue .

(a) For any real number k, x is an eigenvector of the matrix kA, with corresponding
eigenvalue k.

(b) For any positive integer m, x is an eigenvector of the matrix A", with correspond-
ing eigenvalue A™.

(c) If A is invertible, then x is an eigenvector of A~! with corresponding eigenvalue
A~ when A # 0.

(d) If x is also an eigenvector of an n X n matrix B with corresponding eigenvalue p,
then x is an eigenvector of the sum A + B, with corresponding eigenvalue \ + u.

Proof of (a). Since A = Ax, we have (kA)x = (k) x. O
Proof of (b). We use induction. Let the statement P(m) be such that
P(m) <= x is an eigenvector of the matrix A" with corresponding eigenvalue A\™.
The base case m = 1 is trivial. Suppose P(k) is true for some k € N. Then
ARty = A <Akx) —A ()\kx) = AF (Ax) = AF (\x) = A
Thus, P(k) = P(k+ 1). This closes the induction. O
Proof of (c). Since A = Ax, we have

x=ATAx=A""Xx=)(ATx) = Ax=1"'x.

Proof of (d). Since A = A\x and B = ux, we have
(A+B)x=Ax+Bx = x+pux = (A +p)x.
O

Corollary 12.1.12. Let x be an eigenvector of A with corresponding eigenvalue A. Define
a polynomial p(X) = ap + a1 X + a2 X? + -+ + a, X™. Then p(\)x = p(A)x.

Note that we are taking ag to mean agl on the RHS.

Definition 12.1.13. A submatrix of A is a matrix obtained from A by deleting a col-
lection of rows and/or columns. A principal minor of A is a submatrix whereby the
indices of the deleted rows are the same as the indices of the deleted columns.
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Example 12.1.14. Given

A=

)

~ b~ =

2 3
5 6
8 9
A:

the following three matrices are submatrices of

12 46
m=i3) me()

To obtain B, we deleted the third row and third column. To obtain Bs, we deleted the
first row and second column. Note that B; is also a principal submatrix.

Proposition 12.1.15. Let A be an n x n matrix. Let
Ey=) 8]
SeS

be the sum of the determinants of all k£ x k principal submatrices. We define Ey = 1.
Then the characteristic polynomial x(\) of A is given by

XO) =Y (=) BN

=0

Example 12.1.16. Consider

Then

Ey =12|+ 2|+ 2] =6,

2 ol |2 3 |2 1
E2_'—1 2‘+‘0 2’ '1 2‘_11’
2 0 1
Bs=|-1 2 3/ =6.
1 0 2

Invoking the above result, we see that

X(A) = =A% + BjA? — Eo)d + F3 = =X\ 4602 — 11\ + 6.

Corollary 12.1.17. If A is an n X n matrix,

e The sum of the n eigenvalues of A (counting multiplicity) is equal to the trace of
A.

e The product of the n eigenvalues of A (counting multiplicity) is equal to the
determinant of A.

Proof. Apply Vieta’s formula to the above result.
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12.2 Diagonal Matrices

Recall that a diagonal matrix D is a square matrix where all off-diagonal entries are zero.
Diagonal matrices have nice properties that make computations involving them simple
and convenient:

e det D is the product of its diagonal entries.

o If det D # 0, then D! is a diagonal matrix with the corresponding reciprocals in
the diagonal.

e D" is a diagonal matrix with the corresponding powers in the diagonal.

For instance, if

1 0 0
D={0 2 o],
0 0 3
then
1100 0 0 1—100 0 0
DlOO — 0 2100 0 and D7100 — 0 27100 0
0 0 3100 0 0 3—100

12.2.1 Diagonalization

The useful properties of diagonal matrices motivates us to find a way to write an n x n
matrix in terms of a diagonal matrix, i.e. diagonalize A in some way.

Definition 12.2.1. A matrix A is diagonalizable if there exists an invertible matrix Q
such that A = QDQ™!, where D is a diagonal matrix. We say that Q diagonalizes A.

Proposition 12.2.2. If A is diagonalizable, then the columns of Q are the linearly in-
dependent eigenvectors of A, and the diagonal matrix D contains the corresponding
eigenvalues.

Proof. Let A be an n X n matrix with eigenvectors X1, ..., X, corresponding to the real
eigenvalues A1,...,A,. Let Q be the matrix with xi,...,X, as its columns and let D be
a diagonal matrix with its diagonal entries as Aq,..., Ap:
At ... 0
Q=(x1 ... x), D=|: :
0 An
Then
Ao 0
AQ:(AX1 Axn):()\lxl )\nxn):(xl xn) St = QD.
0 ... A\

Post-multiplying both sides by Q~!, which exists since the columns of Q are linearly
independent, we have A = QDQ . ]

Note that if A has n real and distinct eigenvalues, it will have n linearly independent
eigenvectors, so it will be diagonalizable. However, if it has repeated eigenvalues, it may
not be diagonalizable.
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Sample Problem 12.2.3. Let

2
A=|-1
1

o N O

1
3
2

Find a matrix Q and a diagonal matrix D such that A = QDQ L.

Solution. We previously found the corresponding eigenvectors for eigenvalues 1, 2, 3 to be

1 0 1
41, 1], [2
~1 0 1

Thus,

1 01
Q=(4 1 2| and D=
0 1

o O =
o NN O
w o O

O
Note that Q and D are not unique. Using the above sample problem, we could have
taken

1 1 0 300
Q=12 4 1] and D=0 1 0
1 -1 0 00 2

12.2.2 Computing Matrix Powers

One of the more useful purposes of diagonalization is to compute matrix powers.
Proposition 12.2.4. Suppose A = QDQ~! is diagonalizable. Then

Ak — QDkQ_l-
Proof. Observe that

A"=(QDQ ) (QDQY)...(QDQ ') =QD(Q'Q)D(Q 'Q)...DQ!
=QDD...DQ ! =QD*Q .

Sample Problem 12.2.5. Let

2 01
A=|-1 2 3
1 0 2

Compute A9,

Solution. We previously found that A = QDQ™!, where

1 01 100
Q=4 1 2] and D=0 2 0
-1 0 1 00 3

Thus,
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which evaluates to

29525 0 29524
A = [ 55979 1024 60071
29524 0 29525
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13 Introduction to Complex Numbers

Definition 13.0.1. The imaginary unit i is a root to the equation

2+1=0.

13.1 Cartesian Form

Definition 13.1.1. A complex number z has Cartesian form x + iy, where = and y
are real numbers. We call x the real part of z, denoted Re z. Likewise, we call y the
imaginary part of z, denoted Im z.

Definition 13.1.2. The set of complex numbers is denoted C and is defined as

C={z:z=x+1y, =z,yecR}.

Remark. The set of real numbers, R, is a proper subset of the set of complex numbers, C.
That is, R C C.

Fact 13.1.3 (Algebraic Operations on Complex Numbers). Let z1, 22, 23 € C.

e Two complex numbers are equal if and only if their corresponding real and imag-
inary parts are equal.

21 = 23 <= Rez; =Rezy and Imz; = Im 2.

e Addition of complex numbers is commutative, i.e.
21+ 22 =22+ 21

and associative, i.e.
(21 + 22) + 23 = 21 + (22 + 23).

e Multiplication of complex numbers is commutative, i.e.
Z129 = 2271,

associative, i.e.
z1(2223) = (2122)23

and distributive, i.e.

21 <22 + 23) = 2129 + 2123.
| Proposition 13.1.4. Complex numbers cannot be ordered.

Proof. Seeking a contradiction, suppose i > 0. Multiplying both sides by i, we have
i2 = —1 > 0, a contradiction. Hence, we must have i < 0. However, multiplying both
sides by i and changing signs (since i < 0), we have i2 = —1 > 0, another contradiction.

Thus, C cannot be ordered. O
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13.2 Argand Diagram

We can represent complex numbers in the complex plane using an Argand diagram.

Definition 13.2.1. The Argand diagram is a modified Cartesian plane where the z-axis
represents real numbers and the y-axis represents imaginary numbers. The two axes are
called the real axis and imaginary axis correspondingly.

On the Argand diagram, the complex number z = z + iy, where z,y € R, can be
represented by

e the point Z(z,y) or Z(z); or

e the vector 07 .

Im
Z (z,y) or Z(2)

07

Re

Figure 13.1

In an Argand diagram, let the points Z and W represent the complex numbers z and
w respectively. Then OZ and OW are the corresponding vectors representing z and w.

13.2.1 Modulus

Recall in §1, we defined the modulus of a real number x as the “distance” between x and
the origin on the real number line. Generalizing this notion to complex numbers, it makes
sense to define the modulus of a real number z as the “distance” between z and the origin
on the complex plane. This uses Pythagoras’ theorem.

Definition 13.2.2. The modulus of a complex number z is denoted |z| and is defined as

|z| = \/Re(z)2 + Im(z)2

13.2.2 Complex Conjugate

Definition 13.2.3. The conjugate of the complex number z = x + iy is denoted z* with
definition
2f =z —iy.

We refer to z and z* as a conjugate pair of complex numbers.

On an Argand diagram, the conjugate z* is the reflection of z about the real axis.
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Fact 13.2.4 (Properties of Complex Conjugates).

(distributive over addition) (z + w)* = z* 4+ w*.

(distributive over multiplication) (zw)* = z*w*.

(involution) (z*)* = z.

o 2+ z* = 2Re(2).
o z—2*=2Im(z)1.
e 22" = Re(z)? + Im(2)* = |2|°.

Because conjugation is distributive over addition and multiplication, we also have the

following identities:
(kz)" =kz",  (z")"=(2")",

where £ € R and n € Z.
Using the conjugate of a complex number z, the reciprocal of z can be computed as

13.2.3 Argument

Definition 13.2.5. The argument of a complex number z is the directed angle 6 that
Z(z) makes with the positive real axis, and is denoted by arg(z). Note that arg(z) > 0
when measured in an anticlockwise direction from the positive real axis, and arg(z) < 0
when measured in a clockwise direction from the positive real axis.

Note that arg(z) is not unique; the position of Z(z) is not affected by adding an integer
multiple of 27 to 6. Therefore, if arg(z) = ¢, then ¢ + 2k7m, where k € Z, is also an
argument of z. We hence introduce the principal argument of z.

Definition 13.2.6. The value of arg(z) in the interval (—m, 7] is known as the principal

argument of z.

The modulus r = |z|, complex conjugate z* and argument 6§ = arg(z) of a complex
number z can easily be identified on an Argand diagram:

Im
Z1(2)
r
0 Re
0]
\\.
ZQ(Z*)

Figure 13.2
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13.3 Polar Form

Instead of using Cartesian coordinates on an Argand diagram, we can use polar coordi-
nates, leading to the polar form of a complex number. This polar form can be expressed
in two ways: trigonometric form and exponential form.

Definition 13.3.1. The trigonometric form of the complex number z is
z=r(cosf +isinb),

where r = |z| and 0 = arg(z), —7 < 0 < 7.

Theorem 13.3.2 (Euler’s Identity). For all § € R,

e = cosf + isiné.

Proof 1 (Series Expansion). By the standard series expansion of e”, we have

@02, (0° (0} (0)°

i0 __ :
el =1+i0+ = 31 Al 51

Simplifying and grouping real and imaginary parts together,

2 4 3 5
eié’:(l9+0+...>+i<99+0+...>
20 4l 3! 5! ’

which we recognize to be the standard series expansions of cosf and sin 6 respectively.

Hence,
e = cosf + isiné.

O

Proof 2 (Differentiation). Let f(6) = e™'% (cos# + isin#). Differentiating with respect to
0,
f'(0) =e ¥ (—sinf +icosf) —ie ¥ (cosf + isind) = 0.

Hence, f(6) is constant. Evaluating f(6) at 6 = 0, we have f(#) = 1, whence

0

e ¥ (cosf+isinh) =1 = €' = cosh + isind.

Definition 13.3.3. The exponential form of the complex number z is
z=rel,

where r = |z| and 0 = arg(z), —7m < 0 < 7.

Recall z* is the reflection of z about the real axis. Hence, we clearly have the following:

Proposition 13.3.4 (Conjugation in Polar Form). If z = re'?, then z* = re™1%. Also,
arg(z*) = —0 = —arg(z), |z| =r=|z%|.

Using the proposition above, we can convert the results z 4+ z* = 2Re(z) and z — z* =
2Im(z)i into polar form:
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Proposition 13.3.5.
el +e71% = 2cos0, el —e71% = (25in ) i.

Lastly, we observe the effect of multiplication and division on the modulus and argument
of complex numbers.

Proposition 13.3.6 (Multiplication in Polar Form). Let z; = r1ei1 and 29 = r9ei?2. Then
|z122| = r1r2 = |21] |22/ , arg(z122) = 61 + 0 = arg(z1) + arg(22) .
Proof. Observe that
2129 = (rleiel) (rgew?) = (7’17’2)6i<01+92).
The results follow immediately. O

Corollary 13.3.7 (Exponentiation in Polar Form). For n € Z,
|2 =" = |2|", arg(z") = nf = narg(z).

Proof. Repeatedly apply the above proposition. O

Proposition 13.3.8 (Division in Polar Form). Let z; = r1et? and z9 = ree'?2. Then

Al @, arg( 22 ) = 60, — 0, = arg(z1) — arg(2s) .
re |z 2

22

Proof. Observe that

i0
21 rie’t Qei(el—eg)

29 roelf2  py

The results follow immediately. O

13.4 De Moivre’s Theorem
Theorem 13.4.1 (De Moivre's Theorem). For n € Q, if z = r (cos @ + isin6) = re'?, then
n n,intd _ ,rn(

2" =r"e cosnf + isinnd).

Proof. Write 2" in exponential form before converting it into trigonometric form. O

We now discuss some of the applications of de Moivre’s theorem.

Recipe 13.4.2 (Finding nth Roots). Suppose we want to find the nth roots of a complex
number w = rel. We begin by setting up the equation

where k € Z. Next, we take nth roots on both sides, which yields

s = rl/nei(0+2k7r)/n‘

Lastly, we pick values of k such that arg z = % lies in the principal interval (—m,7].
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Definition 13.4.3. Let n € Z. The nth roots of unity are the n solutions to the equation
2" —1=0.

Proposition 13.4.4 (Roots of Unity in Polar Form). The nth roots of unity are given by

2k 2k ;
T T _ e1(2k7r/n),

where k € Z.

Proof. Use de Moivre’s theorem. O

Fact 13.4.5 (Geometric Properties of Roots of Unity). On an Argand diagram, the nth
roots of unity

e all lie on a circle of radius 1.
e are equally spaced apart.

e form a regular n-gon.

De Moivre’s theorem can also be used to derive trigonometric identities. The trigono-
metric identities one will be required to prove typically involve reducing “powers” to
“multiple angles” (e.g. expressing sin® @ in terms of sin @ and sin 36), or vice versa.

Proposition 13.4.6 (Power to Multiple Angles). Let z = cos# + isin@ = . Then
2"+ 27" = 2cosnb, 2" — 27" = 2isinnd.

Proof. Use de Moivre’s theorem O

Recipe 13.4.7 (Multiple Angles to Powers). Suppose we want to express cos nf and sin nf
in terms of powers of sinf and cosf. We begin by invoking de Moivre’s theorem:

cosnf + isinnd = (cosh + isinf)" .

Next, using the binomial theorem,

n

cosnf + isinnf = Z (Z) cosk fsin* 9.
k=0

We then take the real and imaginary parts of both sides to isolate cosnf and sin nf:
" /n e
cosnf = Re kZ_O (k) cos® fsin" " 9, sinnf = Im kZ_O (k) cos® @ sin™ % 9.

Example 13.4.8. Suppose we want to write sin 26 in terms of sinf and cosf. Using de
Moivre’s theorem,

c0s 260 + isin 260 = (cos 0 + isin0)? = cos? 6 + 2i cos O sin 6 — sin? 6.
Comparing imaginary parts, we obtain sin 260 = 2 cos 6 sin § as expected.

Another way to derive new trigonometric identities is to differentiate known identities.
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Example 13.4.9. Using the “power to multiple angle” formula above, one can show that
1
cos® 9 = 3 (cos 66 + 6 cos 46 + 15 cos 260 4 10) .
Differentiating, we obtain a new trigonometric identity:

1
sinf cos® f = 5 (sin 66 4 4 sin 46 + 5sin 26) .

13.5 Solving Polynomial Equations over C

Theorem 13.5.1 (Fundamental Theorem of Algebra). A non-zero, single-variable, degree
n polynomial with complex coeflicients has n roots in C, counted with multiplicity.

Theorem 13.5.2 (Conjugate Root Theorem). For a polynomial equation with all real
coefficients, non-real roots must occur in conjugate pairs.

Proof. Suppose z is a non-real root to the polynomial P(z) = a,2" + ap_12"" 1 + - +
a1z + ag, where an,an_1,...,a1,a9 € R. Consider P(z*).

P(2*) = apn ()" + ap_1 (2" + -+ a1 (z7) + ao.
By conjugation properties, this simplifies to
P(z*) = (anz” +ap 12"t Farz+ ao)* ,

which clearly evaluates to 0, whence z* is also a root of P(z). O
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14 Geometrical Effects of Complex Numbers

14.1 Geometrical Effect of Addition

The following diagram shows the geometrical effect of addition on complex numbers. Here,
the point P represents the complex number z+w. Observe that OW PZ is a parallelogram

(due to the parallelogram law of vector addition).

Im

Figure 14.1

14.2 Geometrical Effect of Scalar Multiplication

The following diagram shows the geometrical effect of multiplying a complex number by
a real number k. Here, Z; represents a point where k > 1, Z5 where 0 < k£ < 1, and Z3
where k£ < 0. Observe that the points lie on the straight line passing through the origin

O and the point Z.

Im

Z3

Figure 14.2
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14.3 Geometrical Effect of Complex Multiplication

Let points P, @Q and R represent the complex numbers z1, zo and z3 respectively, as
illustrated in the Argand diagram below.

Im
R(lez)
r1ro P(21)
[}
",rl
(92‘ ] Q(ZQ)
O\ . ®
NS Re
O| 6
Figure 14.3

Geometrically, the point R(z122) is obtained by
1. scaling by a factor of ro on O? to obtain a new modulus of ryry, followed by

2. rotating O? through an angle 2 about O in an anti-clockwise direction if 83 > 0 to
obtain a new argument 61 + 6 (or in a clockwise direction if 65 < 0).

14.4 Loci in Argand Diagram

Definition 14.4.1. The locus (plural: loci) of a variable point is the path traced out by
the point under certain conditions.

14.4.1 Standard Loci

Fact 14.4.2 (Circle). For |z — a| = r, with P representing the complex number z and
A representing the fixed complex number a and r» > 0, the locus of P is a circle with
centre A and radius r.

Im locus of P

Figure 14.4
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Fact 14.4.3 (Perpendicular Bisector). For |z — a| = |z — b|, with P representing the com-
plex number z, points A and B representing the fixed complex numbers a and b respec-
tively, the locus of P is the perpendicular bisector of the line segment joining A and
B.

Im locus of P
eA
B N Re
®
B O
Figure 14.5

Fact 14.4.4 (Half-Line). For arg(z — a) = 6, with P representing the complex number
z and point A representing the fixed complex number a, the locus of P is the half-line
starting from A (excluding this point) and inclined at a directed angle 6 to the positive
real axis.

Im locus of P
A
o)
)
Re
O
Figure 14.6

14.4.2 Non-Standard Loci

When sketching non-standard loci, one useful technique is to write the equation in Carte-
sian form, i.e. letting z = =z + iy, =,y € R.

Example 14.4.5. Let P be the point representing the complex number z, where z satisfies
the equation Re z+2Im z = 2. We begin by writing z in Cartesian form, i.e. z = x + iy,
x,y € R. Substituting this into the equation, we have x + 2y = 2. Thus, the locus of P
is given by the equation x + 2y = 2.

14.4.3 Loci and Inequalities

We will use the inequality |z — (34 4i)| < 5 as an example to illustrate the general pro-
cedure of finding the locus of an inequality.



14.4 Loci in Argand Diagram 101

We begin by considering the equality case. As we have seen above, |z — (34 4i)| =5
corresponds to a circle centred at (3,4) with radius 5. This is the “boundary” of our locus.

Im ’—boundary ‘

Figure 14.7

Notice that the circle is dashed as the inequality is strict; if the inequality was not strict,
ie. |z — (3 +41i)| <5, the circle would be drawn with a solid line.

Now, observe that the complex plane has been split into two parts: the interior and
exterior of the circle. To determine which region satisfies our inequality, we simply test a
complex number in each region.

e Since 3 + 4i is in the interior of the circle, and |(3 +4i) — (3+4i)| = 0 < 5, the
interior of the circle satisfies the inequality.
e Since 10 + 41 is in the exterior of the circle, and [(10 4+ 4i) — (3 4+ 4i)| = 7 > 5, the

exterior of the circle does not satisfy the inequality.

We thus conclude that the locus of |z — (3 + 4i)| < 5 is the interior region of the circle,
as shaded below:

Im required locus
// \\
7 \
7 AY
7 \
\
ll A |
I |
| 1
\ !
\\ r //
\ /7
. y Re
Ol~~___ __ -
Figure 14.8

14.4.4 Further Use of the Argand Diagram

Many interesting and varied problems involving complex numbers can be solved simply
using an Argand diagram. For instance, one may ask what the range of arg z is, given that
z satisfies some other constraint, e.g. |z —i| = 1. Given how diverse these problems may
be, there is no general approach to solving them. However, there are several tips that one
should keep in mind when doing these problems:
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e Think geometrically, not algebraically. Draw out the given constraints on an Argand
diagram. Most of the time, the given constraints are simply the three standard loci
above (circles, perpendicular bisector and half-lines).

e When working with circles and an external point, drawing tangents and diameters
may help. This allows one to use properties of circles (e.g. tangents are perpendicular
to the radius).

e Keep an eye out for symmetry or similar figures.
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15 Differentiation

15.1 Limits

Let a be a constant.
e r — a means “x approaches the value a”,
e r — a~ means “x approaches the value a from a value slightly more than a”,
e v — a’ means “x approaches the value a from a value slightly more than a”,

e lim, ,, f(z) means “the limit of f(z) as x approaches a”.

Definition 15.1.1. The limit of f(x) as x approaches a exists if there exists some [ € R
such that

lim f(z)=101= lim f(z).

T—a~ r—at

We write
lim f(z) = 1.

T—ra

15.2 Derivative

Definition 15.2.1. The gradient of a straight line is defined as the ratio of the change
in the y-coordinate to that of the z-coordinate between any two points on the line.
Mathematically, the gradient m is given by

Y2 — Y1
m = s
Tro — T

where (x1,y1) and (z2,y2) are two points on the line.
Definition 15.2.2. The tangent to the curve at A is the line touching the curve at A.

Definition 15.2.3. The instantaneous rate of change or gradient of a curve at any
point is defined as the gradient of the tangent to the curve at the point.

Definition 15.2.4. The derivative of a function f(z), denoted < f(z) or f'(a), represents
the instantaneous rate of change of f(z) with respect to .

If y = f(x), we write the derivative as % or y'. Note that the symbol % means “the

derivative with respect to x of” and should be treated as an operation, not a fraction.

Definition 15.2.5. The nth derivative of y with respect to x is

dny ) B i dn—ly
dan fe) = dzx (dx"‘l ’

where n € Z7T.
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15.2.1 Differentiation from First Principles

Consider a curve y = f(z). Let A(z, f(x)) and B(z + Az, f(z + Azx)) be two points on
the curve, where Ax is a small increment in x.

Observe that the gradient of the tangent to the curve at A can be approximated by the
gradient of the chord AB, denoted map. The closer B is to A, the better the approx-
imation. Therefore, the gradient of the curve at point A is limp_,4 map. Now observe

that
et An) -~ f@) [+ Ar) ()
AB (x +Ax) —x Az '
Additionally, as B —+ A, Az — 0. Hence,
lim mag = lim flz+Az) - f(z) = lim % = dy
Boa BT Apso Az Az—0 Az dx’

For convenience, we replace Az with h. The derivative is hence

%_if(x):hm f(m—i—h)—f(x)

dr dz h—0 h

15.3 Differentiation Rules

Proposition 15.3.1 (Differentiation Rules). Let k£ € R and suppose u and v are functions
of . Then

e (Sum/Difference Rule) If y = u + v then 3/ = v/ £ /.
e (Product Rule) If y = uv, then y' = vw/v 4+ uv'.

e (Quotient Rule) If y = %, then y/ = “euv

v? V2

e (Chain Rule) If y = f(x) and x = g(t), then % — %?Tf'

The sum, product and quotient rules are easy to prove from first principles. We hence
only prove the chain rule. However, we first need to define differentiability of a func-
tion:

Definition 15.3.2. A function f(z) is differentiable at a if there exists some function
q(x) continuous at a such that

Note that there is at most one such ¢(z), and if it exists, then ¢(z) = f/(x).

We now prove the chain rule.

Proof of Chain Rule. Suppose y = f(z) and x = g(t). Suppose also that f(z) is differen-
tiable at © = g(a), and that g(t) is differentiable at a.

Since f(x) is differentiable at x = g(a), by the above definition, there exists a function
q(x) such that
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Similarly, since g(t) is differentiable at a, by the above definition, there must exist a
function r(t) continuous at a such that

= g(t) —g(a) = ()t - a). (2)

Rearranging,

daon(t) — LOO) = 16@) _ (o)) ~(fog)@)

t—a t—a

By our assumptions, ¢(g(¢))r(t) is continuous at ¢ = a. Hence, by the above definition,
q(g(t))r(t) is the derivative of (f o g)'(t). Since ¢(x) = f'(z) and r(t) = ¢'(t), we arrive at

(fog)(t)=f(g(t)g'(t).
In Liebniz notation, this reads as

a0 = 16| [ Goo).

Since x = g(t) and y = f(z) = f(g(t)), this can be written more compactly as

dy _ dyds
dt  dedt’
O]
From the chain rule, we can derive the following property:
Proposition 15.3.3. Suppose dz/dy # 0. Then
dy 1
dr  dx/dy’
Proof. By the chain rule,
d
dy _dyde _dy_ 1
dy dzdy dz dz/dy
O]

Note that this property does not generalize to higher derivatives. For instance, 32752’ #*

1
d?z/dy? "
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15.4 Derivatives of Standard Functions

Let n,a € R.
Ly | v v [ v [y ¥
" na 1 sin x CcoS T CcoS T —sinx
a® a*lna secx | secxtanx | cscx | —cscxcotx
log,z | 1/(zlna) | tanx sec? cot —csc’
Ly | Y |

arcsinz | 1/v1—22, |z[ <1
arccosx | —1/v1—a2, |z| <1
arctan x 1/(1+2?)

15.5 Implicit Differentiation

Definition 15.5.1. An explicit function is one of the form y = f(x), i.e. the dependent
variable y is expressed explicitly in terms of the independent variable x, e.g. y =
2zsinx 4+ 3. An implicit function is one where the dependent variable y is expressed
implicitly in terms of the independent variable z, e.g. xy + siny = 2.

Recipe 15.5.2 (Implicit Differentiation). 3’ is found by differentiating every term in the
equation with respect to z and with subsequent arrangement, making 3’ the subject.

Implicit differentiation requires the use of the chain rule:

d o d dy
@g(y) = @g(y) P

Example 15.5.3 (Implicit Differentiation). Consider the implicit function 3y3 + z2%y = 2.
Implicitly differentiating each term with respect to x, we obtain
—2zy

92/ 2.7 2 =0 — /: .
vy + (2% + 2ay) V= oE T a2

Proposition 15.5.4 (Derivative of Inverse Functions).

d
dx

o
fr (@)

Proof. Let y = f~'(z). Then f(y) = z. Implicitly differentiating,

f i) =

/ r r 1 . 1
Py =1= v =55~ 7@y,

O

We can use the above result to derive the derivatives of the inverse trigonometric func-
tions and the logarithm.
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Example 15.5.5 (Derivative of arcsinz). Let f(z) = sinxz. Then f’(z) = cosz. Using

the above result,

. 1 1
— arcsinx = —
dx

cos(arcsinz) /1 — 22

Example 15.5.6 (Derivative of log, z). Let f(z) = a®. Then f'(z) = a”Ina. Using the

above result,
1 1

 a%%.%Ilng  zlna’

—log, x

dx

15.6 Parametric Differentiation

Sometimes it is difficult to obtain the Cartesian form of a parametric equation, so we are
unable to express dy/dx in terms of . However, we are still able to obtain dy/dz in terms
of the parameter ¢ using the chain rule. If x = f(¢) and g(t), then

dy dydt

dr ~ dtdz’

Example 15.6.1 (Parametric Differentiation). Suppose x = sin 26, y = cos 46. Differenti-
ating x and y with respect to 8, we see that

dz dy .
W= 2 cos 20, 0= —4sin 46.

Hence, by the chain rule,
dy dydf  —2sindf

dr ~ dfdx  cos20
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16 Applications of Differentiation

16.1 Monotonicity

Definition 16.1.1. Let f be a function, and let I C D; be an interval. Let x1 and x5 be
distinct elements in 1.

e f is strictly increasing if 71 < 9 = f(x1) < f(x2).
e f is strictly decreasing if 1 < 2o = f(x1) > f(x2)
Proposition 16.1.2 (Sign of f/(x) Describes Monotonicity). If f'(z) > 0 for all x € I,

then f is strictly increasing on I. Similarly, if f/(x) < 0 for all € I, then f is strictly
decreasing on I.

Proof. Suppose f'(xz) > 0 for all z € I. By the Mean Value Theorem, there exists some
¢ € I such that
f(@2) — f(z1)

12 —
fio) = T2,
Since f'(¢) > 0 and z1 < w9, it follows that f(z1) < f(x2), whence f is strictly increasing.
The proof of the second statement is similar. O

Note that the converse of the above results is not true. Consider the function f(z) =
z1/3. Clearly, f(z) is increasing on R, yet f'(z) = 2~2/3/3 is undefined at x = 0.

16.2 Concavity

Definition 16.2.1. Let f be a function, and let I C Dy be an interval.
e f is concave upwards on [ if the gradient of f increases as x increases.

e f is concave downwards on [ if the gradient of f decreases as x increases.

Geometrically, f is concave upwards if the graph of y = f(z), € I lies above its
tangents. Likewise, f is concave downwards if the graph lies below its tangents.

Proposition 16.2.2 (Sign of f”(x) Describes Concavity). If f”(z) > 0 for all « € I, then
f is concave upwards on I. Similarly, if f”(z) < 0 for all x € I, then f is concave
downwards on I.

Proof. Suppose f”(x) > 0 for all € I. Then f’ is increasing on I. The gradient of f
hence increases as = increases, whence f is concave upwards. The proof of the second
statement is similar. O
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16.3 Stationary Points

| Definition 16.3.1. A stationary point on a curve y = f(x) is a point where f’(x) = 0.

A Y

B

Figure 16.1: Types of stationary points.

There are two types of stationary points:
e turning points: maximum points (4) and minimum points (B)
e stationary points of inflexion: C'

Definition 16.3.2. A point of inflexion is a point on the curve at which the curve crosses
its tangent and the concavity of the curve changes from up to down or vice versa.

Note that a point of inflexion is not necessarily stationary; points D and E in the above
figure are non-stationary points of inflexion.

16.3.1 Turning Points

In the neighbourhood of turning points, the gradient of the curve, f’(x), changes sign.

Maximum Points

In the neighbourhood of a maximum turning point A, the gradient f’(z) decreases from
positive values, through zero at A, to negative values. The y-coordinate of A is known as
the maximum value of y.

Minimum Points

In the neighbourhood of a minimum turning point B, the gradient f’(z) increases from
negative values, through zero at B, to positive values. The y-coordinate of B is known as
the minimum value of y.

16.3.2 Stationary Points of inflexion

In the neighbourhood of a stationary point of inflexion, the gradient of the curve, f’(x)
does not change sign.
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16.3.3 Methods to Determine the Nature of Stationary Points

Suppose y = f(z) has stationary point at z = a.
Recipe 16.3.3 (First Derivative Test). Check the signs of f/'(z) when z — o~ and x — a™.

x a~ a at a~ a at a” a a®
/ B B +ve 0 +ve
fi(x) | +ve 0O ve ve 0 Hve e 0 e

Nature | Maximum point | Minimum point | Stationary point of inflexion

Example 16.3.4 (First Derivative Test). Let f(z) = 22. Note that f’(z) = 2x. Solving
for f/'(x) = 0, we see that x = 0 is a stationary point. Checking the signs of ¢’ as x — 0~
and z — 0T,

x 0" [0] OF
fl(x) | —ve | 0| +ve

Thus, by the first derivative test, the stationary point at £ = 0 is a minimum point.

Proposition 16.3.5 (Second Derivative Test). Suppose f(z) has a stationary point at
T =a.

e If f”(a) <0, then the stationary point is a maximum.
e If f(a) > 0, then the stationary point is a minimum.
e If f”(a) = 0, the test is inconclusive.

Proof. At x = a, the function f(z) is given by the Taylor series

> r(n)(g "(a
@ =300y = @+ F@e -0+ L@ a2+

n=0 ’
When z is arbitrarily close to a, the terms (z —a)?, (z —a)?, ... become negligibly small,
whence f(z) is well-approximated by

"
a
Fla) ~ fla) + F@ - a) + T @ - a2

Since z = a is a stationary point, f/'(a) = 0, whence

@)~ s+ % -2

Now observe that %(z — a)? is non-negative. Hence, the sign of @(w — a)? depends

solely on the sign of f”(a): if f”(a) is positive, the entire term is positive and

f// a
fa) ~ fla) + L% @~ a)? > f(a),

whence f(a) is a minimum (since f(a) < f(z) for all x in the neighbourhood of a).
Similarly, if f”(a) is negative, the entire term is negative and

f@) ~ f@) + L @~ a)? < f(a),

whence f(a) is a maximum. If f”(a) is zero, we cannot say anything about f(z) around
f(a) and the test is inconclusive. O
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Example 16.3.6 (Second Derivative Test). Let f(x) = x?. From the previous example,
we know that = 0 is a stationary point. Since f”(0) = 2 > 0, by the second derivative

test, it must be a minimum point.

16.4 Graph of y = f'(x)

The table below shows the relationships between the graphs of y = f(x) and y = f'(x).

Graph of y = f(x) Graph of y = f/(z)
la vertical asymptote x = a vertical asymptote x = a
1b horizontal asymptote y = b horizontal asymptote y = 0
1c oblique asymptote y = mzx + ¢ horizontal asymptote y = b
2 stationary point at * = a x = a is the z-intercept
3a f is strictly increasing curve above the z-axis
3b f is strictly decreasing curve below the y-axis
4a f is concave upward curve is increasing
4b f is concave downward curve is decreasing
5 point of inflexion at x = a maximum or minimum point at x = a

For most cases, we can deduce the graph of y = f/(z) by using points (1) to (3) only.

Points (4) and (5) are usually for checking.

16.5 Tangents and Normals

Let P(k, f(k)) be a point on the graph of y = f(z).

Y

tangent
—— normal

Figure 16.2

The gradient of the tangent to the curve at P is f’(k), while the gradient of the normal
to the curve at P is —1/f’(k). This follows from the fact that the tangent and the normal
are perpendicular, hence the product of their gradients is —1.
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16.6 Optimization Problems

Many real-life situations require that some quantity be minimized (e.g. cost of manufac-
ture) or maximized (e.g. profit on sales). We can use differentiation to solve many of these
problems.

Recipe 16.6.1. Suppose we have a dependent variable y that we wish to maximize. We
first express y in terms of a single independent variable, say z. We then differentiate
y with respect to x and solve for stationary points. Lastly, we determine the nature of
the stationary points to obtain the maximum point.

Example 16.6.2. Suppose we wish to enclose the largest rectangular area with only 20
metres of fence. Let x m and y m be the length and width of the rectangular area. The
perimeter of the rectangular area is

20 +y) =20 = y=10—=z.
We can hence express the area of the rectangular area A solely in terms of x:
A=xzy=2x(10—-1z) = —2* + 10z.
Differentiating A with respect to x, we see that

da 2z + 10
— =2z .
dx
There is hence a stationary point at x = 5. By the second derivative test, this is a

maximum point. Thus, z = y = 5 gives the largest rectangular area.

16.7 Connected Rates of Change

dy/dx measures the instantaneous rate of change of y with respect to x. If ¢ represents
time, then dy/dt represents the rate of change of the variable y with respect to time ¢. At
the same instant, the rates of change can be connected using the chain rule:

dy dydx

dt  dx dt’

Sample Problem 16.7.1. An oil spill spreads on the surface of the ocean, forming a
circular shape. The radius of the oil spill 7 is increasing at a rate of dr/dt = 0.5 m/min.
At what rate is the area of the oil spill increasing when the radius is 10 m?

Solution. Let A be the area of the oil spill. Note that A = 7r?. Differentiating with
respect to r, we get dA/dr = 27r. Hence, by the chain rule,

dA dAdr
Pl v (27r)(0.5) = 7r.

Thus, when the radius is 10 m, the area of the oil spill is increasing at a rate of 107 m/min.

O
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17 Maclaurin Series

Definition 17.0.1. A power series is an infinite series of the form

o
Zan(x—c)”:a0+a1(x—c)+a2(a:—c)2+...,
n=0

where a,, is the constant coefficient of the nth term and c¢ is the centre of the power
series.

Under certain conditions, a function f(z) can be expressed as a power series. This
makes certain operations, such as integration, easier to perform. For instance, the integral
J ze® dx is non-elementary. However, we can approximate it by replacing ze” with its
power series and integrating a polynomial instead.

In this chapter, we will learn how to determine the power series of a given function
f(x) with centre ¢ = 0 by using differentiation. This particular power series is called the
Maclaurin series.

17.1 Deriving the Maclaurin Series

Suppose we can express a function f(x) as a power series with centre ¢ = 0. That is, we
wish to find constant coefficients such that

0o
f(:c):Zanx":a0+a1x+agx2+.... (1)
n=0
Notice that we can obtain ag right away: substituting = 0 into (1) gives
£(0) = ag + a1(0) + a2(0)* + - - = ap.
Now, observe that if we differentiate (1), we get
f'(z) = a1 + 2092 + 3azx® + .. .. (2)
Once again, we can obtain a; using the same trick: substituting = 0 into (2) yields
f'(0) = a1 + 2a2(0) + 3a3(0)> + - -- = ay.

If we continue this process of differentiating and substituting = 0 into the resulting
formula, we can obtain any coefficient we so desire. In general,

FO0) = o). Q
However, by repeatedly applying the power rule, we clearly have
dn dnfl 1 dnf2 9
e = e = (1) nn=1)(n—-2)...(3)2)(1) =n
Thus, a simple rearrangement of (3) gives
(n)
L)
n!

We thus arrive at the formula for the Maclaurin series of f(z):
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Definition 17.1.1. The Maclaurin series of f(x) is given by

F1(0) 5 fP0) 4
xr + 9] x° + 30 o 4.,

> f(n)
ry =3 0 g0y 4 p10)
n=0 ’

There are a few caveats, though:

e The Maclaurin series of f(z) can only be found if f(™(0) exists for all values of
n. For example, f(x) = Inx cannot be expressed as a Maclaurin series because
£(0) =1n0 is undefined.

e The Maclaurin series may converge to f(x) for only a specific range of values of x.
This range is called the validity range.

17.2 Binomial Series
Proposition 17.2.1 (Binomial Series Expansion). Let n € Q \ Z*. Then

(I1+x)" = Zn(n— 1)(n—213!...(n_k+1)xk,
k=0

with validity range |z| < 1.

Proof. Consider f(z) = (1 + x)", where n € Q \ Z*. By repeatedly differentiating f(x),
it is not too hard to see that

fO@) =nn—-1)n-2)...(n—k+1) (1 +2z)"*

Hence,
fBO) =nn-1)n-2)...(n—k+1).

Substituting this into the formula for the Maclaurin series, we have

fz) = Zn(n— 1)(n—2k):!...(n—k+1)xk'

k=0

We now consider the range of validity. If |z| > 1, then 2* diverges to oo as k — oo.
Meanwhile, if |z| < 1, then zj converges to 0 as k — oo. Hence, the range of validity is

lz] < 1. O
Note that the binomial theorem is similar to the above result: taking n € Z™, we see
that
nin—1)(n-2)...n—k+1) [(}) k<n,
k! 0 k>n,
whence

“nn—Dn-2)...n—k+1 " /n
SO SLILELICEC ISV ESI P Y P

k=0 ’ k=0
which is exactly the binomial theorem. The only difference between the two results is that
the range of validity is R when n is a positive integer. This is because the series is finite
(all terms k > n vanish), hence it will always converge.
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17.3 Methods to Find Maclaurin Series
17.3.1 Standard Maclaurin Series

Using repeated differentiation, we can derive the following standard Maclaurin series.

’ f(x) Standard series Validity range
= ~1(n—-2)...(n—k+1
(RS SEA L (LS R UELAR P
= !
€ kz o all x
=0
et -1 k.2k+1
sin Z ((2]{:)_{:_61)' all z (in radians)
k=0 )
& -1 k .2k
cos T Z ((Z)k:):f all z (in radians)
k=0 ’
X 1\k+1 .k
In(1+z) Z(l)ix -1<z<1
r
k=0

We can use these standard series to find the Maclaurin series of their composite func-
tions.

Example 17.3.1 (Standard Maclaurin Series). Suppose we wish to find the first three
terms of the Maclaurin series of e” (1 + sin 2x). Using the above standard series, we see

that
2

ex:1+x+£+---, and

2 1+sin2z2=1+2x+---.

Hence,
72
e® (1 +sin2z) = <1+x+2+--.> (1+42x+---)

2
:(1+2$)+($+2$2)+ (g) +---:1+3x+gx2+--- .
17.3.2 Repeated Implicit Differentiation

For complicated functions, it is more efficient to repeatedly implicitly differentiate and
substitute = 0 to find the values of y/(0), y”(0), etc.

Example 17.3.2 (Repeated Implicit Differentiation). Suppose we wish to find the first
three terms of the Maclaurin series of y = In(1 + cosx). Rewriting, we get e/ = 1+cosz.
Implicitly differentiating repeatedly with respect to x,

!, 1

e¥y = —sine = &Y [(y')2 + y"] = —cosz = &Y [(y')3 + 39y + y'"} =sinx
— ¥ [(y')4 +3 (") 46 ()" + 4y + y(4)] = cosz.
Evaluating the above at x = 0, we get

y(0) =2, ¢ (0)=0, y"(0)=-
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Thus,

-1/2 5, —1/4 4 _ Lo 1 4
T + T +---—1n2—1:1: ~96¢ + -

In(1+cosz) =In2+

17.4 Approximations using Maclaurin series

Maclaurin series can be used to approximate a function f(x) near xz = 0.

Example 17.4.1 (Approximating Integrals). Suppose we wish to approximate

0.5
/ In(1 4+ cosx) dz.
0

Doing so analytically is very hard, so we can approximate it using the Maclaurin series

of In(1 + cosx), which we previously found to be In2 — i:cQ — %x‘l + ---. Integrating

this expression over the interval [0,0.5], we get

0.5 0.5 1 1
/ In(1 + cosz) dw ~ / <ln2 — g% - x4) dz = 0.336092,
0 0 4 96

which is close to the actual value of 0.336091.

Example 17.4.2 (Approximating Constants). For small z,

73

sine ~ 1 — —

3

Since sin(w/4) = 1/4/2, the numerical value of 1/v/2 can be approximated by substitut-
ing x = 7/4 into the above equation:

1

= 0.70465.

This is close to the actual value of 1/\@ ~ (0.70711.

To improve the approximation, we can
e choose an x-value closer to 0;

e use more terms of the series.

Example 17.4.3 (Improving Approximations). Continuing on from the previous example,
we note that sin(37/4) is also equal to 1/v/2. If we substitute = 37/4 into sinz ~
r — 2%/3), we get

1 . 3m 3w (3n/4)°

\/Q Sin 4 1

which is a worse approximation than if we had used z = /4. This is because |r/4| <
|37 /4].

= 0.17607,
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17.5 Small Angle Approximation
For = near zero, we can approximate trigonometric functions with just the first few terms
of their respective Maclaurin series:

2
sinr ~ x, cos:pkﬁl—?, tanx ~ .



120

18 Integration

18.1 Indefinite Integration

In the previous chapters, we learnt about differentiation, which can be thought as finding
the derivative f’(z) from a function f(x). Reversing this, we define integration as the
process of finding the function f(x) from its derivative f’(z). Simply put, integration
“undoes” differentiation and vice versa.

18.1.1 Notation and Terminology
Definition 18.1.1. We write the indefinite integral with respect to x of a function f(x)

N [ e

Let the derivative of F'(z) be f(z), and let ¢ be an arbitrary constant. Since the
derivative of a constant is zero, the function F'(x)+C will always have the same derivative:
f(z). Thus, when we integrate f(z), we don’t get back a single function F'(x). Instead,
we get back a class of functions of the form F'(z)+ C. We call F(z) the primitive of f(x),
and c the constant of integration.

With our notation, we can write down the notion of integration “undoing” differentiation
mathematically:

Here, f(x) is called the integrand.

/;x[f(x)] do = f(x) + C, % [/f(w)dx] = f(=).

18.1.2 Basic Rules

Fact 18.1.2 (Properties of Indefinite Integrals). Let f(z) and g(z) be any two functions,
and let £ be a constant.

e (linearity) [[f(z)+ g(x)] dz = [ f(z)dz + [ g(x)d=.
o [kf(x)dx =k [ f(z)da.

18.2 Definite Integration

Definition 18.2.1. Suppose f is a continuous function defined on the interval [a, b] and
[ f(z)dz = F(z) + C. Then, the definite integral of f(z) from a to b with respect to
x is denoted by

b
[ @) o= [F@): = FO) - Fla),
a
We call a the lower limit and b the upper limit of the integral.

Note that the indefinite integral [ f(z)dz is a function in z, while the definite integral

fabf(ac) dz is a numerical value. Also note that x is a dummy variable as it does not
appear in the final expression of the definite integral; it can be replaced by any symbol.
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Fact 18.2.2 (Properties of Definite Integrals). Let f(z) and g(z) be any two functions.
Let k and c be constants.

o (linearity) [7[f(z) + g(z)] dz = [” f(x)dz + [ g(x) da.
o f;kf(a:) dz = kfff(aj) dz.
o [Mf(x)de=[°f(z)dx+ [° f(z)da.

Note that from the last property, we can deduce the following properties:

| rwar =0, ana /ff(x) do=- [ fo) e

18.3 Integration Techniques

18.3.1 Systematic Integration
Proposition 18.3.1 (Integrals of Standard Functions).

In+1
/a;"da:: +C, (n#—1)
1
/dlen]azH—C’,
x

/exdx:e””—FC.

Proposition 18.3.2 (Integrals of Trigonometric Functions).

/sinxdx:—cosx—l—c, /cos:nda::sinaj+0,

/secxdx = —In|secz — tanz| + C, /cscxdaz =In|cscx — cot x| + C,

/tanxdx-—ln\cosx\ﬁ—C, /cotxdx—ln]sinxl—i—C.
Equivalently,

/secxdx:ln\secm—i—tan:v] and /cscxdx:—ln\cscx—i—cotx].

Products of trigonometric functions can be easily integrated using the following identi-
ties:

rP-Q P+d

S )

P pP—
sin P 4+ sin Q = 2sin +Qcos @ sin P —sin @ = 2sin

2 2 7 2 2
P P— P — P
cos P + cos Q = 2 cos —;QCOS 2Q, cos P — cos ) = 2sin QQsin ;Q.

Powers of trigonometric functions can also be integrated using the following identities:

. 9 1 —cos2z 9 1+ cos2x
sin x:T, cos x:#,
.3 3sinx — sin 3¢ 3 3cosx + cos 3z
sin x:f, cos x:T
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Proposition 18.3.3 (Algebraic Fractions).

1 de — . x c
ﬁ w—arcslna—F

1 1
/dx:arctanx—i—c
a? + x2 a a

1 1
[ mir=g,

18.3.2 Integration by Substitution

a—+x LC

a—T

If the given integrand is not in one of the standard forms, it may be possible to reduce
it to a standard form by a change of variable. This method is called integration by
substitution, and it “undoes the chain rule”.

Proposition 18.3.4 (Integration by Substitution). Let F' = f. Then
[ Ho@g' @ ds = Fg(a) + C.

Proof. Recall that by the chain rule,

% [F(g(x))] = F'(g(x))g'(x) = f(9(2))g (x).

Integrating both sides with respect to x,

[ Hatang @) e = o) +

A simpler way to interpret the above formula is as follows:

Recipe 18.3.5 (Integration by Substitution). Given an integral [ f(z)dz and a substitu-
tion x = g(u), convert all instances of = in terms of u. This includes replacing dz with
du, which can be found by “splitting” dx/du:

dx ,

T =) = do=g'u)du

If the integral is definite, the bounds should also be converted to their corresponding
u values. Once the integral has been evaluated, all instances of u should be converted
back to x.

Example 18.3.6 (Definite Integration by Substitution). Consider the definite integral

/ 2 :

——duz.
2/v3 xVa? —1
Under the substitution x = 1/u, we have

dx 1 1



18.3 Integration Techniques 123

When z = 2/v/3, u = v/3/2. When x = 2, u = 1/2. Thus, the integral becomes

1/2 1 V3/2 1
/ u2du:/ ——du= [arcsinu]ﬁmzl
12 )y i 6

Example 18.3.7 (Indefinite Integration by Substitution). Consider the indefinite integral
1
———dux.
/ rVz? -1
Following the same substitution as above (z = 1/u), we get

. .1
u = arcsinu + C = arcsin — + C.
T

1 1
e dr= [ 24
/x\/xz—l /\/1—u2

18.3.3 Integration by Parts

Just like integration by substitution “undoes” the chain rule, integration by parts “un-
does” the product rule.

Proposition 18.3.8 (Integration by Parts). Let u and v be functions of z. Then

/uv’da: =uv — /vu’dx.
b b
/ wv' do = [uv]z —/ vu' dz.

(uwv) = uv' + v'v.

For definite integrals,

Proof. By the product rule,

Integrating both sides and rearranging yields the desired result. O

The statement is also sometimes written as

/udvzuv—/vdu.

As we just learnt in the previous section, the two forms are perfectly equivalent under
substitution (simply substitute  for u and v in the integrands).

Care must be exercised in the choice of the factor u. The aim is to ensure that u/v on
the RHS is easier to integrate than uv’. To choose u, we can use the following guideline:

Recipe 18.3.9 (LIATE). In decreasing order of suitability, u should be
e Logarithmic
e Inverse trigonometric
e Algebraic

e Trigonometric

Exponential
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Example 18.3.10 (Integration by Parts). Consider the integral [ Inz dz. Picking v = Inz
and v/ = 1, we get

/lnxdx:uv—/u’vdx:(1nx)(x)—/<1> (x)de = zlnz —z + C.

X

The astute reader would have noticed that we actually dropped an arbitrary constant
when integrating v in the above example. We picked v' = 1 but only got v = x, instead
of the expected v = x + C. However, including the arbitrary constant does not matter: if
we replace v with v + C into the integration by parts formula, we get

/udv:u(v—l—C)—/(v—i—C)du:uv—i-Cu— (/vdu—i—Cu) :uv—/vdu,

which is what we would have got had we not included the arbitrary constant C'.
However, this is not to say that we should always drop the arbitrary constant. In certain

situations, including it might actually prove more useful, as demonstrated in the following

example.

Example 18.3.11 (Including Arbitrary Constant). Consider the integral [In(z + 1) dz.

Picking u = In(z 4+ 1) and v" = 1 (which implies v = x + C'), we get

C
T+ A

/ln(ac—i—l)dx:uv—/u'vdx:(:U—I—C)ln(x—l—l)—/x+1 .

Here, a convenient choice for C' would be 1, as the integral on the RHS would simplify
to f 1dx, which we can easily integrate. Thus,

/ln(x—i-l) dz=(z+1)In(zx+1)—z+C.
If evaluating an integral requires doing multiple integration by parts in succession, the

DI method is more convenient.
Recipe 18.3.12 (DI Method). Given the integral [ wvdz, construct the following table:

D I
+ u v
— u/ fU(fl)
+ »(—2)
:l: U(n) ’U(_n)

In other words, keep differentiating the middle column (u) and keep integrating the right
column (v), while alternating the sign in the left column. This sign is “attached” to the
u terms.

Next, draw diagonal arrows from the middle column to the right column one row
below. For instance, u is arrowed to v~ while «' is arrowed to v(-2 and so on.
Multiply the terms connected by an arrow, keeping in mind the sign of the u terms. Add
these terms up, and add the integral of the product of the last row (i.e. [ u(My(=n) dx).

Essentially, the DI method allows us to easily compute the extended integration by parts
formula, which states that

/ wwdz = uoD — w2 4D _ Oy 44 / NONSORM

where the sign of the integral depends on the parity of n.
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Example 18.3.13 (DI Method). Consider the integral [ 23sinzdz. Taking v = 23 and
v = sinx, we construct the DI table:

D I
+ 23 sin
— 322 —CcoszT
+ 6z —sinz
— 6 cos T

Thus,

/x?’ sinzdz = 2%(— cosz) — 32%(—sinz) 4 6z(cos ) — 6/cosxdx

= —g3cosz + 3x%sinx + 6z cosx — 6sinz + C.
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19 Applications of Integration

19.1 Area

19.1.1 The Riemann Sum and Integral

Suppose we wish to find exact area bounded by the graph of y = f(x), the z-axis and the
lines = a and x = b, where a < b and f(x) >0 for a < z < b.

We can approximate this area by drawing n rectangles of equal width, as shown in the
diagram below:

y ] y = f(x)

Figure 19.1

Observe that the kth rectangle has width Az = (b — a)/n and height f(a + kAx). The
total area of the rectangles is hence

Z fla+ kAz)Ax.
k=1

This is known as the Riemann sum of f over [a, b].

As the number of rectangles approaches oo, the width Ax of the rectangles approaches
0, and the total area of rectangles approaches the actual area under the curve. In other
words,

n
Area = Alglﬂrgo Z fla+ kAz)Az.
k=1
In the limit, the Riemann sum becomes the Riemann integral, which is conventionally

written as the definite integral
b
a

Note that this is where the integral and differential sign comes from: in the limit, Y — [
and Az — dz.
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19.1.2 Definite Integral as the Area under a Curve

Proposition 19.1.1 (Area between a Curve and the z-axis). Let A denote the area bounded
by the curve of y = f(z), the z-axis and the lines x = a and = b. Then

b b
AreaA:/ |y dx:/ |f(x)] dz.

Proposition 19.1.2 (Area between Two Curves). The area A between two curves y = f(x)
and y = g(z) is given by

b
Area A = / |f(x) — g(x)| dz.

Similar results hold when integrating with respect to the y-axis instead.

Proposition 19.1.3 (Area between a Parametric Curve and the z-axis). Let C be the curve
with parametric equations x = f(t) and y = g(¢). Then the area A bounded between C'

and the z-axis is
b t2 dx
Aread — / iyl da = / 9(6) S
a t1

where t; and t9 are the values of ¢ when x = a and b respectively.

The formula can be applied similarly when we wish to find the area bounded between
C and the y-axis.

Proposition 19.1.4 (Area Enclosed by Polar Curve). Let r = f(0) be a polar curve, and
let A be the area of the region bounded by a segment of the curve and two half-lines
# =« and 0 = 3. Then

1 [P
Area A = 2/ r2 de.

Proof. Divide the enclosed region A into n sectors with the same interior angle Af. Con-
sider that a typical sector of A can be approximated by a sector of a circle. Thus, the
area of that sector is approximately

AA ~ %r%e.

Summing up these approximations, we see that
A= g 1rQAH
0=a 2 .
This approximation will improve as the number of sectors increases, i.e. A6 — 0. Hence,

=1 1[5
= 1 —r?Af == 2 46.
Area A Aggo;zr AG 2/04 r*d6
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19.2 Volume

Definition 19.2.1. If an enclosed region is rotated about a straight line, the three-
dimensional object formed is called a solid of revolution, and its volume is a volume of
revolution.

The line about which rotation takes place is always an axis of symmetry for the solid of
revolution, and any cross-section of the solid which is perpendicular to the axis of rotation
is circular.

19.2.1 Disc Method

Consider the solid of revolution formed when the region bounded between y = f(x), the
z-axis and the lines ©* = a and = = b is rotated about the x-axis.

Y

P(z,y)

Figure 19.2

To calculate the volume of this solid, we can cut it into thin slices (or discs) of thickness
Az. Each disc is approximately a cylinder and the approximate volume of the solid can
be found by summing the volumes of these cylinders. The smaller Ax is, the better the
approximation.

Consider a typical disc formed by a one cut through the point P(x,y) and the other cut
distant Ax from the first. The volume of this disc is approximately

AV ~ 1yl Ax.
Summing over all discs,
b
V= Z ny? Az
r=a

As more cuts are made, Az — 0, whence

b b
V=l Az = 2dz.
dm, St = [y
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Proposition 19.2.2 (Disc Method). When the region bound by the curve y = f(z), the
zr-axis and the lines x = a and = = b is rotated 27 radians about the z-axis, the volume
of the solid of revolution generated is given by

V:w/aby2d$:7r/ab[f(:v)]2 dz.

Proposition 19.2.3 (Disc Method: Volume Enclosed by Two Curves). When the region
enclosed by two curves y = f(x) and y = g(x) is rotated 27 radians about the x-axis,
the volume of the solid of revolution generated is given by

b b b
Ver [ (@ de-n [Clg@P do=n [ (5@ - o)) o
Similar results hold when the axis of rotation is the y-axis.

19.2.2 Shell Method

Suppose a region R is rotated about the y-axis. Consider a typical vertical strip in the
region R with height y and thickness Ax. It will form a cylindrical shell with inner radius
x, outer radius x + Az and height y when rotated about the y-axis. Hence, it has volume

AV = 7(z + Az)?y — na’y = 2nayAz 4+ 1Az%y ~ 2rzyAz.,

Hence, the volume of revolution is approximately

b
Vx Z 2nxyAz.

r=a

As more strips are considered, Az — 0, whence

b
V = lim :277/ xydz.
Ax—0 a

Proposition 19.2.4 (Shell Method). When the region bound by the curve y = f(z), the
x-axis and the lines = a and = = b is rotated 27 radians about the y-axis, the volume
of the solid of revolution is given by

b
V= 27r/ xydez.

A similar result holds when the axis of rotation is the z-axis.

19.3 Arc Length

19.3.1 Parametric Form

Proposition 19.3.1 (Arc Length of Parametric Curve). Let A(¢1) and B(t2) be points the
parametric curve with equations = f(t), y = g(t), t € [t1,t2]. Then

a6 - [CViror s wora- [ \/ (&Y 4 (&) a
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Proof. Let s = AB be the arc length of AB. Let P and Q be points on AB with parameters
t and t + At respectively. By the Pythagorean theorem, the straight line PQ is given by

PQ* = [f(t+ At) = f(O] + [g(t + At) — g(1)].
Dividing both sides by (At)2,

(59)" - [fersn-10)* , foltr80 ate]"

As At — 0, we can write the RHS in terms of f’(t) and ¢'(t):

2
i, (57) = o)+ 50).

1
At—0

Rearranging,

Jim PQ = /170 + g ()P A

However, observe that as At — 0, the straight line PQ) approximates the arc length PQ
(i.e. As) better and better. Hence,

As =PQ = \/If() + [g ()AL

Integrating from A to B, we thus obtain

s=AB = : \/[f’(t)]2 +[g' (D) dt = /: \/((jlf)z + @Z)Q dt.

19.3.2 Cartesian Form

Taking t = z or t = y, we get the following formulas involving dy/dz and dz/dy, which is
suitable for Cartesian curves.

Proposition 19.3.2 (Arc Length of Cartesian Curve). Let A(x1,y1) and B(x2, y2) be points
on the curve y = f(z). The arc length AB is given by

[ dy\? v [ /da?
AB:/ ,/1+(y> dx:/ ,/<x> +1dy.
- dz " dy

19.3.3 Polar Form
Proposition 19.3.3. Let A(r1,61) and B(ra,62) be points on the polar curve r = f(6).
Then the arc length AB is given by

— 02 dr\?
AB = 2 — ) df
oy (o)
Proof. Recall that x = rcosf and y = rsin . Hence,

dzx dr . dy . dr
@—COS@@—TSIHQ, @—smﬁa—i—rcos&
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It follows that

d(r cos 0)\ 2 d(rsin6) 27 9 . 9
(d@) + (d& = (cos” 6 + sin® 0)

r2+ ﬁ : *7“2—1- ﬁ i
do - do )

— 02 dz\ 2 dy 2 02 dr\?

AB = — — | df = 2 — | dé.
L) () = [ ()

Taking t = 0,

19.4 Surface Area of Revolution

Definition 19.4.1. The surface area of a solid of revolution is called the surface area of
revolution.

Proposition 19.4.2 (Surface Area of Revolution of Parametric Curve). Let A(¢1) and B(t2)
be points the parametric curve with equations z = f(t), y = g(t), t € [t1,t2]. Then the
surface area of revolution about the x-axis of arc AB is given by

t2 dz\? dy 2
aeoe [l (B) ()

Similarly, the surface area of revolution about the y-axis is given by

t2 dz\ 2 dy 2
A=2 — —= ] dt.
L) ()
Proof. Let s = AB be the arc length of AB. Let P and Q be points on AB with parameters
t and t + At respectively. Recall that

2 2
As:?@:\/<f§> +(f§) At.

Now consider the surface area of revolution about the z-axis of arc PQ. For small As,
the solid of revolution is approximately a disc wish radius y and width As. The surface
area of this disc can be calculated as

dz\ 2 dy 2
AA =2myAs = 2wy <dt> + <dt> At.

Integrating from A to B, we see that

t2 dz\? dy 2
A= 27r/ y\/<> + () dt.
t dt dt

A similar argument is used when the axis of rotation is the y-axis. O
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19.5 Approximating Definite Integrals

In §19.1, we saw how Riemann sums could approximate definite integrals using rectangles.
This is a blunt tool which utilizes very little information from the curve and thus will
often not give a good estimate of the definite integral for a fixed number of rectangles.

In this chapter, we will be exploring two other methods: the trapezium rule and Simp-
son’s rule, for finding the approximate value of an area under a curve. These methods
often give better approximations to the actual area as compared to using Riemann sums.
Similar to Riemann sums, these methods can be extended to estimate the value of a
definite integral.

19.5.1 Trapezium Rule

Consider the curve y = f(x) which is non-negative over the interval [a, b].

y y = f(z)

~

~
~
~
~
ES
~
P T T R

~

<
S
<
3

Q t-----=s
S
8

Q

Figure 19.3

Divide the interval [a,b] into n equal intervals (strips) with each having width h =
(b — a)/n. Then the area of the n trapeziums is given by

n

h h
Area = Zg(ykerkH) =5 o+ 20 +y2 -+ Y1) + ynl.
k=0

Recipe 19.5.1 (Trapezium Rule). The trapezium rule with (n 4 1) ordinates (or n inter-
vals) gives the approximation

2 2

b n
h h
/ fl)dz = o (e + k1) = 5 o+ 21 +v2+ - + Y1) + Ul
a k=0

where h = (b—a)/n.

Sample Problem 19.5.2. Use the trapezium rule with 4 strips to find an approximation
for

2
/ In(z + 2) dz.
0

Find the percentage error of the approximation.
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Solution. Let f(x) = In(z + 2). By the trapezium rule,

120
2 4

2
| e +2) dox 522 (100 + 2170.5)+ £+ F1L5)] + (2)

=2.15369 (5 d.p.).

One can easily verify that the integral evaluates to 2.15888 (5 d.p.). Hence, the percentage

error is

2.15888 — 2.15369
2.15888

Error in Trapezium Rule Approximation

‘ = 0.240%.

If the curve is concave upward, the secant lines lie above the curve. Hence, the trapezium

rule will give an overestimate.

Y

N

y = f()

Figure 19.4

If the curve is concave downward, the secant lines lie
trapezium rule will give an underestimate.

Y

P —

below the curve. Hence, the

y = f()

Figure 19.5
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19.5.2 Simpson’s Rule

Previously, we explored how Riemann sums approximate definite integrals using horizon-
tal lines (i.e. degree 0 polynomials). We also saw how the trapezium rule improves this
approximation by using sloped lines (i.e. degree 1 polynomials). Now, we introduce Simp-
son’s rule, which takes this a step further by using quadratics (i.e. degree 2 polynomials)
to achieve even greater accuracy in approximating definite integrals.

Consider the curve y = f(x), which is non-negative over the interval [a,b]. Suppose
the area represented by ff f(x)dx is divided by the ordinates yo, y1, y2 into two strips
each of width h as shown below. A particular parabola can be found passing through the
three points on the curve with ordinates yg, y1, y2. Simpson’s rule uses the area under the
parabola to approximate the area represented by f: f(z)dz.

To deduce the area under the parabola, we consider the case where y = f(x) is translated
21 units to the left, i.e. the line x = x; is now the y-axis.

T T y=fz+m1)
e E A ---y=A2?>+ Bz +C
. :
- / EyO Y1 EZ/Q T
" —h o h
Figure 19.6

Under this translation,

/abf(:c)da::/};f(a:+:z:1)dm.

This area will now be approximated by a parabola y = g(z) = Ax? + Bz + C, where A4,
B and C are constants. The area under the parabola is given by

h A, B " h
/ (A2’ + Bz + C) da = [33:3 + 53:2 + Cm} =3 (2AR* +6C) .
—h —h

Now, observe that the parabola y = g(x) intersects the curve at (—h,y1), (0,y2) and
(h,ys3). Hence,

g(=h) = AR* = Bh+ C =yy, ¢(0)=C =y, g(h)=AR*+ Bh+C =y,.
Thus,

h h h
3 (241 +6C) = 2 [(Ah? = Bh + C) +4C + (A + Bh + C)] = 2 (yo + 441 + 12)-
We hence arrive at Simpson’s rule with 2 strips:

b
h
/ f(z)dz =~ g(yo +4y1 + y2).

We can extend Simpson’s rule to cover any even number of strips. In general,
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Recipe 19.5.3 (Simpson’s Rule). Simpson’s rule with 2n strips (or 2n+1 ordinates) gives
the approximation

b n
h
dz ~ — 4
/af(l‘) T kzzog(y%Jr Yok+1 + Y2k+2)

h
=3 (Yo +4y1 + 2y2 + 4ys + 2ys + - - + 2y2n—2 + 4Y2n—1 + Y2n] -

Sample Problem 19.5.4. Use Simpson’s rule with 4 strips to find an approximation for

2
/ In(z + 2) da.
0
Find the percentage error of the approximation.

Solution. Let f(x) =In(z + 2). By the trapezium rule,

2 1 2-0
/0 In(z+2) de ~ - == [f(O) FAF(0.5) + 2F(1) + 4f(1.5) + f(2)]
=2.

15881 (5 d.p.).

As previously mentioned in Sample Problem 19.5.2 the actual value of the integral is
2.15888 (5 d.p.). Hence, the percentage error is

’2.15888 — 2.15881

= 0.00324%.
2.15888 ' 0.00324%

O
In the previous example, the trapezium rule gave an estimate of 2.15369 (5 d.p.), which
has an error of 0.240%. In the case of Simpson’s rule, the error is 0.00324%, vastly better
than that of the trapezium rule’s.
In general, Simpson’s rule gives a better approximation than the trapezium rule as the
quadratics used account for the concavity of the curve.
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20 Functions of Two Variables

In Chapter §3, we learnt that functions can be described as a machine that takes in an
input and produces an output according to a rule. Some examples of functions that we
have encountered thus fare are f(z) = 22, g(z) = cosz, etc. These are functions of one
variable, also called univariate functions.

However, in real life, there are functions that depend on more than one variable (i.e. the
domain is not a subset of the real numbers). For instance, the cost (output) of a taxi ride
may depend on variables (input) like time, distance travelled, traffic conditions, demand,
etc. In this case, the function is called a multivariate function. The input with many
variables can be expressed as a vector.

Similarly, the codomain of a function does not necessarily need to be a subset of the
real numbers. Consider the following function f(s,t):

s+t

fls,t) =1 t
2s—1

Here, f(s,t) takes in two inputs (s and t), and spits out three outputs (s+t, t and 2s —1).
For the rest of this chapter, we will only study scalar-valued functions of two variables,
of the form

= f(x,y),

which we can visualize in 3D space. We will see how the ideas from univariate functions
can be extended to two variable functions and how concepts of vectors can be useful in
studying these functions.

20.1 Functions of Two Variables and Surfaces

20.1.1 Functions of Two Variables

Definition 20.1.1. A (scalar) function of two variables, f, is a rule that assigns each
ordered pair of real numbers (x,y) in its domain to a unique real number.

Recall that the domain of a function g(x) is a subset of the real number line, i.e. Dy, C R.
Generalizing this to scalar functions of two variables, the domain of f is a subset of the
zy-plane, denoted R x R or R%. Mathematically,

Dy C R

If the domain of f(x,y) is not well specified, then we will take its domain to be the set
of all pairs (z,y) € R? for which the given expression is a well-defined real number.

Example 20.1.2 (Domain of f(z,y)). Let f(z,y) = ln(y2 — :1;) For f(x,y) to be well-
defined, the argument of the natural logarithm must be positive. That is, we require
y?> — 2 > 0. The domain of f is hence

Dy ={(z,y) eR* | y* —2 > 0}.
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20.1.2 Surfaces

Recall that we defined the graph of a function g(z) to be the collection of all points (x,y)
in the zy-plane such that the values x and y satisfy y = g(x). We can extend this notion
to functions of two variables:

Definition 20.1.3. The graph of z = f(z,y), or surface with equation z = f(x,y), is
the collection of all points (z,y, z) in 3D Cartesian space such that the values z, y and
z satisfy z = f(x,y).

Visualizing and illustrating a 3D surface can be challenging, especially as surfaces be-
come complicated. We can study the surface by fixing or changing the variables one at a
time. This is the idea behind traces, or level curves.

Definition 20.1.4. Horizontal traces (or level curves) are the resulting curves when we

intersect the surface z = f(z,y) with horizontal planes.

This is like fixing the value of z, giving the 2D graph of the equation f(x,y) = ¢ for
some constant c.

Definition 20.1.5. Vertical traces are the resulting curves when we intersect the surface
z = f(x,y) with vertical planes.
This is like fixing the value of  or y (or a combination of both, e.g. y = x).

Definition 20.1.6. A contour plot of z = f(z,y) is a graph of numerous horizontal
traces f(z,y) = c for representative values of ¢ (usually spaced-out values).

We may identify a surface by examining these traces to visualize graphs of two variables.

Example 20.1.7 (Graph of z = f(x,y)). Let f(z,y) = In(2? + y?). Consider the hori-
zontal traces of z = f(x,y). Setting z = ¢, we get

In(z® +y°) = ¢ = 2° +y* =¢".

Hence, the horizontal trace of z = f(x,y) at z = ¢ corresponds to a circle centred at the
origin with radius e“. Thus, the graph of z = In (a:2 + y2) looks like

Figure 20.1

20.1.3 Cylinders and Quadric Surfaces

Exploring the traces of a surface allows us to visualize the shape of the surface. We can
now look at some of the common surfaces, such as cylinders and quadric surfaces.
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Definition 20.1.8. A surface is a cylinder if there is a plane P such that all planes
parallel to P intersect the surface in the same curve (when viewed in 2D).

Examples of cylinders include the graphs of 2 4+ 22 = 1 and z = y?, as shown below:

\\}l

i

S L
V‘A «lﬂ‘“‘
“.M\\,‘.)i;ll

Figure 20.2: Graph of 22 4+ 22 = 1. Figure 20.3: Graph of z = 3.

Observe that 22 4 22 = 1 is a special case of a function of two variables z = f(z,y) that
can be reduced to z = f(z) since z is independent of y. Similarly, z = y? can be reduced
to z = f(y) since z is independent of z. Indeed, if a function z = f(z,y) can be reduced
to a univariate function, then its surface must be cylindrical.

Another common surface is a quadric surface, which is a 3D generalization of 2D conic
sections. Recall that a conic section in 2D has the general form

Az? + Bry+ Cy* + Dz + Ey + F = 0.

We can generalize this into 3D to get a quadric surface.

Definition 20.1.9. A quadric surface has the form
Az? + By? + C22 + Doy + Eyz + Fzax + Go + Hy + Iz + J,
where A, B,...,J € R and at least one of A, B and C is non-zero.

An example of a quadric surface is the ellipsoid, which is a generalization of an ellipse
and has equation

$2 y2 22

¥+—2+c—2:1.

b

Figure 20.4: An ellipsoid.

When a = b = c=r, we get the equation

?+yP 4+ =0
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This represents a sphere centred at the origin with radius . Observe the similarity between
the equation of a circle (22 + y? = 7?) and the equation of a sphere.

20.2 Partial Derivatives
Recall that for a function f of one variable z, we defined the derivative function as

Fe) -t T AT S )

a Az—0 Ax

The usual notations are % or % if y = f(x).

The notation (% gives some insight into how derivatives are derived. We can view

e “dx” as a small change in z, and

e “dy” as the change in y as a result of the small change in z.

Hence, the notation % actually represents the “rise over run”, which is a measure of

gradient at the point (z,y) on the graph.

We can extend this notion to functions of two variables z = f(z,y). There are now two
variables that will affect the change in the value of f. We can choose to vary x slightly
(Ax) or vary y slightly Ay and see how f changes (Af). This gives us some notion of a
derivative. However, because we are only varying one independent variable at a time, we
are only differentiating the function f(z,y) “partially”. We hence call these derivatives
the partial derivatives of f.

Definition 20.2.1. The (first-order) partial derivatives of f(x,y) are the functions f,
and f, defined by

folz,y) = lim Ay :
Ay) —
fole.) = Jim, fla,y+ Ay; flay)

In Liebniz notation,

0 0
fl(xvy) = Fia fy(«x,y) = ag

Recipe 20.2.2 (Partial Differentiation). To partially differentiate a function f(x,y) with
respect to z, we differentiate f(z,y) as we normally would, treating y as a constant.
Similarly, if we are partially differentiating with respect to y, we treat x as a constant.

Sample Problem 20.2.3. Given f(z,y) = cos(zy + y?), find f(z,y).

Solution. To partially differentiate it with respect to x, we treat y as a constant. Using
the chain rule,

0
[azy + yQ} .

folz,y) = — sin(wy + y2) I

Since y is a constant,

0 0
3. @Y) =y, -y =0
Hence,

folz,y) = —ysin(zy + y°) .
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20.2.1 Geometric Interpretation

Consider a surface S given by the equation z = f(z,y). Let P(a,b,c) be a point on S.

(a, b, 0)

Figure 20.5: Partial derivatives as slopes of tangent lines.'

The curve C; is the graph of the function g(z) = f(x,b), which is the intersection
curve of the surface and the vertical plane y = b. The slope of its tangent 77 at P is

g'(x) = fe(a,b).
Similarly, the curve Cy is the graph of the function h(y) = f(a,y), which is the inter-
section curve of the surface and the vertical plane x = a. The slope of its tangent T at P

is h/(y) - fy(% b)
We can hence visualize partial derivatives at the point P on S as slopes to the tangent
lines T7 and T5 at that point.

20.2.2 Gradient

To represent the “full” derivative of a function, we simply collect its partial derivatives.

Definition 20.2.4. The gradient of a function f(x,y), denoted as Vf, is the collection
of all its partial derivatives into a vector.

fm)
Vf= .
1= (5
Example 20.2.5 (Gradient). Let f(x,y) = xy? + 3. Then its gradient is
fx) <y2 + 3x2)
Vf= = .
f <fy 2xy

20.2.3 Second Partial Derivatives

Similar to second-order derivatives for univariate functions, we can also consider the partial
derivatives of partial derivatives:

(f2)ar (fo)ys (fy)er  (fy)y-

'Source: https://www2.victoriacollege.edu/~myosko/m2415sec143notes(7) .pdf
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If z= f(x,y), we use the following notation for the second partial derivatives:

(o=t = 2L = 22
Uy = foy = =
(fy)e = Fya = G(fgy - 8(12;7;’
(fy)y = fyy = gzg - g;

Thus, the notation f,, means that we first partially differentiate with respect to x and
then with respect to y. Notice that the order the variables appear in the denominator is
reversed when using Liebniz notation, similar to the idea of composite functions:

0 [(of\ _ O*f
(fe)y = dy <8w> © Oyox’

Example 20.2.6 (Second Partial Derivatives). Consider the function f(x,y) = zy?+ 23+
Iny. Its partial derivatives are

1
fo=y*+32% f,=2zy+ "

and its second partial derivatives are

1
faz = 6z, f:cy:2ya fyx:2ya fyyZQx_?‘

Notice in the above example that f;, = fy.. This symmetry of second partial derivatives
is known as Clairaut’s theorem.

Theorem 20.2.7 (Clairaut’s Theorem). If f;, and fy, are both continuous, then fo, = fy»

20.2.4 Multivariate Chain Rule

Recall that for a univariate function y = f(z), where the variable x is a function of ¢, i.e.

x = g(t), the chain rule states
dy dydj

dt — dzdt’
We can generalize this result to multivariate functions using partial derivatives:

Proposition 20.2.8 (Multivariate Chain Rule). Consider the function f(z,y), where x and
y are functions of ¢. Then

df 9fde _9fdy

dt ~ Oz dt +87ydt'

To see why this is morally true, we return to the definition of a partial derivative:

Az—0 Ax ’

Ay—0 Ay
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Rewriting these equations, we get

f(.%'—i—Al‘,y) =f(a:,y)+Axfx(a:,y), (1)
f(x,y+Ay):f(x,y)—i-Ayfy(ar,y), (2)

where Ax and Ay should be thought of as infinitesimally small changes in x and y.
We now consider the quantity f(z+ Ax,y+ Ay). Applying (1) and (2) sequentially, we
get

flx+ Az, y+ Ay) = f(x,y + Ay) + Az fo(z,y + Ay)

Observe that if we partially differentiate (2) with respect to =, we get

fx(x,y + Ay) = fx(:r,y) + Ayfyx(xyy)-

Substituting this into (3) yields

[z 4+ Az,y+ Ay) = f(z,y) + Ay fy(z,y) + Az [fo(z,y) + Ay fye(z, y)]
= f(z,y) + Ayfy(z,y) + Az fo(z,y) + AzAy fye(z,y). (4)

Since Az and Ay are both infinitesimally small, the quantity AxzAy is negligible and can
be disregarded. We thus have

Af=flz+Az,y+ Ay) — f(z,y) = Axfelz,y) + Ayfy(a,y).
Dividing throughout by At and writing f;, f, in Liebniz notation, we have
Af _ofAx  OfAy
At Oz At Oy At
In the limit as At — 0, we have
Af  dx Az der Ay dy
At A A @ At e
Thus,
df _ofds 0 dy
dt  Oxdt  Oydt
]
Observe that if we had applied (2) before (1) on f(x + Az, y + Ay), we would have got

flz+Az,y+ Ay) = f(z,y) + Ayfy(z,y) + Az fo(z,y) + AzAy foy(z, y).
However, by Clairaut’s theorem, we know f;, = fy., so we would still have ended up with
(4).

20.2.5 Directional Derivative

So far, we only know how to find the instantaneous rate of change of f(x,y) in two special
cases:

e The first case is when we vary x and hold y constant, in which the partial derivative
fxz(z,y) represents the instantaneous rate of change of f(x,y).

e The second case is when we vary y and hold = constant, in which the partial derivative
fy(x,y) represents the instantaneous rate of change of f(z,y).
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We wish to construct a more general “derivative” which represents the instantaneous rate
of change of f(x,y) where x and y are both allowed to vary.

To simplify matters, we assume that x and y are changing at a constant rate. That is,
every time x increases by u,, y will increase by u,. We can represent this change with a
unit vector u along the zy-plane:

u= .
Uy

Because we are measuring the instantaneous rate of change of f(x,y) along a direction,
we call this quantity the “directional derivative”.

Definition 20.2.9. The directional derivative of f(z,y) in the direction of the unit vector
u = (uyg, uy)T is denoted Dy, f(z,y) and is defined as

Duf(z,y) = }1113% [z 4 hug,y +hhuy) — f(m’y).

We now relate the directional derivative with the gradient of f.

Proposition 20.2.10.

Duf(x7y) = Vf u = u:vfz(x7y) + uyfy(xv y)-
Proof. In §20.2.4, we derived the equation

flx+ Az, y+ Ay) — f(x,y) = Axfo(z,y) + Ay fy(x,y),

where Az and Ay are infinitesimally small. If we take (Ax, Ay)T to be in the same
direction as (ug, uy)T, ie.
<A$> = lim h <uz> ,
Ay h—0  \ Uy

f(i[f + huﬂmy + huy) - f('rvy) = hu%fx(x7y) + huyfy(xay)v

then we have

keeping in mind that we are taking the limit h — 0 on both sides. Dividing both sides
throughout by h,

o 1@+ oy + ) = f(ay)
h—0 h

= uxfz(xay) + uyfy(l‘,y)a

which was what we wanted. O

With this relation, we can prove several neat results.

Proposition 20.2.11. Suppose f is differentiable at (x9, o), and V f(xg,yo) # 0. Then
V f(z0,yo) is perpendicular to the level curve of f through (zo, yo).

Proof. Let f(x,y) = (z(t),y(t)). Note that the tangent to the level curve at (x¢,yo) has
direction vector u = (dz/dt, dy/dt)".

Let the level curve at (xg,yo) have equation f(z,y) = c. Implicitly differentiating this
with respect to t, we get

ofde  Ofdy  [(fs . de/dt\ o
v+ ayat = () (agjar) =9 u=o

Since both V f and u are non-zero vectors, they must be perpendicular to each other. [
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Proposition 20.2.12. The greatest rate of change of f occurs in the direction of Vf,
while the smallest rate of change occurs in the direction of —V f

Proof. Since u is a unit vector,
Duf=Vf-u=|Vf||u|cost = |Vf|cosb,

where 6 is the angle between V f and u. Clearly, Dy f is maximal when # = 0, in which
case u is in the same direction as Vf. Similarly, Dy f is minimal when § = 7, in which
case u is in the opposite direction as V f. 0

We say that Vf(a,b) is the direction of steepest ascent at (a,b), while —V f(a,b) is
the direction of steepest descent.

20.2.6 Implicit Differentiation

Consider the unit circle, which has equation

z? 4 y2 =72
Previously, we learnt that to find dy/dz, we can simply differentiate term by term, treating
y as a function of x and using the chain rule
d d dy

@g(y) = @g(y) g

Using our example of the unit circle, we get

dy dy Y
204+2y— =0 = — =-—=.
yda: dz T
While morally true, this approach to implicit differentiate is not entirely rigorous. For a
more formal justification, we turn to partial derivatives.
Going back to our example of the unit circle, if we move all terms to one side of the
equation, we get
2+ y2 —r?2=0.
Now, observe that the LHS is simply a function of x and y, i.e.
flay) =a®+y* =12

Hence, we can define y implicitly as a function of x that satisfies

f(z,y)=0.

If we differentiate the above equation with respect to x, by the multivariate chain rule, we
get

dz ~ Oz dzx + 87ydx N
Clearly, dz/dx = 1. Rearranging, we get

df _ofde ofdy _

dy _ _fz(x7y)
dz — fy(z,y)
Since
fz(z,y) =2z, and fy(x,y) =2y,
we get
dy 2z T
dv 2y

as expected.
More generally,
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Proposition 20.2.13 (Implicit Differentiation for Univariate Functions). If the equation

fla,y)=0
implicitly defines y as a function of z, then

% _ fao(z,y)

dz fy(z,y)’

given that fy(x,y) # 0.

We can extend this result to functions of two variables.

Proposition 20.2.14 (Implicit Differentiation for Functions of Two Variables). If the equa-

tion
f(@,y,2) =0
implicitly defines z as a function of  and y, then
0z _ fm(:r:,y,z) 0z fy(w,y, 2)

—=—-————< and —=-—F——-
8213 fz(-f;yaz) 8y f2($>yaz)>

given that f.(z,y,z) # 0.

To see this in action, consider the following sample problem:

Sample Problem 20.2.15. Find the value of 022/9x2 at (0,0, c) of the ellipsoid

Solution. Let
22 42 2
f(xayaz):?“‘bfz‘*‘cﬁ—l-

Applying the above result, we have

9z fulw,y,2)  2z/a® A x

or  fu(z,y,2) 22/ A%z

Partially differentiating with respect to x once more,
0%z 0Oz Az B c?
0x2  Or \ a?z) a2z

s
0x?

Hence,
c

=
(0,0,) a
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20.3 Approximations

In §17, we learnt that

) = £(0) + F/(0)z + f/;(!O)xQ n f<i;>!(o)

If we want to approximate f(x) for x near 0, we can truncate the Maclaurin series of
f(z). For instance, the linear approximation to x is

f(x) ~ £(0) + f'(0),

which is the tangent line at x = 0. If we want better approximations, we can simply
take more terms. For instance, if we take one more term, then we get the quadratic

F@) ~ F(O) + F(O)z+ L ”2(!0) 22,

In some sense, we can get a good approximation to f(z) around x = 0 if we can find a
simpler function which

24

approximation

e has the same value as f at z =0, and
e has the same derivatives as f at x = 0 (up to the order of derivatives we prefer).

The same idea is extended to functions of two variables (or any multivariate functions)
at a general point. The idea of approximation f(x,y) at a point (a,b) is to find a simpler
function which

e has the same value as f at (a,b), and

e has the same nth-order partial derivatives as f at (a,b) (where n is the highest order
we prefer).

In this subsection, we look at the case where n = 1 (linear approximation) and n = 2
(quadratic approximation).

20.3.1 Tangent Plane

To find a linear approximation of f(x,y) at (a,b) is to find a simpler function which
e has the same value as f at (a,b), and
e has the same partial derivatives as f at (a,b).

Let this approximation be T'(z,y). As the name suggests, T'(x,y) is linear and is hence of
the form
T(z,y) = C1 + Ca(z — a) + C3(y — b),

where C', Cy and ('3 are constants to be determined.
From the first condition, we require f(a,b) = T'(a,b). Hence,

f(a,b) =T(a,b) = Cy.

From the second condition, we require f.(a,b) = Ty(a,b) and fy(a,b) = T, (a,b). This
gives
fz(a,b) = Ty(a,b) = Co
and

fy(a,b) =Ty(a,b) = Cs.

We hence have:
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Proposition 20.3.1 (Linear Approximation). The linear approximation at (a,b) is given
by
T(.’L’, y) = f(a7 b) + fx(av b)(l’ - a) + fy(aa b)<y - b)

Recall that the linear approximation to a univariate function at = = a is the tangent
line at that point. Generalizing this up a dimension, the linear approximation 7T'(z,y) is
the tangent plane to f(z,y) at (a,b).

Using 3D vector geometry, we can find the normal vector to z = f(x,y) at (a,b):

fx(a,b)
n= | f,(a,b)
-1
20.3.2 Quadratic Approximation

To find a quadratic approximation of f(z,y) at (a,b) is to find a simpler function which
e has the same value as f at (a,b), and
e has the same first and second partial derivatives as f at (a,b).

Remark. In univariate functions, the word “quadratic” refers to functions with terms of
order 2, such as z2. Similarly with multivariables, “quadratic” refers to terms with order
2, but it could be 22, y? or zy; all variables contribute to the total order of the term. For
instance, z2y> is a term of order 2 + 3 = 5.

To get the quadratic approximation Q(z,y), we simply add terms of order 2 to the linear
approximation T'(x,y):

Q(z,y) =T(x,y) + Ci(x — a)* + Ca(x — a)(y — b) + Cs(y — b)*,

where C7, C9 and C3 are constants. We can determine them by equating the second partial
derivatives of Q(z,y) with that of f(z,y)’s:

f:m(ay b) = Qxx(aa b) = 2(1,

fa:y(a7 b) = Qxx(aa b) = 027

fyy(a,b) = Qzz(a,b) = 2C5.

We hence have:

Proposition 20.3.2 (Quadratic Approximation). The quadratic approximation at (a,b) is
given by

Q) = £(a,b) + fula,b)(w — a) + fy(a,b)(y )
4 5 Faal00)& = @) 4 fuy (0, D)(& — a)y — B) + 3 foul By — B

Note that by Clairaut’s theorem, we can interchange f,, and f,; in the formula above,
so long as they are continuous.
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20.4 Maxima, Minima and Saddle Points

One important application of calculus is the optimization of functions which have many
dependent variables. For example, one may maximize the amount of profit based on
parameters such as the cost of raw materials, workers’ salaries, time needed for production,
etc.

To find stationary points of a univariate function, we equate its gradient to 0. Similarly,
for functions of two variables f(x,y), if we want to find stationary points, we look for
points where its gradient, V f, is the zero vector, i.e.

7)-0)
vi= ( ~ (9.
fy 0
In functions of two variables, the stationary points we often come across are maxima,
minima and saddle points (so named because it looks like a horse saddle).

z=a?+y? z=—ax2—y?

Figure 20.6: Minimum point at (0, 0). Figure 20.7: Minimum point at (0, 0).

z =22 —y?

Figure 20.8: Saddle point at (0,0).

20.4.1 Global and Local Extrema

In optimization, we may distinguish between a local extremum (a collective term used
to refer to the maximum and minimum) from a global extremum. Basically, a global
maximum/minimum is the highest/lowest value which the function can achieve.

Local extrema are like the stationary points which we just discussed. For example,
consider the following graph of f(z,y) = ze=o Y

Figure 20.9
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The intuitive idea behind local extrema is that when we move away from the max-
ima/minima in any direction, the value of the function will decrease/increase. However,
this may not apply to global extrema. Consider the function f(z,y) = 2?+y? with domain
—2<r<2, 2<y<2

Figure 20.10

The global maxima occur at the corners of the domain. Note that these global maxima
are also not stationary points.

Recipe 20.4.1 (Finding Global Extrema). To find the global extrema of a function, we
must

e check all local extrema (set Vf = 0), and

e check for extrema along the boundary of the function’s domain.

20.4.2 Second Partial Derivative Test

We can determine the nature of the stationary points by the second partial derivative test:

Proposition 20.4.2 (Second Partial Derivative Test). Let (a,b) be a stationary point of

f(z,y). Let
D = fCCCC(aa b)fyy(a’ b) - [fa?y(a7 b)]2 .

e If D >0, and
— faa(a,b) >0 (or fyy(a,b) > 0), then (a,b) is a minimum point.
— faa(a,b) <0 (or fyy(a,b) <0), then (a,b) is a maximum point.

e If D <0, then (a,b) is a saddle point.
e If D =0, the test is inconclusive.

The proof is similar to the proof of the second derivative test for univariate functions (see
Proposition 16.3.5).

Proof. Consider the quadratic approximation Q(x,y) of f(z,y) at a stationary point (a, b).
We have f(a,b) = fy(a,b) =0, hence

Q(z,y) = f(a,b) + % [foo(a,b) (@ —a)® + 2fuy(a,b)(z — a)(y — ) + fyy(a,0)(y — )*].

Let
P(w,y) = fua(a,b)(x — a)? + 2fay (a,b) (z — a)(y = b) + fyy(a, b)(y — b)*.
We can view P(x,y) as a quadratic in (z — a)?. Consider the discriminant A of P(z,y):
A = [2fay(a,0)(y = ) = 4fau(a,b) fyy(a, b)(y — b)*
= —A(y = 1) (fau(a,5)Fiy(0,5) = [firy a,0)?)

Let D = fur(a,b) fyy(a,b) — [fuy(a,b)]>. We make the following observations:
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e If D >0, then A < 0.
— If fzz(a,b) > 0, then P(z,y) > 0 (since fy.(a,b) is the leading coefficient of
P(z,y)). Thus, Q(z,y) > f(a,b), whence (a,b) is a minimum point.
— If frz(a,b) < 0, then P(z,y) < 0. Thus, Q(z,y) < f(a,b), whence (a,b) is a

maximum point.

o If D < 0, then A > 0. This means that P(z,y) has zeroes elsewhere other than
(a,b), and it is sometimes positive and negative. Hence, (a,b) is a saddle point.

e If D =0, then A = 0. Hence, P(x,y) has zeroes elsewhere other than (a,b), and it
is either always > 0 or < 0 outside the zeroes. Thus, the stationary point could be
a maximum, a minimum or even a saddle point; the test is inconclusive.

O
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21 Differential Equations

21.1 Definitions

Definition 21.1.1. A differential equation (DE) is an equation which involves one or
more derivatives of a function y with respect to a variable = (i.e. ¥/, 3, etc.). The order
of a DE is determined by the highest derivative in the equation. The degree of a DE is
the power of the highest derivative in the equation.

Example 21.1.2. The differential equation
2y\° | 5 (dy
-J - -0
x<d$2> +x (daz>+y

Observe that the equations y = 22 — 2, y = 2 and y = 2 + 10 all satisfy the property
y' = 2z and are hence solutions of that DE. There are obviously many other possible
solutions are we see that any equations of the form y = z? + C, where C is an arbitrary
constant, will be a solution to the DE ¢/ = 2.

has order 2 and degree 3.

Definition 21.1.3. A general solution to a DE contains arbitrary constants, while a
particular solution does not.

Hence, y = 2% 4 C' is the general solution to the DE 3/ = 2z, while y = 22 — 2, y = 22
and y = 22 + 10 are the particular solutions.
In general, the general solution of an nth order DE has n arbitrary constants.

21.2 Solving Differential Equations

In this section, we introduce methods to solve three special types of differential equations,
namely

e separable DE,
e first-order linear DE, and
e second-order linear DE with constant coefficients.

We also demonstrate how to solve DEs using a given substitution, which is useful if the
DE to be solved is not in one of the above three forms.

21.2.1 Separable Differential Equation

Definition 21.2.1. A separable differential equation is a DE that can be written in the
form

Y = faoly).



152 21 Differential Equations

Recipe 21.2.2 (Solving via Separation of Variables).

1. Separate the variables.

2. Integrate both sides with respect to x.

[ama o= [ 10 = [ [ s

Example 21.2.3 (Solving via Separation of Variables). Consider the separable DE

dy

20— =y* + 1.
xd:n vt
Separating variables,
2 dy 1
y24+1dz 2

Integrating both sides with respect to x, we get

2 dy 1

Using the chain rule, we can rewrite the LHS as
2 1
dy = | —dx.
/ 21 / z

2arctany = In |z| 4+ C.

Thus,

This is the general solution to the given DE.

21.2.2 First-Order Linear Differential Equation

Definition 21.2.4. A first-order linear differential equation is a DE that can be written
in the form

To solve a linear first-order DE, we first observe that the LHS looks like the product
rule has been applied. This motivates us to multiply through by a new function f(z) such
that the LHS can be written as the derivative of a product:

F@) 3+ F@plaly = F@a). 1)
Recall that d d
& V@ = 1@+ '@y
Comparing this with (1), we want f(x) to satisfy
P (I
f@)p(z) = f(z) = o) p().

Observe that the LHS is simply the derivative of In f(x). Integrating both sides, we get

In f(z) = / p@)de — f(z) = exp / p(z) da.
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Going back to (1), we get

d {yefpu) dx} _ y(w)el P@ e

dx

Once again, we get a separable DE, which we can solve easily:
yel P@)de — /q(x)efp(x) 4z 4.

This is the general solution to the DE.

Definition 21.2.5. The function f(x) = el P(@)dz ig called the integrating factor, some-
times denoted I. F..

Note that we do not need to derive the integrating factor like above every time we solve
a linear first-order DE. We can simply quote the result I. F. = el Pl@)dz Tphe following list
is a summary of the steps we need to solve a linear first-order DE.

Recipe 21.2.6 (Solving via Integrating Factor).

1. Multiply the DE through by the 1. F. = e/ P(2)dz,

d
ol P@ dxé + el P@ o)y = of P dog(g),

2. Express the LHS as the derivative of a product.

4d [yefp(x) dx] — o P@ ey,

dx

3. Integrating both sides with respect to x.
yefp(m) de /efp(x) d’”q(x) dz.

Note that when finding the integrating factor, there is no need to include the arbitrary
constant or consider |x| when integrating 1/z with respect to z, as it does not contribute
to the solution process in any way; the constants will cancel each other out.

Example 21.2.7 (Solving via Integrating Factor). Consider the DE equation

d
zY + 3y = 52
dz

dy 3

ILF. = ef3/1‘dac — 3z _ 3

Writing this in standard form,

The integrating factor is hence

Multiplying the integrating factor through the DE,

d d
.TU3£ + 3x2y = —

1 e (:n3y) = 5z,



154 21 Differential Equations

Integrating both sides with respect to x, we get the general solution
2y = /5x4dm =25+ C.

21.2.3 Second-Order Linear Differential Equations with Constant Coefficients

In this section, we look at second-order linear differential equations and constant coeffi-
cients, which has the general form
d’y | dy
a—= +b—=+cy = f(x).
o2 T, Ty =1()
If f(x) =0, we call the DE homogeneous. Else, it is non-homogeneous. In general, a
second-order DE will have two solutions.
Before looking at the methods to solve second-order DEs, we introduce two important
concepts, namely the superposition principle and linear independence.

Theorem 21.2.8 (Superposition Principle). Let y; and yo be solutions to a linear, homo-
geneous differential equation. Then Ay; + Bys is also a solution to the DE.

Proof. We consider the case where the DE has order 2, though the proof easily generalizes
to higher orders.
Suppose y; and y9 are solutions to
d’y . dy
—J 4 p
@122 * dz

Substituting y = Ay, + Bys into the DE, we get

+cy = 0.

a (Ay’l' + Byg) +b (Ay’l + Byé) + ¢ (Ay; + Bys)
= A (ay{ + byy + cy1) + B (ays + byy + cy2)
=0.

Hence, Ay, + Bys satisfies the DE and is hence a solution. O

Definition 21.2.9. T'wo functions y; and y- are linearly independent if the only solution
to
Ay1 + Bya =0

is the trivial solution A = B = 0. If there exists non-zero solutions to A and B, then
the two functions are linearly dependent.

We are now ready to solve second-order DEs.

Homogeneous Second-Order Linear Differential Equations with Constant Coefficients

Consider a homogeneous first-order linear differential equation with constant coefficients
which has the form

dy
< +by=0.
adx+ Y

Using the method of integrating factor, we can show that the general solution is of the
form ,
y=Ce a”.
We can extend this to the second-order case, i.e.

d?y . dy
— b2 =0
ade -+ dx+cy
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by looking for solutions of the form y = ™%, where m is a constant to be determined.
Substituting y = e™* into the differential equation, we get

am?e™ + bme™* + ce™* = ().
Dividing by ™*, we get the quadratic
am? +bm+c=0.

This is known as the characteristic equation of the DE.

If we can solve for m in the characteristic equation, we can find the solution y = e™*.
Since the characteristic equation is quadratic, it has, in general, two roots, say m; and
ma. We thus have the following three scenarios to consider:

e The roots are real and distinct.
e The roots are real and equal.

e The roots are complex conjugates.

Real and Distinct Roots If m; and my are real and distinct, y; = "% and yo = €™2% will
both be solutions to the DE. Hence, by the superposition principle, the general solution is

y = Ae"™?* + Be™2",

where A and B are constants.

Real and Equal Roots If the two roots are equal, i.e. m; = mo = m, then y; = e™* and
yo = €27 are no longer linearly independent. Hence, we effectively only get one solution
y1 = e™*¥. To obtain the general solution, we have to find another solution that is not
a constant multiple of €™*. By intelligently guessing a solution, we see that yo = ze™*
satisfies the DE. Hence, by the superposition principle, the general solution is

y = Ae™ + Bxe™® = (A+ Bx)e™.

Complex Roots If the two roots are complex, then they are conjugates, and we can write

them as
my =p+1ig, mp=p—iq.
Hence,
yp = ePHia)T — oo (cos gz + isingx)
and

Yy = ePT1T — oPT (cosqr — isinqx).
By the superposition principle, we get the general solution
y = CeP? (cos gz + isinqx) + DeP” (cos gx — isingz)
= e (Acosqr + Bsingx),

where A =C + D and B = i(C — D) are arbitrary constants.
In summary,
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Recipe 21.2.10 (Homogeneous Second-Order Linear DE with Constant Coefficients).

solve the second-order DE
B

d2 1 +cy =0,

1. Form the characteristic equation am? + bm + ¢ = 0.

2. Find the roots m1 and msy of this characteristic equation.

3. e If m; and my are real and distinct, then

y = Ae™* + Be™?".

e If m; and my are real and equal, i.e. m; = mo =

y = (A+ Bx)e™®

e If m; and my are complex, i.e. m; = p+ iq and mo =

y =eP? (Acosqr + Bsingx) .

Non-Homogeneous Second-Order Linear Differential Equations with Constant

Coefficients

To

We now consider the non-homogeneous second-order linear DE with constant coefficients,

which takes the form
LY
d 2 dz

In order to solve this DE, we apply the following result:

+cy = f(x).

Theorem 21.2.11. If y, is the general solution of

d?y d
ﬁ + bdy + CY = 0
and g, is a particular solution of
d’y o dy
F+bd +ecy = f(=),
then
Y ="Yec+ Yp
is the general solution to
d’y o dy
W‘de +Cy_f( )

Proof. We want to solve
ay” +by' +cy = f().
Let y. be the solution to ay” + by’ + cy = 0. Then

aye + by, + cye = 0.
Let y, be a particular solution to (1). Then

ayp+byp+cyp_f( )
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Substituting y = y. + y, into (1), we get

a(ye +y,) +0 (U +p) +c(ye +yp)
= (aye + by + cye) + (ay, + by, + cyp)
=0+ f(z) = f(2).
O

Note that y. is called the complementary function while y, is called the particular
integral or particular solution.

We know how to solve the homogeneous DE, so getting y. is easy. The hard part
is getting a particular solution y,. However, if we make some intelligent guesses, we can
determine the general form of y,,. This is called the method of undetermined coefficients.
We demonstrate this method with the following example:

Example 21.2.12 (Method of Undetermined Coefficients). Consider the differential equa-
tion

d?y . dy 2
—= + 3= — 4y =3+ 8~.
da:2+ dz Y tor

Y. can easily be obtained:
Yo = Ac® + Be 4,

Now, observe that f(z) = 3 + 822 is a polynomial of degree 2. Thus, we guess that
yp is also a polynomial of degree 2, i.e. y, = Cx? + Dx + E, where C, D and E are
coefficients to be determined (hence the name “method of undetermined coefficients”).
Substituting this into the DE yields

(2C) +3(2Czx + D) — 4 (Ca? + Dz + E) = 3+ 82°.
Comparing coefficients, we get the system

—4C =8
6C — 4D =0,
20 +3D — 4AE =3

whence C' = —2, D = —3 and E = —4. Thus, the particular solution is
yp:—2:1:2—3a:—4
and the general solution is
Y =ve+yp=Ae" + Be ¥ —22* — 31 — 4.

In our syllabus, we are only required to solve non-homogeneous DEs where f(z) is a
polynomial of degree n (as above), of the form pe**, or of the form p cos kx + gsin kz. The
“guess” for y, in each of the three cases is tabulated below:

’ f(x) ‘ “Guess” for y,
Polynomial of degree n | Polynomial of degree n
pekx Cek:r:
pcos kx + gsin kx Ccoskr + Dsinkzx

In the event where our “guess” for y, appears in the complementary function y., we
need to make some adjustments to our “guess” (similar to the case where m; = mg when
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solving a homogeneous DE). Typically, we multiply the guess by powers z until the guess
no longer appears in the complementary function.

Example 21.2.13 (Adjusting yp).

o If ay” + by’ + cy = e** has complementary function y. = Ae™>* 4+ Be?*, we try

yp = Cae’™.
o If ay” + by’ + cy = ** has complementary function 3. = (A + Bx)e?*, we try
yp = Cz?e?®,

21.2.4 Solving via Substitution

Sometimes, we are given a DE that is not of the forms described in this section. We
must then use the given substitution function to simplify the original DE into one of the
standard forms. Similar to integration by substitution, all instances of the dependent
variable (including its derivatives) must be substituted.

Recipe 21.2.14 (Solving via Substitution).
1. Differentiate the given substitution function.

2. Substitute into the original DE and simplify to obtain another DE that we know
how to solve.

3. Obtain the general solution of the new DE with new dependent variables.

4. Express the solution in terms of the original variables.

Sample Problem 21.2.15. By using the substitution y = ux?, find the general solution
of the differential equation

d
225 —2zy =19, x>0.
dz

2

Solution. From y = ux”, we see that

dy 5du
—= =2 —.
dx ot dz

Substituting this into the original DE,

22 <2ux + SUQjT;) — 2z (ua:2) = (ua:2)2 .

Simplifying, we get the separable DE

which we can easily solve:

1 1
/Qdu:/ldx - ——=x+C.
u u

Re-substituting y back in, we have the general solution

2
I orte
Y
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21.3 Family of Solution Curves

Graphically, the general solution of a differential equation is represented by a family of
solution curves which contains infinitely many curves as the arbitrary constant ¢ can take
any real number.

A particular solution of the differential equation is represented graphically by one mem-
ber of that family of solution curves (i.e. one value of the arbitrary constant).

When sketching a family of curves, we choose values of the arbitrary constant that will
result in qualitatively different curves. We also need to sketch sufficient members (usually
at least 3) of the family to show all the general features of the family.

Example 21.3.1. The following diagram shows three members of the family of solution
curves for the general solution y = Ae”’.

Figure 21.1

21.4 Approximating Solutions

Most of the time, a first-order differential equation of the general form dy/dz = f(x,y)
cannot be solved exactly and explicitly by analytical methods like those discussed in the
earlier sections. In such cases, we can use numerical methods to approximate solutions to
differential equations.

Different methods can be used to approximate solutions to a differential equation. A
sequence of values y1, %9, ... is generated to approximate the exact solutions at the points
T1,T2,.... It must be emphasized that the numerical methods do not generate a for-
mula for the solution to the differential equation. Rather, they generate a sequence of
approximations to the actual solution at the specified points.

In this section, we look at Euler’s Method, as well as the improved Euler’s Method.

21.4.1 Euler’'s Method

The key principle in Euler’s method is the use of a linear approximation for the tangent
line to the actual solution curve y(t) to approximate a solution.

Derivation

Given an initial value problem

i ft,y),  y(to) = o,
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we start at (¢g,yo) on the solution curve as shown in the figure below. By the point-slope
formula, the equation of the tangent line through (¢o, o) is given as

dy

= | (t=t0) = f(to,0)(t ~ to). (1)

t=to

Y—%Yo

If we choose a step size of At on the t-axis, then t; =ty + At. Using (1) at ¢t = ¢1, we can
obtain an approximate value y; from

y1 = yo + (t1 — to) f(to, yo)- (2)
Y actual solution curve ‘
(tron) 77
.®
P
z Lt t
(to’yo) - | ( 1ay( 1))
e |
AR :

O ,// to 51
Figure 21.2

The point (t1,y1) on the tangent line is an approximation to the point (¢1,y(¢1)) on the
actual solution curve. That is, y; ~ y(t1). From the above figure, it is observed that the
accuracy of the approximation depends heavily on the size of At. Hence, we must choose
an increment At which is “reasonably small”.

We can extend (2) further. In general, at ¢t = t,,41, it follows that

Yn+1 = Yn + (tn+1 - tn)f(tnayn)'

Recipe 21.4.1 (Euler's Method). Euler’s method, with step size At, gives the approxi-
mation

Y(tn) = Ynt1 = Yn + (tn1 — ) f(tn Yn)-
Example 21.4.2 (Euler's Method). Consider the initial value problem

dy 3
9y 1 0) = >
gL y(0) 5

which can be verified to have solution y = €2 4 1/2. Suppose we wish to approximate
the value of »(0.3) (which we know to be 2(*3) 4 1/2 = 2.322). Using Euler’s method
with step size At = 0.1, we get

y1 =yo + At (2yo— 1) = 1.5+ 0.1 [2(1. | =17

1.5
yo=1y1 +At(2y1 — 1) = 1.7+ 0.1[2(1.7) — 1] = 1.94
ys = yo + At (2ys — 1) = 1.94 4 0.1[2(1.94) — 1] = 2.228

) -1
) -1

Hence, y(0.3) ~ y3 = 2.228, which is a decent approximation (4.04% error).
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Error in Approximations

Similar to the trapezium rule, the nature of the estimates given by Euler’s method depends
on the concavity of the actual solution curve.

e If the actual solution curve is concave upwards (i.e. lies above its tangents), the
approximations are under-estimates.

e If the actual solution curve is concave downwards (i.e. lies below its tangents), the
approximations are over-estimates.

Also note that the smaller the step size At, the better the approximations. However, in
doing so, more calculations must be made. This is a situation that is typically of numerical
methods: there is a trade-off between accuracy and speed.

21.4.2 Improved Euler’'s Method

In the previous section, we saw how Euler’s method over- or under-estimates the actual
solution curve due to the curve’s concavity. The improved Euler’s method address this.

Derivation

Suppose the actual solution curve is concave upward. Let Ty and 77 be the tangent lines at
t = to and t = t; respectively. Let the gradients of Ty and 17 be mg and my respectively.
We wish to find the optimal gradient m such that the line with gradient m passing through
(to,y(to)) also passes through (t1,y(t1)).

Since the actual solution curve is concave upward, both Ty and T3 lie below the actual
solution curve for all ¢ € [to, t1]. This is depicted in the diagram below.

Y e actual solution curve

(ti,y(t)) -~ T
//,

,,’,/,/”T/ Ty
(to,y(to)). ===~ |
N |

//// i i t
ol to t1
Figure 21.3

Now, observe what happens when we translate 77 such that it passes through (%o, y(to)):
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] actual solution curve
//// ‘
/// : (tby(t/l))
e |
-7 1 (to, y(to)) |
e ; ; t
to tq
O
Figure 21.4

The translated T} is now overestimating the actual solution curve at ¢t = ¢1! Hence, the
optimal gradient m is somewhere between mg and m;. This motivates us to approximate
m by taking the average of mg and my:

_ mo +my
N
We now find mg and my. Note that

mo = f(to,y(to)) and mq = f(t1,y(t1)).

This poses a problem, as the value of y(¢1) is not known to us. However, we can estimate
it using the Euler method:

y(t1) = y1 = yo + At f(to, vo)-
Note that we denote this approximation as ;. We thus have

Mo +mi . f(thyO) + f(tlagl)

~ f— .

2 2

We are now ready to approximate y(¢1). By the point-slope formula, the line with
gradient m passing through (o, y0) has equation

Y o = mlt —ty) ~ f(t07y0)";f(tlagl)(t ~to).

When t = t;, we get

y(t1) ~ g1 = yo + At | {0 %0) : Ft )] "

A similar derivation can be obtained when the actual solution curve is concave down-
wards.
Extending (1), we get the usual statement of the improved Euler’s method:

Recipe 21.4.3 (Improved Euler's Method). The improved Euler’s method, with step size
At, gives the approximation

f(tm yn) + f(tn—i-la gn—i—l)
2 bl

Yn+l = Yn + At

where
gnJrl =Yn + Atf(tna yn)
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| Definition 21.4.4. y,,41 is called the predictor, while y,41 is called the corrector.
Example 21.4.5 (Improved Euler's Method). Consider the initial value problem

dy 3
< —9oy—1 0) =2
gL y(0) 5

which we previously saw in Example 21.4.2. Suppose we wish to approximate the value
of y(0.3). Using the improved Euler’s method with step size At = 0.1,

71 = yo + Atf(to,yo) = 1.7

f(t()v yO) + f(t1,§1>
2

ylzyo+At[ ]:1.72

Yo = y1 + At f(t1,y1) = 1.964

f(t,y1) + f(t2,y2)
2

y2 = y1 + At [ ] = 1.9884

U3 = Yo + At f(ta, yo) = 2.28608

f(t2,y2) + f(t3,73)
2

ys = y2 + Al [ ] = 2.35848

Hence, y(0.3) ~ y3 = 2.35848, which gives an error of 0.270%, much better than the
4.04% achieved by Euler’s method.

21.4.3 Relationship with Approximations to Definite Integrals

Recall that solving differential equations analytically required us to integrate. It is thus no
surprise that approximating solutions to differential equations is related to approximating
the values of definite integrals. As we will see, the Euler method is akin to approximating
definite integrals using a Riemann sum, while the improved Euler method is akin to using
the trapezium rule.

Consider the differential equation g—t = f(t,y). By the fundamental theorem of calculus,
the area under the graph of f(¢,y) from ¢t =ty to t = ¢; is given by

t1

t1 dy
fewdt= [P at=y(e) - olto). (1)
to to
Note that we know y(tp). Hence, the better the approximation of the integral, the better
the approximation of y(t1), which is what we want.
We can approximate this integral using a Riemann sum with one rectangle. Note that
this rectangle has width At and height f(to,v0). Hence,

t1

f(t,y)dt = y(t1) — y(to) = Atf(to,yo)-

to

Rewriting, we get the statement of the Euler method:

y(t1) = y(to) + Atf(to, yo)-

We now approximate the integral in (1) using the trapezium rule with 2 ordinates. Note
that the area of this trapezium is given by $At[f(to, o) + f(t1,y1)]. Hence,

t1
i ft,y)dt = y(t1) — y(to) ~ At f(to,%0) ; f(t1,y1)
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Rewriting, we (almost) get the statement of the improved Euler method:

f(to, o) + f(t1, 1)

y(t) ~ ylto) + At :

Recall that generally, the trapezium rule is a much better approximation than a Rie-
mann sum. Correspondingly, it follows that the improved Euler method is a much better
approximation than the Euler method.

21.5 Modelling Populations with First-Order Differential
Equations

Populations, however defined, generally change their magnitude as a function of time.
The main goal here is to provide some mathematical models as to how these populations
change, construct the corresponding solutions, analyse the properties of these solutions,
and indicate some applications.

For the case of living biological populations, we assume that all environment and/or
cultural factors operate on a timescale which is much longer than the intrinsic timescale of
the population of interest. If this holds, then the mathematical model takes the following
form of a simple population:

= f(P), PO)=m20.

where P(t) is the value of the population P at time ¢. The function f(P) is what distin-
guishes one model from another.
We would expect the model to have the same structure

&~ Py - d(p),

where g(P) and d(P) are the growth and decline factors respectively. Also, we assume
9(0) = d(0) = 0, whence f(0) = 0. This is related to the axiom of parenthood, which
states the “every organism must have parents; there is no spontaneous generation of
organisms”.

In this section, we will look at two common population growth models, namely the
exponential growth model and the logistic growth model.

21.5.1 Exponential Growth Model

A biological population with plenty of food, space to grow, and no threat from predators,
tend to grow at a rate that is proportional to the population. That is, in each unit of
time, a certain percentage of the individuals produce new individuals (similar for death
too). If reproduction (and death) takes place more or less continuously, then the growth

rate is represented by

dP
— =kP
dt ’

where k is the proportionality constant.
We know that all solutions of this differential equation have the form

P(t) = poert.

As such, this model is known as the exponential growth model. Depending on the value
of k, the model results in either an exponential growth, decay, or constant value function
as seen in the diagram below.
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P(t) k>0
k=0
— k<0

Figure 21.5

While the cases where k < 0 are possible to happen in real life, the case where k£ > 0 is
not realistically possible as most populations are constrained by limitations of resources.

21.5.2 Logistic Growth Model

The following figure shows two possible courses for growth of a population. The red curve
follows the exponential model, while the blue curve is constrained so that the population
is always less than some number N. When the population is small relative to N, the two
curves are identical. However, for the blue curve, when P gets closer to N, the growth
rate drops to 0.

P(t) exponential model
N e e - ------=---——-— | logistic model

Figure 21.6

We may account for the growth rate declining to 0 by including in the model a factor
1 — P/N, which is close to 1 (i.e. no effect) when P is much smaller than N, and close to
0 when P is close to N. The resulting model

ap P
= —kp(1-=
dt < N)’

is called the logistic growth model. k is called the intrinsic growth rate, while N is called
the carrying capacity.
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Given the initial condition P(0) = py, the solution of the logistic equation is

Pty = PN by (¥ = po)e ™).

[

Long-Term Behaviour

We now analyse the long-term behaviour of the model, which is determined by the value
of P[).

Notice that the derivative of the logistic growth model, dP/dt = kP(1 — P/N), is
0at P =0 and P = N. Also notice that these are also solutions to the differential
equation. These two values are the equilibrium points since they are constant solutions
to the differential equation.

Consider the case where k > 0.

dp
di (3N, 3kN)
.
P
0 N
Figure 21.7

From the above diagram, we observe that

e if 0 < Py < N, then P will increase towards NN since dP/dt > 0.
o if Py > N, then P will decrease towards N since dP/dt < 0.

Since any population value in the neighbourhood of 0 will move away from 0, the
equilibrium point at P = 0 is known as an unstable equilibrium point. On the contrary,
since any population value in the neighbourhood of N will move towards N, the equilibrium
point at P = N is known as a stable equilibrium point.

Now consider the case where k < 0.

dp
dt

Figure 21.8
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From the above diagram, we observe that
e if 0 < py < N, then P will decrease towards N since dP/dt < 0.
e if po > N, then P will increase indefinitely since dP/dt > 0.

In this case, the equilibrium point at P = 0 is stable, while the equilibrium point at
P = N is unstable.

Thus, we see that what happens to the population in the long-run depends very much
on the value of the initial population, Fj.

21.5.3 Harvesting

There are many single population systems for which harvesting takes place. Harvesting
is a removal of a certain number of the population during each time period that the
harvesting takes place. Below are some variants of the basic logistic model.

Constant Harvesting

The most direct way of harvesting is to use a strategy where a constant number, H > 0, of
individuals are removed during each time period. For this situation, the logistic equation

gets modified to the form
dpP P
—=kP|(1-—=)|—-H
dt ( N > ’

where H is known as the harvesting rate.
Observe that the equilibrium solutions to this modified logistic equation are:

dP P N IN2 NH

With the equilibrium solutions, we can do the same analysis above to determine the long-
term behaviour of the model.

Variable Harvesting

The model

ap P
— —kp(1-=)-HP
dt < N>

results by harvesting at a non-constant rate proportional to the present population P. The
effect is to decrease the natural growth rate k by a constant amount H in the standard
logistic model.

Restocking

The equation

dt N

models a logistic equation that is periodically harvested and restocked with maximal rate
H. For sufficiently large pg, the equation models a stable population that oscillates about
the carrying capacity N with period T' = 27 /w.

P _ kP <1 — P) — H sin(wt)
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Part VI

Combinatorics
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22 Permutations and Combinations

22.1 Counting Principles

Fact 22.1.1 (The Addition Principle). Let E; and E3 be two mutually exclusive events.
If F1 and E5 can occur in ny and neo different ways respectively, then E; or Es can occur
in (n1 + ng) ways.

Fact 22.1.2 (The Multiplication Principle). Consider a task S that can be broken down
into two independent ordered stages S; and Se. If Sy and S5 can occur in n; and no
ways respectively, then S7 and Sy can occur in succession in njng ways

Note that both the Addition and Multiplication Principles can be extended to any finite
number of events.

22.2 Permutations

Definition 22.2.1. A permutation is an arrangement of a number of objects in which
the order is important.

Example 22.2.2. ABC, BAC and CBA are possible permutations of the letters ‘A’, ‘B’
and ‘C’.

Definition 22.2.3 (Factorial). The factorial of a non-negative integer n is given by the

recurrence relation
nl=n(n—-1), 0=1.

Equivalently,
! ’ n!l=nn-1)(n-2)...(3)(2)(1), 0'=1.

Proposition 22.2.4 (Permutations of Objects Taken from Sets of Distinct Objects). The
number of permutations of n distinct objects, taken r at a time without replacement, is
given by

nPr:n(n—l)(n—Q)...(n—T+1):

r consecutive integers

(n—r)l’

where 0 < r <n.

Proof. Suppose we have n distinct objects that we want to fill up r ordered slots with.
This operation can be done in r stages

e Stage 1. The number of ways to fill in the first slot is n.

e Stage 2. After filling in the first slot, the number of ways to fill in the second slot
isn—1.

e Stage 3. After filling in the first and second slots, the number of ways to fill in the
third slot is n — 2.

This continues until we reach the last stage:
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e Stage r. After filling all previous r — 1 slots, the number of ways to fill in the last
slotisn—(r—1)=n—r+1.

Thus, by the Multiplication Principle, the number of ways to fill up the r slots are

n(n—l)(n—2)...(n—r+1):m.

O]

Corollary 22.2.5 (Permutations of Distinct Objects in a Row). The number of ways to
arrange n distinct objects in a row, taken all at a time without replacement, is given by
nl.

Proof. Take r = n. O

Proposition 22.2.6 (Permutations of Non-Distinct Objects in a Row). The number of
permutations of n objects in a row, taken all at a time without replacement, of which
ny are of the 1st type, ny are of the 2nd type, ..., ng are of the kth type, where
n=mn;+ng+ -+ ng, is given by

n!

nilng! .. .ng!’

Proof. Let A; be the set of arrangements where objects in the first ¢ groups are now distin-
guishable, while objects in the remaining groups remain indistinguishable. For instance,
Aq is the set of arrangements of n objects in a row, of which ny are of the 2nd type, ng
are of the 3rd type, ..., ng are of the kth type, while the objects previously of the 1st
type are now distinct. We prove the above result by expressing |Ag| in terms of |A].

Suppose we make objects of the 1st type distinct. For each arrangement in Ag, the ng
objects of the 1st type can be permuted among themselves in n;! ways. Hence,

|A1| = nq!|Ao].

Next, suppose we make objects of the 2nd type distinct. For each arrangement in A;, the
ng objects of the 2nd type can be permuted among themselves in no! ways. Hence,

|A2| = na! |A1].
Continuing on, we see that
|Ak| = ’I’Lk' |Ak_1‘ = nk!nk_ll |Ak_2’ === ’I’Lk' nk_ll PN 77,1! ‘A0| .

However, by definition, Ay, is the set of arrangements of n distinct objects, which we know
to be n!. Thus,

O

Remark. m is known as a multinomial coefficient, which is a generalization of the

binomial coefficient and is related to the expansion of (x; + z2 + - -+ + x)".
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Sample Problem 22.2.7. Find the number of different permutations of the letters in the
word “BEEN”.

Solution. Note that there is 1 ‘B’; 2‘E’s and 1 ‘N’ in “BEEN”. Using the above result, the
number of different permutations is given by
4!
ot

O

Proposition 22.2.8 (Circular Permutations). The number of permutations of n distinct
objects in a circle is given by (n — 1)!.

Proof. Fix one object as the reference point. The remaining n — 1 objects have (n — 1)!
possible ways to be arranged in the remaining n — 1 positions around the circle. O

Proposition 22.2.9 (Permutations of Objects Taken from Sets of Distinct Objects with
Replacement). The number of permutations of n distinct objects, taken r at a time with
replacement, is given by n”, where 0 < r < n.

22.3 Combinations

Definition 22.3.1. A combination is a selection of objects from a given set where the
order of selection does not matter.

Proposition 22.3.2 (Combinations of Objects Taken from Sets of Distinct Objects). The
number of combinations of n distinct objects, taken r at a time without replacement, is

A n!
Cr = <r> Corl(n =)

Proof. Observe the number of ways to choose r objects from n distinct objects is equivalent
to the number of permutations of n objects, where r objects are of the first type (chosen)
while n — 7 objects are of the second type (not chosen). Using the formula derived above,

given by

where 0 < r <n.

we have ol
= Sy
O
Corollary 22.3.3. For integers r and n, where 0 < r < n,
"P.="C, - r.
Proof. Rearrange the above result. O

Corollary 22.3.4. For integers r and n, where 0 < r < n,

"Cr="Ch_y.
Proof. Observe that
n!
ri(n —r)!

is invariant under r — n — 7. O
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22.4 Methods for Solving Combinatorics Problems

Some problems involving permutations and combinations may involve restrictions. When
dealing with such problems, one should consider the restrictions first. There are four basic
strategies that can be employed to tackle these restrictions.

Recipe 22.4.1 (Fixing Positions). When certain objects must be at certain positions,
place those objects first.

Sample Problem 22.4.2. How many ways are there to arrange the letters of the word
“SOCIETY” if the arrangements start and end with a vowel?

Solution. We first address the restriction by placing the vowels at the start and end of
the arrangement. Since there are 3 vowels in “SOCIETY”, there are 3 -2 = 6 ways to
do so. Next, observe there are 5! ways to arrange the remaining 5 letters. Thus, by the
Multiplication Principle, there are

6-5!' =720
arrangements that satisfy the given restriction. O

Recipe 22.4.3 (Grouping Method). When certain objects must be placed together, group
them together as one unit.

Sample Problem 22.4.4. Find the number of ways the letters of the word “COMBINE”
can be arranged if all the consonants are to be together.

Solution. Consider the consonants ‘C’, ‘M’, ‘B’ and ‘N’ as one unit:

[c M B N| [0] [1] [E]

e Stage 1. There are 4! ways to arrange the 4 units.

e Stage 2. There are 4! ways to arrange ‘C’, ‘M’, ‘B’ and ‘N’ within the group.
Hence, by the Multiplication Principle, the total number of arrangements is
4! 4! = 576.

O

Recipe 22.4.5 (Slotting Method). When certain objects are to be separated, we first
arrange the other objects to form barriers before slotting in those to be separated.

Sample Problem 22.4.6. Find the number of ways the letters of the word “COMBINE”
can be arranged if all the consonants are to be separated.

Solution. We begin by arranging the vowels, of which there are 3! ways to do so.

+ o] t+ [1] + [E] t.

Next, we slot the 4 consonants into the 4 gaps in between the vowels (i.e. where the arrows
are). There are 4! ways to do so. Thus, by the Multiplication Principle, the total number
of arrangements is

3141 = 144.

O
Recipe 22.4.7 (Complementary Method). If the direct method is too tedious, it is more
efficient to count by taking all possibilities minus the complementary sets. This method
can also be used for “at least/at most” problems.
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Sample Problem 22.4.8. Find the number of ways the letters of the word “COMBINE”
can be arranged if all the consonants are to be separated.

Solution. Note that, without restrictions, there are a total of 7! ways to arrange the letters
in “COMBINE”. From the previous example, we saw that the number of arrangements
where all consonants are together is 576. Thus, by the complementary method, the number
of arrangement where all consonants are separated is

total — complementary = 7! — 576 = 144,

which matches the answer given in the above example. O
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23 Distribution Problems

In the previous chapter, we learnt how to count the number of ways to distribute distinct
objects into distinct boxes:

Proposition 23.0.1. The number of ways of distributing r distinct objects into n distinct
boxes such that each box can hold

e at most one object (assuming r < n) is "P,;
e any number of objects is n'.

In this chapter, we focus mainly on counting the number of ways to distribute identical
objects into distinct boxes.

23.1 The Bijection Principle

Theorem 23.1.1 (Bijection Principle). Let A and B be finite sets. If there exists a
bijection f: A — B, then
Al =B

The bijection principle is particularly useful when enumerating A is hard, but enumer-
ating B is easy.
Sample Problem 23.1.2. Determine the number of positive divisors of 12600.

Solution. Observe that 12600 = 23 x 32 x 52 x 7!. Let A be the set of divisors of 12600.
Let B be the set

B:{(p7q77475)€Z410§p§3andOSqSQandOSrSQandOSsg1},
Let f: B — A be such that
f(p’Q7r78):2pX3qX5r><7s.

It is clear that f is bijective: by the Fundamental Theorem of Algebra, every divisor
d € A is uniquely expressible as a product of prime powers of 2, 3, 5 and 7. Hence, by the
bijective principle, we have

Al =|B| =B+ 12+ 12+ 1)(1+1) =72,

i.e. 12600 has 72 divisors. U
One can easily generalize the above result:

Proposition 23.1.3. Let
k
n= pr‘
i=1

where p; are distinct primes and e; are non-negative integers. Then n has

positive divisors.
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23.2 Identical Objects into Distinct Boxes

We first prove a standard result:

Proposition 23.2.1 (Stars and Bars). The number of non-negative integer solutions to
the equation 1 + -+, = r is

(-0

A={(z1,...,zn) ENg: 1 + -+ 2y =7}

Proof. Let

be the set of all non-negative integer solutions to the above equation. Consider a row of
r +n — 1 objects. Let B be the set of all possible ways to colour n — 1 of these r +n — 1
objects red, and the remaining r objects blue. It is easy to see that

Bl = <T—IT;7_LII> _ <r—|—:—1)‘
@ o0

Figure 23.1: An example colouring, where r =243+ 1 =6 and n = 4.

We now establish a bijection between A and B. Consider the following procedure,
starting with a solution (x1,...,z,) € A:

e Colour the first 1 balls blue, and the next ball red.

e Colour the next xo balls blue, and the next ball red.

e Colour the next x,, balls blue.

It is easy to see that all » 4+ n — 1 balls will be coloured, and exactly n — 1 balls will be
red. Further, each solution (x1,...,z,) € A uniquely determines a colouring in B and
vice versa, i.e. the procedure is a bijection between A and B. By the bijection principle,

r+n—1 r+n—1
al=te= () = (),

The method of counting is commonly known as “stars and bars”. We can think of the
blue objects as “stars” (the objects we wish to distribute), and the red objects as “bars”
(the dividers separating the objects).

Proposition 23.2.2 (ldentical Objects into Distinct Boxes (Part 1)). The number of ways
of distributing r identical objects into n distinct boxes is given by

r+n—1\ (r+n-1
n—-1 ) r ’
Proof. Let x; be the number of objects in the ith box. Since we have a total of r identical
objects, we require

O]

ri+x2+---+xTHy =7

By stars and bars, we attain our desired result. O
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Proposition 23.2.3 (ldentical Objects into Distinct Boxes (Part I1)). The number of ways
of distributing r identical objects into n distinct boxes, such that each box has at least

k objects, is given by
r—nk+n-—1
n—1

Proof. Let x; + k be the number of objects in the ith box. Since each box has at least k
objects, we have x; < 0 for all 1 <4 < n. Since we have a total of r identical objects, we
require

(1 + k) + (w2 4+ k)+ -+ (T + k) =1

This equation simplifies to
1 +29+ - +x, =7 —nk.
We hence seek the number of non-negative integer solutions to the above equation, which

we know to be
r—nk+n—1
n—1

by stars and bars. O

Corollary 23.2.4. In the case where we require each box to be non-empty (k = 1), the
number of distributions is given by

(o)=00)

23.3 Distinct Objects into Identical Boxes

Definition 23.3.1. A Stirling number of the second kind is defined to be the number of
ways of distributing r distinct objects into n identical boxes such that no box is empty.
It is denoted S(r,n).

Proposition 23.3.2. For 0 < n < r, we have the recurrence relation
S(r+1,n) =S(r,n—1)+nS(r,n),
with initial conditions S(r,r) =1 for » > 0 and S(r,0) = S(0,7) = 0 for r > 0.

Proof. Let A be an arbitrary object.

Case 1: A is alone in a box. There remains r distinct objects to be distributed into
n — 1 identical boxes with no empty boxes. The number of ways to do so is S(r,n — 1).

Case 2: A is not alone in a box. We first distribute the other r distinct objects into n
identical boxes such that no box is empty. This can be done in S(r,n) ways. Then, we
place A into one box. There are n boxes, thus by the multiplicative principle, the total
number of ways in this case is nS(r,n).

Altogether, the total number of ways to distribute r + 1 distinct objects into n identical
boxes such that no box is empty is given by

S(r+1,n) =S(r,n—1) +nS(r,n).

The initial conditions can easily be verified. O
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Sample Problem 23.3.3. Find the number of ways to express 2730 as a product ab of
two integers a and b, where 2 > a > b.

Solution. Note that 2730 = 2 x 3 x 5 x 7 x 13. The number of ways to express 2730 as
a product ab is hence given by S(5,2) = 15, as we have 5 distinct prime factors and 2
identical boxes (a and b). O

Proposition 23.3.4. The number of ways to distribute r distinct objects into n identical
boxes with empty boxes allowed is given by

n
Z S(r, k).

k=1

Proof. Suppose only k boxes are filled. There are S(r, k) ways to distribute the objects
into these k£ boxes. Enumerating over all possible cases, we see that the total possible
distributions number .

Z S(r, k).

k=1

23.4 Identical Objects into Identical Boxes

Definition 23.4.1. The partition of a positive integer r into n parts is a set of n positive
integers whose sum is . We denote the number of different partitions of r into n parts
with P(r,n).

Proposition 23.4.2. We have the recurrence relation
P(r,n)=P(r—1,n—1)4+ P(r —n,n),
with conditions P(r,1) =1 for all » > 1, and P(r,n) =0if n > r.

Proof. Case 1: At least one box has exactly one object. We place one object in one box.
We then distribute the remaining » — 1 objects into the remaining n — 1 boxes such that
no boxes are empty. The number of ways this can be done is P(r — 1,n — 1).

Case 2: All the boxes have more than one object. We place one object into each of the
n boxes. We then distribute the remaining r — n objects into the n boxes so that no boxes
are empty. The number of ways this can be done is P(r — n,n).

Altogether, we have

P(r,n)=P(r—1,n—1)+ P(r —n,n)

as desired. ]
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24 Principle of Inclusion and Exclusion

Theorem 24.0.1 (Principle of Inclusion and Exclusion). Let Ay, As, ..., A, be finite sets.

Then .
Uad = X o na
k=1 IC[n] iel
j =

Proof. Let A = J;_; A be the union of all n sets. Define the indicator function of a set
A; tobe1;: A— {0,1} such that

1 Ai,
1z($) _ , T €
0, z¢A.

Consider now the function .
Fla) =[] 11 - L)
i=1
Observe that for all z € A, we must have x € A; for some 1 < ¢ < n, thus F(z) is
identically zero. We now expand F'(x):

Fz)=1+ > (D] 1i(2).

IC[n] i€l
I£0

It is not too hard to see that ], ;1;(x) is the indicator function of (),c; A;. Summing
over all x € A, we hence obtain

S F@)=> |1+ Y ()] 1)

€A €A IC[n] i€l
I£o

w+zmw@jhw>

IC[n] xzeAiel
1#£2

Lnj A+ > (=p
k=1

ICn]

Al

el

Since F'(z) is identically zero, we immediately obtain the desired result:

Uad =3 o | a,
k=1

IC[n] i€l
I1#£2

O

A classic application of the Principle of Inclusion and Exclusion is counting the number
of surjections between two finite sets.
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Proposition 24.0.2. Let X and Y be finite sets with cardinality |X| = m and |Y| = n,
where m > n. Then the number of surjections from X to Y is given by

>0t ()0

k

k=0

Proof. For convenience, we number the elements of X and Y such that X = [m] and

Y = [n]. Let S be the set of mappings from X to Y, and A; be the set of mappings from
X to Y\ {i}, where 1 < i < n. We see that for an arbitrary non-empty set of indices
I C [n] of size k,

M =#

i€l

mappings from m elements to n — k elements) = (n — k)™.

Since there are (Z) possible sets of indices of size k, by the Principle of Inclusion and
Exclusion,

N

iel

Ap| = Z(—l)mH

IC[n]
1£0
n

n
k=1

k=1

This counts the number of mappings that are not surjective. For the number of mappings
that are surjective, we simply take

s1- | 4
k=1

— zn:(_l)kﬂ (Z) (n— k)™

k=1

()

n—1

k=0

Corollary 24.0.3. The Stirling numbers of the second kind are given by

Proof. There are S(m,n) ways to partition [m] into n non-empty subsets. The number of
ways to assign these n parts to a distinct value in [n] is n!. Thus, the number of surjective
functions from [m] to [n] is nlS(m,n). Using the above result, we obtain

0= 4SS (Jamer
]

Yet another famous application of the Principle of Inclusion and Exclusion is counting
the number of derangements.

Definition 24.0.4. A derangement is a permutation 7 : [n] — [n] with no fixes point,
i.e. for all 1 <i < n, we have (i) # i.
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Proposition 24.0.5. The number of derangements 7 : [n] — [n] is given by

n

Z(—nk%.

k=0

Proof. Let S be the set of all permutations of [n], and let A; be the set of all permutations
that fix . Note that |S| = n!, and for an arbitrary non-empty set of indices I C [n] of size

k,
N

il

= #(permutations of n — k elements) = (n — k)!.

Since there are (Z) possible sets of indices of size k, by the Principle of Inclusion and
Exclusion,

- Z (_1)|f|+1

ICn]
[#0

_ i(_nkﬂ (Z) (n —k)!

= Z(_1)k+1%:.

k=1

N

i€l

n
U
k=1

This counts the number of permutations with fixed points. For the number of derange-
ments, we simply take

n

" !
15| — | A :n!—Z(—l)k‘H%
k=1 k=1 '

B = e !

_Z(—1) i

k=0



183

25 Probability

25.1 Basic Terminology

Definition 25.1.1. A statistical or random experiment (or trial) refers to a process that
generates a set of observable outcomes, and can be repeated under the same set of
conditions.

Definition 25.1.2. The sample space (or possibility space) S of an experiment is the
set of all possible outcomes of the experiment.

Definition 25.1.3. An event E is a subset of S. The complement of E, denoted by E’,
is the event that E does not occur, i.e. E' =S\ E.

Definition 25.1.4. Given a subset G C S, the function n(G) returns the number of
possible outcomes in G.

25.2 Probability

Definition 25.2.1 (Classical Probability). If the sample space S consists of a finite number
of equally likely outcomes, then the probability of an event E occurring (a measure of
the likelihood that E occurs) is denoted P[E] and is defined as

Proposition 25.2.2 (Range of Probabilities). For any event E,
P[E] € [0,1].

Proof. Let the sample space be S. Since £ C S, we have

0<n(B)<n(S) = 0< Z((g)) gzg — 0<P[E] <1
O
Corollary 25.2.3. Let A and B be any two events. If A C B, then P[A] < P[B].
Proof. Identical as above. O

Definition 25.2.4. When P[E] = 0, we say that E is an impossible event. When P[E] =
1, we say that P is a sure event.
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Proposition 25.2.5 (Probability of Complement). For any event E,
P[E] +P[E'] = 1.
Proof. Let the sample space be S. By definition, E' = S\ E. Hence,

n(E") = n(S) — n(E) = Z(g + ’;(g)) = Zg; — PIE] +P[E] =1.

O]

Definition 25.2.6. Let S be the sample space of a random experiment and A, B be any
two events.

e The intersection of A and B, denoted by A N B, is the event that both A and B
occur.

e The union of A and B, denoted by A U B, is the event that at least one occurs.

Proposition 25.2.7 (Inclusion-Exclusion Principle). Let A and B be any two events in a
sample space S. Then

P[AU B] = P[A] + P[B] — P[AN B].

Proof. When we take the sum of the number of outcomes in events A and B, i.e. n(A) +
n(B), we will count the ‘overlap’, i.e. n(AN B), twice. Hence,

n(AUB)=n(A)+n(B) —n(ANB).
Dividing throughout by n(S) yields the desired result. O
Proposition 25.2.8 (Intersection of Complements). Let A and B be any two events. Then
P[A] =P[ANB]+P[ANDB'].
Proof. By definition, B’ = S\ B. Taking the intersection with A on both sides,

P[ANB'| =P[ANS]-P[ANB] = P[ANB]+P[ANB'| =P[A4].

Proposition 25.2.9 (“Neither Nor"). Let A and B be any two events. Then
P[ANB']|=1-PAUB].
Proof. In layman terms, the above statement translates to
P[neither A nor B] =1 —P[A or B],

which is clearly true. ]
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25.3 Mutually Exclusive Events

Definition 25.3.1. Two events A and B are said to be mutually exclusive if they cannot
occur at the same time. Mathematically,

P[AN B] =0.
An equivalent criterion for mutual exclusivity is
P[A U B] = P[4] + P[B],

which can easily be derived from P[A N B] = 0 via the inclusion-exclusion principle.

25.4 Conditional Probability and Independent Events

Proposition 25.4.1 (Conditional Probability). The probability of an event A occurring,
given that another event B has already occurred, is given by

P[AN B

PIA| B =~

Proof. Since B has already occurred, the sample space is reduced to B. Hence,

n(AN B)
PA| Bl = ———
418)="" 5
Dividing the numerator and denominator by n(S) completes the proof. O

Corollary 25.4.2. The event (A, given B) is the complement of the event (not A, given

B), i.e.
P[A|B]+P[A'| B] =1.
Proof. /
P[A| B]+P[A"| B] = P[ﬁ[gf] + P[‘;[Q}B] - ﬁg -t

O]

Definition 25.4.3 (Independent Events). Let A and B be any two events. If either of the
two occur without being affected by the other, then A and B are said to be independent.
Mathematically,

P[A | B] = P[4], P[B | A] = P[B].

Proposition 25.4.4 (Multiplication Law). A and B are independent events if and only if
P[AN B] = P[A] P[B].
Proof. Since P[A] = P[AN B] /P[B] and P[A | B] = P[A4],

P[AN B|

b = Pl <= PlAN B = Pl4P(B].
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Proposition 25.4.5. If events A and B are independent, then so are the following pairs
of events:

e Aand B,
e A" and B,
e A’ and B'.

Proof. We only prove that A’ and B are independent. The proofs for the other pairs are

almost identical.
Since A and B are independent events, we have P[A N B] = P[A]P[B]. Now consider
P[A" N B].

P[A'n B] = P[B] — P[AN B] = P[B] — P[A] P[B] = P[B] [1 — P[A]] = P[B] P[4] .

Hence, A’ and B are independent. O

25.5 Common Heuristics used in Solving Probability Problems

Recipe 25.5.1 (Table of Outcomes). Table of outcomes are useful as they serve as a
systematic way of listing all the possible outcomes.

Sample Problem 25.5.2. Two fair dices are thrown. Find the probability that the sum
of the two scores is odd and at least one of the two scores is greater than 4.

Solution. Consider the following table of outcomes.

11213145 |6
112|345 |6 |7
2134|516 | 7|8
314567 |81]09
4156|7819 10
516789 |10 11
6 |7|8(9]10 |11 |12

From the table of outcomes, the required probability is clearly %. O

Recipe 25.5.3 (Venn Diagrams). Venn diagrams are useful when we need to visualize
how the events are interacting with each other.

Sample Problem 25.5.4. Let A and B be independent events. If P[A’ N B] = 0.4, find
the range of P[A N BJ.

Solution. Consider the following Venn diagram.

A B

0.4

Figure 25.1
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We see that
a+b+c=0.6. (%)

Further, since A and B are independent, we know
P[ANB] =P[A]P[B] = b= (a+b)(c+b)=(a+0)(0.6 —a).
Expanding, we get a quadratic in a:
a®+ (b—0.6)a + 0.4b = 0.
Since we want a to be real, the discriminant A is non-negative. Hence,
(b—0.6)2 —4(1)(0.4b) >0 = b<0.135 or b> 2.66.

Since 0 < b < 1, we reject the latter. Thus, the range of P[A N B] = b is [0, 0.135]. O
Recipe 25.5.5 (Probability Trees). A probability tree is a useful tool for sequential events,
or events that appear in stages. The number indicated on each branch represents the
conditional probability of the event at the end node given that all the events at the
previous nodes have occurred.

Sample Problem 25.5.6. Peter has a bag containing 6 black marbles and 3 white mar-
bles. He takes out two marbles at random from the bag. Find the probability that he
has taken out a black marble and a white marble.

Solution. Consider the following probability tree.

5
8 B
W
B
W 2 W
8
Figure 25.2

['he required probability is thus
<6> (3) (3) <6> 1
9 8 9 8 2
U

Recipe 25.5.7 (Permutations and Combinations). Using combinatorial methods is useful
when the most direct way to calculate P[E] is to find n(E) and n(S5).

Sample Problem 25.5.8. A choir has 7 sopranos, 6 altos, 3 tenors and 4 basses. At
a particular rehearsal, three members of the choir are chosen at random. Find the
probability that exactly one bass is chosen.

Solution. Note that there are a total of 20 people in the choir. Hence, the number of ways
to choose three members of the choir, without restriction, is given by 2°C'3. Meanwhile,
the number of ways to choose exactly one bass is given by *C - 16C4y: first choose one
bass out of the four, then choose 2 members out of the remaining 16. Thus, the required
probability is

401 . 1602 8

QOC3 - 19'
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Part VII

Statistics






191

260 Introduction to Statistics

Statistics is the art of learning from data. It is concerned with the collection of data, its
subsequent description, and its analysis, which often leads to the drawing of conclusions.

Unlike other real-life problems that can be modelled with maths, the “answers” provided
by statistics are never exact; there is always error. However, statistics allows us to control
this error. Indeed, it is this precise control of statistical error that is at the heart of every
statistical technique.

26.1 Samples and Populations

Definition 26.1.1. A population (or universe) is all possible subjects that meet certain
criteria. It is the entire group of subjects that we are interested in studying.

We want to know something about a population, but there is a good chance that we
can never get a very accurate picture of the population simply because it is constantly
changing. Not only are populations often in a constant state of flux, practically speaking,
we cannot always have access to an entire population for study. Time and cost often get
in the way. As a result, we turn to a sample as a substitute of the entire population.

Definition 26.1.2. A sample is a subset of the population. A random sample is a sample
that is representative of the population.

Example 26.1.3. If we were interested in the weight of all 12-year-old kids on Earth,
then all the kids who meet the criteria (i.e. 12-year-old kids on Earth) would constitute
the population.

However, realistically speaking, there is no way we can accurately weigh all 12-year-
old kids on Earth. Instead, we could weigh a sample of 500 12-year-old kids from all
around the globe, which would be representative of the population.

26.2 Two Categories of Statistics

Broadly speaking, the usage of statistics can be split into two categories: descriptive and
inferential.

26.2.1 Descriptive Statistics

Descriptive statistics are used to summarize or describe data from samples and popula-
tions.

Suppose we are interested in the test results of a class of students. We could create a
data distribution by listing the test scores of all students in the class and looking at it
with the idea of getting some intuitive picture of how they are doing. Alternatively, we
could simply calculate the mean of the students’ test scores. The calculation of the mean
represents the use of descriptive statistics, allowing us to summarize or describe our data.
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26.2.2 Inferential Statistics

Using descriptive statistics, we can calculate the characteristics of a data set, e.g. mean,
mode, etc. If this data set was collected from the entire population, we call such a
characteristic a parameter of the population. This could be “mean test score of a cohort
of students”. However, if the data set was collected from a sample (i.e. not the entire
population), we call the characteristic a statistic. This could be “mean test score of a
class”.

Because we are often not directly able to obtain a population parameter, we have to
rely on sample data to make inferences about the population. This branch of statistics is
known as inferential statistics — using sample statistics to make inferences about population
parameters.

26.3 Measures of Central Tendency

A central tendency can be thought of as the “typical” value of a data set. There are three
main measures of central tendency, namely the mean, median and mode.

26.3.1 Mean

Definition 26.3.1. The mean is the sum of all observations, divided by the total number
of observations.

Mathematically, given n observations x1, T2, 3, ..., Zn,

T+ Ta a3+ +3, 1o
Mean = == 2.

Here, a lower-case ‘n‘ represents the sample size. We use the uppercase ‘N’ to represent
the population size. It is essential to make it clear when we are referring to the mean of a
sample or when we are referring to the mean of a population. To do so, statisticians use
different symbols (Z and p):

_ 1 . 1
Sample mean = T = - Z:}:, Population mean = p = N Zx

We can also calculate the mean of a data set from its frequency table:

doxf
I

where f represents the frequency of a value .

Mean =

Example 26.3.2. Suppose the test scores of students in a particular class has the follow-
ing frequency table:

] Test score, x \ Frequency, f ‘

12 2
13 3
15 6
16 )
17 4




26.3 Measures of Central Tendency 193

Then, the mean test score can be calculated as
>oxf _ (12)(2) + (13)(3) + (15)(6) 4+ (16)(5) + (17)(4)
S f 24+3+6+5+4

Since the mean takes into account the entire sample data, it is very sensitive to outliers.
Hence, the mean may be insufficient for data sets with outliers.

= 15.05.

‘f:

Example 26.3.3. Suppose now that another student in the class obtained a ‘1’ on the
test. The new mean can be calculated as
>ozf  (HA)+(12)(2) + (13)(3) + (15)(6) + (16)(5) + (17)(4)

S f 1+2+3+6+5+4 ’

Kl

which is much less than the previous mean of 15.05.

26.3.2 Median
Definition 26.3.4. The median is the point in a distribution that divides the distribution
into halves, i.e. the midpoint of a distribution.

Generally, for n values x1, zo, ..., x, arranged in ascending order,
. T n odd
Median — 1(n+1)/27 )
5 (acn/g + xn/2+1) , N even

Example 26.3.5. For the original data of 20 students, the set of data in ascending order
is
12,12,13,13,13,15,15,15,15,15,15, 16,16, 16,16,16,17,17,17,17.

The median is hence the average of the two middle values, i.e. %(15 +15) = 15.

Unlike the mean, the median is not sensitive to outliers.

Example 26.3.6. For the data of 21 students (original 20 + one outlier), the set of data
in ascending order is

1,12,12,13,13,13, 15,15, 15, 15, 15, 15, 16, 16, 16, 16, 16,17, 17, 17, 17.

The median is hence the 11th value, 15.

26.3.3 Mode

Definition 26.3.7. The mode is the value that occurs the most frequently in a distribu-
tion.

In the previous examples, the mode for the original sample of 20 and the new sample
of 21 are both 15.

A distribution containing the values 2, 3, 6, 1, 3, 7 and 7 would be referred to as a
bimodal distribution because it has two modes — 3 and 7. A distribution with a single
mode is called unimodal. If each value appears the same number of times, the distribution
has no mode.

The mode, unlike the mean, is not affected by outliers. It is easy to state as it does not
require any calculation. However, it is a crude measure of central tendency as it ignores a
substantial part of the data and is thus usually not very representative and useful.
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26.3.4 Bonus: Relationship with LP-norms

So far, we have motivated the introduction and use of the mean, median and mode to
counter the shortcomings of the other measures. While this is sufficient for understanding
why (and when) we should care about certain measures of central tendency, there is a
more fundamental property that these three measures have in common.

Recall that we introduced a central tendency as the “typical” value of a data set. In-
tuitively, a measure of central tendency minimizes the total “distance” between any data
point and itself. One method to measure this “distance” is the LP-norm.

Definition 26.3.8. Let p > 1. The L”-norm of a vector x = (x1,x2,...,2,), denoted

[[x[|,, is defined as
n 1/p
I, = (Z |fvz‘!p> :

i=1

Example 26.3.9. When p = 2, we recover the Fuclidean norm:

n 1/2
= ($502) = et
=1

In our case, we can take z; to be the values of our data set. Now, consider an n-
dimensional vector ¢ = (¢, ¢, ..., c). Then [|x — cl|, measures the total “distance” between
c and any data point. Thus, the value of ¢ that minimizes [|x — cl|, will be a measure of
central tendency.

We now show that the mean, median and mode correspond to the cases where p = 2, 1
and 0 respectively.

Proposition 26.3.10. The mean minimizes ||x — c||,.

n 1/2
[x —cll; = (Z(fﬂz —6)2> -

=1

Proof. By definition,

Differentiating this with respect to c,

. " -1/2
3 Ix—cllo =~ (Z(wz - 0)2> > (@i —e).

i=1 =1
. . d _
For stationary points, we want 3 [|x — c||, = 0. Hence,

n

Z(wi—C)ZO — Zn::ci—cnzo — C:Tllzn:l“i,
=1 i=1

i=1

which is exactly the definition of the mean. It is an exercise for the reader to show that
this stationary point is a minimum. O

Proposition 26.3.11. The median minimizes ||x — c||,.

Proof. By definition,

n
e —elly =)l — .
i=1
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Without loss of generality, suppose 1 < z3 < --- < z,. For ||x —c||; to be minimized,
there must exist a k > 1 such that x; < c for all ¢ < k and x; > ¢ for all ¢ > k. Then

k n
x—clly =) (c—az)+ > (i —o).
=1 i=k+1

Differentiating this with respect to c,

d
&Hx—cﬂl =2k —n.

Setting this equal to 0 yields & = n/2. That is, half of the data values are less than c,
while the other half are greater than c¢. Thus, ¢ is the median. O

Proposition 26.3.12. The mode minimizes ||x — c||,.

Proof. While the LP norm is not defined for p = 0, we can take the appropriate limit to
get

n 1/p n
_ — 1 . alP _ . _ .0
I 1 SR IS PR
i=1 =1

where we take 0° = 0. Clearly, to minimize [|x — c||,, we must have ¢ = z; for as many i
possible. It follows that ¢ must be the mode. O

26.4 Measures of Spread

Suppose that the original 20 test scores come from students from a particular class, and
that there is another class of 20 whose test score has the following frequency distribution
table:

Test score, x | Frequency, f ‘

9 2
10
13
15
16
17
18
20
21

NN WIN N &N

The mean test score of both classes are the same (15.05). However, the second class
clearly has a wider spread of test scores.

Measures of central tendencies do not give any indication of these differences in spread,
so it is necessary to devise some other measures to summarize the spread of data.

26.4.1 Range and Interquartile Range

Definition 26.4.1. The range is the difference between the maximum and minimum
values in the set of data.
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Example 26.4.2. The first class has a range of 17 — 12 = 5, while the second class has
a range of 21 — 9 = 12. Hence, the test scores for the second class are more diverse as
compared to that for the first class.

Note, however, that the range is usually not a good measure of dispersion as it only
considers the extreme values which may be atypical of the rest of the distribution and does
not give any information about the distribution of the values in between. For instance, if
we include the outlier in the first class, the range becomes 17 — 1 = 16.

For this reason, we typically consider the interquartile range instead.

Definition 26.4.3. The interquartile range is the difference between the first and third
quartiles, i.e. Q3 — Q1.

Recall that the nth percentile of a distribution is the value such that n% of the data is
less than or equal to that number. The first and third quartiles are hence the 25th and
75th percentile respectively. Note that the second quartile (50th percentile) is simply the
median.

Example 26.4.4. The first class has interquartile range 16 — 14 = 2, while the second
class has interquartile range 17.5 — 13 = 4.5.

If we include the outlier in the first class, then the interquartile range becomes 16 —

13 = 3, which is a much smaller change compared to that of the range.

Again, the interquartile range may not be a good measure of dispersion as it only takes
into account the two specific percentiles.

26.4.2 Variance and Standard Deviation

One of the main reasons for using the interquartile range in preference to the range as
a measure of spread is that it takes some account of how the interior values are spread
rather than concentrating on the spread of the extreme values. The interquartile range,
however, does not take into account of the spread of all the data values and so, in some
sense, it is still an inadequate measure. An alternative measure of spread, which takes
into account of all the values, can be devised by finding how far each data value is from
the mean.
This can be represented mathematically with the formula

1
M dist == — 7.
ean distance - Z |z — Z|

Unfortunately, a formula involving the modulus sign is awkward to handle algebraically.
This can be avoided by squaring each of the quantities x — Z, leading to the expression

1 N2
— r—I
'Y en
as a measure of spread. We call this quantity the variance of the distribution.
If the data values z1, ..., x, have units associated with them, then the variance will be
measured in units?. This can be avoided by taking the positive square root of the variance.

The positive square root of the variance is known as the standard deviation, and it always
has the same units as the original data values, i.e.

1 2
Standard deviation = 4/ — T —T)°.
L e
When referring to the standard deviation of the population, we use the symbol o. Hence,
the population variance is denoted by o2.
In its given form, the variance of a data set is tedious to calculate. Fortunately, an

alternative formula is easier to use is available:
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Proposition 26.4.5.
1
Vot _ = Z 2 _ =2
ariance = n X X

Proof. We have

. _l __2_1 2 _ _9 _l 2_2.%2.%’ i’221
Variance = Z(x ) = Z(x 2:U:U+x)—n2x " + m

n n

Observe that = >~z =z and }_ 1 = n. Thus,

1 1
Variance = — 22 =2+t == % — 72
-, ==



198

27 Discrete Random Variables

27.1 Random Variables

Definition 27.1.1. A random variable is a variable whose possible values are numerical
outcomes of a random experiment.

Random variables are typically denoted by capital letters such as X or Y.
There are two types of random variables: discrete and continuous.

Definition 27.1.2. A discrete random variable is a random variable that assumes count-
able values x1, x2, ..., z, (can be infinite).

Examples of discrete random variables include the number that shows on the toss of
a fair die (X = 1,2,...,6), and the number of times a fair die is thrown until a ‘6’ is
obtained (Y =1,2,..., to infinity).

In this chapter, we will only discuss discrete random variables. We will deal more with
continuous random variables in §28.

27.2 Properties

27.2.1 Probability Distribution

Since the values of a random variable are determined by chance, there is a distribution
associated with them. We call this a probability distribution.

Definition 27.2.1. A probability distribution describes all possible values of the random
variable and their corresponding probabilities. It assigns a probability value to each
possible outcome in the sample space.

A probability distribution of a discrete random variable can be given in the form of a
table, a graph or a mathematical formula.

Note that the particular values of a random variable are denoted by lower-case letters.
For instance, the particular values of a random variable X are denoted by z.

Example 27.2.2. A single fair 6-sided die is thrown. Let X be the random variable
representing the number of dots showing on the die. Note that the possible values of X
are x = 1,2,3,4,5,6.

The probability distribution associated with X can be given in table form:

x| 112314516
PX=a][s1sl5lsl6l3s

or expressed as a formula:
1
PX =z] = & ° €{1,2,3,4,5,6},

or expressed as a graph:
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From the above example, the discrete random variable X takes on only countable values,
and that if we sum all probabilities, we get a total of 1. In fact, these are conditions that
all discrete random variables must satisfy.

Condition 27.2.3 (Discrete Random Variable). For X to be a discrete random variable,
e X can take only countable values (finite or infinitely many), and

e X has a probability distribution such that 0 < P[X = z] <1 for all x and

) PX =a]=1

27.2.2 Expectation

Recall that in descriptive statistics, the mean of a sample can be calculated as

xf

Mean = ,
n

where z is a data value and f is its frequency. In the case of a discrete random variable
X, we can think of = as a particular value of X, and f/n as the probability that = occurs
(i.e. how “frequently” z occurs). Thus,

Mean = Z:UIP’[X = z].

We call this “mean” the expectation of X.

Definition 27.2.4. The expectation, or expected value, of X, denoted as E[X] or u, is
given by
E[X] =) aP[X =2].
x

Example 27.2.5. A single fair 6-sided die is thrown. Let X be the random variable
representing the number of dots showing on the die. Note that the possible values of X
are x = 1,2,3,4,5,6. Since P[X = z| = % for all possible values of z, the expectation of
X is given by

6
EX] =) aP[X =a] = éZx =3.5.
r=1

Note that the phrase “expected value of X” refers to the long-term weighted average
value of a random variable X and is not a typical value that X can take. In fact, a random
variable might never be equal to its “expected value”. For instance, in the above example,
a 6-sided dice will clearly never roll a value of 3.5.

We can generalize the notion of expectation to other functions involving X.
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Definition 27.2.6. Let f(X) be any function of the discrete random variable X. Then

E[f(X)] =) f(z)P[X =a].

For instance, E[10X] = Y~ 10z P[X = z|, and E[X? — 4] = }_(2* — 4) P[X = .
From the definition of E[f(X)], one can easily prove the following results:

Proposition 27.2.7 (Properties of Expectation). For a real constant a,
e Ela] = a,
e ElaX]=aE[x],
o E[f1(X)+ fo(X)] = E[f1(X)] + E[f2(X)], where f1 and fy are functions of X.

In fact, the last property is a direct consequence of the linearity of the expectation with
respect to multiple random variables:
Proposition 27.2.8 (Linearity of Expectation). Let X and Y be random variables (de-
pendent or independent), and let a and b be real constants. Then

ElaX +bY] = aE[X] + bE[Y].

27.2.3 Variance

Recall that in descriptive statistics, the variance of a sample can be calculated as

1 2 : 2
. _ -
Variance = n f (.le l’) s

where f is the frequency of a data value z and Z is the mean of the sample. In the
context of discrete random variables, P[X = x] corresponds to f/n, while p corresponds
to Z. Thus,

Variance = Z (z—p)?PX =z] = E[(z — p)?] .

Definition 27.2.9. The variance of a random variable X, denoted by Var[X] or o2, is
defined as the expectation of the squared deviation of X from the mean p. Mathemati-
cally,

Var[X] = E [(X - M)ﬂ .

As motivated above, we can rewrite Var[X] solely in terms of expectations:

Proposition 27.2.10.
Var[X] = E[X?] - E[X]*.

Proof.

Var[X]

Il
E B B & &
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Compare this with the alternative expression for the variance used in descriptive statis-

tics:
. 1 , (1 2
Variance = -~ E fx© — <n E fx) .

A small value for the variance indicates that most of the values that X can take are
clustered about the mean. Conversely, a higher value for the variance indicates that the
values that X can take are spread over a larger range about the mean.

Correspondingly, the standard deviation, which is the positive square root of the vari-

ance, is denoted by o, i.e.
o =4/ Var[X].
From the definition of variance, one can easily prove the following properties:
Proposition 27.2.11 (Properties of Variance). Given that a and b are real constants,

e Var[a] =0,
e Var[aX] = a? Var[X],
e Var[aX + b] = a® Var[X].
Proof. Tt suffices to prove the last statement. Applying the formula Var[X] = IE[X 2] —
E[X]?, we have
Var[aX + 0] = E[(aX + b)?] — E[aX + b]?
=E[a®X? + 2abX +b?] — (aE[X] +b)*
= a®E[X?] + 2abE[X] + b* — a®E[X]* — 2abE[X] — b*
— o? [E[X?] - E[X]’]
= a* Var[X].
O

Another important property is the variance of more than one random variable. In fact,
the property Var[aX + b] = a® Var[X] is a direct consequence of the statement below:

Proposition 27.2.12 (Variance of More Than One Random Variable). If X and Y are two
independent variables, then

Var[aX 4+ bY] = a® Var[X] + b? Var[Y] .

Notice that the sign on the RHS is always a ‘+’ regardless of the sign on the LHS.
Intuitively, we expect deviations to increase when combining more observations together,
not reduce it.

27.3 Binomial Distribution

Consider an experiment which has two possible outcomes, one we term “success” and the
other “failure”. A binomial situation arises when n independent trials of such experiments
are performed.

Examples of such experiments are:

e Tossing a fair coin 6 times (consider obtaining a head on a single toss as “success”
and obtaining a tail as “failure”).

e Shooting a target 5 times (consider hitting the bull’s eye in each shot as “success”
and not hitting the bull’s eye as “failure”).
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Condition 27.3.1 (Binomial Model). The conditions for a binomial model are:
e a finite number, n, trials are carried out,
e the trials are independent,
e the outcome of each trial is either a “success” or a “failure”, and

e the probability of success, p, is the same for each trial.

Definition 27.3.2. Let the random variable X be the number of trials, out of n trials,
that are successful. If the above conditions are met, then X is said to follow a binomial
distribution with n number of trials and probability of success p, written as

X ~B(n,p).

Example 27.3.3. Recall the example of tossing a fair coin 6 times. This experiment
clearly fits a binomial model:

e There are 6 tosses — i.e. a finite number of trials.

e Given that the tosses likely take place one after another, the outcome of one toss
will not affect the outcome of another toss — i.e. the trials are independent.

e Each toss only results in a head or tail — i.e. only two possible outcomes, a
“success” or “failure”.

e The probability of obtaining heads remains the same at 0.5 for each toss —i.e. the
probability of success remains unchanged.

27.3.1 Probability Distribution

Proposition 27.3.4 (Probability Distribution of Binomial Distribution). Let the random
variable X ~ B(n,p). Then

n

)pz (1—-p)"".

Proof. The event X = z represents obtaining x successes (and n — z failures) out of n
total trials. The probability of = successes is simply p*, while the probability of n — x
failures is (1 — p)"~*. Since there are "C, ways to choose the x successes from n total
trials, the probability of having exactly = successes, i.e. P[X = z], is

Pl =)= () (-

27.3.2 Expectation and Variance
Proposition 27.3.5 (Expectation of Binomial Distribution). For X ~ B(n,p),

E[X] = np.

Proof. Since probabilities sum to 1, we have
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Differentiating this with respect to p, we have

r
r=0

S (0) b ta-pr - - <o,

We can expand the LHS as

;iTC)p’"(l -2 = Zn: <Z)p’”(1 -p)""+ 1% Zn:r<7:)pr(1 -p)" " =0.

p r=0

Rewriting this in terms of P[X = r| yields

1o noo 1O
— rPX =r] ——— PX =r|+—— rPX =r|=0.
p L EX = SR = SR =]
—_————
FX] 1 FX]
Thus,
LEx) - "+ L Ex]—0 — E[x]
_ — = == np
p l=p 1-p
U
Proposition 27.3.6 (Variance of Binomial Distribution). For X ~ B(n, p),
Var[X] = np(1 — p).
Proof. One can use a similar trick (differentiating E[X] = np) to obtain
E[XQ] =np(l —p+ np).
Thus,
Var[X] = E[X?] = E[X]* = np(1 — p+np) — (np)* = np(1 — p).
O

27.3.3 Graphs of Probability Distribution

Given that X ~ B(n,p), the graphs of the probability distribution of X for various values

of n and p are shown below.
| | | |
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0.20 |- =

0.10 |- a

0.00 |- —‘

0 ) 10 15 20 25

Dn =25,p=09]

Notice that

e when p is low, the graph is skewed to the left, i.e. probabilities are larger for lower
values of X,

e when p is high, the graph is skewed to the right, i.e. probabilities are larger for
higher values of X, and

e when p = 0.5, we get a symmetrical distribution.

Also note that a binomial distribution can only have 1 or 2 modes. In addition, if there
are 2 modes, they must be adjacent to each other, i.e. they differ by 1.

27.4 Poisson Distribution

Definition 27.4.1. Let X be the number of occurrences of a particular event over an
interval of time (or space) t. Let A be the mean rate of occurrence per unit time. Then
X is said to follow a Poisson distribution with parameter \t, written as

X ~ Po(At).

Remark. Typically, we assume ¢ to be the unit time interval, in which case we simply write
X ~ Po(\).

For X to follow the Poisson distribution, the following conditions must also be fulfilled:

Condition 27.4.2 (Poisson Model).
e Events must be independent.

e Events occur singly (i.e. the chances of 2 or more occurrences at precisely the
same point in time (or space) is negligible) and randomly.

e Events occur at a constant average rate, i.e. for a given interval of time (or space),
the mean number of occurrences is proportional to the length of the interval.

Such a model is also called a Poisson process.
Situations where a Poisson model could be used include:

e the number of car accidents on a stretch of road on a random day, and

e the number of raisins per 10 cm? of a chocolate bar.



27.4 Poisson Distribution 205

27.4.1 Probability Distribution

Proposition 27.4.3 (Probability Distribution of Poisson Distribution). Let X ~ Po(\¢t).

Then
(At)”

z!

P[X =z] = e , x € Np.

We will present two proofs/derivations for the probability distribution of the Poisson
distribution. The first proof (adapted from a note by Cowan) involves infinitesimals and
differential equations, while the second proof (adapted from a blog post) uses a measure-
theoretic argument.

Proof 1 (Differential Equations). Suppose X is the number of occurrences of an event over
some time interval . We can divide this interval into infinitely short subintervals At. For
convenience, let P[z; ¢] be the probability that exactly = events happen in the time interval
t.

Since A is the mean rate of occurrence, we have

P[1; At] = AAt.

Additionally, since At is infinitely short, we can assume that either one event occurs, or
no event occurs, i.e.

P0; At] =1 —P[1; At] = 1 — AAt.

We now wish to find an expression for P[x;t]. To do so, we first consider P[0;¢]. Suppose
we extend the time interval ¢t by Af. Since events occur independently and randomly, we
must have

P[0; t + At] = P[0; t] P[0; At] = P[0;¢] (1 — NA¢).
We can rearrange this to get

POt + A —PI0:e] _ d

—AP[0;¢t] = Ar =%

IP[0; t] thus satisfies the differential equation

d
— P[0;t] = —AP[0;¢
S P[0t = —AP[;1],

which has solution
P[0;t] = Ce M.

Since no event can happen in a time interval of 0 seconds, we have
P0;0] =1 = C=1.

Thus,
P[0; 1] = e . (1)

We now consider P[z;¢ + At], where = # 0. If « events have occurred in a time interval
of t + At, one of two things must have occurred:

e There were x events in the first ¢ seconds, but none in the last At.

e There were x — 1 events in the first ¢ seconds, and one in the last At.


https://www.pp.rhul.ac.uk/~cowan/stat/notes/PoissonNote.pdf
https://blog.kalculate.ai/2024/03/27/poisson-distribution/
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We hence have

Plx;t + At] = Plz; t] P[0; At] + Plz — 1;¢] P[1; At]
Plx; t] (1 — AAt) + Pz — 1;t] AAt.

Rearranging, we get a differential equation involving P[x;¢]:

%P[z;t] + AP[z;t] = AP[x — 1;¢].

Multiplying through by the integrating factor e*, we get

d
= [eAtP[x;t]} — AM Pz — 1:4]. 2)
We now induct on (2) to get an expression for P[z;t]. We claim that

(A1) oM

z!

Plx;t] =

We have already shown that this holds for the x = 0 case. Now, substituting z + 1 into
(2), we get

T rz+14x
d e’\t}P’[x—i- 1;t]} = XM Plx;t] = e [()\t) e)‘t] AT )

dt z! z!

Integrating and simplifying, we get

Plz +1:] = e—)\t/ AT+ 4 — (At)z+1 v
’ x! (z +1)!

Since P[x + 1;0] = 0, we have C' = 0, whence

A"
(+D)I°

Plz 4+ 1;t] =

This closes the induction, and we conclude that

(At)® ~Mt

e
z!

PX =z| =Px;t] =

O]

Proof 2 (Measure Theory). Suppose x events occur in the time interval [0,¢), and let their
times be given by the unordered z-tuple (t1,t2,...,t;). Without loss of generality, we take
0<ti <ty <-- <ty <t. Let S, be the set of all such z-tuples. Since )\ is the mean rate
of events per unit time, we define the measure p such that u([0,1)) = A.

Consider the set T' = [0,¢)* of all ordered z-tuples. Its measure is given by

w(T) = p([0,8)*) = (tu([0,1))" = (At)".

Define the equivalence relation ~ on 7' such that any two z-tuples u = (u1,ua, ..., uy)
and v = (v1,v2,...,0;) in T,
ur~v <= {up,ug,...,ur} ={v1,v2,...,0,:}.

Then the quotient set T/ ~ is exactly S,. Furthermore, since ~ partitions 7" into equiva-
lence classes of size x!, it follows that
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Now consider the sample space S, which is given by

S = fj S
=0

Since all S, are disjoint, the measure of S is simply

W) =3 u(S) =3 A x
=0

z!

=0

Thus, the probability that exactly = events occur in time t is given by the ratio

p(Sz) _ (A)*/xt (A"

w(S) eMt x!
O

Let X and Y measure the number of events F and F' over some time interval. Then
X +Y counts the event G = X +Y over the same time interval. Intuitively, X +Y should
follow a Poisson distribution since it satisfies the three conditions (27.4.2):

e (G is independent: Since X and Y both follow a Poisson distribution, E and F' must
both occur independently. Since X and Y are independent of each other, F and F
are also independent of each other. Thus, G occurs independently.

e (G occurs singly and randomly.

e (G occurs at a constant average rate: Since F occurs with constant random rate Aj,
and F' occurs with constant random rate A9, we expect GG to also occur with constant
random rate A\; + \o.

We can prove this statement more rigorously using the probability distribution of a
Poisson random variable:

Proposition 27.4.4 (Sum of Independent Poisson Random Variables is a Poisson Random
Variable). Let X ~ Po(A1), Y ~ Po(\2) be independent random variables. Then X +Y ~
PO()\l + /\2)

Proof. Consider the event X +Y = n. This can only happen if X =m and Y =n —m.
Thus,

PIX+Y=n]=> PX=mandY =n—m].
m=0

Since X and Y are independent, we can split the summands into products:

P[X—I—Y:n]:iP[X:m]}P’[Y:n—m].

m=0

Using the probability distribution we derived earlier,

n m n—m —(Mt+A2) ™ |
Py =a)= 3 oo | o 2] S

m! (n —m)! n! ml(n —m)

Observe that the sum is simply the binomial expansion of (A; + A2)™. Thus,

(A1 + A2)"

PX+Y =n|= e~ (M1th2) —
n!

9

which is exactly the probability distribution of a Poisson random variable with parameter
A1+ Ao O
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27.4.2 Expectation and Variance

Proposition 27.4.5 (Expectation of Poisson Distribution). Let X ~ Po(At). Then E[X] =
At.

Recall that we defined A as the mean rate of occurrence per unit time. Since we measure
X over a time interval of length ¢, the mean number of events, E[X], is simply A\t. We can
verify this with the following calculation:

Proof.

ZxIP’ :imP[X:x]:ixe_)‘t()\t
=1 x=1

)%
') = Me MM = \t.

O
Proposition 27.4.6 (Variance of Poisson Distribution). Let X ~ Po(At). Then Var[X] =
At.
Proof 1. Consider E[X? — X| = E[X(X —1)].
E[X Z (x—1)P Z (x —1)P[X = z]
(\t) = (Mt)%e MM = (Xt)2
Thus, E[X?] = E[X? — X]| + E[X] = (A\t)? + At, from which it follows
Var[X] = E[X?] - E[X]* = Xt.
O

Proof 2. Partition the time interval on which we measure X into n equal subdivisions.
Let Y; measure the number of events that occur in the ith subdivision. As n — 0o, each
Y; approaches a point, in which case Y; follows a Bernoulli distribution with probability
of success p = E[Y;] = At/n. Thus,

Varlyi] = p(1 - p) = (1 At)

n n

Since the events occur independently, the variance of X is simply the sum of the variances
of Y;. We thus obtain

Var[X] = lim Var[¥;] = lim & (1 — At) = lim n <)\t) (1 - M) = M.

n—oo n—00 4 n n n—o0 n n
=1 =0
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27.4.3 Graphs of Probability Distributions

Given that X ~ Po()\), the graphs of the probability distribution of X for various values

of \ are shqwn b‘elowz‘

- 0.15 — |
0.20 |
- 0.10 i |
0.10 | 1 o005l i
0.00 | 1 0.00f |
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0.10 |- [T1 N

0.08 - [ a

0.06

0.04

0.02 |- a

0.00 - a

0 5 10 15 20 25 30

27.4.4 Poisson Distribution as an Approximation to the Binomial Distribution

Proposition 27.4.7. If X ~ B(n,p) and n is large (n > 50) and p is small (p < 0.1),

then X can be approximated by Po(\), where A = np.

Proof. We know that

P[X = k] = <Z>pk(1 —p)" "

Since n is large relative to k, we have

<n> _nn-1n-2)...(n—k+1) %nk

k k! K

Note also that
(1 _ p)n—k _ e(n—k;) ln(l—p)'

Since p is small, we have In(1 — p) ~ —p. Since n is large relative to k, we have n — k ~ n.

Thus,
(1— p)”*]C ~e P

(3)
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Substituting (2), (3) and A = pn into (1), we get the approximation

k k k k
n o AP A A
Pl k] ~ k!pke T=e )\k! <n> ¢ /\k:!’

Thus, X is approximately a Poisson distribution where X ~ Po(\), where A\ =np. O

The approximation gets better as n gets larger and p gets smaller, as the following

diagrams illustrate.
| |

_ 0.20| _ a
020 sitell 1 015} __ T .
0.10 - .
0.10 - .
[H 0.05 | m |
000, I:D (0 I B |j:||:[|_[|4:|4_; - 000, I:I:I (S 5 O |:|:||:|:|EEI=-=-_ |
T T T T T T T T T T T T T T
0 2 4 6 8 10 12 0 2 4 6 8 10 12
00B (10,0.4) 00B (400,0.01)
10 Po(4) 0o Po(4)

This relationship between the binomial and Poisson distributions is particularly useful
when we wish to find the sum of two binomial distributions. Consider two random variables
X1 ~ B(ni,p1) and Xy ~ B(ng,p2), and let Y = X; + Xo. If we stick with binomial
distributions, finding P[Y" = k] would be a nightmare, as we would have to enumerate
through all possible cases and calculate many terms:

k
PlY =k =Y P[X; =i|P[Xy =k —1i].
i=0

However, if we use approximate X; and X5 using the Poisson distribution, i.e. X7 ~ Po(A1)
and X5 ~ Po(\2), we immediately have Y ~ Po(A; 4+ \2), and we can easily approximate

PlY =k
k
By = 4] o) AL

k!

27.5 Geometric Distribution

Definition 27.5.1. Let X be the number of trials up to and including the first success.
Then X follows a geometric distribution with probability of success p, denoted X ~

Geo(p).

Condition 27.5.2 (Conditions for Geometric Distribution). The conditions for a geometric
model are:

e The trials are independent.

e There are only two possible outcomes to each trial, which we will call “success”
and “failure”.

e The probability of “success”, p, is the same for each trial.
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Note that the geometric model requires the same conditions as the binomial model,
with the exception that the number of trials need not be finite. Intuitively, one could be
extremely unlucky and keep on failing.

Situations where the geometric model could be applied to include:

e The number of cards drawn from a pack (with replacement) before an ace is drawn.

e The number of times a fisherman casts a line into a river before he catches a fish.

27.5.1 Probability Distribution

Proposition 27.5.3 (Probability Distribution of Geometric Distribution). Let X ~ Geo(p).
Then
PIX =z]=01—-p)*1p, zeZ".

Proof. By definition, the event X = x can only occur if the previous z — 1 trials are
failures (which occur with probability 1 — p), and the xth trial is a success (which occur
with probability p). Thus,

PIX =2]=(1-p)"'p.

The geometric distribution has the following useful property:

Proposition 27.5.4. Let X ~ Geo(p). Then
PX >z =(1—-p)".

Proof 1. The event X > x is equivalent to the event that the first x trials were all failures.
Thus, P[X = z] = (1 — p)*. O

Proof 2 (Probability Distribution). We have

PIX>a]= ) PX=k= > (1-pf'p
k=z+1 k=z+1

This is simply an infinite geometric series with common ratio 1 —p and first term (1 —p)®p.
Thus,
(1—p)p

P[X>x]:m

= (1-p)"

This actually implies a much stronger property about the geometric distribution:

Definition 27.5.5. A random variable X is said to be memoryless if
PX >s+t|X >t =P[X > s
for all non-negative s, t.

Proposition 27.5.6 (Geometric Distribution is Memoryless). Let X ~ Geo(p). Then X is
memoryless.
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Proof.

PX >s+tand X >t] P[X >s+1]
P[X FIX >t = _
(X >s+t] X >1] PIX > {] P[X > {]
(1_p)s+t

:W:(l—p)S:P[X>S].

O]

Intuitively, this means that having s more observations before a success does not depend
on there already being ¢ observations of failure. In other words, the “waiting time” for a
success does not depend on how much “time” has already passed.

27.5.2 Expectation and Variance
Proposition 27.5.7 (Expectation of Geometric Distribution). Let X ~ Geo(p). Then

Proof 1. Intuitively, since each trial has probability of success p, we expect p successes for
every 1 trial. This is equivalent to 1 success every 1/p trials. Hence, E[X] = 1/p. O

Of course, we can prove this fact more rigorously:

Proof 2 (Probability Distribution,).
EX] =) kPX =kl =p» k(1-p~"
k=1 k=1

Recall that the Maclaurin series of (1 — z)~2 is

1 N
TESE = Z kz" .
k=1

Substituting 1 — p for x, we get

Proof 3 (Memoryless Property). The first trial can result in one of two outcomes:

e The first trial is a success (occurs with probability p). If this happens, the process
stops, and X = 1.

e The first trial is a failure (occurs with probability 1 —p). If this happens, the process
effectively “restarts” (memoryless property). The expected number of trials in this
case becomes E[1 + X| =1+ E[X].

The expectation of X can thus be calculated as:

E[X] = P[success] (# trials if success) + P[failure] (# trials if failure)
= (1) + (1 -p)E[l + X]

Simplifying, we have E[X] = 1/p. O
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Proposition 27.5.8 (Variance of Geometric Distribution). Let X ~ Geo(p). Then

I—p

Var|X| =
[X] 2

Proof 1 (Probability Distribution). Recall that

> 1
Zxk: 1—z

k=1

Differentiating this twice with respect to x, we get

;/@(k — 12" = (1—2:1,-)3 = ; (K — k) a*1 = a ixw)?“ (1)

Now consider E[X?] — E[X]:

B[X?] ~ ELX] = 3 (K - k)P = k= p >~ (K~ k) (L= p)* .
k=1 k=1

Using (1) with =1 — p,

Thus,

Proof 2 (Memoryless Property). Following the memoryless property proof above, we have

E[X 2] = P[success] (# trials if success)? + P[failure] (# trials if failure)?
= (p)(1)* + (1 = p) E[(1 + X)?]

=p+(1-p) [1+;+E[X2]]

Simplifying, we have

E[X?] = 27P ., Var[X] =E[X?] - E[X]* = it

27.5.3 Graphs of Probability Distribution

Given that X ~ Geo(p), the graphs of the probability distribution of X for various values
of p are shown below:



214 27 Discrete Random Variables
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All geometric distributions show this type of skewness (extreme positive skewness).
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28 Continuous Random Variables

In the previous chapter, we saw how a discrete random variable assumes countable values.
If we want a random variable to take on uncountably many values, then we must turn to
continuous random variables instead.

Definition 28.0.1. A continuous random variable is a random variable that can take
on any value in a given interval.

Since the value of a continuous random variable is uncountable, it can only take on an
interval of values, not a specific value.

An example of continuous random variables is the volume of beverage (in ml) in a 500
ml bottle (100 < X < 200, 200 < X < 300, etc.)

28.1 Discrete to Continuous

In the previous chapter, we saw how we could represent the probability distribution of a
discrete random variable using a table. For instance, the probability distribution of the
outcome of a single throw of a 6-sided dice is given by the following table:

(123456
PX=2][5lalalalsls

We can try to specify the distribution of a continuous random variable in the same way.
Consider the lengths, in millimetres, of 50 leaves that have fallen from a particular tree.
We can illustrate the distribution of the lengths using a histogram:

0.20 - 2

0.15 |

0.10 A

0.05 |- 2

0.00 2

0 ) 10 15

Figure 28.1: A histogram of the lengths of leaves.

Here, the vertical axis represents the frequency density of lengths in a particular interval,
hence the total area of the histogram is 1. This property also allows us to find the
probability that a length is in a given interval: simply sum up the area of the rectangles
in the given interval.
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Notice that if we want the probability of a certain length, e.g. L = 6.3 cm, the an-
swer would be zero. Though it is theoretically possible for L to be 6.3 cm exactly (i.e.
6.30000...), the probability is actually zero. This means that

P6<L<T7]=P6<L<7 =P6<L<T7=P6<L<T.

That is, whether we include the bounds of the interval does not affect the probability that
L falls within the interval.

The probabilities calculated from the histogram could be used to model the length of
a tree leaf. However, the model is crude, because of the limited amount of data, and the
small number of classes in which the leaves are grouped into, resulting in the “steps” in
the histogram.

The model could be further refined by repeating the process of collecting more data and
reducing the class width. If this process were to be continued indefinitely, then the outline
of the histogram would become a smooth curve:

a b
Figure 28.2: Smooth curve after repeating process infinitely.

The probability of the length of a leaf lying between a and b is given by the area under
the curve between a and b.
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28.2 Properties

28.2.1 Probability Density Function

We have seen how the outline of a histogram may approach a smooth curve when we allow
the sample size to increase with correspondingly narrower class widths.

Definition 28.2.1. The curve is the graph of the probability density function (pdf in

short), and the function is usually denoted by the small letter f. It describes mathe-
matically how the unit of probability is distributed over the range of z-values.

Note that f(x) does not represent the probability. It is the area under f(x) that repre-
sents probability.

The probability density function f(x) of a continuous random X has the following
properties:

Fact 28.2.2 (Properties of pdf).

e f(z) is non-negative (since we cannot have negative probabilities):

Ve :  f(x)>0.

The total area under the graph is 1 (since the probability must sum to 1):

IRCEE

Probability is given by the area under f(x):

]P’[a<X<b]—/bf(w)dx.

The boundary of an interval does not affect probability:

Pa<X <b)=Pa<X<b=Pa<X<b=Pa<X <.

If f has a maximum when x = M, then M is the mode.

IfPIX <m]= [ f(z)de=1/2, then m is the median. If f is symmetric about
the line z = xg, then m is simply zg.

Note that f(x) need not be continuous; it only needs to be non-negative and have a
total area of 1. For instance, the piecewise function

z, 0<x<1,
flx) =<2~z 1<2<2,
0, otherwise

is a valid probability density function.

28.2.2 Cumulative Distribution Function

Definition 28.2.3. The cumulative distribution function F'(z) is often referred to as the
distribution function, or as the cdf. The function is defined by

Plz) = PIX < 2] = /_ F(2)dt.
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Example 28.2.4. Let the continuous random variable X have pdf f(z) given by

() = {e‘”, x>0,

0, otherwise.

Let the cdf of X be F(z). For z <0, we clearly have F/(z) = 0. For x > 0, we have

F(m):F(O)—I—/Oxf(t)dt:(]—l—/oxe_tdt: [—e_t]gzl—e_m.

0, z <0,
F(z) = {1 —e x>0

The cdf of a continuous random variable X has the following properties:
Fact 28.2.5 (Properties of cdf).

By the fundamental theorem of calculus, we have
d
@F (z) = f().

e The lower and upper limits of F'(x) are 0 and 1 respectively:

lim F(z)=0 and lim F(z)=1.

T—r—00 T—r00

e [ is a non-decreasing function, i.e. a < b implies F(a) < F(b).
e ['is a continuous function, even if f is discontinuous.
o Pla< X <bl=F()— F(a).

e The median m satisfies F'(m) = 1/2.

28.2.3 Expectation and Variance

Definition 28.2.6. For a continuous random variable X with pdf f, the expectation of
X is given by

For a general function g, we calculate E[g(X)] as

Elo(x)] = [ " 4(@)f(x) da.

—00
Note that if f is symmetric about the line z = ¢, then E[X] = c.
Using the above definitions, we can easily calculate the variance of X:

Definition 28.2.7. The variance of X, denoted Var[X], is given by

Varlx] = E[(X = 0] = [ (5 - pP (o) o

However, it is usually easier to calculate Var[X] using

Var[X] = E[X?] — E[X]°.
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Note that all results of expectation and variance algebra (see §27.2.2 and §27.2.3) con-
tinue to hold:

Fact 28.2.8 (Properties of Expectation and Variance). For a continuous random variable
X and constants a and b,
E[X +Y]=E[X]+E[Y],

where Y is any continuous random variable. If Y is also independent with X, then
Var[aX + bY] = a* Var[X] + b? Var[Y] .

The proofs of the two facts are similar to the discrete case.

28.2.4 Distribution of a Function of a Random Variable

Suppose we have a continuous random variable Y that is given as a function of another
continuous random variable X, i.e. Y = ¢g(X). If we know that cdf of X, we can easily
find the pdf and cdf of Y using the following method:

Recipe 28.2.9 (Finding pdf and cdf of V7). Let X be a continuous random variable with
pdf fx. If Y = g(X) (i.e. Y depends on X), then

Fy(y) =PlY <y] =P[g(X) <y].
Then, to obtain the pdf of Y, we differentiate Fy (y) with respect to y.

Sample Problem 28.2.10. Let X have pdf

2 s
PRl OSJ;S*?
fX(l,):{ﬂ' 2

0, otherwise.
Find the pdf of Y, where Y = sin X.

Solution. Integrating fx, we obtain the cdf of X:

0, x <0,
L, x>3

Now consider Fy (y):

Fy(y) =PlY <y] =P[sin X <y] =P[X < arcsiny]

0, arcsiny < 0, 0, y <0,
= %arcsiny, 0 <arcsiny < 3, = %arcsiny, 0<y<1,
1, arcsiny > § 1, y > 1.
Differentiating, we obtain the pdf of Y:
%7 O S y < ]-)
fy(y) = ™viv _
0, otherwise.
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28.3 Uniform Distribution

Definition 28.3.1. If the continuous random variable X is equally likely to lie anywhere
in the interval [a, b], where a and b are constants, then X follows a uniform distribution,
denoted X ~ U(a,b).

28.3.1 Density and Distribution Functions
Proposition 28.3.2. The probability density function of X ~ U(a,b) is

f(f@z{bi‘“ ter=h

0, otherwise.

Proof. Since X is equally likely to lie anywhere in the interval [a, b], we know its pdf has

the form
c, a<uzx<hb,
€Tr) =
/@) {O, otherwise,

where c¢ is a constant. Since the sum of probabilities is 1,

1—/Zf(x)dw—/bcdx—c(b—a).

a

Thus, ¢ = 1/(b — a), as desired. O
f(x)
L %
b—a ‘ ‘
. . v
0 a b

Figure 28.3: The probability density function f(z).

Proposition 28.3.3. The cumulative density function of X ~ U(a,b) is

0, r < a,
Flz)=4 52, a<z<b,
1, x > b.

Proof. Clearly, F'(z) =0 for all < a. For a < x < b, we have

1 r—a

F(x):F(O)+/mf(t)dt:0+/mb_adt: )

For x > b, we clearly have F'(x) = 1. Thus,

0, r < a,
Fz)=4%2, a<z<b,

1, x> b.
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@) a b
Figure 28.4: The cumulative distribution function F'(z).

28.3.2 Expectation and Variance
Proposition 28.3.4. If X ~ U(a,b), then E[X] = (a +1)/2.

Proof. The pdf of X is symmetric about x = (a + b)/2. Thus, (a + b)/2 is the mean. []

Proposition 28.3.5. If X ~ U(a,b), then Var[X] = (b — a)?/12.

Proof. Consider E[X 2]:

IE[X2]:/OO AP [xg]b:(b_“)Q.

Thus,

28.4 Exponential Distribution

Definition 28.4.1. Let the continuous random variable X be the “waiting times” between
successive events in a Poisson process with mean rate A. Then X follows an exponential
distribution with parameter A, written X ~ Exp(}).

As its definition suggests, the exponential distribution is often used to model waiting
times. Some situations where the exponential model is applicable include:

e time between telephone calls or accidents,
e the length of time until an electronic device fails,

e the time required to wait for the first emission of a particle from a radioactive source.
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28.4.1 Density and Distribution Functions
Proposition 28.4.2. The probability density function of X ~ Exp(]A) is given by

o) = {)\e_)‘x, x>0,

0, otherwise,

and the cumulative distribution function of X is given by

0 xz <0
F — 7 9
(@) {1 —e M 2 >0.

Proof. Consider a Poisson process with mean rate A\. Let Y be the number of events
occurring in a time interval of length x, i.e. Y ~ Po(Az). Let X be the random variable
denoting the “waiting time” between successive such random events.

Since X is the amount of time until the next event occurs, the event X > x is equivalent
to no events happening in a time interval of . In other words, X > x is equivalent to
Y = 0. Hence,

PX >z =PY =0] = e =e"
Hence, for > 0, the cdf of X is given by
F(z)=PX <z]=1-PX >z]=1-e"

Also, since the “waiting time” cannot be negative, we have

F(x):{o, z <0,

1—e_)‘x, x> 0.

Differentiating, we obtain the pdf of X:

Fa) = {Ae_’\f"’, x>0,

0, otherwise,

Figure 28.5: The probability density function f(z).
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| Proposition 28.4.3. The exponential distribution is memoryless.

Proof. Let X ~ Exp(XA). We have

PIX >a+band X > a PIX >a+b
PX>a+b| X >a]= [ PX > d ]: [IP’[X>a]]

= —e N =P[X >10].

Thus, the probability that one has to “wait” another b units of time does not depend on
the time already spent “waiting”, i.e. X is memoryless. ]

28.4.2 Expectation, Variance and Median
| Proposition 28.4.4. If X ~ Exp()), then E[X] =1/

Proof. We have
E[X]:/ a:f(ac)dx:/ Aze M dz.
0

Integrating by parts, we get

—Ax1°°
N Y € _ l
E[X]—[ xe 3 ]0—)\.
O]
| Proposition 28.4.5. If X ~ Exp(}\), then Var[X] = 1/)2.
Proof. We have
E[XQ] :/ 22 f(x)dz :/ e M d.
—00 0
Integrating by parts, we get
E[X?] = [—:J:Qe_’\xro + 2/00 ze M dr =0+ gIE[X] _ 2
0 0 A A2
Thus,
2 1 1
_ 2 2 _ —
Var[X] = E[X?] - E[X]* = i <)\> =3
O

| Proposition 28.4.6. The median of X ~ Exp(A) is In2/\.

Proof. Let m be the median. Then F(m) = 1/2. Hence,

In2
f:F(m)zl—e_)‘m = M =2 — m:nT.
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28.5 Normal Distribution

Definition 28.5.1. The probability density function of a continuous random variable
X that follows a normal distribution with mean p and standard deviation o, written
X ~ N(M,O’2), is given by

f(m) = 1 e_%(%)Q

Co2r

The normal distribution arises in many different situations. For instance, the normal
distribution can be used to model various characteristics of a model, e.g. heights, weights,
and even test scores. The reason why the normal distribution is such a good fit for
modelling population-sized data sets is due to a very important theorem called the Central
Limit Theorem, which we will learn in a later chapter.

28.5.1 Properties

0 i

Figure 28.6: The pdf of a normal distribution.

As exemplified by the figure above, a normal curve has the following properties:
e It is bell-shaped.

e The mean, median and mode are all equal (symmetric about x = px, maximum at
T =p).

e It approaches the z-axis as x — +oo.

Note also that the shape of the normal curve is completely determined by two param-
eters, namely the mean p and the standard deviation o. The following figures show how
the mean and the standard deviation affect the shape of the normal curve:

i1 12 1

Figure 28.7: Varying pu. Figure 28.8: Varying o.
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Increasing p has the same effect as translating the normal distribution curve in the
positive z-direction. Meanwhile, increasing ¢ has the effect of flattening the normal dis-
tribution curve, i.e. the area under the curve about y becomes less concentrated, or more
dispersed.

In a normal distribution, about 68.3%, 95.4% and 99.7% of the values of x are expected
to lie within £1, +£2 and +3 standard deviations from the mean of X respectively.

Perhaps the most important property of the normal distribution is that the sum or
difference of normal distributions is also a normal distribution.

Proposition 28.5.2. If X and Y are two independent random variables such that X ~
N(ul,o%) and Y ~ N(Mg,o‘%), then their sum and differences also follow a normal
distribution:

aX +bY ~ N(ap & bus, a0 + b%03).

28.5.2 Standard Normal Distribution
Definition 28.5.3. A random variable Z is said to follow a standard normal distribution
if Z ~N(0,1), i.e. Z has mean 0 and variance 1.

Suppose X ~ N(gu,0?). Then the random variable defined by Z = (X — p)/o follows a
standard normal distribution. The process of converting X ~ N(,u, 02) into Z ~ N(0,1)
is known as standardization and can be viewed as a transformation on the normal curve
of X.

Standardization is typically used to compare different random variables that follow
normal distributions, such as test scores for different subjects.

Definition 28.5.4. Let X ~ N(M,O'Q), and let = be an observation of X. Then the
normalized score of z, called a z-score, measures the position of a score from the mean
where its distance from the mean is measured in standard deviations. Mathematically,

T — p
—.

As the definition suggests, the higher the z-score, the better z is relative to its distri-
bution. For instance, if z = 1, then x is 1 standard deviation above the mean, while if
z = —2, then z is 2 standard deviations below the mean.

Sample Problem 28.5.5. In the final year examination, a student obtains a score of
70 for Chemistry and 65 for Mathematics. If the cohort’s scores for Chemistry and
Mathematics follows N(60, 102) and N(57, 42) respectively, which subject did the student
do better in?

Solution. Normalizing the student’s Chemistry score, we get a z-score of

_X—p  70-60
s 10

Z1 1.

Normalizing the student’s Mathematics score, we get a z-score of

X -—p 6557

2.
o 4

22

We see that the student has a higher z-score for Mathematics than for Chemistry. Thus,
even though the student obtained a higher score for Chemistry, he did better in Mathe-
matics when compared against his peers. ]

The standard normal distribution is also used for various scoring systems, such as PSLE
T-scores, 1Q scores and SAT scores.
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28.5.3 Normal Distribution as an Approximation

Previously, we saw how the binomial distribution, under certain conditions, could be
approximated to the Poisson distribution. Similarly, the normal distribution can be used
to approximate both the binomial and Poisson distributions when certain conditions are
satisfied.'

However, unlike the case of binomial to Poisson, which is a discrete-to-discrete ap-
proximation, approximately either the binomial or Poisson distribution to the normal
distribution is a discrete-to-continuous change. We hence introduce the idea of a “conti-
nuity correction”. Intuitively, what this means is that P[X = k| (in the discrete case) is
taken to be Pk — 0.5 < X < k+ 0.5] (in the continuous case). For instance, P[X = 16] =
P[15.5 < X < 16.5], and P2 < X <20] =P[2.5 < X < 20.5].

Approximating the Binomial Distribution

Proposition 28.5.6. If X ~ B(n,p) and n is sufficiently large such that y = np > 5 and
n(l —p) > 5, then X can be approximated by N(np,np(1 — p)), taking into account the
continuity correction.

If p is close to 0.5, the binomial distribution is almost symmetrical. Thus, the approx-
imation by a normal distribution (which is symmetrical) gets better as p gets closer to
0.5.

Consider the following figure, where X ~ B(15,0.5). We can approximate the distribu-
tion X with a normal distribution with mean np = 7.5 and variance np(1 — p) = 3.75.

f(x) 2 —N(7.5,3.75)
= B(50,0.5)

xr

S =—

Figure 28.9: Approximating the binomial distribution.

Approximating the Poisson Distribution

Proposition 28.5.7. If X ~ Po()) such that A > 10, then X can be approximated by
N(A, ), taking into account the continuity correction.

!This is a consequence of the Central Limit Theorem, which we introduced earlier in the section.
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f(z) — N (15, 15)
r/r/ = Po(15)

i =5

Figure 28.10: Approximating the Poisson distribution.
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29 Sampling

29.1 Random Sampling

In §26, we saw how we cannot always have access to an entire population for study. Hence,
we often turn to a sample to make inferences about the characteristics of the population.

A central notion about samples is the idea of them being representative of the popula-
tion. We use the phrase random sample to denote such samples. We can think of random
samples as a “fair” or “unbiased” sample; every member of the population has an equal,
non-zero probabilities of getting sampled. On the other hand, a non-random sample is
biased and are not representative of the sample; every member of the population does not
have an equal chance of getting sampled.

29.1.1 Simple Random Sampling

Simple random sampling is a method of selecting n members from a population of size
N such that each possible sample of that size has the same chance of being chosen.
One procedure for obtaining a simple random sample is the following:

Recipe 29.1.1 (Simple Random Sampling).
1. Make a list of all N members of the population. This is called the sampling frame.
2. Assign each member of the population a different number.
3. For each member of the population, place a corresponding numbered ball in a bag.

4. Draw n balls from the bag, without replacement. The balls should be chosen at
random.

5. The numbers on the ball identify the chosen members of the population.

29.2 Sample Mean

We now look at the first objective of obtaining a random sample: calculating probabilities
relating to the sample mean.

Definition 29.2.1. If X1, X»,..., X, is a random sample of n independent observations
from a population, then the sample mean X is defined as

X1+ Xo 4+ X,

n

X =

Note that the sample mean X is also a random variable since it varies depending on the
samples taken.

Proposition 29.2.2. Let the population mean be x and the population variance be o2.
Then the sample mean X has expectation u and variance o2 /n.
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Proof. We have
X1+X2+~--+Xn] CEX1+ Xo+ -+ X

Em:E[ '

_E[Xi]+E[Xa] +--- +E[X,] _ nE[X] _ E[X] =

and

Xi+Xo+ -+ X,

1
Vaf[m:Vaf[ ] :ﬁVar[X1+X2+--.+Xn]

n
_ Var[Xi] 4 Var[Xs] + --- + Var[X,,] nVar[X] 072
B n? - on2

O]

Definition 29.2.3. The standard deviation of X, o/y/n, is known as the standard error
of the mean.

Observe that as n increases, the standard error of the sample mean decreases. This
aligns with our intuition: as n increases, we are effectively sampling a larger proportion
of the population, so our statistic (the sample mean) should tend towards the parameter
(the population mean).

29.2.1 The Central Limit Theorem

If sampling is done from a normal population, then the sample mean will also follow a
normal distribution.

Proposition 29.2.4. If X ~ N(u,az), then

— 0'2
X ~ N(u, ) exactly.
n

However, if the population does not follow a normal distribution, then the sample mean
also does not follow a normal distribution. However, if the sample size is large, then the
distribution of the sample mean will be approximately normal. This result is known as
the Central Limit Theorem.

Theorem 29.2.5 (Central Limit Theorem). If X does not follow a normal distribution,
with E[X] = p and Var[X] = 02, and n is large (typically n > 30), then

2
X~N <,u, J) approximately.
n

Here, we are assuming that the samples X1, X, ..., X, are independent and identically
distributed. Further, the variance o2 must be finite.

Note that the condition n > 30 is only a guideline. Depending on the context, the
distribution of the sample mean can still be approximated using a normal distribution
with a smaller sample size.
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29.3 Estimation

In many cases, we are concerned with two population parameters, namely, the population
mean (p) and population variance (02). So far, we have studied the distribution of the
sample mean assuming complete knowledge of these parameters. In most situations, how-
ever, it is difficult to compute these parameters. Hence, we will often need to use sample
statistics to help us estimate the population parameters.

29.3.1 Estimators and Estimates

Definition 29.3.1. An estimator is a method for estimating the quantity of interest. An
estimate is a numerical estimate of the quantity of interest that results from the use of
a particular estimator.

Example 29.3.2. Suppose our quantity of interest is the mean height p of all male adults
in Singapore. Suppose we take a random sample of 100 adult mean in Singapore and
measure their heights.

Using this data, we can compute the sample average, T of the heights. That is, the
sample mean random variable, X = 1—(1)0 (X1 + -+ Xi00), is an estimator that provides
an estimate of our quantity of interest. For instance, if Z = 170 c¢m, then 170 cm is the
estimate of p provided by the “sample average” estimator.

Another strategy could be to use the “sample median” of the heights as an estimator.
Suppose the sample median is 169 cm. Then 169 cm is the estimate of u provided by
the “sample median” estimator.

29.3.2 Unbiased Estimators

As illustrated by the above example, there are many estimators we can use to estimate
. However, we would want to choose the estimator that performs the best. Logically, a
good estimator should be unbiased. That is, the expected value of the estimator should
be equal to the true value of the quantity it estimates.

Definition 29.3.3. If a population has an unknown parameter 6 and T is a statistic de-
rived from a random sample taken from the population, then 7T is an unbiased estimator
for 0 if and only if E[T] = 0.

Population Mean

Proposition 29.3.4. The sample mean X = %Zw is an unbiased estimator for the
population mean u.

Proof. Previously, we showed that E[Y] = p. Hence, by definition, X is an unbiased
estimator for u. O

Population Variance

Proposition 29.3.5. Let T be the sample mean. Then

F= S = [Zf—i(z“@)z}

is an unbiased estimator for the population variance o=.




29.3 Estimation 231

Proof. We first show that the two forms of s2 are equivalent:
Z(z: —7)? = Z (:E2 - me—i—fQ) = 2:52 - 252364—7”@2
1 1 2 1 2
2 2
S (L) (£ (L) e L)
St -2 (3 50) (Sa)4n (1 X)) =X -1 (Ea
Dividing throughout by n — 1 gives us the desired equality. In fact, we can go one step
further and write s2 as ]
§? = " (Za:Z—nEQ>.

This is the form of o2 we will work with.
Before we process, we note that

Var[X] = E[X?] - E[X]* = E[X?] = u*+ o2
Similarly,
Var[X] =E[X’] - E[X]

Now consider IE[SQ]:

E[$7] :IE[nil (> x* —nXQ)] = nil (e’ -nE[X’))

1

et (e D) =

n—1

2

Hence, s? is an unbiased estimator for the population variance o2. ]

Note that the presence of n — 1 in the denominator reflects the degrees of freedom we
have when calculating s2. We will elaborate more on this in the next chapter.

Corollary 29.3.6. If ¢ is a constant, then

# = — [Z(:{:—c)z—i(Z(x—c))Q]

This is particularly useful when the sample data is given in summarized form.

Population Proportion

Definition 29.3.7. A population proportion p is a parameter that describes the per-
centage of individuals in a population that exhibit a certain property that we wish to
investigate. Mathematically,

p= N’

where X is the number of “successes” in the population (individuals who exhibit the

property), and NNV is the population size. The sample proportion Pg is defined similarly:
X

PS = 757

n

where Xg is the number of “successes” in the sample.

Example 29.3.8. Suppose we wish to investigate the number of Singaporean citizens
aged 35 years or older. The associated population parameter P is then calculated as

p_ number of Singaporean citizens aged 35 years or older
N total number of Singaporean citizens '
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If we obtain a sample of 1000 Singapore citizens, of whom 750 are aged 35 years or older,
then the observed sample proportion, which we denote p, is simply p = 750/1000.

Proposition 29.3.9. The sample proportion Ps is an unbiased estimator for the popu-
lation proportion p.

Proof. Consider a population in which the proportion of “success” is p. If a random
variable of size n is taken from this population, and Xg is the random variable denoting
the number of “successes” in this sample, then

XS ~ B(nvp)

The expected value of Pg is thus

E[PS]:IE[);S] :E[ifS]::Lf:p.

Thus, Ps is an unbiased estimator for p. ]

We can use the same idea to calculate Var[Ps]:

Var[Ps] = var[)ﬂ _ Vajl[fs] _mw(l-p) _p(l-p)

Hence, for large n, by the Central Limit Theorem, we have the following approximation:
1—
Ps ~N <p, p(p)) approximately.
n

The distribution of Pg is known as the sampling distribution of the sample proportion
and its standard deviation, 1/p(1 — p)/n, is known as the standard error of proportion.
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30 Confidence Intervals

30.1 Definition

So far, we have seen how we can estimate an unknown population parameter from a
random sample. For instance, if the parameter we seek to estimate is the mean u, we
can employ an unbiased estimator, i.e. the sample mean T, to get a rough value for u.
This is what we call a point estimate. However, a point estimate does not provide any
information about the uncertainty present. To this end, it is more desirable to obtain an
interval estimate.

Definition 30.1.1. An interval estimate of an unknown population parameter is a ran-
dom interval constructed so that it has a given probability of including the parameter.

This leads us to the notion of a confidence interval.

Definition 30.1.2. Given a fixed value a € [0,1] (known as the level of significance), a
100(1 — )% confidence interval for an unknown population parameter 6 is any interval
(a,b) such that

Pla<0<b=1-a.

As an example, let us take o = 0.05. If we can find a method of calculating the limits a
and b, this means that in the long run, if we repeatedly take samples, then the calculated
interval (a,b) will contain the population parameter 6 for 95% of the samples taken.
Equivalently, the probability of obtaining a random sample for which the corresponding
interval contains 6 is 0.95.

Note however, that for a particular sample, we do not know whether this is one of the
samples for which @ is in the sample. Our “confidence” in the interval comes from the fact
that we are using a formula which gives a correct result most of the time.

We can express the above notions diagrammatically:

bl

27

o
L=}

o
—_

o

b
w

Figure 30.1: One hundred 95% confidence intervals for p (= 30) computed from 100 dif-
ferent samples. Confidence intervals coloured red do not contain .

ISource: https://amsi.org.au/ESA_Senior_Years/SeniorTopic4/4h/4h_2content_10.html
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30.2 Population Mean

In this section, we explore interval estimates for the population mean pu.
Recall that for a significance level of «, we wish to find an interval (a, b) such that

Pla<p<b=1-a.

To make our lives easier, we impose the restriction that the confidence interval be sym-
metric about pu, that is, the interval should be of the form (u — E, u+ E), where E is the
margin of error. However, we obviously do not know u, so we make use of the next best
thing available: T, to get something of the form

(z—-E,T+E).
We thus wish to find the value of E such that
Pz-E<u<z+E=1-a. (30.1)

Depending on the situation, p will be distributed differently, so F will differ accordingly.
There are four cases we will consider, with their respectively subsection numbers labelled
in the table below:

2 n Population Distribution
Normal Unknown
Large §30.2.2
Known Small §30.2.1
Large §30.2.3
Unknown = 53094

30.2.1 Normally Distributed Population with Known Variance

Suppose our population is normally distributed with unknown mean g and known variance
02,50 X ~ N(u, 02). In the previous chapter, we learnt that

2
XNN(M,”)
n

where n is the sample size. If we standardize this, we get

_X-p
o/\n’
where Z is the standard normal distribution N(0, 1). Manipulating (30.1), we get
E < T—p < E 1
_ =1-a.
o/yn a/yn a/yn

But we recognize the middle expression as Z, so we really have

Z

IP[xE<u<m+E]:P[

E E
Pl-—————=<Z<——|=1—a.
[ o/ U/VGJ “
Because Z is symmetric about 0, we can finally isolate E:

l—«o

- — ]P’[Z< @

S

) 7

P[O<Z<0/Zﬁ} 5

We now introduce some notation regarding z-values.
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Definition 30.2.1. Given a probability ¢ € [0, 1], the critical value z. is defined as
PlZ < z| = ¢,

i.e. it acts as an “inverse” to the standard normal distribution.

With this notation, we can isolate our margin of error E:

We thus obtain the following result:

Proposition 30.2.2. If X is normally distributed and has known variance o2, then the
symmetric 100(1 — «)% confidence interval for p is given by

_ o _ o
x—Zl_%%,x‘i_Zl_%% .
The two limiting values that define the interval are known as the 100(1 — )% lower
and upper confidence limits, sometimes writen as

g
Ttz e—.
x 21 g\/ﬁ

Graphically, the area under N(E, 02) over the confidence interval is 1 — a:

2

2+ 20.975\/%

3
2 — 20975 75

Figure 30.2: An illustration of a 95% confidence interval for T = 2, 0 = 3 and n = 50.

Sample Problem 30.2.3. After a rainy night, 12 worms surfaced on the lawn. Their
lengths, measured in cm, were:

9.5, 9.5, 11.2, 10.6, 9.9, 11.1, 10.9, 9.8, 10.1, 10.2, 10.9, 11.0.

Assuming that this sample came from a normal population with variance 4, calculate a
99% confidence interval for the mean length of all worms in the garden.

Solution. Let X cm be the length of a worm. We have ¢ = 2 and n = 12. From the
sample, we calculate T = 10.392. Feeding this into the above expression, we see that a
99% confidence interval for the mean length of all worms in the garden is

2 2
<10.392 — 20.995\/6, 10.392 + 20.995\/5) = (8.90, 11.9).
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30.2.2 Large Sample Size from Any Population with Known Variance

In the case where the sample size is large (n > 30), we can invoke the Central Limit
Theorem, regardless of the distribution of the population. If X has variance o2, then we
know from the previous chapter that

2
X ~N <,u, U) approximately.
n

By a similar argument as in §30.2.1, we obtain the following (more general) result:

Proposition 30.2.4. If X has known variance o and the sample size is large (n > 30),
then the symmetric 100(1 — «)% confidence interval for u is given by

_ o _ o
x—zl_%%, a;—i—zl_%% .

30.2.3 Large Sample Size from Any Population with Unknown Variance

In most practical situations, it is likely that both the mean and variance are unknown.
Provided that the sample size is large (n > 30), by the Central Limit Theorem, we
can say that the distribution of X is approximately normal. In place of the unknown
population variance o2, we use s, the unbiased estimate of the population variance as an

approximation. Hence,
2

X ~N (Iu, S) approximately.
n

Just like before, we get the following result:

Proposition 30.2.5. If X has unknown variance but the sample size is large (n > 30),
then the symmetric 100(1 — «)% confidence interval for yu is given by

S S
T—2j_a—F—, T+ 21_a—=].
< 2../n’ 2\/n

30.2.4 Normally Distributed Population with Unknown Variance and Small
Sample Size

Before looking at confidence intervals of u when the sample size is small, we first need to
consider the Student’s t-distribution.

The t-distribution

The crucial statistic in the construction of a confidence interval for the mean of a normal
distribution is Z, given by
_X-un
~o/yn
In §30.2.3, when ¢ was unknown, we were able to o by s by virtue of the large sample
size, which allowed us to approximate X with a normal distribution.

In the present case, however, we do not have such a luxury. Now, when o is replaced
by S, the random variable

Z

_X-u
S/

can no longer be apporixmated by a normal distribution. Here, T" depends on two random
variables: namely X and S, the random variable corresponding to s. Note that the value

T
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of T varies from sample to sample not only because of the variation in X as in the case of
Z, but also because of the variation in S.
For samples of size n, it can be shown that

X —p
T= ~t(n—1).
S~ =)
Note that this requires X1, ..., X, to have independent and identical normal distributions.

Figure 30.3: The t-distribution when v = 2 and v = 10. Observe that as v increases, t(v)
approaches N(0,1) in distribution.

The distribution of 7" is a member of a family of distributions known as ¢-distributions.
All t-distributions are symmetric about 0 and have a single parameter, v, which is a
positive integer known as the degrees of freedom of the distribution. We notate this as
t(v). As v — oo, the corresponding t(v) distribution approaches the standard normal
distribution Z. In fact, when v > 30, the difference between the two is negligible, which
explains why the normal distribution could continue to be used for cases where n was large
in §30.2.3.

Why does T have n — 1 degrees of freedom? Let us begin by introducing an informal
definition of a degree of freedom.

Definition 30.2.6 (Informal). The degrees of freedom of a statistic is the number of
independent bits of information that are used in estimating the statistic.

In the present case, we initially have a total of n bits of information, namely our n
observations (X7i,...,X,). In order to estimate the value of our T statistic, we must first
determine the value of the sample mean X and variance S. In an ideal world, both X
and S would be allowed to vary independently. Unfortunately, S depends on the observed

value of X:? )
2 _ 2
5= —— E (x—m)°.

That is to say, we must estimate X in order to estimate S. We hence treat T as a constant,
which we calculate as

1+ + 2,
—

But this effectively imposes a constraint on x1, ..., x,; if we somehow forgot our initial n
observations after calculating =, we would only need to remember n — 1 observations. We
thus have n — 1 independent bits of information, so our degrees of freedom is n — 1.

T =

20f course, we could have used the calculated value of s* to estimate Z. After working through the
algebra, one will find that we still end up with n — 1 degrees of freedom.
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Confidence Interval using i-distribution
Suppose X is normally distributed with mean p and unknown variance. Then
X —p
S/v/n

where S is estimated by s. Once again, employing a similar argument as in §30.2.1, we
obtain the following result:

T —

~t(v—1),

Proposition 30.2.7. If X is normally distributed with unknown variance, then the sym-
metric 100(1 — a)% confidence interval for u is given by

_ s  _ S
(a; - tl_% %, T+ tl—% \/ﬁ> .

Here t. is the critical value for the t-distribution and is given by PT < t. = c.

30.2.5 Summary

The following table shows the appropriate margin of error to be used in different scenarios
when finding confidence intervals for the population mean. For conciseness, we use ¢ =
1 — 5. Cells with gray backgrounds indicate an approximation.

Population Distribution
o2 n
Normal Unknown
K Large , o
nown c——=
LD
Small
Large
Unknown
Small

30.3 Population Parameter

Suppose we wish to find p, the proportion of “successes” in a population. For a large
sample size n,

1—
Ps ~ N <p, p(p)> approximately,
n
where Pg is the sample proportion. Standardizing, we see that
__Ps—p
Vp(l—p)/n

Notice the parallels with what we obtained in §30.2.1! Indeed, we can once again repeat
our argument to obtain the following result:

Proposition 30.3.1. Given a sample proportion §, the symmetric 100(1—a)% confidence
interval for p is given by

T T3
(ﬁ—zla /B ( p)’ﬁJrzkg /B ( p)>.
2 n 2 n
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Sample Problem 30.3.2. In a random sample of 400 carpet shops, it was discovered
that 136 of them sold carpets at below the list prices recommended by the manufacturer.
Calculate a 90% confidence interest for the proportion of shops that sell below list price.

Solution. Let p be the population proportion, and let the sample proportion be Pg ~
N(p,p(1 — p)/n). We have p = 136/400, so a 90% confidence interval for p is

136 136 136 136 136

136 136 (1 _ 136 (1 _ 136
100~ 209\ gm0 qop TR0\ g | = (0-30104,0.37896)

400 400 " 400
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31 Hypothesis Testing (Parametric)

Hypothesis testing is a statistical procedure used to determine if the data supports a par-
ticular assumption (hypothesis) about the population. In this chapter, we will examine
various statistical tests employed in parametric hypothesis testing. Here, “parametric”
means that we are given (or assuming) that the observed data have well-known distribu-
tions, such as the normal distribution. If we cannot make such assumptions, we will use a
non-parametric test, which is covered in the next chapter.

31.1 An Introductory Example

Let us look at a simple example. The manufacturer of a beverage claims that each bottle
they produce contains 500 ml of beverage on average. However, a consumer believes that
the mean volume is actually smaller than claimed. To investigate this, the consumer takes
a random sample of 30 bottles and finds that the mean volume of beverage in these 30
bottles is 498 ml.

The sample mean is certainly lower than the manufacturer’s claim, but how low is too
low? To answer this, we perform a hypothesis test.

Let X ml the volume of beverage in each bottle, and let the mean of X be u, where
is unknown. Assume that the standard deviation o = 5, so that X ~ N(yu,25).

First, a hypothesis is made that © = 500 ml. This is known as the null hypothesis, Hy,
and is written

Hp: p=500.

Since it is suspected that the mean volume is lower than the claimed 500 ml, we establish
the alternative hypothesis, H;, which is that the mean is lesser than 500 ml. This is
written

Hy: < 500.

To carry out the test, the focus moves from X, the volume of liquid in each can, to the
distribution of X, the mean volume of a sample of 30 cans. In this test, X is known as
the test statistic and its distribution is needed. Luckily for us, because we assumed that
X ~ N(p,25), we know from previous chapters that X ~ N(u,25/30).

The hypothesis test starts by assuming the null hypothesis is true, so = 500. Under

HOa
— 25
X ~N(500,22).
(2005)

The result of the test depends on the whereabouts in the sampling distribution of the
observed sample mean of T = 498. We need to find out whether T is close to 500 or far
away from 500. If T is close to 500, then it is likely that Z comes from a distribution
with mean 500, so there would not be enough evidence to say that the mean volume has
decreased. On the other hand, if the T is far away from 500, than it is unlikely that =
comes from a distribution with mean 500, so the mean p is then likely to be lower than
500.

To quantify this “closeness”, we can look at the probability value (also called p-value)
associated with the test statistic X. In our case, the p-value is IP’[Y < 498]. A large
p-value will indicate that if Hyg: g = 500 is true, then obtaining a value of ¥ = 498 is likely
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and hence a reasonable variation we should allow. However, a small p-value will indicate
that obtaining a value of T = 498 is a rare event if Hy is true, and hence, perhaps p isn’t
500, but something else (in this case, less than 500).

|
!
T

498 500

Figure 31.1: The p-value ]P’[Y < 489] is given by the shaded area.

Note that whenever we use the test-statistic or p-value in this example, both are asso-
ciated with the left tail of the distribution. This is because we began with the suspicion
that p was lower than claimed. This type of test is called a 1-tail (left tail) test.

To determine if the p-value is small enough, we introduce a cut-off point, ¢, known as
the critical value, which indicates the boundary of the region where values of T would be
considered too far away from 500 ml and therefore would be unlikely to occur. This region
is known as the critical/rejection region. The probability corresponding to this critical
region will then become the upper probability limit of what we will consider to imply that
an unlikely or rare event has occurred. This probability, «, is called the significance level
of the test. In general for a left tail test at the « level, the critical value c is fixed so that
P[Y < c] = « and the critical region is T < ¢. In practice, to avoid being influenced by
sample readings, it is important that « is decided before any samples values are taken.

¢ 500
Figure 31.2: The critical region for o = 0.25.

The hypothesis test then involves finding whether the sample value T lies in the critical
region, or whether the p-value is smaller than the significance level a. If T lies in the
critical region or if the p-value < «, then a decision is taken that T is too far away from
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the mean associated with Hy to have come from a distribution with this mean, hence we
reject Hy in favour of Hy. Else, if T lies outside the critical region or if the p-value > «, we
do not reject Hy. For a significance level of «, if the null hypotheses Hyis rejected, then
the result is said to be significant at the o level.

To complete our example, suppose that a significance level of 1% is chosen. Since
X ~ N(500,25/30), we can work out the critical value or the p-value.

Critical Value Approach Using G.C.,
P[X <c] =0.01 = ¢=497.88

Since T = 498 lies outside the critical region (T = 498 > 497.88 = ¢), we do not reject
Hgy and conclude there is insufficient evidence at the 1% significance level than the mean
volume of beverage in each bottle is lesser than 500 ml.

p-Value Approach The p-value of our sample is
P[X < 498] = 0.14230.

Since the p-value is greater than our significance level (0.14230 > 0.01 = «), we do not
reject Hy and conclude there is insufficient evidence at the 1% significance level than the
mean volume of beverage in each bottle is lesser than 500 ml.

31.2 Terminology

31.2.1 Formal Definitions of Statistical Terms
Definition 31.2.1. The level of significance of a hypothesis test, denoted by «;, is defined
as the probability of rejecting Hy when Hy is true.

Definition 31.2.2. The p-value is the probability of getting a test statistic as extreme
or more extreme than the observed value. Equivalently, it is the lowest significance level
at which Hy is rejected.

31.2.2 Types of Tests

Suppose that the null hypothesis is Ho: = po."
There are three types of tests we can use, depending on what our alternative hypothesis
looking for:

e If H; is looking for an increase in u, we employ a 1-tail (right tail) test.
e If H; is looking for a decrease in p, we employ a 1-tail (left tail) test.

e If H; is looking for a change (either increase or decrease) in i, we employ a 2-tail
test.

In the introductory example, we saw how Hg was defined to be the “status quo”. However, this is not
always the case. Given two hypotheses P and —P, the null hypothesis is the one that contains the
equality case. For instance, if P : p > 500, then we take =P : p < 500 to be our null hypothesis, in
which case we write Hp: = 500 and Hy: g > 500.
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1-Tail (Right Tail) Test

In a 1-tail (right tail) test, Hi: p > po. Both the critical region and p-value are in the
right tail, with o = IP’W > c] and the p-value = IP’[X > f]
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|

|
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Figure 31.3: The critical region for a right tail test.

1-Tail (Left Tail) Test

In a 1-tail (left tail) test, Hi: u < po. Both the critical region and p-value are in the left
tail, with a = PW < c] and the p-value = IP’[X < f]
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Figure 31.4: The critical region for a left tail test.

2-Tail Test

In a 2-tail test, Hi: pu # po. The critical region and the p-value are in two parts. The
critical value is given by any one of the following expressions

QZP[YSCI] —l—]P)[fZ CQ] :2PW§01] ZQ]P[Y>CQ],

while the p-value is given by

2P[X <z|, ifT < po,
p-value = .
2P[X >z, T > po.
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Figure 31.5: The critical region for a two-tail test.

31.2.3 Procedure
Below is a general framework for performing a hypothesis test.

Recipe 31.2.3 (Hypothesis Testing).

a) State the null hypothesis, Hy, and the alternative hypothesis, H;.

(c
(d

(a)

(b) State the level of significance, .
) Consider the distribution of the test statistic, assuming that Hy is true.
)

Critical Value Approach. Calculate the critical value based on «, and the test
statistic value based on the sample data. Reject Hy if the value of the test statistic
falls in the critical region. Otherwise, do not reject Hy.

p-Value Approach. Calculate the p-value based on the sample data. Reject Hy if
the p-value < . Otherwise, do not reject Hy.

(e) Write down the conclusion in the context of the question.

Apart from step 3, the other steps are purely procedural. Hence, the most crucial step
is to decide the test statistic. This is what we will focus on in the next few sections.
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31.3 Population Mean

For hypothesis tests on the population mean, the test statistic is the sample mean X.
Similar to what we saw in §30.2, the following table shows the appropriate distribution to
consider for different scenarios. Cells with gray backgrounds indicate an approximation.

Population Distribution
o2 n
Normal Unknown
Large
Known
Small
Large
Unknown
Small

When our test statistic follows a normal distribution, we say that we perform a z-test.
If instead our test statistic follows a t-distribution, we say that we perform a t-test.

Sample Problem 31.3.1. The lengths of metal bars produced by a particular machine are
normally distributed with mean 420 cm and standard deviation 15 cm. After changing
the machine specifications, a sample of 20 metal bars is taken and the length of each bar
is measured. The result shows that the sample mean is 413 cm. Is there evidence, at
the 5% significance level, that there is a change in the mean length of the metal bars?

Solution. Let X cm be the length of a metal bar after the machine specifications were
changed. Our hypotheses are Hp: p = 420 and Hy: g # 420. We perform a 2-tail z-test at
the 5% significance level. Under Hy, our test statistic is X ~ N(420, 152/20). From the
sample, T = 413. Using G.C., the p-value is 0.0309, which is less than our significance level
of 5%. Thus, we reject Hy and conclude there is sufficient evidence at the 5% significance
level that there is a change in the mean length of the metal bars. O

31.3.1 Connection With Confidence Intervals

The testing of Hy: p = po against Hy: p # pg at a significance level 100a% is equivalent
to computing a symmetric 100(1 — «)% confidence interval for p. If pg is outside the
confidence interval, Hy is rejected. If pg is within the confidence interval, Hy is not
rejected.

Sample Problem 31.3.2. In a study on the mathematical competencies of 15-year-old
Singaporean students, the following PISA test results for a sample of 17 students is
such that its sample mean is 565 with a sample standard deviation of 50. Find a 95%
confidence interval for the population mean of the results of students for the PISA test.
Hence, state the conclusion of a hypothesis test, at the 5% significance level, that tests
if the mean of the test results for the Singaporean students differs from 600.

Solution. Let X be the random variable denoting the PISA test results of a 15-year-old
Singaporean student. Our test statistic is

X — 565

T £(16).
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From the sample, s = 50, so a symmetric 95% confidence interval for y is (539.29, 590.71).
Since 600 is outside the confidence interval, we reject the null hypothesis that p = 600
and conclude there is sufficient evidence at a 5% significance level that the mean of the
test results differ from 600. O

31.4 Difference of Population Means

In this section, we explore the distributions of the differences of population means. This
is typically used when we are interested in comparing the population means from two
populations. There is a major distinction we must make when we encounter such bivariate
data:

Definition 31.4.1. If the data occurs in pairs, we say they are paired. Else, we say they
are unpaired.

Example 31.4.2. Suppose we measure the blood pressure of a number of hospital patients
before and after some treatment aimed at reducing blood pressure. Two values will be
recorded from each patient, hence the data is paired.

However, if we measure the blood pressure of two groups of patients, one receiving
treatment in Hospital A and the other in Hospital B, the data is unpaired.

There are some guidelines we can use to distinguish between paired and unpaired data:

e If the two samples are of unequal size, then they are unpaired.

e For data to be paired, there must be a reason to associate a particular measurement
in one sample with a measurement in the other sample. If there is no reason to pair
measurements in this way, the data is treated as unpaired.

31.4.1 Unpaired Samples

Let X; and X5 be two random variables with random sample sizes n; and ng, mean p;
and po. In comparing the two populations, we typically set up our null hypothesis as Hy:
w1 — po = o with a one- or two-sided alternative hypothesis, similar to the single-value
case discussed in the previous section.

When comparing unpaired data, one key assumption we typically make is that X; and
Xy are independent, as this allows us to formulate our test statistics nicely.

Known Population Variance

Suppose X7 and X5 have known variances a% and a% respectively. If X; and Xy are
normally distributed, then

2 2
X1~N(u17“1> and X2~N<M2702>-
n1 n2
If X; and Xy are not normally distributed, then for large samples (n1,n9 > 30), by the
Central Limit Theorem, we can approximate X; and X5 using a normal distribution:

S o2 o o2
X~ N<u1, 1) and Xo ~ N<u2, 2> approximately.
ni ng
Our test statistic is thus

2 2
__ PR o g
Xl—X2~N(u1—uz,1 +2>,

niy ng

and we proceed with the two-sample z-test.
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Sample Problem 31.4.3. A random sample of size 100 is taken from a population with
variance o7 = 40. Its sample mean Z7 is 38.3. Another random sample of size 80 is taken
from a population with variance o2 = 30. Its sample mean 73 is 40.1. Assuming that
the two populations are independent, test, at the 5% level, whether there is a difference
in the population means p; and po.

Solution. Our hypotheses are Hy: puy — po = 0 and Hy: gy — po # 0. Under Hg, our test

statistic is
40 30>

X -X~N(0,— 42
oo (0’ 100 80

From the sample, 77 = 38.3 and T3 = 40.1. Using G.C., the p-value is 0.040888, which is
less than our significance level of 5%. Thus, we reject Hy and conclude there is sufficient

evidence at the 5% level that there is a difference in the two population means. ]

Unknown Population Variance with Large Sample Size

If we do not know the population variances of X; and X», we instead use the unbiased
estimates 5% and sg. For large samples (n1,ne > 30), we have, by the Central Limit
Theorem, the following test-statistic:

— = o? o}
X1 —Xo~ N(,ul — fig, L + 2) approximately.
ni no

2

If we know further that the two populations have common variance?, i.e. 0? = 03, the

pooled variance

o_(=Dsi+m—1s3 3 (01 -71)°+3 (12— 73)°
P (n1—1)+(n2—2) - (n1—1)+(n2—1)

would provide a more precise estimate of the population variance. Our test statistic is
hence

. 1 1
X1 — X9~ N<u1 — U2, 512, (nl + n2>> approximately.

Either way, we proceed with the two-sample z-test.

Sample Problem 31.4.4. Two statistics teachers, Mr Tan and Mr Wee, argue about
their abilities at golf. Mr Tan claims that with a number 7 ion he can hit the ball, on
average, at least 10 m further than Mr Wee. Denoting the distance Mr Tan hits the ball
by (100 4 ¢) m, the following results were obtained:

np =40, Y ¢=80, Y (c—e)=1132.

Denoting the distance Mr Wee hits the ball by (100 + ¢) m, the following results were

obtained:
np =35 Y t=-175, > (t—7)° =1197.

If the distances for both teachers have a common variance, test whether there is any
evidence at the 1% level, to support Mr Tan’s claim.

Solution. Let X1 and X9 be the random variable denoting the distance, in m, for Mr Tan
and Mr Wee, with population mean p; and ps respectively. From the data, we have

-1
HleO—i—%:lOQ and @:100+%:95,

2As a rule of thumb, the assumption o1 = o2 is considered reasonable if 1/2 < s1/s2 < 2.
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so the pooled variance is

s Y (@1 —T)+ N (e —73)° 113241197 2100
T D4 (me—1) (30— +@B5-1)

We now perform a two-sample z-test at the 1% level. Our hypotheses are Hg: p1 —ps = 10
and p1 — po < 10. Under Hy, our test statistic is

1

I 1
X — Xy ~ N(M1 — p2, s (m + m)) = N(10,1.70915).

Using G.C., the p-value is 0.0109, which is greater than our significance level of 1%. Thus,

we do not reject Hy and conclude there is insufficient evidence to suppose Mr Tan’s claim.
O

Unknown Population Variance with Small Sample Size

If the random sample sizes are not large, then the normal distribution is no longer a
reasonable approximation to the distribution of the test statistic. In order to progress, we
must have the following assumptions:

e X; and X5 have independent, normal distributions.
e X; and X5 have a common variance.

With these assumptions, it can be shown that the test statistic T" given by

- (K—E) — (11 — p2) ~t((n1—1) + (n2 — 1)),

/1 1
Sprl 7 tar

g2 _ (n—1)S?+ (ny—1) 532
P (n1—1) + (n2 — 2)
is the pooled variance (unbiased estimate of the common variance). Note that there we
lose 2 degrees of freedom since we use both T7 and T3 to estimate 5% and s%.

where

Sample Problem 31.4.5. The heights (measured to the nearest cm) of a random sample
of six policemen from country A were found to be

176, 180, 179, 181, 183, 179.

The heights (measured to the nearest cm) of a random sample of eleven policemen from
country B have the following data:

D y=1991, > (y-7)° =54

Test, at the 5% level, the hypothesis that policemen from country A are shorter than
policemen from country B. State any assumptions that are needed for this test.

Solution. Let X4 and Xp be the height in cm of a policeman from country A and
B, with population mean p4 and pp respectively. We assume that X4 and Xp have
independent, normal distributions, and they share a common variance. Our hypotheses
are Hy: pa —pup =0 and Hy: pg — pup < 0. Under Hy, our test statistic is

T= A28 y15).
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From the sample,

1991
The unbiased estimates of each sample variance is
1
2 2 2
=5.4 d =— — =5.4.
s% = 5.4667 and sy 1OZ(y y)° =5

Thus, the pooled variance is

~ (6—1)(5.4667) + (11 — 1)(5.4)
s2 = 6D+ (l-D) = 5.4222.

Using G.C., the p-value is 0.139, which is greater than our significance level of 5%. Thus,
we do not reject Hyp and conclude there is insufficient evidence to claim that policemen
from country A are shorter than policemen from country B. O

31.4.2 Paired Samples

If the given data is paired, then the two populations are no longer independent, hence
we cannot use any of the tests previously discussed. Instead, we will now consider the
difference D = X; — Xo, which is calculated for each matched pair. Writing up for the
mean of the distribution of differences between the paired values, our null hypothesis is
Ho: pup = po with a one-sided or two-sided H; as appropriate.

Notice that by working with the differences, we have effectively reduced our problem
into a single sample situation, so the usual hypothesis test considerations for a single
sample mean applies. For instance, if D can be presumed to be normally distributed, or
if n is sufficiently large that the Central Limit Theorem can be applied to approximate D
to have a normal distribution, then

— 32
D ~ N(M& D>,
n

and we proceed with a paired-sample z-test. Alternatively, if D can be presumed to have
a normal distribution, but n is small, then the test statistic

Sp/vn

can be used. In this case, we proceed with a paired-sample t-test.

T ~t(n—1)
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31.5 \? Tests

31.5.1 The y? Distribution

The x? distribution is a continuous distribution with a positive integer parameter v.

Definition 31.5.1. The sum of the squares of v independent standard normal random
variables Z1, ..., Z, is distributed according to a \° distribution v degrees of freedom,
denoted x2.

Z2 4+ 722~ 2

v=1
_V:
_]j:
—v =10

Figure 31.6: The x?2 distribution for varying values of v.

The x? distribution has a reverse “J”-shape for v = 1,2, and is positively skewed
for v > 2. As v increase, the distribution becomes more symmetric. For large v, the
distribution is approximately normal.

Fact 31.5.2 (Properties of the x? Distribution).
e A x2 distribution has mean v and variance 2v.
e A 2 distribution has mode v — 2 for v > 2.

e If U and V are independent random variables such that U ~ x2 and V ~ 2, then
U+V ~ X’l2L+’U'

31.5.2 ? Goodness-of-Fit Test

Previously, we have always assumed that a particular type of distribution is appropriate
for the data given and have focused on estimating and testing hypotheses about the
parameter of the distribution. In this section, the focus changes to the distribution itself,
and we ask “Does the data support the assumption that a particular type of distribution
is appropriate?”

As a motivating example, suppose we roll a six-sided die 60 times and obtain the fol-
lowing observed frequencies:

Outcome | 1 |2 | 3 |45 6
Observed frequency, O | 4 | 7 |16 | 8 | 8 | 17

In this sample, there seems to be a rather large number of 3’s and 6’s. Is this die fair,
or is it biased? With a fair die, the expected frequencies would each be 60/6 = 10.
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Outcome | 1 | 2 | 3 | 4| 5 | 6
Expected frequency, £ | 10 | 10 | 10 | 10 | 10 | 10

The question is thus whether the observed frequencies O and the expected frequencies

E are reasonably close or unreasonably different. An obvious comparison would be the
differences (O — E):

Outcome | 1 2 3 4 5 6

Observed frequency, O | 4 7 116 | 8 8 | 17
Expected frequency, £ | 10 | 10 | 10 | 10 | 10 | 10
Difference, O— F | -6 | =3 | 6 | =2 | =2 | 7

The larger the magnitude of the differences, the more the observed data differs from the
model that the die was fair.
Suppose we now roll a second die 660 times and obtain the following results:

Outcome | 1 2 3 4 5 6
Observed frequency, O | 104 | 107 | 116 | 108 | 108 | 117
Expected frequency, £ | 110 | 110 | 110 | 110 | 110 | 110
Difference, O — F | -6 | =3 | 6 2| =2\ 7

This time, the observed and expected frequencies seem close, yet the differences O — F
are the same as before. We see that it is not just the size of O — E that matters, but also
its relative size to the expected frequency (O — E)/E.

Combining the ideas, the goodness-of-fit for an outcome i is measured using

Oi—Ei _(0i— E;)?
The smaller this quantity is, the better the fit. An aggregate measure of goodness-of-fit
of the model is thus given by the x? statistic:

X2 — Z (Oz E‘Ez) ]

(0i — E;) -

As the name suggests, this test statistic follows a y? distribution.

Observe that if y2 = 0, there is exact agreement between O; and E;, so the model is a
perfect fit. If x2 > 0, then O; and E; do not agree exactly. The larger the value of x2, the
greater the discrepancy.

For the test, we define Hy as our sample having the expected probabilities of the various
categories. The alternative hypothesis H; will be that Hy is incorrect, i.e. the sample does
not have the expected probabilities of the various categories. We use the x? test statistic,
which generally follows a X?n—l—k distribution, where m is the number of categories being
compared, and k is the number of parameters estimated from the data.

Example 31.5.3. Suppose we wish to test if a given set of data fits a Poisson model. If
we are not given the mean rate A, we can estimate it using * ~ A. In doing so, we lose
one degree of freedom, so the resulting x? test statistic will follow a x2,_, distribution.

Example 31.5.4. To formalize our motivating example, we define Hg: the die is fair, and
H;i: the die is not fair. We take a 2.5% level of significance. Our test statistic is

O; — E;)?
(2
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From the sample, the individual contributions are given by

Outcome | 1 2 3 4 5 6

O; 4| 7116 8] 8|17
E;l10]10]10] 10| 10 | 10
(O; —E)?/E; 3609 [36]04]04]49

The test statistic value is thus
364+09+364+04+044+09=138.

Using G.C., the p-value is
P[x* > 13.8] = 0.016931.

Since the p-value is less than our significance level of 2.5%, we reject Hy and conclude
there is sufficient evidence at the 2.5% significance level that the die is not fair.

Small Expected Frequencies

The distribution of 3~(O; — E;)?/E; is discrete. The continuous x? distribution is simply a
convenient approximation which becomes less accurate as the expected frequencies become
smaller. Generally, the approximation may be used only when all expected frequencies are
less than 5. If a category has an expected frequency less than 5, we must combine it with
other categories. This combination may be done in any sensible grounds, but should be
done without reference to the observed frequencies to avoid bias.

Sample Problem 31.5.5. A random sample of 40 observations on the discrete random
variable X is summarized below:

x| 0|1 |2]3|4]2>5
Frequency | 4|14 |9 |7 |6 | 0O

Test, at the 5% significance level, whether X has a Poisson distribution with mean
equal to 2.

Solution. Our hypotheses are Hy: the data is consistent with a Po(2) model, and H;: the
data is inconsistent with a Po(2) model. From the given data, the observed and expected
frequencies are

T 0 1 2 3 4 >5
O; 4 14 9 7 6 0
E; | 5.4143 | 10.821 | 10.827 | 7.2179 | 3.6089 | 2.1061

The last two categories have expected frequencies less than 5, so we combine them into
a single category:

x 0 1 2 3 >4
O; 4 14 9 7 6
E; | 5.4143 | 10.821 | 10.827 | 7.2179 | 5.7151

Our test statistic is

~ X5-1-

>y (0i—E)?*
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Using G.C., the p-value is 0.80373, which is larger than our 5% significance level, thus we

do not reject Hy and conclude there is insufficient evidence that the data is inconsistent

with a Po(2) model. O
In general, we have the following procedure:

Recipe 31.5.6 (x? Goodness-of-Fit Test).
1. State hypotheses and significance level.
2. Compute expected frequencies under Hy.
3. Combine any categories if there are expected frequencies under 5.
4. Determine the degrees of freedom and state the test statistic.
5. Calculate the p-value.

6. State the conclusion of the test in context.

31.5.3 2 Test for Independence

Suppose we record data concerning two categorical variables for a sample of individuals
chosen randomly from a population. It is convenient to display the data in the form of a
contingency table. Here is an example which shows information on voting:

Party A | Party B | Party C | Total
Male 313 124 391 828
Female 344 158 388 890
Total 657 282 779 1718

Sample data of this type are collected in order to answer interesting questions about the
behaviour of the population, such as “Are there differences in the way males and females
vote?” If there are differences, then the variables “vote” and “gender” are said to be
associated, else they are independent.

To test for independence between variables, we employ a x? test for independence. Our
null hypothesis is that the variables are independent, while our alternative hypothesis is
that the variables are associated.

Under the null hypothesis, the best estimate of the population proportion voting for
Party A is 657/1718. The expected number of males voting for Party A would thus be
828 x 657/1718 = 316.64, and the number of females would be 890 x 657/1718 = 340.36.
These expected frequencies, F;, are calculated using the formula

row total x column total

grand total

Doing this for all combination of party and gender, we get the following table of expected
frequencies:

Expected Frequencies
Party A | Party B | Party C
Male 316.64 135.91 375.44
Female 340.36 146.09 403.56

The test statistic >.(O; — E;)?/E; is computed and compared with the relevant y?
distribution. For a contingency table with r rows and ¢ columns, the degrees of freedom
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v is given by
v=(r—-1)(c-1),

since we only need (r — 1)(c — 1) values to completely determine the entire table (try it!).
In our case, v = (2—-1)(3—1) = 2.
In general, we have the following procedure:

Recipe 31.5.7 (x? Test for Independence).
1. State hypotheses and significance level.
2. Compute expected frequencies under Hy and tabulate them.
3. Combine any rows/columns if there are expected frequencies under 5.
4. Determine the degrees of freedom and state the test statistic.
5. Calculate the p-value.

6. State the conclusion of the test in context.
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32 Hypothesis Testing (Non-Parametric)

Previously, we examined tests that require certain assumptions about the underlying dis-
tribution from which the data arises. Tests which do not require such assumptions are
called non-parametric. Note that non-parametric tests are generally less powerful than
the equivalent parametric tests, especially if the assumptions required by the parametric
tests can be justified.

32.1 Sign Test
32.1.1 Single Sample

Consider a random sample of size n from a population which has a continuous distribution
with median m. We are interested in whether the median m takes on a particular value
myg. That is, we are interested in testing the null hypothesis

Hy: m =my
against any of the possible alternative hypotheses:
Hi:m>myg Hy: m<mg Hi:m=#mg.

Define K to be the number of data values greater than mg, and K_ to be the number
of data values smaller than mg. Under Hy, we expect about the same number of data
values that are greater than mg and less than my.

m mo

Hence, our test statistic is either

1 1
K ~Bl|n,= or K_~Bln,=],
2 2

depending on which is more convenient. For now, we take K to be our test statistic.

If we test Hy against Hi: m > myg, then we reject Hy if the observed number of data
values greater than myg is too large, i.e. ky > cy for some critical value c;. Alternatively,
we can consider the p-value, which is given by P[K > k. ]. If this p-value is smaller than
our significance level «, we reject Hg.

] ]
T T

mo m

If we test Hg against Hy: m < myg, then we reject Hg if the observed k. is too small.
Alternatively, if the p-value P[K < k] is smaller than our significance level «, we reject
Hy.
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Lastly, if we test Hy against Hy: m # myg, then we reject Hy if the observed ki is too
small or too large. In this case, the p-value is given by

2H111'l{P[K+ Z ]ﬁ+] ,P[K+ S k+]} .

Note that we choose the shorter tail since we want the more “extreme” end.
To summarize,

HO m =1y

H; m > my m < my m # mg
p-value (Ky) | P[K; > ky] | PIKy < ky] | 2min{P[K} > ki ,P[K; < k4]}
p-value (K_) | PIK_ <k_] | PIK_ >k_] | 2min{P[K_ > k_] ,P[K_ < k_]}

In the case where there are zeroes, we discard them and reduce the sample size accord-
ingly.
Sample Problem 32.1.1. The lifetimes of a random sample of candles, measured in
minutes are

354, 358, 348, 342, 352, 335, 364, 345, 360, 341.

The manufacturer claims that the median lifetime is at least 360 minutes. Use a sign
test, at the 5% significance level, to test whether the manufacturer’s claim is justified.

Solution. Let m be the population median. Our hypotheses are Hyp: m = 360 and H;:
m < 360. We take a 5% level of significance. Subtracting the observed data values by the
postulated median m = 360 and writing down the signs, we obtain

) ) ) ) ) ) +7 ) 07 .

Let K4 be the number of data values greater than 360. Discarding the zero, we have, under
Hy, Ky ~ B(9,1/2). From the sample, k4 = 1. The p-value is hence P[K; < 1] = 0.0195.
Since the p-value is smaller than our 5% significance level, we reject Hy and conclude there
is sufficient evidence at the 5% level that the manufacturer’s claim is not justified. 0

32.1.2 Paired Sample

By considering the difference in population medians, the sign test can be used for paired
samples, as demonstrated in the example below.

Sample Problem 32.1.2. Students in a school take a mock examination before taking
the actual A-level examination. The marks for a particular subject, in both the mock
and actual examinations, by a random sample of 13 students are shown below.

Candidate Number | 1 2 3 4 5 6 7 8 9 |10 |11 | 12| 13
Mock Exam Mark | 40 | 65 | 53 | 79 | 87 | 42 | 80 | 63 | 51 | 82 | 27 | 71 | 29
Actual Exam Mark | 45 | 68 | 47 | 75 | 88 |60 | 77 [ 69 | 60 | 88 | 30 | 73 | 35

Test, at the 5% level, whether the candidates did better in the actual A-level than in
the mock examination for this subject.

Solution. Let m be the population median mark difference of (Actual — Mock). Our
hypotheses are Hy: m = 0 and Hy: m > 0. We take a 5% level of significance. Subtracting
matched pairs of (Actual — Mock) and writing down the signs, we obtain

+7 +7 ) ) +7 +7 ) +7 +7 +7 +7 +7 +.
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Let K be the number of data values greater than 0. Under Hy, K ~ B(13,1/2). From
the sample, ky = 10. The p-value is hence P[K; > 10] = 0.0461, which is greater than
our 5% significance level. Hence, we reject Hy and conclude there is sufficient evidence at
the 5% level that the students did better in the actual A-level examination. O

32.1.3 Large Sample

Let X ~ B(n,1/2). For large n (n > 30), we can approximate X with a normal distribution
via the Central Limit Theorem:
n

X~N< ,
2

n .
Z) approximately.

This is useful when conducting a sign test with a large sample.

32.2 Wilcoxon Matched-Pair Signed Rank Test

When testing paired samples, one drawback of using the sign test is that it only takes
into account the sign of the differences between paired values. To see how this might be
problematic, consider the following set of differences:

Magnitude of Difference | 7 | 2 | 6 | 4 |22 | 15| 5 | 1 |12 |16
Sign of Difference | + | — | + |+ | + | + |+ | — | + | +

We see that negative differences are very small (e.g. —1, —2) as compared to some of
the positive differences (e.g. 22, 16).

The Wilcoxon matched-pair signed rank test improves on the sign test by considering
the magnitude of the differences. This is done by ranking the magnitudes of the differences
in ascending order, starting with rank 1. For instance, the ranks for the above example
are given by

Magnitude of Difference | 7 | 2 | 6 | 4 |22 |15 |5 | 1 |12 16
Sign of Difference | + | — |+ | + | + | + | + + |+
Rank | 6 | 2 | 5|3 |10 8|4 |1|7]9

Let P be the sum of the ranks corresponding to the positive differences and let Q@ be
the sum of the ranks corresponding to the negative differences. Let m be the population
median. Our null hypothesis is Hy: m = 0. From here, the main idea is

o If we test Hi: m > 0, we reject Hp if @) is too small, i.e. ¢ < c_ for some critical
value c_.

o If we test Hi: m < 0, we reject Hg if P is too small, i.e. p < ¢y for some critical
value c;.

o If we test Hy: m # 0, we reject Hy when either P or @) is too small.

In all cases above, we can either choose our test statistic T to be either P or ). Typically,
we take T to be the smaller of two, as demonstrated above.
For small n, the critical value can be found in the provided formula list.

Sample Problem 32.2.1. Eight strands of wires were tested for their breaking points
and then were retested after they were rusted. The breaking points were recorded as
follows:
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Non-Rusted | 9.4 | 81 | 6.6 | 9.9 | 87 |83 |70 | 7.5
Rusted | 7.2 | 54 | 7181|7079 |85]6.2

Carry out a Wilcoxon matched-pair signed rank test at the 5% level of significance to
determine whether, on average, the rusted wires have lower breaking points.

Solution. Let m be the population median difference of (Non-Rusted — Rusted). Our
hypotheses are Hyo: m = 0 and Hy: m > 0. We take a 5% significance level.

Non-Rusted | 94 | 81| 66 |99 |87 |83 | 7.0 |75
Rusted | 7.2 | 54| 7.1 |81 |70|79] 85 | 6.2
NR-R|22|27|—-05|18|17|04| -15]|13
Rank | 8 7 2 6 ) 1 4 3

Let P be the sum of ranks corresponding to positive differences, and let () be the sum
of ranks corresponding to negative differences. Let T" be the smaller of the two. From the
above table, we see that p = 6 and ¢ = 30, so t = 6. From the formula list, we reject Hp
if t < 5. Since t =6 > 5, we do not reject Hy and conclude there is insufficient evidence
at the 5% level that the rusted wires have lower breaking points. O

32.2.1 Large Sample

For large n (n > 20), the test statistic 7' can be approximated with a normal distribution
via the Central Limit Theorem:

T N(n(n+ 1) n(n+1)(2n+1)
24

1 , ) approximately.

With this approximation, we can calculate the appropriate p-value. Note that T can either

be P or Q.

32.3 Comparison of the Tests

The sign test and the Wilcoxon matched-pair signed rank test do not always produce the
same results.

The advantage of the Wilcoxon matched-pair signed rank test compared to the sign test
is that it takes into account the magnitude of the differences of the matched observations
as well as the signs of the difference. Thus, it is a more powerful test than the sign test.

However, one disadvantage of the Wilcoxon matched-pair signed rank test compared
to the sign test is that it requires an additional assumption that the distribution of the
differences must be symmetric about the median zero.
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33 Correlation and Regression

Correlation and regression are statistical methods that examine the relationship between
two quantitative variables.

Correlation is concerned with quantifying the (linear) relationship between two variables.
Informally, it allows us to tell how strongly two variables move with each other. For
instance, suppose we measure the heights and weights of a group of people. Intuitively,
we would expect taller people to be heavier, hence there is a positive correlation between
height and weight.

Regression, on the other hand, is concerned with quantifying how a change in one
variable will affect the other variable. That is, regression predicts the value of a variable
based on the value of the other variable. Reusing our previous example, regression allows
us to predict the height of a person that weighs 70 kg.

33.1 Independent and Dependent Variables

When performing correlation and regression analysis, we need two sets of data, one for
each variable. The resulting data is called bivariate data. A set of n bivariate data can
be expressed using ordered pairs (z;,¥;), where z and y are the two variables.

Definition 33.1.1. In a bivariate relationship, the independent variable is the one that
does not rely on changes in another variable, while the dependent variable is the one
that depends on or changes in response to the independent variable.

Informally, the independent variable is the variable we can “control” in an experiment,
allowing us to vary its value to observe the resulting change in the value of the dependent
variable.

Recipe 33.1.2. To determine if there exists an independent/dependent relationship be-
tween two variables x and y, we look at

e The context of the question — Does one variable depend on the other?

e Key phrases in the question, e.g. “investigate how A depends on B” means that
B is likely the independent variable and A the dependent variable.

e Fixed or controlled variable in an experiment — If a variable is manipulated in
fixed increments, it is likely to be independent variable.

Note however, that not all bivariate relationships have an independent and dependent
variable. For instance, consider the following example:

Example 33.1.3. Six newly-born babies were randomly selected. Their head circumfer-
ence x cm, and body length, y cm were measured by the paediatrician and tabulated.

x| 31]32|335 |34 |355 | 36
y |45 49| 47 |50 | 53 |51

All three heuristics for determining the independent/dependent relationship between
x and y are not applicable. Hence, we say there is no clear independent and dependent
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| variables, and we assume that no such relationship exists between the two variables.

33.2 Scatter Diagram

A scatter diagram is obtained when each pair of data value (z;,y;) from a set of bivariate
sample {(z1,41),-.., (Tn,yn)} is plotted as a point on an x-y graph.

shown in the table.

e axes need not start from 0;

e data points should be marked with a cross (x);

e axes need to be labelled according to context;

Recipe 33.2.1 (Drawing a Scatter Diagram). When drawing a scatter diagram, note that

e the range of data values and the relative scale of the axes need to be indicated;

e the relative position of the points should be accurate.

Example 33.2.2. The number of employees, y, who stay back and continue in the office
t minutes after 5 pm on a particular day in a company is recorded. The results are

33.2.1 Interpreting Scatter Diagrams

t

Figure 33.1

t 15|30 45|60 | 75|90 105
y 3019|1513 |12 |11 | 10
Plotting the above points, we get our scatter diagram:
T
30 x .
Y
10 B
| |
15 105

There are four main relationships we can observe on a scatter diagram:

e Positive linear relationship — As z increases, y increases.

e Negative linear relationship — As z increases, y decreases.

e Curvilinear relationship — The points seem to lie on a curve.

e No clear relationship — The points seem to be randomly scattered.
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T T
51 X 5F x 4
) x ) x
0F x - ol <« 4
| | | |
0 10 0 10
x T
Figure 33.2: Positive linear relationship. Figure 33.3: Negative linear relationship.
51 x | 51 . ]
Y Y N
OF x X X
| | | |
0 10 0 10

Figure 33.4: Curvilinear linear relationship. Figure 33.5: No clear relationship.

33.3 Product Moment Correlation Coefficient

As mentioned in the introduction, correlation refers to the relationship between two vari-
ables. We can quantify this relationship by the product moment correlation coefficient.

Definition 33.3.1. The product moment correlation coefficient, denoted r, for a sample
of bivariate data, is given by

o SE-Pu-p
VE @ -/ (v -7
We can manipulate r to get rid of  and :
_ XY=y T3y
N R TR R I

where n is the number of ordered pairs in the sample.

33.3.1 Characteristic of r

r can only take on values between —1 and 1. A summary of the value(s) of  and the
associated linear correlation is given below.
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Value of r Linear Correlation Observation on Scatter
Diagram
r=1 Perfect positive linear correlation | The points all lie on a straight line
with positive gradient
r~1 Strong positive linear correlation The points lie close to a straight
line with positive gradient
O0<r<l Positive linear correlation Most points lie in a band with
positive gradient
r= No linear correlation No pattern or non-linear pattern
-1<r<o0 Negative linear correlation Most points lie in a band with

negative gradient

ra—1 Strong negative linear correlation The points lie close to a straight
line with negative gradient

r=-1 Perfect negative linear correlation | The points all lie on a straight line
with negative gradient

To understand why this is the case, consider the sign of r. Looking at the definition of
r, it is clear that

r>0 <= > (x-7)(y—7) >0
Likewise,
r<0 <= > (x-7)(y—7) <0

Consider now the following figure:

,,,,,,,,, ‘ ,; ;, —_—— - —
' (T,7)
C l D
Figure 33.6

Consider quadrant A. Any data point (z,y) within this quadrant will satisfy = > Z and
y>7,s0 (r—7)(y—7y) > 0. Similar analysis reveals that

>0 for quadrants A and C,
<0 for quadrants B and D.

(w—w)(y—y)={

Thus, if the overall sum is positive, the points must have been largely scattered within
quadrants A and C, which we visually interpret as a “positive gradient”. Likewise, if the
overall sum is negative, the points must have been largely scattered within quadrants B
and D, which we interpret as a “negative gradient”. Lastly, if the overall sum is near 0,
the points must have been scattered randomly throughout all four quadrants, so there is
no linear relationship between the variables.

33.3.2 Importance of Scatter Diagram

The value of r should always be interpreted together with a scatter diagram where possible.
The value of r can be affected by outliers and can give a misleading conclusion on the linear
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correlation of two variables. For instance, the following two sets of bivariate data differ
only by one data point, yet they have drastically different product moment correlation
coeflicients:

[

L
1 10
T x

10

Figure 33.7: r = 0.975. Figure 33.8: r = 0.821.

Thus, the scatter diagram should always be used in the interpretation of correlation, as
it not only shows the pattern trend between the variables, but it also reveals the existence
of any outliers which may have affected the value of r.

33.3.3 Correlation and Causation

A strong or perfect linear correlation between two variables does not necessarily imply one
directly causes the other; correlation does not imply causation.

33.4 Predicting or Estimating Using Regression Line

In statistical studies, when it is observed that a significant linear correlation exists between
two variables of study, best-fit lines or regression lines are often obtained in order to make
predictions or estimations relating to z and /or y. For bivariate data, there are two possible
regression lines that we can draw:

e regression line of y on z, or

e regression line of z on y.

33.4.1 Regression Line of y on =

Let (z;,y;) for i =1,...,n be a set of n observed data points.

Definition 33.4.1. The vertical residual, denoted v;, is the deviation between the actual
and predicted y-values.
v; = y; — (a + bx;)

for some constants a and b.

We can think of a vertical residual as the (signed) vertical distance between an observed
data point (x;,y;) and the line y = a + bx.
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Figure 33.9: The vertical residuals as vertical distances between actual and observed val-
ues.

Definition 33.4.2. The least-squares regression line of y on x is obtained by finding
the values of @ and b in y = a + bx that minimizes the sum of the squares of the vertical

residuals, S
n

S =30 = > (ot b))
=1

=1

The values of a and b that minimize S is called the least-squares estimates of a and b.
b is also sometimes called the regression coefficient.

The following result can be shown using functions of two variables (see Assignment B11
Problem 3):

Proposition 33.4.3. The regression line of y on z is given by y — 3§ = b (z — T) where

XD y-7) _ Sy -n@ @)
Ye-17  Ya?-n@’

Observe that the regression line of y on x passes through the mean point (Z,7).

33.4.2 Regression Line of = on y

The regression line of z on y is similar. In this case, however, we are concerned with
horizontal deviations instead.

Definition 33.4.4. The horizontal residual, denoted h;, is the deviation between the
actual and predicted z-values.

hi = yi — (¢ + d;)
for some constants ¢ and d.

Analogous to v;, we can think of a horizontal residual as the (signed) horizontal distance
between an observed data point (z;,y;) and the line x = ¢ + dy.



33.4 Predicting or Estimating Using Regression Line 265

Figure 33.10: The horizontal residuals as horizontal distances between actual and observed
values.

Definition 33.4.5. The least-squares regression line of x on y is obtained by finding the
values of ¢ and d in = ¢ + dy that minimizes the sum of the squares of the horizontal

residuals, S
n

S =3 h =" lni — (c+dy)]*.
=1

i=1
Problem 1. The regression line of x on y is given by # — 7 = d (y — %), where
jo 2@ -y _Yry—n@ G
> (-9 > y?—n ()

As in the y on = case, we call d the regression coefficient. Note that 1/d, and not d, is
the gradient of the regression line. Observe that the regression line of x on y also passes
through the mean point (Z,7).

33.4.3 Determining Which Regression to Use

If there is an independent variable x, we use the regression line y on x regardless of whether
we are predicting or estimating y or x, and vice versa when y is the independent variable.

However, if there is no clear dependent-independent relationship, we determine the
independent variable based on the given value. For example, if we are given the value of
x, we use the regression line y on .

33.4.4 Interpolation and Extrapolation

Definition 33.4.6. An estimate is said to be an interpolation if it is within the given
range of values of data. Else, it is an extrapolation.

Extrapolation of the sample should be used with caution as the relationship between x
and y may not be linear beyond a certain point.

33.4.5 Reliability of an Estimate

There are three criteria we typically use when commenting on the reliability of an estimate:

e Appropriateness of the regression line used — The correct regression line should be
used for the estimate to be reliable.
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e Strength of linear correlation — |r| should be close to 1 for the estimate to be reliable.

e Interpolation or extrapolation — Interpolation is likely to give a more reliable estimate
than extrapolation.

For an estimate to be reliable, all three criteria should be satisfied. If at least one of
the criteria is not satisfied, we deem the estimate to be unreliable.

33.5 Transformations to Linearize Bivariate Data

The relationship between two variables involved, = and y, may not always be linear.
Thus, it would be inappropriate to use the regression lines relating to x and y to make
estimations. However, non-linear relationships can be transformed into a linear form by a
process usually called transformation to linearity. The table below shows some examples:

Original Equations | Transformed Equations | Linearly-related Expressions
y = a+ ba? - y vs z°
y = ab” Iny=Ina+zlnb Iny vs
y = ax? Iny=Ina+blnzx Iny vs Inx

Sometimes, we are given a scatter diagram and are tasked with comparing two or more
proposed models and determine which model is a better fit. In such a scenario, we simply
state which equation fits the shape of the scatter plot better. If there is more than one
possibility, we can compute the product moment correlation coefficient for each model and
“break the tie” by choosing the model with |r| closest to 1.

33.6 Bonus: A Probabilistic Approach to Linear Regression

In an ideal world, our variables will be exactly related by the model y = a 4 bx. However,
in the real world, whenever we observe a data point, our readings will contain some error
€, so our observations are actually modelled by ¥y = a + bx + €. In real life, these errors
are caused by thousands of different factors. We can hence think of ¢ as the sum of many
independent random variables. But by the Central Limit Theorem, it follows that e is
distributed normally, so

€~ N(O, 02).

Suppose now that we obtain an observation, (x;,y;). Since ¢ = y; — (a + bx;), the
probability of observing this data point is given by

Voro 202

If we make n independent observations, then the overall probability of observing all n data
points is simply the product of each individual probability:

- ; — (a €T; 2
Pldata] = | | \/2%0 exp (_(yz (2;; bx;)) ) '
=1

It is now natural to define the “best” model (y = a + bx) as the one that maximizes the
probability of observing our data. That is, we wish to find a and b that maximizes

T 1 (yi — (a + bx;))?
H V2o P <_ 202 ) '

i=1

— (a+ bzy))?
Pl(wi,9:)] = Ple = ei] = Ple = y; — (a + bwy)] = ! exp<—(yz o )
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Since the logarithm is monotonic, we can convert our objective function from a product
into a sum:

L )2 n L 12
argmaxlnH \/70' exp (_ (yi (;la-l; bx;)) ) _ argnblaxz (_ (i ((210—1; bx;)) ) 7

where we ignored the constant terms contributed by 1/v/27c since they do not affect the
location of the maxima. We can further ignore the 1/02 term since it is a constant factor.
Lastly, flipping the sign changes our objective into a minimization problem, so we get

argmln Z (a + bx;))?.

But this is exactly the objective of the least-squares regression line of x on y we introduced
earlier!

33.7 Bonus: r and Vectors

Suppose we have two sets of data, say x1,...,x, and y1,...,y,. Let T and y denote their
respective means. Recall that the product moment correlation coefficient r between these

two samples is given by
> (x - f) (v-79)

\/Z (-2 Y (-7

Observe that the definition of r resembles the definition of the cosine of an angle between
two vectors! Indeed, if we define

T -7 y1—y
X = : and y= : ,
Lp — X Yn — Y
then we can simply express r as

Xy
r = 7|x|2 |y|2 = cosf,

where 6 is the angle between the two vectors x and y.! Similarly, we can rewrite the

regression coefficients b and d vectorially:

Xy
2

and d= ﬂ.

b=
vl

x|
If we manipulate the above two expressions, we see that

Xy and d:ﬂ.

b=
x| vl

!We can think of these two vectors as the “deviation” between the sample data and their respectively
means. Indeed, it is not too hard to see that the sample variances are given by s% = ﬁ |x|2 and s3 =
L ly|®. The scaled dot product —L- (x-y) also has a special name, called the “sample covariance”,

typically denoted s%y-, so the product moment correlation coefficient can be expressed more succinctly
as
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Now observe that the numerator of b is exactly the length of projection of y onto x.
Similarly, the numerator of d is exactly the length of projection of x on y.

That is to say, b measures the ratio between the vector projection of y onto x, and
similarly for d:

- length of projection of y onto x _length of projection of x onto y

d d=
length of x an length of y

This aligns with our intuition of b and d: If the two samples share a strong linear corre-
lation, we would expect the regression lines of y on x and x on y to be roughly the same.
Indeed, x and y are roughly multiples of each other, say x &~ Ay for some A, so

A b'4 1 1

bzm:w and d%u:—:bzf.

M [Ax| [ d
But b and 1/d represent the gradients of the regression lines of y on x and of x on y
respectively, so the two lines have roughly equivalent gradients, i.e. the two lines are
roughly the same.
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Part VIII

Mathematical Proofs and Reasoning
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34 Propositional Logic

Mathematics is a deductive science, where from a set of basic axioms, we prove more
complex results. To do so, we often restate a sentence into statements, which are math-
ematical expressions. One important axiom that all statements obey is the law of the
excluded middle.

Axiom 34.0.1 (Law of the Excluded Middle). The law of the excluded middle states that
either a statement or its negation is true. Equivalently, a statement cannot be both true
and false, nor can it be neither true nor false.

34.1 Statements

34.1.1 Forming Statements

We call a sentence such as “z is even” that depends on the value of x a “statement about
x”. We can denote this statement more compactly as P(z). For instance, P(5) is the
statement “5 is even”, while P(72) is the statement “72 is even”, and so forth. We can
also write P(x) more compactly as P.

We now introduce some operations of statements, namely the negation, conjunction and

disjunction operations.

Definition 34.1.1. The negation of a statement P, denoted —P, is false when P is true,
and true when P is false. In a truth table,

T
F

F
T

Example 34.1.2. If P(x) is the statement “x is even”, then —P(x) is the statement “x
is odd”.

Definition 34.1.3. The conjunction of two statements P and @, denoted P A @), has
truth table

Ed

| PAQ |

PlQ
T[T
T|F
F|T
F|F

sl ieslReslle)

Example 34.1.4. If P is the statement “I like cats”, and (@ is the statement “I like dogs”,
then P A @ is the statement “I like cats and dogs”.



272 34 Propositional Logic

Definition 34.1.5. The disjunction of two statements P and @, denoted P V @), has
truth table

Example 34.1.6. If P is the statement “I like cats”, and () is the statement “I like dogs”,
then PV @ is the statement “I like cats or dogs or both”.

Proposition 34.1.7 (De Morgan's Law). Let P and @ be statements. Then
~(PAQ) = (P)V(=Q)

and
~(PVQ) <= (P)A(=Q).

Proof. Consider the following truth tables:

PlQIPAQ|PVQ | A(PANQ) | ~(PVQ) | =P | 2Q | (P)A(=Q) | (=P)V (=Q)
T|T| T T F F F | F F F
T|F| F T T F F | T F T
F|T| F T T F T | F F T
F|F| F F T T T[T T T

We see that the truth table of — (P A Q) is equivalent to that of (—=P) V (=Q), thus the
statements are equivalent.

Similarly, the truth table of = (P V Q) is equivalent to that of (—=P) A (—=@Q), thus the
statements are equivalent. O

Example 34.1.8. Let P be the statement “I like cats”, and ) be the statement “I like
dogs”. Then —(P A Q) is “It is not the case that I like both cats and dogs”, while
(=P)V (=Q) is “I do not like cats, or I do not like dogs, or I do not like both”. Clearly,
the two statements are equivalent.

34.1.2 Conditional and Biconditional Statements

In this section, we examine how statements are linked together to form more complicated
statements. The first type of statement we will examine is the conditional statement.
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Definition 34.1.9. A conditional statement has the form “if P then Q”. Here, P is the
hypothesis and @ is the conclusion, denoted by P = (). This statement is defined
to have the truth table

P =]
T

Q
T
F
T
F

=S| RSN e

F
T
T

In words, the statement P = ( also reads:
e P implies Q.
e P is a sufficient condition for Q).
e () is a necessary condition for P.
e P only if Q.
To justify the truth table of P = (@), consider the following example:
Example 34.1.10 (Conditional Statement). Suppose I say

“If it is raining, then the floor is wet.”

We can write this as P = (), where P is the statement “it is raining” and @ is the
statement “the floor is wet”.

e Suppose both P and @) are true, i.e. it is raining, and the floor is wet. It is
reasonable to say that I am telling the truth, whence P — (@ is true.

e Suppose P is true but @ is false, i.e. it is raining, and the floor is not wet. Clearly,
I am not telling the truth; the floor would be wet if I was. Hence, P = @ is
false.

e Suppose P is false, i.e. it is not raining. Notice that the hypothesis of my claim is
not fulfilled; I did not say anything about the floor when it is not raining. Hence,
I am not lying, so P = (@ is true whenever P is false.

Examples of conditional statements in mathematics include
o If |z — 1| <4, then —3 <z < 5.
e If a function f is differentiable, then f is continuous.

We now look at biconditional statements. As the name suggests, a biconditional state-
ment comprises two conditional statements: P — @ and ) = P. The conditional
statement is much stronger than the conditional statement.
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Definition 34.1.11. A biconditional statement has the form “P if and only if”, denoted
P <= (. This statement is defined to have the truth table

[PIQ[P =@

| = | A
| | =] H
| = =]

When P <= (@ is true, we say that P and @) are equivalent, i.e. P = Q.
An equivalent definition of P <= (@) is the statement
(P = @) and (Q = P).

This allows us to easily justify the truth table of P <— Q:

|P|Q|P=Q|Q= P|P Q |

]
Hmmﬂﬂ

1| S| | =
=3[ ===

Examples of conditional statements in mathematics include
e A triangle ABC is equilateral if and only if its three angles are congruent.

e ¢ is a rational number if and only if 2a + 4 is rational.

34.1.3 Quantifiers

We now introduce two important symbols, namely the universal quantifier (V) and the
existential quantifier (3)

Definition 34.1.12. Let P(x) be a statement about x, where x is a member of some set
S (i.e. S is the domain of z). Then the notation

Ve S, P(x)
means that P(z) is true for every x in the set S. The notation
Jr e S, P(x)
means that there exists at least one element of x of S for which P(z) is true.
Example 34.1.13. Let P(x) be the statement “z is even”. Clearly, the statement
Vr € Z, P(x)
is not true; not all integers are even. However, the statement
dr € Z, P(x)

is true, because we can find an integer that is even (e.g. = = 8).
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Note that a statement P(x) does not necessarily have to mention xz. For instance, we
could define P(z) as the statement “5 is even”. Compare this with how a function f(x)
does not necessarily have to “mention” z, e.g. we could have f(z) = 5.

Proposition 34.1.14. The negation of a universal statement is an existential statement,

and vice versa.
-~ (Vz e D, P(z)) <= dzxeD,-Px).

Proof. We prove that the negation a universal statement is an existential statement. Ob-
serve that a universal statement is equivalent to a conjunction of many statements:

Vee D, P(x) <= P(xi)ANP(xa)A...,

where D = {x1,x9,...}. Using De Morgan’s laws, we can easily negate the above state-
ments:

- (Vzx e D, P(z)) <= —P(x1)V-P(xa)V....
However, the last statement is equivalent to the existential statement
dr € D, -P(x).

Thus,
-~ (Ve e D, P(x)) <= dzeD,-Px).

Using a similar argument, one can prove that the negation of an existential statement
is a universal statement, i.e.
- (Ix e D, P(x)) <= VYxeD,-P(z).
O]

Example 34.1.15. Let D be the set of all students in a class, and let P(z) be “x likes
durian”. Then the statement Vz € D, P(z) reads as “everyone in the class likes durian”.
Intuitively, its negation would be “someone in the class does not like durian”, which we
can write as dr € D, =P (x).

34.1.4 Types of Statements

Most of the statements we will encounter can be grouped into three classes, namely axioms,
definitions and theorems.

Definition 34.1.16.
e An axiom is a mathematical statement that does not require proof.

e A definition is a true mathematical statement that gives the precise meaning of a
word or phrase that represents some object, property or other concepts.

e A theorem is a true mathematical statement that can be proven mathematically.

34.2 Proofs

Mathematical proofs are convincing arguments expressed in mathematical language, i.e. a
sequence of statements leading logically to the conclusion, where each statement is either
an accepted truth, or an assumption, or a statement derived from previous statements.
Occasionally there will be the clarifying remark, but this is just for the reader and has no
logical bearing on the structure of the proof.
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Definition 34.2.1. A proof is a deductive argument for a mathematical statement, show-
ing that the stated assumptions logically guarantee the conclusion.

There are three main types of proofs: direct proof, proof by contrapositive and proof
by contradiction.

34.2.1 Direct Proof

A direct proof is an approach to prove a conditional statement P = (). It is a series
of valid arguments that starts with the hypothesis P, and ends with the conclusion Q.
As an example, we will prove the following statement:

Statement 34.2.2. For all n € Z*, both n and n? have the same parity.

Proof. Since n can only be either odd or even, we just need to consider the following cases:

Case 1. Suppose n is even. By definition, there exists some k € Z such that n = 2k.
Then

n® = (2k)? = 4k* = 2 (2k?) = 2a,

where a = 2k?. Since a is an integer, it follows from our definition that n? is even. Hence,
n and n? have the same parity.

Case 2. Suppose n is odd. By definition, there exists some h € Z such that n = 2h + 1.
Then

n®=(2h+1)>=4h*+4h+1=2(2n* +2h) + 1 =2b+ 1,

where b = 2h% 4+ 2h. Since b is an integer, it follows from our definition that n? is odd.
Hence, n and n? have the same parity. ]

34.2.2 Proof by Contrapositive

Suppose we wish to prove P = (. Occasionally, the hypothesis P is more complicated
than the conclusion (), which is not desirable. In such a scenario, we can choose to
prove the statement via the contrapositive, i.e. prove that =) = —P. This typically
simplifies the proof, since our hypothesis =@ is now simpler.

We now show the equivalence between P — () and -QQ =— —P.
Proposition 34.2.3. Let P and Q be statements. Then

P—=Q <+— -Q = -P

Proof. Consider the following truth table:

PlQ|P=Q|-Q|-P|Q = —-P
T|T T F F T
T|F F T F F
F|T T F T T
F|F T T T T

Since P = @ and =) = —P have the same truth table, they are equivalent. [

As an example, we will prove the following statement using the contrapositive.
Statement 34.2.4. For any real numbers = and y, if 2%y 4+ 2y? < 30, then z < 2 or
y < 3.

Proof. Since the hypothesis is much more complicated than the conclusion, we are moti-
vated to use the contrapositive.

Suppose z > 2 and y > 3 (this is the negation of z < 2 or y < 3). Then x%y > (2)2(3) =
12 and zy? > (2)(3)% = 18. Thus, 2%y + 2y? > 12+ 18 = 30. (this is the negation of
22y + xy? < 30). Thus, by the contrapositive, the statement is true. O
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34.2.3 Proof by Contradiction

A proof by contradiction is a proving technique where we want to prove that a statement
is true by assuming that it is false, and arrive at a contradiction. That is, to prove a
statement P, we can

1. Assume —P.
2. Derive a contradiction, or absurdity.
3. Conclude that —P is false, which implies P is true.

A classic example of a proof by contradiction is the irrationality of v/2.

Statement 34.2.5. /2 is irrational.

Proof. Seeking a contradiction, suppose v/2 is rational. Write /2 = a/b, where a and b
are coprime integers with b £ 0. Squaring, we get

a2

2 2
2= 72 = a” = 2b°. (1)
Thus, a? is even, which implies a is even. Hence, a = 2k for some integer k. Substituting
this back into (1), we get
(2k)? = 20 = b* = 2k?,

whence b? is even, which implies b is also even. Thus, both a and b have a factor of 2,
contradicting our assumption that @ and b are coprime. Thus, our assumption that /2 is
rational is false, whence v/2 is irrational. O

34.2.4 Induction
Induction is typically used to prove statements of the form “P(n) is true for all n € Z*”.
There are several variants of induction.

Principle of Mathematical Induction

The basic form of mathematical induction requires two steps:

e Showing that P(0) is true, and

e Proving that P(k) = P(k+ 1) for some k € Z*.
With these two statements, we see that
P(0) = P(1) = P(2) = PB3) = ...,

i.e. P(n) is true for all n € Z*.

Of course, the base case need not always be n = 0. If we wish to prove that P(n) holds
forn=m,m+1,m+2,... for some integer m, our base case becomes n = m, so we have
to verify that P(m) holds.

Intuitively, we can think of induction as a ladder. The base case acts as the first rung,
while the statement P(k) = P(k + 1) enables us to climb the ladder rung by rung.

A classic example of an inductive proof is to verify that the first n natural numbers sum
ton(n+1)/2.
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Statement 34.2.6. For n a natural number, 1 +2+---+n=n(n+1)/2.

Proof. Let P(n) be the statement 1 +2+---+n =n(n+ 1)/2. We induct on n.

The base case P(1) is trivial, since 1 = (1)(2)/2. Suppose that P(k) holds for some
natural number k. Consider the sum of the first £+ 1 natural numbers. By our induction
hypothesis, we see that

k(k+1)
2

k+1)((k+1)+1)
5 ,

1424 4k+(k+1)= +(k+1):(

so P(k + 1) also holds. By the principle of mathematical induction, it follows that P(n)
holds for all natural numbers n. O

Principle of Strong Induction

Another common variant of induction is strong induction. Like before, it involves showing
two steps:

e Showing that P(0) is true, and

o If P(0), P(1), ..., P(k) are true, then so is P(k + 1).

Here, the inductive step is replaced with a stronger hypothesis that requires all the
terms before P(k 4 1) to be true, as demonstrated in the following example:
Statement 34.2.7. All integers greater than 1 are either a prime or a product of primes.
Proof. Let P(n) be the statement “n is either a prime or a product of primes”. We induct
on n. The base case n = 2 is trivial (2 itself is a prime). Now suppose P(2) to P(k)
are true for some integer k > 2. If k 4 1 is prime, then P(k + 1) is trivially true. Else,
k 4+ 1 must be composite, so we can write k + 1 = ab, for some 2 < a,b < k. But by

our induction hypothesis, both a and b are either primes or a product of primes, hence ab
itself is a product of primes, so P(k + 1) is true. This closes the induction. O

We can also use multiple base cases for strong induction:

e Showing that the base cases P(0), P(1), ..., P(m) are true, and

e Proving that if P(k), P(k+1), ..., P(k +m) are true, then P(k +m + 1) is true.

All Horses are the Same Colour

Caution must be exercised when proving a statement inductively. Consider now the fol-
lowing “proof” that purports to show that all horses share the same colour.

Statement 34.2.8. All horses are the same colour.
Proof. Let P(n) be the statement “A group of n horses have the same colour”. We induct

on n. P(1) is trivial. Suppose that P(k) is true for some integer k£ > 1. Consider now a
group of k£ + 1 horses.

e First, exclude horse k4 1. Horses 1 to k are a group of k horses, so by our induction
hypothesis, they must all be of the same colour.

e Next, exclude horse 1. Horses 2 to k 4+ 1 form another group of k horses, so they
must also all be of the same colour.
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Hence, horse k41 must have been the same colour as the non-excluded horses, i.e. all k+1
horses share the same colour, so P(k + 1) holds. Thus, by the principle of mathematical
induction, P(n) is true for all integers n > 1, so all horses are the same colour. O

Of course, we know that the claim is wrong, so we must have made an error somewhere

in the proof. As an exercise, find the flaw in the proof. (Hint: consider the inductive step
P(l) = P(2).)

34.2.5 Counter-Example

In the case where we wish to prove a statement false, we can find a counter-example. In
providing a counter-example, it must fulfil the hypothesis, but not the conclusion. That
is, to show that P = () is false, we must show that P is true but @ is false.

Example 34.2.9 (Counter-Example). Consider the statement ¢ | ab, then ¢ | a or ¢ | b,
where a,b,c € ZT. We can easily find a counter-example to this statement, e.g. a =
3x37,b=7x37,c=3xT.
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35 Number Theory

35.1 Congruence

Definition 35.1.1. Let two integers a and b (with b # 0). If there exists some integer n
such that a = bn, we say

e b divides a, and
e ¢ is divisible by b.

We write this as b | a.

Proposition 35.1.2. For a,b,c € Z,if a | b and a | ¢, then a | (b £ ¢).

Proof. From our definition, we there exists integers x and y such that b = ax and ¢ = ay.
Hence,
btc=artay=a(zxty).

Since x £ y is an integer, a | (b =+ ¢). O

Definition 35.1.3 (Congruence Modulo). Let a,b,n € Z with n > 0. We say that a is
congruent to b modulo n, denoted as

a=b (modn),
iff n divides a — b. Equivalently, a = b + nk for some k € ZZ.

Example 35.1.4. 25 = 7 modulo 3 since 25 — 7 = 18 is a multiple of 3.

Proposition 35.1.5 (Congruence is an Equivalence Relation). Let a,b,n € Z.
e Congruence is reflexive, i.e. a = a modulo n.
e Congruence is symmetric, i.e. if a = b then b = a (modulo n).

e Congruence is transitive, i.e. if a = b and b = ¢, then a = ¢ (all modulo n).

Proof. Trivial. O

Proposition 35.1.6. For all integers a, b, c,d, k,n, with n > 1, suppose a = b (mod n)
and ¢ = d (mod n). Then

e atc=b+d (mod n).

e a-c=b-d (mod n).

a+k=0b+k (modn).
e ka = kb (mod n).

e o =b" (mod n) for all m € Z*.
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In other words, congruence modulo preserves addition, subtraction, multiplication, and
exponentiation. Take not that congruence modulo does NOT always preserve division.
That is, if ¢ | a and d | b, it is not always true that

(mod n).

a
Cc

ISHIRS)

We now state an important result that formalizes our notion of remainders when dividing
integers.

Lemma 35.1.7 (Euclid’s Division Lemma). Let n € Z". Then for any m € Z, there exists
a unique integer r with 0 < r < n such that

m=r (mod n).
Equivalently, there exists an integer ¢ such that
m=qn-+r.

We will prove this statement for m,n > 0. We can take m > n since if 0 < m < n, we can
simply take ¢ =0 and » = m.

Proof. We prove that such an r exists, and show that it must be unique.

Existence. Let ¢ be the largest number such that m > nq and let r = m —ng > 0.
Seeking a contradiction, suppose r > n, i.e. r =n +d for d > 0. Then

m=ng+r=ng+ (n+d) =n(g+1)+d>n(g+1),

contradicting the maximality of . Hence, 0 < r < n, i.e. r exists.

Uniqueness. Suppose there exist 1, ro, with 0 < 71,79 < n such that
m=qn-+7ry=qn-+re.

Then 1 = (g2 — q1)n + ro. Since 0 < 71,73 < n, we must have r; = ry. Hence, r must be
unique. This concludes the proof. O

Lemma 35.1.8 (Euclid's Lemma). Let p be prime. If p divides ab, then p divides a or p
divides b.

Proof. Let
k l
a:Hp?ia b:Hq;nja
i=1 j=1

where p; and ¢; are primes, while n; and m; are positive integers. Then

k l
plab=TTr" [Td"
=1 j=1

By the uniqueness of prime decomposition, either p = p; for some i = 1,...,k (in which
case p | a), or p = ¢; for some j = 1,...,1 (in which case p | b). Hence, either p | a or
p|b. O
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Theorem 35.1.9. There are infinitely many primes.

Proof. Seeking a contradiction, suppose there are finitely many primes p1,p2, ..., pn. Con-
sider
a=pipa-..-pn+ 1.

Since a > p1, p2, ... Pn, by our hypothesis, a cannot be a prime, i.e. a is composite. Hence,
it must have a prime factorization. Without loss of generality, suppose p; be a prime
factor of a. Then p; | a. However,

pila—1=pips...py
too. Hence, by divisibility rules, p; must divide the difference between a and a — 1, i.e.
pilla—(a=1]=1,

which implies that p; = 1. This is a contradiction, since 1 is not a prime. Thus, there
must be infinitely many primes. O
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A1l Equations and Inequalities

Tutorial Al

Problem 1. Determine whether each of the following systems of equations has a unique
solution, infinitely many solutions, or no solutions. Find the solutions, where appropriate.

a+2b—3c=-5
(a) ¢ —2a —4b—6¢ =10
3a+7b—2c=—-13

T— y+ 3z=3
(b) < 4z — 8y + 32z =24
20 -3y + 11z =4

x|+ Zo =5
() §2z1+ x2+23=13
4x1 + 3x0 + 3 = 23

1/p+1/g+1/r=5

(d) §2/p—3/q—4/r=-11
L3/p+ 2/q—1/r=—-6

2sina — cosf+ 3tany =3
(e) ¢4sina+2cosf —2tany =2, where 0 < a <27, 0< B <2m,and 0 <y < 7.
6sina—3cosf+ tany=9

Solution.

Part (a). Unique solution: a = —9,b =2, ¢ =0.

Part (b). No solution.

Part (c). Infinitely many solutions: x; =8 — ¢, zo =t — 3, x3 = t.
Part (d). Solving, we obtain

There is hence a unique solution: p =1/2, ¢ = —1/3, r =1/6.
Part (e). Solving, we obtain

sina =1, cosf=-1, tanvy=0.

There is hence a unique solution: « = /2, § =7, v = 0.
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Problem 2. The following figure shows the circular cross-section of a uniform log floating
in a canal.

With respect to the axes shown, the circular outline of the log can be modelled by the
equation
2ty +ar+by+c=0.
A and B are points on the outline that lie on the water surface. Given that the highest

point of the log is 10 cm above the water surface when AB is 40 cm apart horizontally,
determine the values of a, b and ¢ by forming a system of linear equations.

Solution. Since AB = 40, we have A(—20,0) and B(20,0). We also know (0, 10) lies on
the circle. Substituting these points into the given equation, we have the following system
of equations:

—20a +c = —400
20a +c=—400
10b + ¢ = —100

Solving, we obtain a = 0, b = 30, ¢ = —400.

Xk Kk %
Problem 3. Find the exact solution set of the following inequalities.
a) 2 —2>0

(
(b) 422 — 122 +10>0

)
)
(c) 22 +4z+13 <0
(d) 23 < 6z — 22
)

(e) 2*(x—1)(z+3) >0

Solution.

Part (a). Note that 22 -2 >0 = 2z < —V/2 or x > +/2. The solution set is thus
{xGR:xS—\/iorxz\/i}.

Part (b). Completing the square, we see that 422 — 122+ 10 >0 = (z— )2+ 1 > 0.
Since (z — %)2 > 0, all x € R satisfy the inequality, whence the solution set is R.

Part (c). Completing the square, we have 22 +4x + 13 <0 = (r +2)2+9 < 0. Since
(x + 2)2 > 0, there is no solution to the inequality, whence the solution set is &.

Part (d). Note that 23 < 62 — 2?2 = z(z + 3)(z — 2) < 0.

— + — +
D © & > T
-3 0 2



Tutorial Al 289

The solution set is thus {x € R: z < =3 or 0 < z < 2}.
Part (e).
+ - - _ +
® @ ® T
-3 0 1

The solution set is thus {xr e R: x < -3 orz =0 or z > 1}.

k 3k ok ok ok

Problem 4. Find the exact solution set of the following inequalities.

(a) [Bz+5| <4
(b) |z —2| < 2x

Solution.

Part (a). If 3z + 5 < 4, then z < —%. If —(3z + 5) < 4, then # > —3. Combining both
inequalities, we have —3 < x < —%. Thus, the solution set is {a: eR: —3<z< —% .

Part (b). If z — 2 < 2z, then > —2. If —(z — 2) < 2z, then > 2. Combining both
inequalities, we have = > % Thus, the solution set is {:U ceR:z> %}

k ok ok ok ok

Problem 5. It is given that p(z) = z* + az® + bx? + cx + d, where a, b, ¢ and d are
constants. Given that the curve with equation y = p(z) is symmetrical about the y-axis,
and that it passes through the points with coordinates (1,2) and (2, 11), find the values
of a, b, c and d.

Solution. We know that (1,2) and (2,11) lie on the curve. Since y = p(z) is symmetrical
about the y-axis, we have that (—1,2) and (—2,11) also lie on the curve. Substituting
these points into y = p(z), we obtain the following system of equations:

a+ b+ c+d=1
a— b+ c—d=-1
8a+4b+2c+d= -5
8a—4b+2c—d=5

Solving, we obtain a =0, b= -2, ¢c=0, d = 3.

% 3k ok ok ok

Problem 6. Mr Mok invested $50,000 in three funds A, B and C. Each fund has a
different risk level and offers a different rate of return.

In 2016, the rates of return for funds A, B and C were 6%, 8%, and 10% respectively
and Mr Mok attained a total return of $3,700. He invested twice as much money in Fund
A as in Fund C. How much did he invest in each of the funds in 20167

Solution. Let a, b and ¢ be the amount of money Mr Mok invested in Funds A, B and C

respectively, in dollars. We thus have the following system of equations.

a+ b+  ¢=>50000
1050+ 155b + #%-c = 3700

a = 2c
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Solving, we have a = 30000, b = 5000 and ¢ = 15000. Thus, Mr Mok invested $30,000,
$5,000 and $15,000 in Funds A, B and C respectively.

* ok % % ok

Problem 7. Solve the following inequalities with exact answers.

Solution.
Part (a). Note that = # 0.

6
20 —1>— = 2°(22—1)>62 = z (22 —2-6) >0 = 2(2z+3)(z —2) > 0.

x
-+ —~ +
® © @ x
—-1.5 0 2
Thus,—%§x<00ra:22.
Part (b). Note that x # 0.
1 3 2 2 _
r--<l=1"-2<2’ = 2(2°—2-1) <0 = z(z—p)(z—7) <0.
x
-+ - +
—O o —
2 0 ©
Thus, x < gor 0 <z <.
Part (c).
2 +3 ) 3 1 1 2
-1< <l = -3< <-1 = —=-< <—- = A<z < —2.
x—1 z—1 5 z-1 ) v 3
k 3k ok ok ok

Problem 8. Without using a calculator, solve the inequality % < 0.

Solution. Observe that 22 + z + 1 = (z + %)2 + % > 0. The inequality thus reduces to
1

-7 < 0.

z2+z—2

1

2
+ —~ +
© D - T
1

-2

Hence, —2 < z < 1.
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Problem 9. Solve the following inequalities using a graphical method.

(a) |3z + 1] < (42 + 3)?
(b) |3z + 1| > |2z + 7|
(€) |z =2 =z + [z
(d) 522 +4x —3 > In(z + 1)
Solution.
Part (a).
Yy y = |3z + 1]
9 2
y = (4x + 3)
(—1.14,2.42)
°
(—0.549,0.647) 1.l
. x
_3 0
1
Thus, z < —1.14 or = > —0.549.
Part (b).
Y (6,19)@ y = |3z + 1|
y =12z +7|
7 v
(—1.6,3.8)8
1 x
_7 _10
2 3

Thus, x < —1.6 or = > 6.
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Part (c).
Y y=lz—2|
Yy=x+ |x
S B
¢(0.667,1.33)
x
) 2
Thus, z < 0.667.
Part (d).
r=—1 Y y=>5x?+4r —3
y=In(z+1)
(0.518,0.418)
T O s ¢ x
—1.27 0/47
{ (—0.916, —2.47)
*
. _3 Vv
Thus, —1 <z < —0.916 or x > 0.518.
% 3k ok ok ok

Problem 10. Sketch the graphs of y = |z — 20| and y = L on the same diagram. Hence
or otherwise, solve the inequality |z — 20| < %, leaving your answers correct to 2 decimal

places.

Solution.

20

Y

[

(0.05,19.95)

(19.05,0.05)
° ¢

y = |z — 20|
y=a"

(20.05, 0.05)
X

20
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Thus, 0 < z < 0.05 or 19.95 < z < 20.05.

k 3k ok ok ok

Problem 11. Solve the inequality 3?;‘_99 < 1. Hence, solve the inequalities

(a) 222 <1

r2—_9 —

(b) 49 > -1

z2—9
Solution. Note that 22 —9 #0 = x # £3.

r—9
2 -9

<1l = (x—9)(:c2—9)§(x2—9)2.

Expanding and factoring, we get
ot — 23 =922 + 92 = 2(x 4+ 3)(z — 1)(z — 3) > 0.
- - - —
© L L
-3 0 1

we
8

Thus, z < -3or0<z<1lorz>3.
Part (a). Consider the substitution x — |x|. Then

|z] < =3or0<|z| <1or |x|>3.

This immediately givesus x < =3 or —1<x<1lorz>3.
Part (b). Consider the substitution x — —z. Then

—r<-3or0< —zz<lor —x>3.

This immediately givesus x < —3or —1 <ax <0orz > 3.

X %k Xk % X

Problem 12. Solve the inequality =2 > 1. Hence, solve 0 < =102 < 1,

11—z Inz—5 —

Solution. Note that z # 1.

—5
f >1 = (z-5)(1-2)>(1—-2) = 222 -82+6<0 = 2(z—1)(z—3) <0.
— X
+ - +
o PLEN
1 3

Thus, 1 < x < 3.
Consider the substitution z — Inx. Taking reciprocals, we have our desired inequality

0< lln_xhlﬁ < 1. Hence,

l<lnz<3 = e<z<eé.
k ok ok ok ok

Problem 13. A small rocket is launched from a height of 72 m from the ground. The
height of the rocket in metres, h, is represented by the equation h = —16t? + 64t + 72,
where t is the time in seconds after the launch.
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(a) Sketch the graph of h against ¢.

(b) Determine the number of seconds that the rocket will remain at or above 100 m from

the ground.
Solution.
Part (a).
h h = —16t> + 64t + 72
(2,136)
136 | )
‘ t
(@) 4.92

Part (b). Note that —16t2 + 64t + 72 > 100 = —4(2t — 1)(2t — 7) > 0.

0.5 3.5

Thus, the rocket will remain at or above 100 m from the ground for 3 seconds.

* % % % %

Problem 14. Xinxin, a new graduate, starts work at a company with an initial monthly
pay of $2,000. For every subsequent quarter that she works, she will get a pay increase
of 5%, leading to a new monthly pay of 2000(1.05)"~! dollars in the nth quarter, where
n is a positive integer. She also gives a regular donation of $300n in the nth quarter that
she works. However, she will stop the donation when her monthly pay falls below the
donation amount. At which quarter will this first happen?

Solution. Consider the curves y = 2000(1.05)*~! and y = 300z.

’ 10.7,3210 y = 2000(1.05)*~*
(10.7, )./ —y =300z

0”

Hence, Xinxin will stop donating in the 11th quarter.
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Problem 1. On joining ABC International School, each of the 200 students is placed in
exactly one of the four performing arts groups: Choir, Chinese Orchestra, Concert Band
and Dance. The following table shows some information about each of the performing arts
groups:

Performing Arts Choir | Chinese Orchestra | Concert Band | Dance
Group
Membership Fee (per $15 $20 $20 $18
student per month)
Instructor Fee (per $50 $60 $75 $40
student per month)
Costume Fee (one-time $45 ? $40 $60
payment per student)
No. of Training Hours 5 6 8 7

In a typical month, the school collects a total of $3,721 for membership fee from the
students, and pays the instructors a total sum of $11,830 (assuming that this sum of
money is fully paid by the students). As for the training in a typical week, students from
Chinese Orchestra and Concert Band spend in total 431 hours more than their peers in
Choir and Dance. Find the enrolment in each of the performing arts groups.

Hence, find the costume fee paid by each student from Chinese Orchestra if a vendor
charges a total of $9,440 for all the costumes for the four performing arts groups.

Solution. Let a, b, ¢, d be the number of students in Choir, Chinese Orchestra, Concert
Band and Dance respectively. From the given information, we have the following equations:

a+ b+ c+ d=200
15a + 206 + 20c + 18d = 3721
50a + 60b + 75¢ + 40d = 11830
—ba+ 6b+ 8c— T7d=431

Using G.C., we obtain the unique solution
a=43, b=65, c=60, d=32.

Let the Chinese Orchestra’s custom fee (per student) be z. From the given information,
we have the following equation:

45a 4 xb + 40c + 60d = 9440.

Hence,

9440 — 45a — 40c — 60d
T = ab ¢ = 49.

Thus, the costume fee paid by each student from Chinese Orchestra is $49.

k 3k ok ok ok

Problem 2. Solve the inequality (z + 2)? (22 + 22 — 8) > 0.

Solution. Since (z +2)? > 0, we can remove it from the inequality, keeping in mind that
x = —2 is a solution. We are hence left with

2?42 — 8= (v +4)(x—2)>0.
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Since this quadratic is concave up, we clearly have x < —4 or x > 2. Altogether, we have

< —4orx=—-2o0rx>2.

k 3k ok ok ok

r—1

Problem 3. By using a graphical method, solve the inequality ‘xQ -z — 2’ > T

Solution.

Y ‘xQ—:U—2|

— @-1)/(z-2)

0

From the graph, the z-coordinates of the intersection points are —2.51, 1.92 and 2.09.
Hence,
r<-251 and —2<x<192 and z>2.09.

k 3k ok ok ok

Problem 4. Show that 22+ 2x + 3 is always positive for all real values of . Hence, solve

22 +22+43 2242|x|+3 <0
3+2z—x2 3+2|z|—22 =

the inequality < 0. Deduce the solution set of the inequality

Solution. Note that the discriminant of 22 + 2x +3 = 0 is A = 22 — 4(1)(3) = -8 < 0.
Since the y-intercept is positive (3 > 0), it follows that 22 + 2x + 3 is always positive for

real z.
Consider the inequality gigif;;” < 0. Since x? + 2z + 3 is always positive, it suffices to
solve 3 4+ 22 — 22 < 0. Observe that the roots of 3+ 2z — 22 =0 are x = 3 and z = —1.

Since 3 + 2z — 22 is concave down, we have

r<—-1 or z>3.

Replacing = with |z|, we get || < —1 (no solutions) and |z| > 3, whence x < —3 or
x > 3. The solution set is thus

{reR:z< -3orz>3}.
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222 —7x46
x2—x—2 N

Problem 5. Without use of a graphing calculator, solve the inequality
Deduce the range of values of x such that

(a) 2(Inz)%2—71n x+6 >1

(Inz)2—lnz—2

(b) 2—Tx+6x2 > 1

1-z—2x2 =

Solution. Moving all terms to one side, we get

2x2—7a:+6> 22— 6x+ 8

5 1 = ————>0.

¢ —x—2 = T4 —x— 2

Note that 2 — 6x + 8 factors as (x — 2)(x — 4) while 22 — x — 2 factors as (x — 2)(z + 1).
Hence,

T —4
> — > 0.
m+1_0:>(a: 4)(x+1)>0

Thus, we clearly have
r< -1 or z>4.

Note that = # —1 since 22 — 2 — 2 # 0.
Part (a). Replacing x with Inx, we get

Inz < -1 or Inz>4,

whence

0§:z:<e*1 or x>e".

Part (b). Replacing = with 1/z, we get

1
—<-=1 or
T

S R
Vv
i

Hence,

1
—1<xz<0 or 0<:r§1.

Note that x = 0 also satisfies the inequality (2 > 1). Hence,

—l<z<

=~ =

X %k Xk % X

Problem 6. It is given that y = %7 x € R, z # 1. Without using a calculator, find
the set of values that y can take.

Solution. Clearing denominators, we have
yx—1)=2*4+z+1 = 22+ (1 —y)z+(1+y)=0.

Since we are interested in the set of values that y can take, we want this quadratic to have
roots. Hence, the discriminant A should be non-negative:

A=(1-y)?—4(1+y)=y*—6y—3>0.
Completing the square,

(y—3)?%>12 = |y—3|>V12=2V3.
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Hence,
y<3—2V3ory>3+2V3,

whence the solution set is

{yER:y§3—2\/§0ryZ3+2\/§}.

* ok % % ok

Problem 7 (). Solve for z, in terms of a, the inequality

2

)

}a:2 — 3aa:+2a2| < ‘wQ + 3ax —a

where z € R, a # 0.

Solution. Squaring both sides, we get
(:BQ — 3ax + 2a2)2 < (acQ + 3az — a2)2 .
Collecting terms on one side,
(2 + 3az — a2)2 — (2* — 3az + 20,2)2 = 3a (22 — a) (227 + a®) > 0.

Clearly, 222 4+ a? > 0 for all z. We are hence left with a(2x —a) > 0.
Case 1. If a > 0, then 2z — a > 0, whence z > a/2.
Case 2. If a < 0, then 2z — a < 0, whence = < a/2.

) 3k okok ok

Problem 8 (v). Find constants a, b, ¢ and d such that 1+ 23 + 3% + ... + n? =
ant +bn3 + en? + dn.

Solution 1. Substituting n = 1,2, 3,4 into the equation, we get the system
a+ b+ c+ d=1
16a+ 8+ 4c+2d=9

8la + 276+ 9c+ 3d = 36
256a + 64b + 16¢ + 4d = 100

Solving, we have

1 1 1
(Z—Z, b—E, C—Z, d—O

Solution 2. Recall that .

Z = n(n+1)

k=1 2
Now observe that

(k+1)°—1=> [(k+1)*-k] =) (Bk*+3k+1).
k=1 k=1

Rearranging, we obtain

3

12— n(n+1)(2n + 1).

k=1 6
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Similarly, we have

3

k+D*=1=) [(k+1)* =K =) (48> +6k* + 4k + 1),
k=1 k=1

whence we obtain, upon rearranging,
Z 15 nt + 2n +n?

Comparing coefficients, we have

1 1 1
a Z, b—i, C—Z, d—O
k ok ok ok ok

Problem 9 ().

(a) By means of a sketch, or otherwise, state the range of values of a for which the
equation |z + 2| = ax + 4 has two distinct real roots.

(b) Solve the inequality |z 4 2| < ax + 4.

Solution.
Part (a).

Y Y |z + 2|

Consider the figure above. Clearly, for 2 distinct roots (i.e. 2 distinct intersection
points), we need —1 < a < 1.

Part (b). Note that the az-coordinate of the point of intersection between y = ax + 4 and

y=x+2is:
-2
r+2=ar+4 = == .
a—1
Similarly, the z-coordinate of the point of intersection between y = ax+4 and y = —(z+2)
is:
r+2=ar+4 = == .
a+1

Now consider the inequality |z + 2| < az + 4.
Case 1: a > 2. y = ax + 4 only intersects the line y = x + 2. Hence,
-2

€T > .
a—1
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y |z + 2|
P x
e - /72 O
Case 2: 1 < a < 2. y=ax+ 4 only intersects the line y = —(z + 2). Hence,
—6
x .
T a-—1
|z + 2|
Case 8: —1 < a < 1. y = ax + 4 intersects both y = + 2 and y = —(z + 2). Hence,

6 p<c 2
— X —_—.
a—1 a—1

. Yy |z + 2|

Case 4: a < —1. y = ax + 4 only intersects the line y = z 4+ 2. Hence,

-2

x < .
“a-—1
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|z + 2|
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Assignment Al

Problem 1. A traveller just returned from Germany, France and Spain. The amount (in
dollars) that he spent each day on housing, food and incidental expenses in each country
are shown in the table below.

Country | Housing | Food | Incidental Expenses
Germany 28 30 14

France 23 25 8

Spain 19 22 12

The traveller’s records of the trip indicate a total of $391 spent for housing, $430 for
food and $180 for incidental expenses. Calculate the number of days the traveller spent
in each country.

He did his account again and the amount spent on food is $337. Is this record correct?
Why?

Solution. Let g, f and s represent the number of days the traveller spent in Germany,
France and Spain respectively. From the table, we obtain the following system of equations:
23f 4+ 28g + 19s = 391
25f + 30g + 22s = 430
8f+ 149 + 125 = 180
This gives the unique solution g = 4, f = 8 and s = 5. The traveller thus spent 4 days in
Germany, 8 days in France and 5 days in Spain.
Consider the scenario where the amount spent on food is $337.
23f +28g + 19s = 391
25f 4+ 30g + 22s = 337
8f +14g + 125 = 180
This gives the unique solution g = 66, f = —27 and s = —44. The record is hence incorrect
as f and s must be positive.

X Xk Xk X X

Problem 2.

(a) Solve algebraically 2% — 9 > (z + 3) (2 — 3z + 1).

(b) Solve algebraically :,7):326”2’ <1
Solution.
Part (a).

—9> (z+3) (2? — 3z +1)
= (ﬂs+3)( 3) > (z+3) (2* — 3z +1)
= (z+3) (2* — 4w +4) <0
— (z+3)(z—2)2<0

— + +
® o— I
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Thus, z < -3 or ¢ = 2.
Part (b). Note that 3 — 22 #0 = z # £/3.

7 — 2x
<1
3—x2 —
7T—2r 3—2a2
3—22 3—2z2—
22 —2x+4
= — <0
3—x2

Observe that 22 — 2z +4 = (x — 1)?> + 3 > 0. Dividing through by x? — 2z + 4, we obtain

1
<0
3—x2 —

= 3-22<0

Thus,x<—\/§0rx>\/§.

k ok ok ok ok

Problem 3.

(a) Without using a calculator, solve the inequality :p;f:; 4+2 > %H

(b) Hence, deduce the set of values of x that satisfies mﬂ‘?gﬁ2 > ‘x|1+2.

Solution.
Part (a). Note that 22 + 3z +2 # 0 and x + 2 # 0, whence z # —1, —2.

3x +4 1
>
22 4+3x+2  x+2
3r+4 1
e Z

(x+2)(x+1) " z+2
= Br+4)(z+2)(z+1) > (z+2)(z+1)?
= (z+2)(z+1)(2z+3)>0

- + - +

© ® © x
-2 —-15 -1

Thus, -2 <z < —% orxr > —1.

Part (b). Observe that |z|> = z2. Hence, with the map x — ||, we obtain
3
-2 < |z| < —gor |z| > —1.

Since |z| > 0, we have that |z| > —1 is satisfied for all real x. Hence, the solution set is
R.
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Problem 4. On the same diagram, sketch the graphs of y = 4 |z| and y = 22 — 22 + 3.
Hence or otherwise, solve the inequality 4 |z| > 2? — 2z + 3.

Solution.

Y y = 4|zl
y=a2—2x+3

(5.45,21.8)
[

(0.551,2.20)
31 e

O

From the graph, we see that 0.551 < x < 5.45.
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Tutorial A2

Problem 1. Without using a graphing calculator, show that the equation 23 +22% -2 = 0
has exactly one positive root.

This root is denoted by « and is to be found using two different iterative methods,
starting with the same initial approximation in each case.

(a) Show that « is a root of the equation = = \/%ﬁ, and use the iterative formula

Tpyl = ﬁ, with z1 = 1, to find « correct to 2 significant figures.

(b) Use the Newton-Raphson method, with z; = 1, to find « correct to 3 significant
figures.

Solution. Let f(z) = 23+ 222 —2. Observe that for all z > 0, we have f'(z) = 322+ 4z >
0. Hence, f(z) is strictly increasing on (0, 00). Since f(0)f(1) = (=2)(1) < 0, it follows
that f(z) has exactly one positive root.

Part (a). We know f(a) = 0. Hence,

2 2
3 +22-2=0 = o*(a+2) =2 = o’ = = a= .
a+2 a+ 2
Note that we reject the negative branch since a@ > 0. We hence see that « is a root of the
equation z = %ﬁ Using the iterative formula x,11 = ﬁ with 1 = 1, we have
n Tn
1 1
2 | 0.81650
3 | 0.84268
4 | 0.83879

Hence, a = 0.84 (2 s.f.).

Part (b). Using the Newton-Raphson method (2,411 = x,, — J{,((Q;Z))) with 27 = 1, we have
n Tn
1 1
2 | 0.857143
3 | 0.839545
4 | 0.839287
5 | 0.839287

Hence, a = 0.839 (3 s.f.).
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Problem 2.

(a) Show that the tangent at the point (e, 1) to the graph y = Inx passes through the
origin, and deduce that the line y = max cuts the graph y = Inz in two points
provided that 0 <m < 1/e.

(b) For each root of the equation Inxz = x/3, find an integer n such that the interval
n < x < n 4+ 1 contains the root. Using linear interpolation, based on x = n and
x = n+ 1, find a first approximation to the smaller root, giving your answer to
1 decimal place. Using your first approximation, obtain, by the Newton-Raphson
method, a second approximation to the smaller root, giving your answer to 2 decimal
places.

Solution.

Part (a). Note that the derivative of y = Inx at * = e is 1/e. Using the point slope
formula, we see that the equation of the tangent at the point (e, 1) is given by

r—e

x
y—1= - y=-—.

e e
Since z = 0, y = 0 is clearly a solution, the tangent passes through the origin. From
the graph below, it is clear that for y = mx to intersect y = Inz twice, we must have

0<m<1/e.

Yy y=Inx

Part (b). Consider f(z) = z/3—Inz. Let a and S be the smaller and larger root to f(x) =
0 respectively. Observe that f(1)f(2) = (1)(—0.03) < 0 and f(4)f(5) = (—0.05)(0.06) < 0.
Thus, for the smaller root o, n = 1, while for the larger root 5, n = 4.

Let x1 be the first approximation to a. Using linear interpolation, we have

o f@ -2
-

Note that f/(z) = 1/3 —1/x. Using the Newton-Raphson method (2,41 = @, — f,(é’;)) ),
we have

=19 (1dp)

n Tn
1 1.9

2 | 1.85585
3 | 1.85718

Hence, a = 1.86 (2 d.p.).
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Problem 3. Find the exact coordinates of the turning points on the graph of y = f(z)
where f(z) = 2 — 22 — 2 — 1. Deduce that the equation f(z) = 0 has only one real
root «, and prove that « lies between 1 and 2. Use the Newton-Raphson method applied
to the equation f(x) = 0 to find a second approximation xy to «, taking x, the first
approximation, to be 2. With reference to a graph of y = f(z), explain why all further

approximations to « by this process are always larger than a.

Solution. For turning points, f'(z) = 0.
fllz)=0 = 32> -2 —1=0 = Bz +1)(z—1)=0.

Hence, z = —1/3 or x = 1. When z = —1/3, we have y = —0.815, giving the coordinate
(—1/3,—0.815). When x = 1, we have y = —2, giving the coordinate (1, —2).

Observe that f(x) is strictly increasing for all x > 1. Further, since both turning points
have a negative y-coordinate, it follows that y < 0 for all z < 1. Since f(1)f(2) =
(—2)(1) < 0, the equation f(x) = 0 has only one real root.

Using the Newton-Raphson method with 21 = 2, we have o = 21— f(z1)/f' (1) = 13/7.

Yy Y= R g |

Since 9 lies on the right of a, the Newton-Raphson method gives an over-estimation given
an initial approximation of 2. Thus, all further approximations to « will also be larger
than a.

k ok ok ok ok

Problem 4. A curve C has equation y = 2° + 502. Find the least value of dy/dz and
hence give a reason why the equation z° + 50z = 10° has exactly one real root. Use the
Newton-Raphson method, with a suitable first approximation, to find, correct to 4 decimal
places, the root of the equation z° + 502 = 10°. You should demonstrate that your answer
has the required accuracy.

Solution. Since y = 2° + 50z, we have dy/dz = 52* + 50. Since z* > 0 for all real x, the
minimum value of dy/dx is 50.

Let f(x) = 2° + 50x. Since mindf/dx = 50 > 0, it follows that f(z) is strictly
increasing. Hence, f(z) will intersect only once with the line y = 10°, whence the equation
2% 4+ 50z = 10° has exactly one real root.

Observe that f(9)f(10) = (—40901)(50) < 0. Thus, there must be a root in the interval
(9,10). We now use the Newton-Raphson method (zp+1 =  — J{,((Q;’:L))) with 1 = 9 as the
first approximation.
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Ty
9
10.2178921
10.0017491
9.9901221
9.9899912
9.9899900

DO x| W N =3

Thus, the root is 9.9900 (4 d.p.).
Observe that f(9.98995)f(9.99005) = (—2.00)(3.00) < 0. Hence, the root lies in the
interval (9.98995,9.99005) whence the calculated root has the required accuracy.

* ok k% ok

Problem 5.

(a)

A function f is such that f(4) = 1.158 and f(5) = —3.381, correct to 3 decimal
places in each case. Assuming that there is a value of z between 4 and 5 for which
f(z) =0, use linear interpolation to estimate this value.

For the case when f(z) = tanz, and = is measured in radians, the value of f(4) and
f(5) are as given above. Explain, with the aid of a sketch, why linear interpolation
using these values does not give an approximation to a solution of the equation
tanz = 0.

Show, by means of a graphical argument or otherwise, that the equation In(z — 1) =
—2x has exactly one real root, and show that this root lies between 1 and 2.

The equation may be written in the form In(z — 1) + 2z = 0. Show that neither
x = 1 nor x = 2 is a suitable initial value for the Newton-Raphson method in this
case.

The equation may also be written in the form 2 — 1 — e72* = 0. For this form, use

two applications of the Newton-Raphson method, starting with z = 1, to obtain an
approximation to the root, giving 3 decimal places in your answer.

Solution.

Part (a). Let the root of f(x) = 0 be a. Using linear interpolation on the interval [4, 5],
we have

o= 47(5) = 5/(4) = 4.255 (3 d.p.).

f(B) = f(4)
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Since tanz has a vertical asymptote at © = 37/2, it is not continuous on [4,5]. Thus,
linear interpolation diverges when applied to the equation tanz = 0.

Part (b).

Yy Ex—l y= In(x —1)
O : : Lloy=—2
\\\\ E 2
\\\\\ ;
\\\\\ :
\\\\\;
-9 (1.109, —2.218)
H \\\\\
N
Since there is only one intersection between the graphs y = In(z — 1) and y = —2z,
there is only one real root to the equation In(x — 1) = —2x. Furthermore, since y = —2z

is negative for all x > 0 and y = In(x — 1) is negative only when 1 < x < 2, it follows that
the root must lie between 1 and 2.
Let f(z) = In(z —1) + 2. Then f’(z) = 15 +2. Note that the Newton-Raphson

method is given by x,+1 =z, — ;/((f;r;))'

Since f’(1) is undefined, an initial approximation of x; = 1 cannot be used for the
Newton-Raphson method, which requires a division by f’(1).

Using the Newton-Raphson method with the initial approximation zo = 2, we see that
zg = 1. Once again, because f’(1) is undefined, z; = 2 is also not a suitable initial value.

Let g(z) =2 — 1 — e 2%, Then ¢/(z) = 1 + 2¢~2%. Using the Newton-Raphson method
with the initial approximation 1 = 1, we have

n Tn,
1 1
2 | 1.106507
3 | 1.108857
Hence, z =1.109 (3 d.p.).
k 3k ok ok ok

Problem 6. The equation x = 3Inz has two roots a and 3, where 1 < o < 2 and
4 < B < 5. Using the iterative formula z,41 = F(z,,), where F(z) = 3lnz, and starting
with zg = 4.5, find the value of § correct to 3 significant figures. Find a suitable F'(x) for
computing a.

Solution. Using the iterative formula 11 = F(x,,), we have

n Tn n Tn

0 4.5 5 | 4.53175
1] 4.51223 | 6 | 4.53333
2 | 4.52038 | 7 | 4.53437
3| 4.52579 | 8 | 4.53506
4 1452937 | 9 | 4.53551
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Hence, f = 4.54 (3 s.f.).

Note that z = 3lnz = z = ¢*/3. Observe that d(e*/?)/dz = %ez/3, which is between
—1l and 1 for all 1 < = < 2. Thus, the iterative formula z,; = F(x,) will converge,
whence F(z) = e*/3 is suitable for computing o.

X ok Xk % X

Problem 7. Show that the cubic equation 23 + 3z — 15 = 0 has only one real root. This
root is near « = 2. The cubic equation can be written in any one of the forms below:

(a) x = %(15 —3)

(b) r= x%i?)

(c) x = (15 —3z)'/3

Determine which of these forms would be suitable for the use of the iterative formula
xpy1 = F(x,), where r =1,2,3,....

Hence, find the root correct to 3 decimal places.
Solution. Let f(z) = 23+ 3z — 15. Then f'(x) = 322 + 3 > 0 for all real . Hence, f is
strictly increasing. Since f is continuous, f(z) = 0 has only one real root.
Part (a). Let g1(z) = (15 — 23). Then ¢} (z) = —2%. For values of x near 2, |g}(z)| > 1.
Hence, the iterative formula x,,1 = g1(z,,) will diverge and g¢; (z) is unsuitable.

Part (b). Let go(x) = z§i3 Then gh(z) = (;f?j”)Q. For values of x near 2, |g5(x)| > 1.

Hence, the iterative formula z,4+1 = g2(x,) will diverge and go(z) is unsuitable.

Part (c). Let g3(x) = (15— 3x)'/3. Then gj(z) = —(15 — 3z)~2/3. For values of = near 2,

|g5(x)| < 1. Hence, the iterative formula x,+1 = g3(xy) will converge and g3(z) is suitable.
Using the iterative formula z,11 = g3(x,), we get

Ty
2
2.080084
2.061408
2.065793
2.064765

QYW

Hence, z = 2.065 (3 d.p.).

* ok k% ok

Problem 8. The equation of a curve is y = f(z). The curve passes through the points
(a, f(a)) and (b, f(b)), where 0 < a < b, f(a) > 0 and f(b) < 0. The equation f(z) =0
has precisely one root « such that a < o < b. Derive an expression, in terms of a, b, f(a)
and f(b), for the estimated value of « based on linear interpolation.

Let f(x) = 3e™® — z. Show that f(z) = 0 has a root « such that 1 < o < 2, and that
for all z, f'(z) < 0 and f”(z) > 0. Obtain an estimate of « using linear interpolation
to 2 decimal places, and explain by means of a sketch whether the value obtained is an
over-estimate or an under-estimate.

Use one application of the Newton-Raphson method to obtain a better estimate of «,
giving your answer to 2 decimal places.

Solution. Using the point-slope formula, the equation of the line that passes through
both (a, f(a)) and (b, f(b)) is



Tutorial A2 311

Note that («,0) is approximately the solution to the above equation. Thus,

fla) = f(b) bf(a) — af(b)
a—b fla) = f(b)

Since f(x) is continuous, and f(1)f(2) = (0.10)(—1.6) < 0, there exists a root o € (1,2).

Note that f/(x) = —3e™® — 1 and f”(x) = 3e~®. Since e=® > 0 for all x, we have that
() <0and f"(x) > 0 for all .

Using linear interpolation on the interval (1,2), we have

L2 -0
0= f(2)

Since f'(z) < 0 and f”(x) > 0, we know that f(z) is strictly decreasing and is concave
upwards. f(z) hence has the following shape:

0— f(a) =

(a—a) = a=x

=1.06 (2 d.p.).

Yy y=3e"—x

From the graph, we see that the value obtained is an over-estimate.
Using the Newton-Raphson method with the initial approximation z; = 1.06, we get

I f(x1) _

a=x Flan) 1.05 (2 d.p.).
k sk ok ok ok
Problem 9.
Yy y=1tz— In(z+2)
X
O «
.

The diagram shows a sketch of the graph y = /3 — In(z + 2). Find the x-coordinate of
the minimum point M on the graph, and verify that y is positive when = = 20.
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Show that the gradient of the curve is always less than 1/5. Hence, by considering
the line through M having gradient 1/5, show that the positive root of the equation
x/3 —In(z + 2) = 0 is greater than 8.

Use linear interpolation, once only, on the interval [8,20], to find an approximate value
a for this positive root, giving your answer to 1 decimal place.

Using a as an initial value, carry out one application of the Newton-Raphson method
to obtain another approximation to the positive root, giving your answer to 2 decimal
places.

Solution. For stationary points, 3’ = 0.

1 1
/
=0 = - — — x=3.
Y 5 x+2
By the second derivative test, we see that y”(z) = ﬁ > 0. Hence, the z-coordinate of

M is 3. Substituting z = 20 into the equation of the curve gives y = 4 —1n22 = 0.909 > 0.
We know that ¢ =1/5—1/(x +2), hence 3/ < 1/5 for all x > —2. Since the domain of
the curve is & > —2, ¢/ is always less than 1/5.
Let (a,0) be the coordinates of the root of the line through M having gradient % We
know that the coordinates of M are (3,3/5—1Inb5). Taking the gradient of the line segment
joining M and («,0), we get

(3/5-In5) -0 _1

- =5In5=8. .
o 5:>a 5Ind =8.05>8

Since the gradient of the curve is always less than 1/5, « represents the lowest possible value
of the positive root of the curve. Hence, the positive root of the equation z/5—In(z + 2) =
0 is greater than 8.

Let f(x) = z/5 — In(z + 2). Using linear interpolation on the interval [8,20], we have

_ 8/(20) 20/ (8)

=13.2 (1 d.p.).
f(20) — f(8)
Using the Newton-Raphson method with the initial approximation z1 = 13.2, we have
f(z1)
Q=1 — = 13.81 (2 d.p.).
L () ( )
k ok ok ok ok

Problem 10.

(a) The function f is such that f(a)f(b) < 0, where a < b. A student concludes that
the equation f(z) = 0 has exactly one root in the interval (a,b). Draw sketches to
illustrate two distinct ways in which the student could be wrong.

(b) The equation sec?z — e? = 0 has a root « in the interval [1.5,2.5]. A student uses

linear interpolation once on this interval to find an approximation to «. Find the
approximation to « given by this method and comment on the suitability of the
method in this case.

(c) The equation sec?z — e® = 0 also has a root 3 in the interval (0.1,0.9). Use the
Newton-Raphson method, with f(x) = sec? 2 — e and initial approximation 0.5, to
find a sequence of approximations {x1, xe,z3,...} to . Describe what is happening
to x, for large n, and use a graph of the function to explain why the sequence is not

converging to .
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Solution.
Part (a).

Part (b). Let f(z) = sec? x — e®. Using linear interpolation on the interval [1.5,2.5],

_ 1.5f(2.5) — 2.5f(1.5)
- f(25) - f(1.5)
2

sec”® z is not continuous on the interval [1.5,2.5] due to the presence of an asymptote at
x = 7/2. Hence, linear interpolation is not suitable in this case.

Part (c). We know f'(z) = 2sec? rtanx — e®. Using the Newton-Raphson method with
the initial approximation x; = 0.5,

=1.06 (2 d.p.).

Ty
0.5
-1.02272
-0.75526
-0.40306
-0.09667
-0.00466
-0.00000

N| OO WIS

Asn — oo, z, — 0.

Yy y = sec’x — e”

zy e O T B

From the above graph, we see that the initial approximation of x1 = 0.5 is past the
turning point. Hence, all subsequent approximations will converge to the root at 0 instead
of the root at 8. Thus, the sequence does not converge to 5.
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Problem 11. The function f is given by f(z) = V1 — 22 +cosz —1for 0 <z < 1. It is
known, from graphical work, that the equation f(x) = 0 has a single root x = .

(a) Express g(x) in terms of x, where g(z) = — J{,((Z))-

A student attempts to use the Newton-Raphson method, based on the form x,+; =
g(xy), to calculate the value of a correct to 3 decimal places.

(b) (i) The student first uses an initial approximation to « of z; = 0. Explain why
this will be unsuccessful in finding a value for a.

(ii) The student next uses an initial approximation to a of x; = 1. Explain why
this will also be unsuccessful in finding a value for a.

(iii) The student then uses an initial approximate to « of 1 = 0.5. Investigate what
happens in this case.

(iv) By choosing a suitable value for z;, use the Newton-Raphson method, based
on the form z,,11 = g(x,), to determine « correct to 3 decimal places.

Solution.
Part (a). We know f/(z) = =z — sinz. Hence,
V1—2%+cosz—1
g(z) = - —Z_ _sinx
V1—z2
Part (b).

Part (b)(i). Observe that f’(0) = 0. Hence, g(0) is undefined. Thus, starting with an
initial approximation of x1 = 0 will be unsuccessful in finding a value for a.

Part (b)(ii). Observe that v/1 — 22 is 0 when x = 1. Hence, f’(0) is undefined. Thus, ¢(0)
is also undefined. Hence, starting with an initial approximation of x1 = 1 will also be
unsuccessful in finding a value for «.

Part (b)(iii). When z; = 0.5, we have o = g(x1) = 1.20. Since g(z) is only defined for
0 <z <1, x3 = g(x2) is undefined. Hence, an initial approximation of x; = 0.5 will also
be unsuccessful in finding a value for a.

Part (b)(iv). Using the Newton-Raphson method with 1 = 0.9, we have

r Ty
1 0.9

21 0.92019
31 0.91928
4 | 0.91928

Thus, o = 0.919 (3 d.p.).
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Self-Practice A2

Problem 1.

(a)

()

Sketch on the same diagram the graphs of y =  — 1 and y = ke 3%, where —1 <
k < 0. State the number of real roots of the equation ke 3% — (z — 1) = 0.

For the case k = 1, sketch appropriate graphs to show that the equation e™3% — (z —

1) = 0 has exactly one real root. Denoting this real root by «, find the integer n such
that the interval [n — 1,n| contains a. Use linear interpolation, once only, on this
interval to find an estimate for «, giving your answer correct to 2 decimal places.

Let f(z) = e 3% — (x — 1). By considering the signs of f/(x) and f”(z) for all real
values of x, explain with the aid of a simple diagram whether the value of o obtained
in (a) is an over-estimate or an under-estimate.

Taking the value of a obtained in (a) as the initial value, apply the Newton-Raphson
method to find the value of a correct to 3 decimal places.

Solution.
Part (a).
Y y=x—1
oy = kefi‘)z
0] ‘ T
P 1
At

There are 2 real roots to ke 3% — (x — 1) = 0 when —1 < k < 0.

y=x—1.

Note that e™3¥ — (z — 1) = 0 is equivalent to e 3* = x — 1. We hence plot y = ¢~3* and

Y y=z—1
Yy = 6—31’

1 AN

‘\\\\;
. e .
0o 1
14

Since the two curves only intersect at one point, there is only one root to the equation
-3z
e " —(z—1)=0.
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From the graph, a € (1,2), so n = 2. Let f(z) = 3% — (x — 1). Using linear
interpolation on the interval (1,2), we obtain

_2/(1) - 1/()

HOEEONE 1.05 (2 d.p.).

a1
Part (b). For all z € R, we have

fllx)=-3e3"-1<0 and f’(z)=9e3%>0.

Thus, the graph of y = f(x) is decreasing and convex.

y = f(x)

From the above figure, we see that the estimate given by linear interpolation is an
overestimate.

Part (c). The recursive formula given by the Newton-Raphson method is

flom) e % — (ay, — 1)'

Using the initial estimate oy = 1.05, we have as = 1.044 (3 d.p.). Indeed, since f is
continuous on (1.0435,1.0444), and

£(1.0435)f(1.0444) = —1.6 x 1077 < 0,

by the Intermediate Value Theorem, we conclude that o € (1.0435,1.0444), thus o =
1.044 (3 d.p.).

% ok ok ok ok

Problem 2. The equation f(z) = 0 where f(z) =1 — 2+ Inz has exactly two real roots
« and .

Verify that the larger root 8 lies between 6 and 7 and use one application of linear
interpolation on the interval [6,7] to estimate this root, giving your answer correct to 2
decimal places.

Sketch the graph of y = f(x), stating clearly the coordinates of the turning point. Using
the graph of y = f(x), deduce the integer N such that the interval [N — 1, N] contains the
smaller root a.

An attempt to calculate the smaller root « is made. Explain why neither z = 0 nor
x =1 is a suitable initial value for the Newton-Raphson method in this case.

Taking x = 0.3 as the initial value, use the Newton-Raphson method to find a second
approximation to the root «, giving your answer correct to three decimal places.
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Solution. Since f is continuous over (6,7) and
£(6)£(7) = —0.00369 < 0,

by the Intermediate Value Theorem, there exists a root § within (6,7). Further,
/ _— — — —
)=+

is positive for z > 6, so f(x) > f(B) = 0 for all x > (3, whence 3 is the only root greater
than 6, i.e. [ is the largest root. Using linear interpolation on the interval [6, 7], we have

the estimate
_6/(7) — 7/(6)

Bo =16 6.32 (2 d.p.).

y y = f(z)
0 a 5

1.5

From the graph, a € (0,1), hence N = 1.
The Newton-Raphson method gives the following recursion:

flan) L _24ha,

Qn

— =a
f/(an) " —éﬁ-é

Qny1 = Qp

For ap = 0, both f(ap) and f'(ap) are undefined. For g = 1, the denominator f’(ag) = 0,
so «aq is undefined.
Using the Newton-Raphson method will initial value oy = 0.3, we obtain

a; =0.31663 = 0.317 (3 d.p.) and @9 =0.31784 =0.318 (3 d.p.).
Checking, we see that f is continuous of (0.3175,0.3184) and
£(0.3175)£(0.3184) = —8.7 x 107¢ < 0,

hence by the Intermediate Value Theorem, a = (0.3175,0.3184), thus o = 0.318 (3 d.p.).

* ok % % ok

Problem 3. Sketch the graph of y = (1 + z)e™?, indicating clearly the turning points
and asymptotes (if any). State the transformation by which the graph of y = ze!=* may
be obtained from the graph of y = (1 + x)e™ ™.

By means of a suitable sketch, deduce that x (1 + elfx) = 1 has exactly one real root
a. Show that « lies between 0.3 and 0.4.

Use linear interpolation once to obtain an approximation value, ¢, for «, giving your
answer correct to 4 decimal places.

Using the Newton-Raphson method once with ¢ as the first approximation, obtain a

second approximation for a correct to 3 significant figures.
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Solution.

Y y=(1+a)e™®
7y:_$

N

N\

N\

The graph of y = ze!~® can be obtained by translating the graph of y = (14 z)e~* one
unit in the negative z-direction.
Note that
z(l+e™)=1=1+2)e ™ =z
Plotting the graph of y = —z, we see that the two graphs intersect at only one point.

Thus, x (1 + elfx) = 1 has only one real root.
Let f(z) =z (1+e'™*) — 1. Observe that f is continuous on (0.3,0.4) and

£(0.3)£(0.4) = —0.01 < 0,

thus by the Intermediate Value Theorem, o € (0.3,0.4). Using linear interpolating on

(0.3,0.4),
_ 0.3£(0.4) — 0.4£(0.3)

f£(0.4) — £(0.3)
Note that f’(z) = 1+e!~% (1 — x). The Newton-Raphson method employs the recursion
f(om) an (14 el™on) — 1
Qpt1 = Qp — = Qn — — .
() 14el=an (1 —ay)

Using the initial condition ap = 0.3427, we see that oy = 0.3409 = 0.341 (3 s.f.). Checking,
we see that

= 0.3427 (4 d.p.).

£(0.3405) £(0.3414) = —1.0 x 1079,
thus o € (0.3405,0.3414), i.e. o = 0.341 (3 s.f.).
k sk ok ok ok

Problem 4. In this question, give all your final answers correct to 3 decimal
places.

(a) Find, stating your reason, the value of the positive integer n such that
n—1< V100 < n.

Hence, use linear interpolation once only, to find an approximation, «, to the root
of the equation z3 = 100. Explain, with the aid of a suitable diagram, whether « is
an overestimate or underestimate.

(b) Using the Newton-Raphson method with a as a first approximation, find +/100.
Explain, using the same diagram as in (a), whether this method yields a series of
overestimates or underestimates.
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Solution.

Part (a). Note that
43 = 64 < 100 < 125 = 5°.

It follows that 4 < ¥/100 < 5, so n = 5.
Let f(x) = 23 — 100. Using linear interpolation on (4, 5), we see that

L 4f(5) = 57()

RO (3 d.p.).

Note that over (4,5),
fl(x)=32>>0 and f’(x)=6x >0,

so f(x) is increasing and convex.

y = f(x)

From the above figure, we see that the estimate given by linear interpolation is an
underestimate.

Part (b). The Newton-Raphson method uses the recursion
flom) oy — 100

With the initial value oy = 4.590, we have ap = 4.64217 = 4.642 (3 d.p.). Checking, we
see that f is continuous on (4.6415,4.6424) and

f(4.6415) f(4.6424) = —3.0 x 1074,

thus a € (4.6415,4.6424) and o = v/100 = 4.642 (3 d.p.).
Since the graph of y = f(x) is convex, it is always above its tangents. Thus, the
Newton-Raphson method gives an underestimate.

X %k Xk % X

Problem 5. The roots of the quadratic equation 22 — 72 + 1 = 0 are to be calculated by
the use of the recurrence relation z,,1 = 7%% Sketch the graphs of y = x and y =

T—x
and hence show

(a) that the equation has 2 roots, which lie between 0 and 7.

(b) if 1 has a value lying between these roots, then the recurrence relation will always
yield an approximation to the smaller root.

Taking x; = 1, find the smaller root correct to 3 decimal places. Obtain the value of
the larger root to the same degree of accuracy.
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Solution.

(a) and (b) are obvious from the graph.
Using the given recurrence relation, with initial value z; = 1, we have

29 =10.14394 and x3 =0.14586 = 0.146 (3 d.p.).
Checking, we see that f(z) = 22 — 7z + 1 is continuous and
£(0.1455) £(0.1464) = —9.0 x 1075 < 0,

thus o € (0.1455,0.1464) and « = 0.146 (3 d.p.).
Let 8 be the other root. By Vieta’s formula, o + 8 = 7, so f = 7 — 0.14586 =
6.854 (3 d.p.).
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Assignment A2

Problem 1. By considering the graphs of y = cosz and y = —x, or otherwise, show

that the equation x 4 4 cosz = 0 has one negative root and two positive roots.
Use linear interpolation, once only, on the interval [—1.5,1] to find an approximation to
the negative root of the equation = 4 4 cosz = 0 correct to 2 decimal places.

Y ’ y=x+4coszx

The diagram shows part of the graph of y = x + 4 cos x near the larger positive root, «,
of the equation x 4+ 4 cosx = 0. Explain why, when using the Newton-Raphson method to
find «, an initial approximation which is smaller than « may not be satisfactory.

Use the Newton-Raphson method to find « correct to 2 significant figures. You should
demonstrate that your answer has the required accuracy.

Solution.
Yy Y = CoST
—y=-1lo
. \
O
\Y
‘ \

Note that  + 4cosz = 0 = cosxz = —+z. Plotting the graphs of y = cosz and
y = —Lix, we see that there is one negative root and two positive roots. Hence, the

equation x + 4 cosx = 0 has one negative root and two positive roots.
Let f(x) = 4+ 4cosz. Let B be the negative root of the equation f(x) = 0. Using
linear interpolation on the interval [—1.5. — 1],

8= —LA/CD) Z (COJELS) ) (2 d.p.).

f(=1) = f(1.5)

There is a minimum at x = m such that m is between the two positive roots. Hence,
when using the Newton-Raphson method, an initial approximation which is smaller than
m would result in subsequent approximations being further away from the desired root a.
Hence, an initial approximation that is smaller than o may not be satisfactory.

We know from the above graph that o € (m,37/2). We hence pick 37/2 as our initial
approximation. Using the Newton-Raphson method x, 1 = x,, — ]{c,((:;’;)) with x1 = 37/2,
we have
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Y| WIN| 3
w
D
—_
)
D

Since f(3.55)f(3.65) = (—0.1)(0.2) < 0, we have « € (3.55,3.65). Hence, o = 3.6 (2 s.f.).

* ok k% ok

Problem 2. Find the coordinates of the stationary points on the graph y = 3 + z2.
Sketch the graph and hence write down the set of values of the constant k for which the
equation z3 + 2% = k has three distinct real roots.

The positive root of the equation 23 + 22 = 0.1 is denoted by a.

(a) Find a first approximation to « by linear interpolation on the interval 0 < z < 1.

(b) With the aid of a suitable figure, indicate why, in this case, linear interpolation does
not give a good approximation to a.

(c) Find an alternative first approximation to a by using the fact that if z is small then
23 is negligible when compared to z2.

Solution. For stationary points, 3’ = 0.
Y =0 = 322 +22=0 = 2(32+2)=0.

Hence, x = 0 or x = —2.3. When z = 0, y = 0. When x = —2/3, y = 4/27. Thus, the
coordinates of the stationary points of y = 23 + 22 are (0,0) and (—2/3,4/27).

y

(—2/3,4/27)

Therefore, k € (0,4/27). The solution set of k is thus {k e R: 0 < k < 4/27}.
Part (a). Let f(x) = 2% + 22 — 0.1. Using linear interpolation on the interval [0, 1],

—f(0) 1

o= —-—-——————--= —,

f(1) = f(0) 20
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Part (b).

Yy y=a3+22-0.1

—0.1 ¥ «

On the interval [0, 1], the gradient of y = 23 + 22 — 0.1 changes considerably. Hence,
linear interpolation gives an approximation much less than the actual value.

Part (c). For small x, 2% is negligible when compared to 2. Consider g(z) = ? — 0.1.

Then the positive root of g(z) = 0 is approximately «. Hence, an alternative approxima-
tion to v is v/0.1 = 0.316 (3 s.f.).

k 3k ok ok ok

Problem 3. The equation 2 cosz —x = 0 has a root « in the interval [1,1.2]. Iterations of
the form x,,41 = F(z,,) are based on each of the following rearrangements of the equation:

(a)  =2coszx
_ 1
(b) z =cosz + 52
(c) x = %(cosx + x)
Determine which iteration will converge to « and illustrate your answer by a ‘staircase’

or ‘cobweb’ diagram. Use the most appropriate iteration with 1 = 1, to find « to 4
significant figures. You should demonstrate that your answer has the required accuracy.

Solution.

Part (a). Consider f(z) = 2cosz. Then f/'(x) = —2sinx. Observe that sin z is increasing
on [1,1.2]. Since sinl > %, |f/(z)| > 1 for all z € [1,1.2]. Thus, fixed-point iteration fails
and will not converge to a.

Y y=2cosx
7y:(L'
) : =
1.2
Part (b). Consider f(z) = cosz + 2z. Then f'(z) = —sinz + 3 — (sinz — 1). Since
0 <sinz <1 forx € [0,%], and [1,1.2] C [0,%], we know —% < sinaz—% < % for

xz € [1,1.2]. Thus, 0 < ‘sinx — %‘ < % for x € [1,1.2]. Hence, fixed-point iteration will
work and converge to .



324 A2 Numerical Methods of Finding Roots

y:cosx—i—%:r
7?]:1.

1.2

Part (c). Consider f(x) = %(cosx + z). Then f/'(z) = %(—sinx + 1). For fixed-point
iteration to converge to a, we need |f’(z)| < 1 for x near a. It thus suffices to show that
|—sinx 4+ 1] < % for all z € [1,1.2]. Observe that 1—sin z is strictly decreasing and positive
for z € [0, g] Since 1 —sinl < %, and [1,1.2] C [0, g], we have that |—sinz 4+ 1] < g for
all z € [1,1.2]. Thus, |f'(x)] < 1 for z near «. Hence, fixed-point iteration will work and
converge to «.

(cosz + x)

Koo

y:
7?]:

/

P
1.2

For z € [1,1.2], }%(— sinz + 1)| < |—sinz + %| < 1. Thus, 41 = %(cosxn + x,,) is the
most suitable iteration as it will converge to o the quickest. Using F(zy41) = 2 (cos z,+y,)
with z1 =1,

r Ty
1 1

2 | 1.02687
3 | 1.02958
4 | 1.02984
5 | 1.02986

Since F'(1.0295) > 1.0295 and F'(1.0305) < 1.0305, we have o € (1.0295,1.0305). Hence,
a=1.030 (4 s.f.).
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Tutorial A3

Problem 1. Determine the behaviour of the following sequences.

(2) un =3 ()"
(b) v, =2-—n
(¢) tn=(=1)"
(d) w, =
Solution.

Part (a). Decreasing, converges to 0.
Part (b). Decreasing, diverges.

Part (c). Alternating, diverges.

Part (d). Constant, converges to 4.

* ok x % ok

Problem 2. Find the sum of all even numbers from 20 to 100 inclusive.

Solution. The even numbers from 20 to 100 inclusive form an AP with common difference
2, first term 20 and last term 100. Since we are adding a total of &2_20 + 1 = 41 terms,
we get a sum of 41 (w) = 2460.

X %k Xk % X

Problem 3. A geometric series has first term 3, last term 384 and sum 765. Find the
common ratio.

Solution. Let the nth term of the geometric series be ar™ !, where 1 < n < k. We hence
have 3r*~1 = 384, which gives r* = 128r. Thus,

_ypk —
S gy — SUTIB) ey oy
1—-7r -
%k ok ok ok

Problem 4.

(a) Find the first four terms of the following sequence w1 = Zzié, up =0, n>1.

(b) Write down the recurrence relation between the terms of these sequences.
(i) —1,2,—4,8,—16,...
(ii) 1,3,7,15,31,...
Solution.

Part (a). Using G.C., the first four terms of u, are 0, 3, 2 and .
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Part (b).
Part (b)(i). upt1 = —2up, uy = -1, n > 1.
Part (b)(ii). up+1 =2up +1,u31 =1, n > 1.

X %k %k Xk X

Problem 5. The sum of the first n terms of a series, Sy, is given by S, = 2n(n + 5).
Find the nth term and show that the terms are in arithmetic progression.

Solution. We have
Up =Sy — Sp—1=2n(n+5) —2(n—1)(n+4) =4n + 8.

Observe that u, —u,—1 = [4n + 8 — [4(n — 1) + 8] = 8 is a constant. Hence, u, is in AP.

X Xk %k % X

Problem 6. The sum of the first n terms, S, is given by

si=5-(3) -

a) Find an expression for the nth term of the series.

(a)

(b) Hence or otherwise, show that it is a geometric series.

(c) State the values of the first term and the common ratio.
)

(d) Give a reason why the sum of the series converges as n approaches infinity and write
down its value.

Solution.
Part (a). Note that

e O ROIRON

n+2
Part (b). Since U«;:l = 8;3;%1 = 1 is constant, uy, is in GP.

1

Part (c). The first term is Z and the common ratio is 5.

)n+1 1

Part (d). As n — oo, we clearly have (% — 0. Hence, S = 3.

2

k 3k ok ok ok

Problem 7. The first term of an arithmetic series is Inz and the rth term is ln(mk"”_l),
where k is a real constant. Show that the sum of the first n terms of the series is S,, =
%ln(ka”_l). If k=1 and z # 1, find the sum of the series €51 + %2 4% 4 ... 4 e

Solution. Let u,, be the nth term in the arithmetic series. Then
u, =In(zk" ') =lnz+ (r — 1) Ink.

We thus see that the arithmetic series has first term Inx and common difference of In k.
Thus,

S —n <1n:v+ (Inz+ (r— 1)lnk)> _ Eln(aﬂk’“_l).
2 2
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When k = 1, we have S,, = In(z"), whence e5» = z™. Thus,

S

51 1% 1% 1 g =gt "=

X Xk Xk % X

Problem 8. A baker wants to bake a 1-metre tall birthday cake. It comprises 10 cylin-
drical cakes each of equal height 10 cm. The diameter of the cake at the lowest layer is
30 cm. The diameter of each subsequent layer is 4% less than the diameter of the cake
below. Find the volume of this cake in cm?, giving your answer to the nearest integer.

Solution. Let the diameter of the nth layer be d, cm. We have d,; = 0.96d,, and
d; = 30, whence d,, = 30 - 0.96"!. Let the nth layer have volume v, cm?. Then

2 -1
-0.9216™

The volume of the cake in cm? is thus given by

1 —0.92160

2250 < 1—0.9216

) = 50309.

k 3k ok ok ok

Problem 9. The sum to infinity of a geometric progression is 5 and the sum to infinity
of another series is formed by taking the first, fourth, seventh, tenth, ... terms is 4. Find
the exact common ratio of the series.

Solution. Let the nth term of the geometric progression be given by ar”~!. Then, we
have a
=5 = a=5(1-r). 1
L a=5(1-7) (1)
Note that the first, fourth, seventh, tenth, ... terms forms a new geometric series with
common ratio r3: a,ar3,ar® ar?,.... Thus,
@ 4= a=4(1-19) (2)
-7 B '

Equating (1) and (2), we have
51—r)=4(1-13) = 4 4+5r+1=0 = (r—1)(4r® +4r —1) =0.

Since |r| < 1, we only have 472 +4r — 1 = 0, which has solutions r = —1%@

—1—/2
=,

orr =

Once again, since |r| < 1, we reject r =
k ok ok ok ok

Problem 10. A geometric series has common ratio r, and an arithmetic series has first

term @ and common difference d, where a and d are non-zero. The first three terms of the

geometric series are equal to the first, fourth and sixth terms respectively of the arithmetic
series.

(a) Show that 372 —5r +2 =10

(b) Deduce that the geometric series is convergent and find, in terms of a, the sum of
infinity.
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(c) The sum of the first n terms of the arithmetic series is denoted by S. Given that
a > 0, find the set of possible values of n for which S exceeds 4a.

Solution.
Part (a). Let the nth term of the geometric series be G, = G171, Let the nth term of
the arithmetic series be A, = a + (n — 1)d.

Since G1 = A1, we have G = a. We can thus write G,, = ar™!. From Gy = A4, we

have ar = a 4+ 3d, which gives a = %. From G3 = Ag, we have ar? = a + 5d. Thus,
3d 3d 3r? 3

r—1 r—1 r—1 r—1
Part (b). Note that the roots to 3r2 —5r +2 =0 are r = 1 and r = 2/3. Clearly, r # 1
since a = 3d/(r — 1) would be undefined. Hence, r = 2/3, whence the geometric series is

convergent.
Let So be the sum to infinity of G,,. Then Soc = a/(1 —r) = 3a.

Part (c). Note that d = a(r —1)/3 = —§. Hence,

S:n<a+[a+2(n1)d]> :n<2a+(n;1) (—S)) :@(19_71)‘

Consider S > 4a.
o

§>da = 19—-n)>4 = —n’4+19n - 72> 0.

Using G.C., we see that 5.23 < n < 13.8. Since n is an integer, the set of values that n
can take on is {n € Z: 6 < n < 13}.

X %k %k % X

Problem 11. Two musical instruments, A and B, consist of metal bars of decreasing
lengths.

(a) The first bar of instrument A has length 20 cm and the lengths of the bars form a
geometric progression. The 25th bar has length 5 cm. Show that the total length of
all the bars must be less than 357 cm, no matter how many bars there are.

Instrument B consists of only 25 bars which are identical to the first 25 bars of instru-
ment A.

(b) Find the total length, L cm, of all the bars of instrument B and the length of the
13th bar.

(c) Unfortunately, the manufacturer misunderstands the instructions and constructs
instrument B wrongly, so that the lengths of the bars are in arithmetic progression
with a common difference d cm. If the total length of the 25 bars is still L ¢cm and
the length of the 25th bar is still 5 ¢m, find the value of d and the length of the
longest bar.

Solution.
Part (a). Let u, = ui;r""! be the length of the nth bar. Since u; = 20, we have

un = 20r"" 1. Since ugs = 5, we have r = 47i. Hence, u,, = 20 - 47n2;4. Now, consider

the sum to infinity of u,,:

. (75} . 20
I1—r 1-—471/24

Hence, no matter how many bars there are, the total length of the bars will never exceed

357 cm.

Soo = 356.3 < 357.
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Part (b). We have

1 _ 25 1 — 4-25/24
L=u ( ! ) =20 ( = 272.26 = 272 (3 s.£.).

1 —4-1/24
Note that 51
w3 = 20 - (4—1/24> —10.

The 13th bar is hence 10 cm long.

Part (c). Let v, = a+ (n — 1)d be the length of the wrongly-manufactured bars. Since
the length of the 25th bar is still 5 cm, we know vo5 = a + 24d = 5. Now, consider the
total lengths of the bars, which is still L cm.

L =25 (‘“;5) — 972.96.

Solving, we see that a = 16.781. Hence, d = E’;—f = —0.491, and the longest bar is 16.8 =
cm long.

% 3k ok ok ok

Problem 12. A bank has an account for investors. Interest is added to the account at
the end of each year at a fixed rate of 5% of the amount in the account at the beginning
of that year. A man a woman both invest money.

(a) The man decides to invest $x at the beginning of one year and then a further $z at
the beginning of the second and each subsequent year. He also decides that he will
not draw any money out of the account, but just leave it, and any interest, to build

up.
(i) How much will there be in the account at the end of 1 year, including the
interest?

(ii) Show that, at the end of n years, when the interest for the last year has been
added, he will have a total of $21(1.05" — 1)z in his account.

(iii) After how many complete years will he have, for the first time, at least $12z in
his account?

(b) The woman decides that, to assist her in her everyday expenses, she will withdraw
the interest as soon as it has been added. She invests $y at the beginning of each
year. Show that, at the end of n years, she will have received a total of $%n(n +1)y
in interest.

Solution.
Part (a).
Part (a)(i). There will be $1.05z in the account at the end of 1 year.

Part (a)(ii). Let $u,x be the amount of money in the account at the end of n years. Then,
u, satisfies the recurrence relation wu,y+; = 1.05(1 + w,), with u; = 1.05. Observe that

up = 1.05 = uy =1.05+1.052 = u3 =1.05+ 1.052 +1.05> = --- .

We thus have

1—-1.05"

=1. 1.052 4+ -+ +1.05" = 1. -
U 05+ 1.05% +---4+1.05 05(1—1.05

) =21(1.05" —1).

Hence, there will be $21(1.05" — 1)z in the account after n years.
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Part (a)(iii). Consider the inequality u,, > 12z.
up > 120 = 21(1.05" — 1) > 12 = n > 9.26.

Since n is an integer, the smallest value of n is 10. Hence, after 10 years, he will have at
least $12x in his account for the first time.

Part (b). After n years, the woman will have $ny in her account. Hence, the interest she
gains at the end of the nth year is %ny. Thus, the total interest she will gain after n
years is

y 2y ny y y nn+1) nn+1)y
a0 tagt Ty =g t2tHn)=2g 2 40

* %k ok ok ok

Problem 13. The sum, S, of the first n terms of a sequence Uy, Us, Us, ... is given by

Sp = g(c— ™),

where c is a constant.
(a) Find U, in terms of ¢ and n.
(b) Find a recurrence relation of the form U, 1 = f(Up).

Solution.
Part (a). Observe that

-1 7
n (c=T(n—1))=—-Tn+ +C.

Un:Sn—Snflzﬁ(c—%%)— 5

2
Part (b). Observe that U,4; — U,, = —7. Thus,

7T+ c
2 )

Ups1 =Up —7, U = n>1.

X %k %k % X

Problem 14. The positive numbers x,, satisfy the relation

9 1
Tl =\ T
n

forn=1,2,3,....
(a) Given that n — oo, z,, — 0, find the exact value of 6.

(b) By considering $721+1 — 62, or otherwise, show that if ,, > 6, then 0 < 2,1 < 6.

Solution.
Part (a). Observe that

1 1
921MI¢2+:Vm+-:$2¢—09—2:0=$(9+®(%2—M—1):Q

n—00 T 2 0

We reject # = —2 since # > 0. We thus consider 26?2 — 46 — 1 = 0, which has roots
0 =1+ \/g and 0 =1 — \/g Once again, we reject 6 = 1 — \/g since 6 > 0. Thus,

6=1+,/4
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Part (b). Suppose x,, > 6. Then

9 1 9 1
$%+1:§+;<§+5:92 — O<xn+1<0.
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Self-Practice A3

Problem 1. The sum of the first n terms of a sequence {u,} is given by the formula
S, = 2n(n — 3), where n € Z*.

(a) Express u, in terms of n, and show that the sequence {u,} follows an arithmetic
progression.

(b) Three terms us, u; and usg of this sequence are consecutive terms in a geometric
sequence. Find the value of k.

(c) Explain why the infinite series e™"1 + e7"2 4+ e7" 4 ... exists, and determine the
value of the infinite sum, leaving your answer in exact form.

Solution.
Part (a). Note that

Up =Sy —Sp—1=2n(n—3)—2(n—1)(n—1—-3) =4n — 8.
Thus,
Up — Up—1 = [4n — 8] — [4(n — 1) — 8] = 4.
Since u, — u,—1 is a constant, the sequence {u,} follows an arithmetic progression with

common difference 4.
Part (b). Note that us = 4 and ugg = 144. Let the common ratio be r. Then

U38
U38:7‘2’u,3 — 2= =2 =36 = r = +6.
Uu3

Since ug > ug > 0, the common ratio » must be positive. Hence, r = 6. Thus,
4k — 8 = up, = ruz = 6(4) = 24,

whence k = 8.
Part (c). Observe that

—u,
¢ = gln-17Un — o=4

e Un-1

Hence, {e7%"} is in geometric progression with common ratio e~%. Since !e*ﬂ < 1, the
sum to infinity exists, and is given by

0 4
otn _ gt 1 __¢©
nzzl 1—e4 1 —e 4

* ok % % ok

Problem 2. At the end of December 2010, the amount of water in a large tank was 43
000 litres. The tank was filled with 7000 litres of water at the start of every month. It
was observed that 25% of the amount at the start of any month was lost by the end of
that month.

(a) Show that at the end of February 2011, the amount of water in the tank was 33 375
litres.

(b) Find the amount of water in the tank, measured in litres, at the end of the nth month
after the end of December 2010, expressing your answer in the form A (%)n—l—B, where
A and B are positive integers to be determined.
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Solution.

Part (a). Let the amount of water in the tank, measured in litres, at the start of the nth
month after the end of December 2010 be u,,. Clearly, uy = 43000 and

3
Un = 7 (tp—1 + 7000) .

Note that
3 3
up = (ug + 7000) = 37500, wug = 2 (u1 + 7000) = 33375.

Hence, at the end of February 2011, the amount of water in the tank was 33 375 litres.
Part (b). Let k£ be the constant such that

un—k:Z(un_l—k).

It quickly follows that k& = 21000. Then
3 3\"
Uy — 21000 = 1 (up—1 — 21000) = 1 (up — 21000) .

Thus,
U, = 22000 <i> + 21000,

whence A = 22000 and B = 21000.

X %k Xk % X

Problem 3.

(a) A runner wants to train for the marathon. He runs 8 km during the first day, and
increases the distance he runs each subsequent day by 400 m. Find the minimum
number of days, n, that he needs to take to complete at least 2000 km.

(b) A sequence of real numbers {uy,ug,us, ...}, where u; # 0, is defined such that the
(n+1)th term of the sequence is equal to the sum of the first n terms, where n € Z*.
Prove that the sequence {ug, us, u4, ...} follows a geometric progression. Hence, find
U1 + ug + - -+ +un41 in terms of u; and N.

Solution.

Part (a). Let u, be the distance ran on the nth day, measured in km. Clearly, {u,} is in
arithmetic progression with common difference 0.4, and u; = 8. Thus,

Up =04(n—1)+8=0.4n+T7.6.

Let S, be the total distance ran in n days. We have

= = n(n+1)
Sn= up=> (0.4k+7.6)=04 (2) +7.6n.
k=1 k=1
Consider
n(n+1)

> —+ 7.6n > 2000.

Using G.C., we have n > 82.4 or n < —121.4. Since n is a positive integer, the least n is
83. Thus, he needs at least 83 days to complete at least 2000 km.
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Part (b). Note that us = u;. Observe that
Sn — Sn—l = Up = Sn—l — Sn = QSn_l.
Hence,

Up+1 Sn
Unp, Sn-1

= 27
whence {ug, us, uy,...} is geometric progression with common ratio 2. Thus,

1—2N
1-2

U1+U2+"'+UN+1:U1+U2< >=u1+u1(2N—1)=u12N-

X %k Xk % X

Problem 4.

(a) If the sum of the first n terms of a series is S,,, where S, = n — 3n?, write down an
expression for S,_1. Hence, prove that the series is in an arithmetic series.

(b) Each time a ball falls vertically onto a horizontal surface, it rebounds to two-thirds
of the height from which it fell. The ball is initially dropped from a point 12 m
above the surface.

Show that the distance the ball has travelled just before it touches the surface for
the nth time is 60 — 72 (2)".

Hence, find the least number of times the ball has bounced to travel a total distance
of more than 52 m.

Solution.
Part (a). Clearly,

Spo1=(Mn—-1)—3n—-12=-3n>+7n—4.
Hence,
Up = Sy, — Sp—1 = (n - 3n2) - (—?m2 + Tn — 4) = —6n + 4.
Observe that
Up — Up—1 = [—6n + 4] — [-6(n — 1) — 4] = —6.
Hence, {uy} is in arithmetic progression with common ratio —6.

Part (b). Let u, be the height of the nth “drop” of the ball. We have u; = 12, and the
recurrence relation w41 = %un Quite clearly,

2n71 2n
n=(= =18(=) .
e (5) mmi ()

Let D, be the total distance travelled by the ball just before it touches the surface for
the nth time. Observe that the after the initial 12 m, the ball travels up and down before
touching the surface again. Hence,

n
D=y + 2up + 2uz + - + 2y = uy + Y 2y,
k=2

This evaluates as

Dn—u1+2§18 <§>n—12—|—36- <§>2<1_1(_2/23/);_1> =60—"72 (g)”
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Consider D,, > 52. Using G.C., we have n > 5.4. Thus, the ball must bounce at least 6
times.

X %k %k % X

Problem 5. The sequence {2",n =0,1,2,...} is grouped into sets such that the rth
bracket contains r terms: {1}, {2,22}, {23,24,25}, {26,27,28,29}, .... Find the total
number of terms in the first n brackets. Hence, find the sum of numbers in the first n
brackets. Deduce (in any order), in terms of n, the first and the last number in the nth
bracket.

Solution. Clearly, the number of terms in the first n brackets is

n(n—l).

L2434+ 4n=——7

Note that the kth number is given by 2¥~1. The sum of number in the first n brackets
is hence given by

n(n+1)/2—1 nlna1)/2
S ok “f(;)/ _ontnt)2 g
k=0

The last number in the nth bracket is clearly
on(n+1)/2-1

Note that there are n(n—1)/2 terms in the first (n— 1) brackets. Thus, the first number

in the nth bracket is
2n(n—1)/2.
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Assighment A3

Problem 1. A university student has a goal of saving at least $1 000 000 (in Singapore
dollars). He begins working at the start of the year 2019. In order to achieve his goal, he
saves 40% of his annual salary at the end of each year. If his annual salary in the year
2019 is $40800, and it increases by 5% (of his previous year’s salary) every year, find

(a) his annual savings in 2027 (to the nearest dollar),

(b) his total savings at the end of n years.

What is the minimum number of complete years for which he has to work in order to
achieve his goal?

Solution. Let $u, be his annual salary in the nth year after 2019, with n € N. Then
Upt1 = 1.05 - uy,, with ug = 40800. Hence, u, = 40800 - 1.05". Let $v,, be the amount
saved in the nth year after 2019. Then v, = 0.40 - u,, = 16320 - 1.05".

Part (a). In 2027, n = 8. Hence, his annual savings in 2027, in dollars, is given by
vy = 16320 - 1.05% = 24112 (to the nearest integer).

Part (b). His total savings at the end of n years, in dollars, is given by

1—-1.05"

16320 (1.05° + 1.05' + - - - 4+ 1.05") = 16320 [ ————
6320 (1.05” +1.05" + - -- 4 1.05") 630(1_1'05

> = 326400 (1.05" — 1).

Consider 326400 (1.05™ — 1) > 1000000. Using G.C., we see that n > 28.7. Thus, he
needs to work for a minimum of 29 complete years to reach his goal.

k ok ok ok ok
Problem 2.

(a) A rope of length 2007 cm is cut into pieces to form as many circles as possible, whose
radii follow an arithmetic progression with common difference 0.25 cm. Given that
the smallest circle has an area of m cm?, find the area of the largest circle in terms
of 7.

™ — 1, where « is a

(b) The sum of the first n terms of a sequence is given by S, = a~
non-zero constant, o # 1.

(i) Show that the sequence is a geometric progression and state its common ratio
in terms of a.

(ii) Find the set of values of « for which the sum to infinity of the sequence exists.

(iii) Find the value of the sum to infinity.

Solution.

Part (a). Let the sequence 7, be the radius of the nth smallest circle, in centimetres.
Hence, r, = i + r,_1. Since the smallest circle has area 7 ¢cm?, 1 = 1. Thus, r, =
1+ 3(n—1).

Consider the nth partial sum of the circumferences:

1+ [14+4(n—1 247
27F7"1+27F7°2+--~+27rrn—277-n< [ 24(n )]> :7r(n + n)

4
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Since the rope has length 2007 c¢cm, we have the inequality

2
7
T 900 = n?—Tn—800 <0 = (n+32)(n— 25) < 0.

Hence, n < 25. Since the rope is cut to form as many circles as possible, n = 25. Thus,

the largest circle has area 7 - 735 = 497 cm?.

Part (b). Let the sequence being summed by wui,us,.... Observe that
Uy = Sy — Spe1 = (of" — 1) — (of(”*l) — 1) =a "(1—-a).
Part (b)(i). Observe that

Upp1 D1 — ) 1
_ —a !,

up, a1l —aq)

which is a constant. Thus, u, is in GP with common ratio a~!.

Part (b)(ii). Consider Soo = limy, 00 S, = limy,o0(a™™ — 1). For Sy to exist, we need
lim, o ™™ to exist. Hence, 04_1‘ < 1, whence |a| > 1. Thus, « < —1 or & > 1. The
solution set of o is thus {z e R:z < —1 or x > 1}.

Part (b)(iii). Since |oz_1‘ < 1, we know lim,_,oc ™" = 0. Hence, Soo = —1.
k 3k ok ok ok

Problem 3. A sequence u,us,us, ... is such that u,,1 = 2u, +An, where A is a constant
and n > 1.

(a) Given that u; =5 and ug = 15, find A and us.
It is known that the nth term of this sequence is given by
up = a(2") +bn + ¢,
where a, b and ¢ are constants.
(b) Find a, b and c.

Solution.

Part (a). Substituting n = 1 into the recurrence relation yields us = 2u; + A. Thus, A =
uo — 2u; = 5. Substituting n = 2 into the recurrence relation yields ug = 2ug + 24 = 40.

Part (b). Since u; =5, ug = 15 and ug = 40, we have the following system

2a+ b+c=5
da +2b+c=15
8a+3b+c=40

which has the unique solution a = %, b=-5and c= -5
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Problem 4. The graphs of y = 2%/3 and y = z intersect at * = a and x = [ where
a < 8. A sequence of real numbers 1, z9, x3, ... satisfies the recurrence relation

1
Tn+1 :ig 'Qm", N/Z 1.

(a) Prove algebraically that, if the sequence converges, then it converges to either « or
B.
(b) By using the graphs of y = % - 2% and y = z, prove that
o ifa <z, <pf,then a < xp41 <y
o if x, < «, then z, < 11 < «
o if z, > (3, then x, < Tp11

Describe the behaviour of the sequence for the three cases.

Solution.
Part (a). Let L = lim x,. Then L = % 2L Since y =z and y = % - 2% intersect only at
n—oo

x =« and x = 8, then a and S are the only roots of x = % - 2%, Since L is also a root of
x = % - 2% L must be either o or .

Part (b).

Il 1l
Kol

Tn+1 P

If o < z,, < B, then x,, is decreasing and converges to a. If x,, < «, then x,, is increasing
and converges to «. If x, > 3, then z,, is increasing and diverges.
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Tutorial A4

Problem 1. True or False? Explain your answers briefly.
(a) 21 (2r +3) =241 (2k +3)
(b) > (% + 5) =2 % +5

© S =1,

(d) Xre=>0 (e +1)

Solution.
Part (a). True: A change in index does not affect the sum.
Part (b). False: In general, Y ", 5 is not equal to 5.

Part (c). False: In general, > ¢ # > a/> 0.
Part (d). False: Since ¢ is a constant, >, ¢ =nc # n(c+1) = X" (c + 1).

X %k Xk % X%

Problem 2. Write the following series in sigma notation twice, with r = 1 as the lower
limit in the first and r = 0 as the lower limit in the second.

() —24+1+4+...+40
(b) a®+a*+a®+ ... +a*®
(c) 3+ 1+1+...+nthterm
(d) 1-3+1—41+... ton terms
1 1 1 1
Solution.
Part (a).
15 14
24 14+4+...440=) (3r—5)=> (3r—2).
r=1 r=0
Part (b).
25 24
a2+a4+a6+...+a5022a2r:Za2T+2.
r=1 r=0
Part (c).

n—1

1 1
2r+1 _;2r+3'

i li tatht —zn: 3
3 5 7 n erm—er -
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Part (d).
n 1 r— n—1
l—c+—-—=-+ tonterms—2<—2> :Z<—>
Part (e).
1+1+1++1_27 1 —iﬁj 1
2435 4.6 7 28:30 Z(r+1)(r+3) Z(r+2)(r+4d)
X %k %k Xk X

(a) 272,(2r = 7)
(b) >roi(l—a—r)
(©) Y1, (tnr +3)
(d) 3272, (57
Solution.
Part (a).
50 50 50
d@r-7) =2 r—7) 1=2 <50251) — 7(50) = 2200.
r=1 r=1 r=1
Part (b).
Z(l—a—r (1—a) Zl—z (1—-a)a— a(a;l):;(l—i%a).
r=1 r=1
Part (c)
i (Inr +3") = Zlnr—{—Z?f Inn! + 32 (1_131132“) Inn! 4+ — (3” 1 )
Part (d)

() -S6) -S0) st

Problem 4. The nth term of a series is 22 + 3n. Find the sum of the first N terms.

Solution.

N
Z 2”2—1—37“ 22"2—1-32?1
n=1

=212 <(2;V__11)> +3 (N(N; 1))

(2V +3N? +3N —1).

l\D\i—‘
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Problem 5. The rth term, u,, of a series is given by u, = (‘%)37“72 + (é)gr*1 Express
>, uy in the form A (1 — 2%) where A and B are constants. Deduce the sum to infinity
of the series.

Solution. Observe that

Hence,
Z 1—1/2m 6 (,_ 1
— 1-1/27 )~ 13 27n )
whence A = ﬁ and B = 1. In the limit as n — oo, 27n — 0. Hence, the sum to infinity
is 1%.
* ok ok ok ok
Problem 6. The rth term, u,, of a series is given by u, = In 5. Find >, Uy in terms

of n. Comment on whether the series converges.

Solution. Observe that u, =1In 45 =Inr —In(r + 1). Hence,

Zur —Z Inr —In(r + 1))
r=1

=[nl-In2+[In2-mn3]+---+[Inn—In(n+ 1)]

1
=Inl-1 1) =1 .
n n(n+1)=In Y
Asn — oo, In T+1 — In0. Hence, the series diverges to negative infinity.
* ok ok ok ok

Problem 7. Given that >7_, r? = %(n + 1)(2n + 1), without using the G.C., find the
following sums.

(2) >rlr(r +4) + 7]

(b) 72, 1 (2r — 1)

(c) Sr_157(r—2)
Solution.

Part (a).

(r2 + 4r + n)

7
=
_|_
=
_|_
3,
Il
NE

i
=)
<
Il
o

n(n+1)
2

3 3

(n+1)(2n—|—1)—|—4[ ]+n(n+1)

(n+1)(2n + 19).
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Part (b)
2n n n
Y @r—12=) 2r+n) -1 =) (47 +42n—1)r + (2n—1)*)
r=n+1 r=1 r=1
—4 [%(n +1)(2n + 1)} +4(2n—1) [”(”;1)] +(2n—1)%n
= %n (28122 — 1)
Part (c).
20 36 36
dorr=2)=> (r—16)[(r—16) =2 = > (r’ — 34r 4 288)
r=—15 r=1 r=1
_ % [(36+1)(2-36 + 1)] — 34 {?’6237] + 288(36)
— 3930

* ok % % ok

Problem 8. Let S =37, (;pgrz)r where x # 2. Find the range of values of x such that

the series S converges. Given that x = 1, find

(a) the value of S

(b) S,, in terms of n, where S, = >."7; (ng)r

(c) the least value of n for which |S,, — S| is less than 0.001% of S

Solution. Note that

S:Tf;(x;f)rzicr;Q)T'

Hence, for S to converge, we must have ‘%‘2‘ < 1, which gives —1 < x < 5, x # 2.
Part (a). When z = 1, we get

[ 1\ 1 3
= 3 1—(—3) 4
Part (b). We have

w2

=0

<

Part (c). Observe that

1
100000

|S, — S| < 0.001%S =

Sa—S|_ L 31—
S 100000

_1‘<

Using G.C., the least value of n that satisfies the above inequality is 11.
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Problem 9. Given that Y/, r* = Z(n+1)(2n+ 1),
(a) write down Ziil r? in terms of k
(b) find 22 +42 + 62 + ... + (2k)%
Hence, show that S2F_ (2r — 1)% = E(2k+1)(2k — 1).

Solution.
Part (a).
Z?‘ = 2k+1)(2(2k‘)+1)=§(2k+1)(4k+1).
Part (b).
k
22+ 42467+ .. 4 (2k)7 =) (2r 242 k+1)(2k—|—1).

r=1

From parts (a) and (b), we clearly have

i k 2k k
TZI (2r—1)2 Zr —Z = S (h+1)(Ak+1) = - (k+1)(2k+1) = 2 (2k+1)(2k—1).

r=1

k 3k ok ok ok

Problem 10. Given that u,, = e"* — e(®*Dz find Z | Up in terms of N and x. Hence,
determine the set of values of x for which the mﬁnlte series u1 + u9 +us + . .. is convergent
and give the sum to infinity for cases where this exists.

Solution.
N
ZUn = (e — 6290) + (6% - 63”:) +- 4 (eNZ + e(NH)x) =% — VH)z,

For the infinite series to converge, we require |e*| < 1. Hence, z € R} .
We now consider the sum to infinity.
Case 1. Suppose x = 0. Then e* = 1, whence the sum to infinity is clearly 0.
Case 2. Suppose z < 0. Then limy_,o0 eV TD% — 0. Thus, the sum to infinity is e*.

X ok %k % X

Problem 11. Given that r is a positive integer and f(r) = -, express f(r) — f(r + 1)

as a single fraction. Hence, prove that Zfﬁil (T22T+1

W) =1- m. Give a reason why

the series is convergent and state the sum to infinity. Find Zﬁig (%)

Solution.

1 1 (r+1)% —r? 2r +1

fr)=flr+1)=—5 - (r +1)2 - r2(r +1)2 :7“2(7”4—1)2'

(A1) — F@)+ Q) — )]+ [F(dn) — f(dn — 1)

1
Zf(l)—f(4n+1):1—m
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As n — 00, m——=5 — 0. Hence, the series converges to 1.

e +1)
4n 2% 1 4dn—1 o+ 1 4n—1
9 | = -3 | = fry—f(r+1
TZQ (7“2(7’— 1)2> Tzl (rz(r+1)2) TZI[ ( ( )
=[fQ) = f@I+[f2) = fB)] + -+ [f(d4n — 1) — f(4n)]
1
:1—f(4n):1—m
Problem 12.

(a) Express (2x+1)(2x1+3)(2x+5) in partial fractions.

1 1 1
(b) Hence, show that >/ mrmymrray@Ts) = 00 — 1@ @5

()Deducethesumof135+357+3579+ +m-

Solution.
Part (a). Using the cover-up rule, we obtain

1 1 1 1
Qe+ )20 +3) 20 +5) 8Ce+1) 420+3)  8(2s+5)

Part (b).

n

1 = 1 1
;(2r+1)(2r+3 2r + 5) g( 8(2r +1) (2r+3)+8(2r+5)>

1 1 S| 1 S|
-8 ;27"—&—1_;27"—1—3 B ;27”—&—3_;27"4-5

Observe that the two terms in brackets clearly telescope, leaving us with

i(2r+1)(2r1+3)(2r+5) :é [(; N 2n1—|—3) N <; - 2n1—|—5>} ’

which simplifies to

n

1 1 1
Tzl (2r +1)(2r +3)(2r +5) 60 4(2n+3)(2n + 5)

as desired.
Part (c).
LR R SR
1-3-5 3-5-7 3-5-7-9 7 41-.-43-45
1 20 1
e SEDY
1-3- — (2r+1)(2r +3)(2r +5)

5
_ 1 (1 !
15 60 4(2-20+3)(2-20+5)
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Self-Practice A4

Problem 1. Evaluate >, (2 "4+ 2nr+n ) giving your answer in terms of n.

Solution. Splitting the sum, we get

n n 1 r n n
- 2y _ 2
2(2 r‘_|_2m“+n)— (2> +2n2r+n Zl.
r=2 r=2 r=2 r=2
Hence,
n
_ 1 1—(1/2)1 n(n+1) 9
27"+ 2 — 2n|{ —= —1 -1
Z( +nr+n <2) < 1_1/2 >+ n( 5 +n°(n—1)
r=2
1 2
=3~ + n? —2n+n°(n—-1)
1 1\"
25 <2) ‘|‘ (n —1)
* ok ¥ ok %

Problem 2. A geometric sequence {a,} has first term a and common ratio 7. The
sequence of numbers {b,} satisfy the relation b, = In(a,) for n € Z*.

(a) Show that {b,} is an arithmetic sequence and determine the value of the common
difference in terms of r.

(b) Find an expression for 227:11 by, in terms of a, ayy; and N.

(c) Hence, obtain an expression for a; X ag X -+ X ay41 in terms of a, any4+1 and N.

Solution.
Part (a). Note that a,, = ar™ 1. Hence,
b, =Ina, =n(ar" ') =Ina+ (n—1)Inr

Hence,
bp —bp—1 =[lna+nlnr]—[lna+ (n—1)Inr] =1Inr.
Thus, {b,} is an arithmetic progression with common difference Inr.

Part (b). Since {b,} is in arithmetic progression, we have

N+1

N+1 N +1 N+1
> bp=—— 5 (01 +bxs1) = —— (nay +Inayy) = In(aan1) -
n=1

Part (c). Since b, = Ina,, we can write the sum as

N+1 N+1 N+1

an: Zlnanzlnnan.
n=1 n=1 n=1

Equating this with the above result yields

N+1
H ap = (CLCLN+1)(N+1)/2 )

n=1
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Problem 3. It is given that Y 1_, 7* = tn(n+1)(2n + 1).
(a) Show that 37" ;(2r — 7)(r + 1) = #n (4n*> — 9n — 55).
(b) Find )", 37" in terms of n, and find the least value of n such that

n

S @r-7r+1)> zn:?r’“.
r=1

r=1
(c) Express Z?Znﬂ(% —7)(r+1) in terms of n.
(d) Hence, or otherwise, find the value of

43 X 26 445 x 27 + 47 x 28 4 - - - + 87 x 48 + 89 x 49.

Solution.
Part (a). Note that (2r — 7)(r + 1) = 2r? — 57 — 7. Hence,

i@r -T(r+1)= Zn: (2r? — 57 —7)
r=1 :;ln(n+1)6(2n+1)> _5<n(n;1)> o
_n 4n? — 9n — 55)
6 :
Part (b). ) ) r N
So S0 -( (54 0 8)

The inequality hence becomes

n(4n2—9n—55)>1<1 1>‘

6 2\ 30

Using G.C., n > 5.019. Since n is an integer, the least n that satisfies the inequality is 6.
Part (c). We have

2n 2n n
@ -Dr+1)=)_2r-7r+1)=> 2r-7)(r+1)
r=n+1 r=1 r=1
_ 2n[4(2n)* —9(2n) — 55]  n (4n* —9n — 55)
B 6 6
~ n(28n% — 27n — 55)
— o :
Part (d). We have
2(24)
43 26+ 45 X 27 +47 X 284 -+ + 87 x 48+ 89 x 49 = Y (2r —T)(r+1)
r=24+1

_ (29 [28(24)2 6— 27(24) — 55] 61700,
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Problem 4. Tt is given that > ; m Tf&iﬁ) = 4(25517;&22).

(a) Show that the series > °°

r—1 m converges and write down its sum to infinity.

(b) Find 32055 oyt

Solution.
Part (a). Clearly,

3|~
Nls/ e
NI
+
S
SN—

> 2r + 1 , n(5n +7) . 5
E = lim = lim
r(r+1)(r+2) n-cod(n+1)(n+2) n—00 4 (1 +

| o

Thus, the series converges and its sum to infinity is 5/4.

Part (b). Reindexing r — r — 2,

”22 2r + 5 & 21
= (r+2)(r+3)(r+4) B —r(r+1)(r+2)
- 2r + 1 2)+1  aln+n) 1

rr+D)(r+2) 10+1)(1+2) 4(n+1)(n+2) 2

r=1
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Assignment A4

Problem 1. Find >;_, (n? 4+ 1 —3r) in terms of n, giving your answer in factorized

form.
Solution.
- 1 1
Y (R +1-3r)=(n+1)(n*+1) -3 [”(”;)} =5(n+1) (2n* —3n +2).
r=0
k 3k %k %k %

Problem 2. Given that >}_, k! (k? + 1) = (n+ 1)!n, find 3371 (k + 1)! (k% + 2k +2).
Solution. Reindexing k + 1 — k,

n—1

D (k+1)! (K +2k+2) = zn:k:! (K +1).
k=1

Using the given result,

Zk:' (K*+1) Zkz!(k:2+1)—1!(12+1) =(n+1)n-2.
k=1

X ok ok % X

Problem 3. Given that 37" = in(n +1)(2n + 1), find 2%, (77F! + 372) in terms
of N, simplifying your answer.

Solution. Note that

221\7: 1 _ 7(N+1)+1(7N —1) B 7N+2(7N ~1)
o N 7—1 N 6

Next, we split the sum of squares:

Z 3r? _3<Zr —Zr).

r=N+1

Using the given result,

B N)2N +1)(4N +1) N(N+1)2N +1)\  N(@2N +1)(7TN +1)
T%:Hsr 3( s - 5 >_ 5 .

Thus,

2N N+2(7N _ 1) N(2N + 1)(7N + 1
5 (7r+1+3T2):7 (Z ) M +2)(7 +1)

r=N+1
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Problem 4. Let f(r) = -3

=

(a) Show that f(r+1)— f(r) = —r(f’_l).
(b) Hence, find in terms of N, the sum of the series Sy = Zivﬂ 7‘(7’71—1)
(c) Explain why > >°, T(ri!) is a convergent series, and find the value of the sum to
infinity.
(d) Using the result from part (b), find 3%, ﬁ
Solution.
Part (a).
3 3 3(r—1)—3r 3
1 — = — = = — .
flr+1) = f(r) (r+1)—1 r-—1 r(r—1) r(r—1)
Part (b). Observe that
N 1 1 3 1 [ N
Sv=2 =5~ =—3 [Zf<r+1>—zf<r>],
r=2 T(T n 1) 3 r=2 T(T a 1) 3 r=2 r=2
which clearly telescopes. Thus,
g __f(N—l—l)—f(Q)__l 3 B 3 _1_i
N 3 T 3\N+1-1 2-1) N’

Part (c).
1
lim Sy = lim (1—) =1-0=1.
N—oo N—o0 N
Since 1 is a constant, 27?12 ﬁ is a convergent series.

Part (d). Reindexing r — r — 1,

N 1 N+1 1 N 1 1 1
rZ:;T(T—l_l):; (r—l)r:rZ:;r(r—l)_2(2—1)+(N+1)N'

Using the result from part (b),
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A5 Recurrence Relations

Tutorial Ab
Problem 1. Solve these recurrence relations together with the initial conditions.

(a) up =2up—1, forn>1, up =3
(b) up =3up—1+7,forn>1,uy=5
Solution.

Part (a). u, =2"-ug=3-2".
Part (b). Let k be a constant such that u, + k& = 3(u,—1 + k). Then k = Z. Hence,

u+z—3 u +Z :>u+z—3" u—i—z = u _ 7 3"—Z
nTg T n-17T g nTg T 0T 5 ) 2

k ok ok ok ok
Problem 2. Solve these recurrence relations together with the initial conditions.

a) Up = dUp_1 — OUpy_9, forn>2, ug=1,u1 =0

Up = dUp_o, forn > 2, ug =0, uy =4

(

(b
(c
(d

)

)

) Up = dup—1 — 4up_9, for n > 2, ug =6, ug =8

) Up = —6up—1 — uy_g, for n > 2, up =3, ug = -3
)

() up =2up—1 — 2up_2, forn > 2, up =2, u; =6

Solution.

Part (a). Note that the characteristic equation of u,, 2 — 5z 4+ 6 = 0, has roots 2 and 3.
Thus,
u, =A-2"+B-3".

From ug = 1 and u; = 0, we have the equations A+ B =1 and 24 4+ 3B = 0. Solving, we
see that A = 3 and B = 2, whence

Up =3-2" 423",

Part (b). Note that the characteristic equation of u,, > — 4 = 0, has roots —2 and 2.
Thus,
Up = A(=2)" + B - 2"

From ug = 0 and w; = 4, we get A+ B = 0 and —2A 4+ 2B = 4. Solving, we see that
A= —1and B =1, whence
up = —(—=2)" + 2",
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Part (c). Note that the characteristic equation of u,, 22 — 4z + 4 = 0, has only one root,
2. Thus,
up, = (A + Bn)2".

From ug = 6 and u; = 8, we obtain A =6 and A+ B = 4, whence B = —2. Thus,
up = (6 —2n)2".

Part (d). Note that the characteristic equation of u,, 2 + 6x + 9 = 0, has only one root,
—3. Thus,
up = (A4 Bn)(=3)".

From up = 3 and w1 = —3, we get A =3 and A+ B =1, whence B = —2. Thus,
up = (3 —2n)2".

Part (e). Consider the characteristic equation of u,, x> — 2z + 2 = 0. By the quadratic
formula, this has roots x =1+ 17 = \/iexp(i%). Hence,

U, = A - 93m cos(ﬂn> + B - 937 sin<ﬂ> .
4 4
From ug = 2, we obtain A = 2. From ug = 6, we obtain A+ B = 6, whence B = 4. Thus,

Uy = 93n+l cos(%) + 937+2 sin(%) .

* ok % % ok

Problem 3.

(a) A sequence is defined by the formula b, = % - 2" where n € Z*. Show that the

sequence satisfies the recurrence relation b,,1 = %bn.
(b) A sequence is defined recursively by the formula
Upt1 = 2upn + 3, nEZ(J{,uo:a
Show that u,, = 2"a + 3 (2" — 1).
Solution.
Part (a).
b 1:(n—|—1)!(n—|—1)!. ntl _ 2(n +1)? nlnl _n+l
nr (2n + 2)! (2n +1)(2n + 2) | (2n)! on+1 "

Part (b). Let k be a constant such that u,11 + k = 2(uy, + k). Then k£ = 3. Hence,

Unt1+3=2(up+3) = up,+3=2"(up+3) = u, =2"(a+3)—3=2"a+3(2" —-1).
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Problem 4. The volume of water, in litres, in a storage tank decreases by 10% by the
end of each day. However, 90 litres of water is also pumped into the tank at the end of
each day. The volume of water in the tank at the end of n days is denoted by x, and xg
is the initial volume of water in the tank.

(a) Write down a recurrence relation to represent the above situation.
(b) Show that x, = 0.9"(xz¢ — 900) + 900.

(¢) Deduce the amount of water in the tank when n becomes very large.

Solution.
Part (a). 11 =09z, +90, n € N
Part (b). Let k be a constant such that x,4+1 + k = 0.9(x,, + k). Then k = —900. Hence,

Zni1—900 = 0.9(z, —900) = z, —900 = 0.9"(29—900) = x,, = 0.9" (29— 900) +900.

Part (c). As n — o0, 0.9" — 0. Hence, the amount of water in the tank will converge to
900 litres.

% 3k ok ok ok

Problem 5. A deposit of $100,000 is made to an investment fund at the beginning of
a year. On the last day of each year, two dividends are awarded and reinvested into the
fund. The first dividend is 20% of the amount in the account during that year. The second
dividend is 45% of the amount in the account in the previous year.

(a) Find a recurrence relation {P,,} where P, is the amount at the start of the nth year
if no money is ever withdrawn.

(b) How much is in the account after n years if no money is ever withdrawn?
Solution.

Part (a).
Pryo = Pay1 +02P, 41 + 0.45P, = 1.2P, 1 + 0.45P,.

Part (b). Note that the characteristic equation of P,, 2% — 1.2 — 0.45 = 0, has roots —1%

and % Thus,
pea(-2) s (2)

From Py = 0 and P; = 100000, we have A+ B = 0 and —;5A + 3B = 100000. Solving,

we have A = —% and B = %. Thus,

P2 (G- ()]

Hence, there will be ${w [(%)n — (—%)n]} in the account after n years if no money
is ever withdrawn
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Problem 6. A pair of rabbits does not breed until they are two months old. After they
are two months old, each pair of rabbit produces another pair each month.

(a) Find a recurrence relation {f,} where f, is the total number of pairs of rabbits,
assuming that no rabbits ever die.

(b) What is the number of pairs of rabbits at the end of the nth month, assuming that
no rabbits ever die?

Solution.

Part (a) fn+2 - fn+1 + fn7 n 2 27 fO = 07f1 =1
Part (b). Consider the characteristic equation of f,, 22 —x — 1 = 0. By the quadratic
formula, the roots of the characteristic equation are 1+T\/g and % Hence,

1+v5\" 1-v5\"
Y e

From fo =0, we get A+ B =0. From f; =1, we get A (1+2\/g) +B (1_2‘/5) = 1. Solving,

we get A = % and B = —%. Hence,
s (1evs "1 (1-vB)"
"5 2 NG 2

* %k ok ok ok

Problem 7. For n € {27: j € Z,j > 1}, it is given that T}, = 3T},» 4+ 17, where T} = 4.
By considering the substitution n = 2* and another suitable substitution, show that the
recurrence relation can be expressed in the form

t; =3t + 17, i€ Z*

Hence, find an expression for T}, in terms of n.
Solution. Let n = 2° <= i = logy n. The given recurrence relation transforms to
Toi = 3T5i-1 + 17, Th = 4.
Let tl’ = TQ/L'. Then
ti =3ti—1 + 17,19 = 4.

Let k be a constant such that ¢; +k = 3(t;—1 + k). Then k = 177 We thus obtain a formula
for ¢;:

17 17 7 17 o5 . 17
tl—{—?::ﬂ ti,1+? :>tl+?:3 to—{—? = t,=—-3" - —.

Thus,
25 . 17 25
Tyi=— -3 - = T,=".3%"_
2=5 3T =g 3 2
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Problem 8. Consider the sequence {a,} given by the recurrence relation
Gnt1 = 2an + 57, n > 1.

(a) Given that a,, = k (5") satisfies the recurrent relation, find the value of the constant
k.

(b) Hence, by considering the sequence {b,} where b, = a,, — k(5"), find the particular
solution to the recurrence relation for which a1 = 2.

Solution.
Part (a).

1
an1 =2a, +5" = k(5") =2-k(5") +5" = 5k=2k+1 = k=g

Part (b).

57 B 57 2 . 5n—1
bn:an—gz (2ap-1 — 5" 1)—3:2%_1—5-5 1:2<an_1— 3 ) = 2b,_1.

Hence, b, = by - 2"~ 1. Note that by = a; — % = % Thus, b, = %, which gives

b — 5n_2n71 . _2n+25n
n = Qn 3 3 an = 6 .
* %k ok ok ok

Problem 9. The sequence {X,,} is given by

Xn+1
VXpa = L >
n X72L

By applying the natural logarithm to the recurrence relation, use a suitable substitution to
find the general solution of the sequence, expressing your answer in trigonometric form.

Solution. Taking the natural logarithm of the recurrence relation and simplifying, we get
InX,10=2InX,+1 —4In X,,.
Let L, =InX,, < X,, =exp(L,). Then,
Lyyo =20, —4L,.

Consider the characteristic equation of L,, ? — 2z +4 = 0. By the quadratic formula,
this has roots 1 4 v/3i = 2exp(:|:%). Thus, we can express L,, as

Ln:A-Q”cosng—l—B-Q”sin%:T (Acosn—?:r—&—Bsinn%).

Thus, X,, has the general solution

X, = exp<2” <Acos% +Bsin%>> )
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Problem 10. The sequence {X,} is given by X; = 2, X5 = 15 and

n—l—l)Xn’ n > 1.

1
Xn+2:5<1+n+2>Xn+1—6<1+

By dividing the recurrence relation throughout by n + 3, use a suitable substitution to
determine X, as a function of n.

Solution. Dividing the recurrence relation by n + 3, we obtain

Xpio 1 1 1 2
= + Xpi1— 6 + X,.
n+3 (n+3 (n+2)(n+3)> i <n+3 (n+1)(n+3))

1 _ 1 1 2 _ 1 1
Note that 7(71-&-2)(71-&-3) = m — m and 7(71_’_1)(”_’_3) = TH — m ThUS,

Xn+2 -5 XnJrl —6 Xn
n+3 n+2 n+1/"

Let Y, = & <= X,, = (n+1)Y,. Then,

Yn+2 - 5Yn+]_ - 6Yn
Note that the characteristic equation of Y;,, 22 — 52 + 6 = 0, has roots 2 and 3. Hence,
Y, =A4-2"+B-3" = X, =(n+1)(A-2"+B-3").

From X; = 2 and X5 = 15, we have 24 4+ 3B = 1 and 4A 4+ 9B = 5. Solving, we obtain
A= —1and B = 1. Thus,
X,=(n+1)3"=2").

% 3k ok ok ok

Problem 11. A logistics company set up an online platform providing delivery services
to users on a monthly paid subscription basis. The company’s sales manager models the
number of subscribers that the company has at the end of each month. She notes that
approximately 10% of the existing subscribers leave each month, and that there will be a
constant number k£ of new subscribers in each subsequent month after the first.

Let T}, n > 1, denote the number of subscribers the company has at the end of the nth
month after the online platform was set up.

(a) Express T),+1 in terms of Tj,.
The company has 250 subscribers at the end of the first month.

(b) Find 7, in terms of n and k.

(c) Find the least number of subscribers the company needs to attract in each subsequent
month after the first if it aims to have at least 350 subscribers by the end of the
12th month.

Let k = 50 for the rest of the question.
The monthly running cost of the company is assumed to be fixed at $4,000. The monthly
subscription fee is $10 per user which is charged at the end of each month.

(d) Given that the mth month is the first month in which the company’s revenue up to
and including that month is able to cover its cost up to and including that month,
find the value of m.
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(e) Using your answer to part (b), determine the long-term behaviour of the number
of subscribers that the company has. Hence, explain whether this behaviour is
appropriate in terms of long-term prospects for the company’s success.

Solution.
Part (a). 7,41 =097, + k

Part (b). Let m be a constant such that 7,41 +m = 0.9 (7}, + m). Then m = —10k.
Hence,
Tpy1 — 10k = 0.9(T;, — 10k) = T, — 10k = 09" (T, — 10k).

Since Ty = 250, we get
T, = 0.9"71 (250 — 10k) + 10k.

Part (c). Consider T72 > 350.
Tio > 350 = 0.9'271(250 — 10k) + 10k > 350.

Using G.C., k > 39.6. Hence, the company needs to attract at least 40 subscribers in each
subsequent month.

Part (d). Since k = 50, T,, = —250 - 0.9"~1 + 500. Let $S,, be the total revenue for the
first m months.

Sm=103 T, =10 (-250-0.9""" + 500)
n=1 n=1

1-09™
=10 [—250 (1_09> + 500m] = 25000 (0.9™ — 1) + 5000m.

Note that the total cost for the first m months is $4000m. Hence, the total profit for the
first m months is given by $(S,, — 4000m). Hence, we consider S,, — 4000m > 0:

Sm —4000m >0 = 25000 (0.9™ — 1) + 1000m > 0.

Using G.C., we obtain m > 22.7, whence the least value of m is 23.

Part (e). Asn — oo, 0.9""! — 0. Hence, T;, — 500. Hence, as n becomes very large,
the profit per month approaches 500 - 10 — 4000 = 1000 dollars. Thus, this behaviour is
appropriate as the business will remain profitable in the long run.



Self-Practice A5 357

Self-Practice A5

Problem 1. Tom wants to buy a new Aphonell. To save up for his purchase, Tom takes
up a part-time job that pays him $400 per month which will be credited into his bank
account on the 25th of each month, starting from January 2012. On the first day of every
month of 2012, he withdraws half of the total amount of money from his bank account
for food and transportation. Assuming that Tom has $250 in this bank account on 31
December 2011,

(a) write down a recurrence relation for u,, where u, denotes the amount in his bank
account on the last day of the nth month after December 2011, and

(b) show that wu, = 800 — 550 (0.5™).
Given that a new Aphone 11 costs $850,
(c) explain why Tom is unable to buy the Aphonell, and

(d) find the maximum percentage of the total amount of money in the bank that Tom
should spend on transport and food every month in order to be able to buy the
Aphonell on the last day of December 2012.

Solution.
Part (a). We have

1
Up = §un_1 + 400, wug = 250.

Part (b). Note that the complementary solution is

where C is an arbitrary constant. Let the particular solution be u%p ) — k. Then
1
k= §k+400 = k = 800.

Hence,

1 n
Uy = u® +uP) = C <2> + 800.
Using the condition ug = 250, we get

250 =C 4800 = C = —500,

1 n
u, = 800 — 500 <2> .

Part (c). Clearly, —500(1/2)" < 0 for all n > 0. Hence,

whence

Uy, = 800 — 500 <;> < 800 < 850.

Thus, Tom is unable to buy the Aphonell.
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Part (d). Let the desired percentage be p%. Then
p
= 1——) 1+ 400.
wn = ( 100/ "1 T

Let the particular solution be u%p ) — k. Then

40000

k:(1—i)k+400 = k="

100

We thus want
40000

b

Hence, the maximum percentage is 47%.

>80 = p< % = 47.059.

* % ok k%
Problem 2. A sequence of real numbers w1, us, us3, ... satisfies the recurrence relation
Up =2Up—1+1, n>1.

Given that u; = 2, show that u, = 2" +2"~! — 1. Hence, determine the behaviour of the
sequence.

Solution. Note that the complementary solution is
qu) =C2",
where C' is an arbitrary constant. Let the particular solution be uﬁf’ ) — k. Then
k=2k+1 = k=-1.

Hence,
up = ul +uP) = Cc2" — 1.

Using the condition u; = 2, we get
3
2=20-1 = C= 2

whence 3
un:5-2"—1:(2+1)2"*1—1:2"+2"*1—1.

Clearly, u,, is increasing and diverges to infinity.

X ok ok % X

Problem 3. Solve these recurrence relations together with the initial conditions.

(a) up = Tup—1 — 10up—9 for n > 2, up = 2, ug = 1.
(b) u, = %un,g forn > 2, up=1, u; =0.
(¢) up = —4up—1 —4up—o for n > 2, ug =0, u; = 1.

)
)
)
)

(d) upt2 = —4upt1 + dbuy, for n >0, ug = 2, u; = 8.
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Solution.

Part (a). Consider the characteristic equation 22 — 7z + 10 = 0, which has distinct roots
x =2 and z = 5. Hence,
u, =A(2")+ B(5").

Using the conditions ug = 2 and u; = 1, we get the system

A+B=2
2A+5B=1"

whence A =3 and B = —1. Thus,
u, = 3(2") = 5".

Part (b). Consider the characteristic equation #? = 1/4, which has distinct roots z =

+1/2. Hence,
Uy, = A E n+B 1 n—i[AJr(—l)"B]
"2 2) on '

Using the conditions ug = 1 and u; = 0, we get the system
A-B=1
A+B=0’
whence A =1/2 and B = —1/2. Thus,
1 [1 1 1+ (=1t
Un = 3m [2 + =" (‘2)] =

Part (c). Consider the characteristic equation 22 — 4x +4 = 0, which has the unique root

x = —2. Hence,
un, = (A+ Bn)(—2)".

Using the conditions ug = 0 and u; = 1, we get the system

A=0
24—-2B=1"

whence A =0 and B = —1/2. Thus,

un::Qy-g)(—2y1:7x—2wfﬁ

Part (d). Consider the characteristic equation 2% + 4x — 5 = 0, which has distinct roots
x = —5 and x = 1. Hence,

up, = A(=5)" + B(1)" = A(-5)" + B.
Using the conditions ug = 2 and u; = 8, we get the system

A+ B =2
544+ B=28"’

whence A = —1 and B = 3. Thus,

Up =3 — (—5H)".
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Problem 4 (). Find the unit digit of the number (3 +v/5)*"'* + (3 — v/5)™'".
Solution. Let u, be a sequence such that
= (3+V5)" + (3-5)"

We aim to find a recurrence relation for w,. First, observe that 3 + V5 and 3 — /5 are
roots to the characteristic polynomial P(x) of wuy:

P(a)=[o— (3+V5)] [o— (3-V5)| =2~ 62 +4

Thus, u,, satisfies the recurrence relation
Uy = OUp—1 — dUp—2.
Since we are interested in the unit digit of ugp16, we consider u,, (mod 10):
Up = 6Up—1 — dUp_o = 6up—1 + 6Up—2 = 6 (up—1 + up—2) (mod 10).

Since ug = 2 and uy = 6, we construct the following table:

’ n ‘ U, (mod 10) ‘

0 2

1 6

2 8

3 4

4 2

5 6

Observe that the pattern repeats every four terms: 2, 6, 8, 4, 2, 6, 8, 4, 2, .... Thus,
2, n=0 (mod4)
6 =1 d4
up, (mod 10) =< " (mod 4) .

8, n=2 (mod4)
4, n=3 (mod 4)

Since 2016 = 0 (mod 4), it follows that the unit digit of ugie is 2.

% ok ok ok ok

Problem 5 (). A person attempts to cut a circular pizza into as many pieces as possible
with a given number of straight cuts. In order to have as many slices as possible with each
cut, no three cuts are concurrent, no two cuts are parallel, and the intersection of any two
cuts should lie in the interior of the pizza.

T ]

Find the maximum number of slices of a circular pizza that a person can obtain by
making n straight cuts with a knife.
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Solution. Let u, be the maximum number of slices obtainable from n cuts. From the
above diagrams, we see that the nth slice can add at most n new slices. Hence,

Uy = Up—1 + N.

We can rewrite this as
Up, — Up—1 = N.

Summing over k = 2,3,...,n,
n n 2
n°+n
un—alzz:(uk—uk_l): k= 5 -1
k=1 k=2
Since a1 = 2, we have
n?+n n?+n+2
U’TL: 1:
2 2
EEEE

Problem 6 (). Solve the simultaneous recurrence relations:
ap = 3ap—1 + 2by—1, by =ap—1+2by_1

with ag = 1 and by = 2.

Solution. Adding the two equations together, we see that {a, + b,} is in geometric
progression:
an +b, =4 (an,1 + bnfl) =4" (ao + bo) =3-4".

Substituting this into the first equation, we get

Ap — Ap_1 = 2 (an_l + bn—l) =6-4""1

Summing over k=1,2,...,n,
- - k—1 1—4" n
an—aozg(ak—ak_l):;&él =6<1_4>:2(4 -1).
Thus,

an = ag+2(4" —1) =221 1

and
by =3-4" —a, =322 — (22" —1) = 22" 4 1.
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Assignment Ab

Problem 1. In an auction at a charity gala dinner, a group of wealthy businessmen are
competing with each other to be the highest bidder. Each time one of them makes a bid
amount, another counter-bids by 50% more, less a service charge of ten dollars (e.g. If A
bids $1000, then B will bid $1490). Let w, be the amount at the nth bid and u; be the

initial amount.

(a) Write down a recurrence relation that describes the bidding process.
(b) Show that u, = $(1.5" (u; — 20) + 20).

(c) The target amount to be raised is $1 234 567 and the bidding stops when the bid
amount meets or crosses this target amount. Given that u; = 111,

(i) state the least number of bids required to meet this amount.

(ii) find the winning bid amount, correct to the nearest thousand dollars.

Solution.
Part (a). w41 = 1.5u, — 10.

Part (b). Let k be the constant such that w,y; +k = 1.5(u,, + k). Then k = —20. Hence,
Uni1 — 20 = 1.5(up — 20).

Uny1 — 20 = 1.5(u, —20) = u, —20 = 1.5" 1 (ug — 20) = wu, = 1.5" (uy — 20) + 20.

Part (c).
Part (c)(i). Let m be the least integer such that u,, > 1234567. Consider u,, > 1234567:

U > 1234567 = 1.5"1(111 — 20) + 20 > 1234567.

Using G.C., m > 24.5. Hence, it takes at least 25 bids to meet this amount.

Part (c)(ii). Since ugs = 1.5%71(111 — 20) = 1532000 (to the nearest thousand), the
winning bid is $1 532 000.

¥ K ok k%
Problem 2. Solve these recurrence relations together with the initial conditions.
(a) Upto = —Up + 2up41, for n >0, up =5, u; = —1.
(b) 4up = 4dup—1 + up—2, for n > 2, up = a, u1 = b, a,b € R.

Solution.

Part (a). Observe that the characteristic equation of u,, 2> — 2x + 1 = 0, has only one
root, namely = = 1. Thus,

up, = (A+ Bn)-1" = A+ Bn.
Thus, u, is in AP. Since ug = 5 and u; = —1, it follows that
Uy = 9 — 6.

Part (b). Rewriting the given recurrence relation, we have u, = u,_1 + iun,g. Thus, the

characteristic equation is 2% — z — % = 0, which has roots %(1 + v/2). Thus,

1+v2\" 1-v2\"
o
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Since ug = a, we obviously have A+B = a. Since u; = b, we get A (1+2‘/§)+B (1_2‘/§> =
b. Solving, we get

:\/i_la—i-ib B:ﬂ—l_la—ib.

2v/2 V2 2v/2 V2

o (Y221 (142 n+ Va2l 1\ (12 !
l2ve V2 2 2v2 V2 2

* % % % %

Thus,

Problem 3. A passcode is generated using the digits 1 to 5, with repetitions allowed.
The passcodes are classified into two types. A Type A passcode has an even number of
the digit 1, while a Type B passcode has an odd number of the digit 1. For example, a
Type A passcode is 1231, and a Type B passcode is 1541213. Let a, and b, denote the
number of n-digit Type A and Type B passcodes respectively.

(a) State the values of a; and as.

(b) By considering the relationship between a,, and b,,, show that
an = Tan_1 +y" ", n>2
where z and y are constants to be determined.

(c) Using the substitution ¢, = za, + y", where z is a constant to be determined, find
a first order linear recurrence relation for ¢,. Hence, find the general term formula
for a,,.

Solution.

Part (a). a; =4, ay = 17.

Part (b). Let P be an n-digit passcode with Type T', where T is either A or B. Let Type
T’ be the other type.

By concatenating a digit from 1 to 5 to P, five (n+1)-digit passcodes can be created. Let
P’ denote a new passcode that is created via this process. If the digit 1 is concatenated,
then P’ is of Type T". If the digit 1 is not concatenated, then P’ is of Type T'. There are
4 choices for such a case. This hence gives the recurrence relations

ap = 4ay—1 + by—1
by, = 4by—1 + an—1
Adding the two equations, we see that a, + b, = 5(an—1 + by—1). Thus,
an + by =5""1ay + b)) =5""14+1) = 5"

Hence,
ap = 4ap—1 +byp—1 = 3ap—1 + an—1+byp—1 = 3ap_1 + 5n—1,

whence z = 3 and y = 5.
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Part (c). Observe that

Cp = zap +5" =2 (3an,1 + 5”_1) +5" =3 (zan,l + 5”_1) +(2+ z)5”_1
=3cp-1+ (2+ 2)5"_1.

Let z = —2. Then,
e =3cp—1 =3""1ey =3"71 (201 +5) = —3".
Note that a,, = 2 (¢, —y"). Thus,

—3" —5" 3" 45"
-2 2

Ap =
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Tutorial A6
Problem 1.

(a) Find the rectangular coordinates of the following points.
(i) (1,7)
(iii) (3,357)
(b) Find the polar coordinates of the following points.
(i) (3,3)
(i) (—1,-v3)
(iii) (2,0)
(iv) (4,2)

Solution.
Part (a).
Part (a)(i). Note that » = 3 and 6§ = —7. This gives
cos 6 sin 6 5
x=r =—, =rsinf = ———.
vz V2

Hence, the rectangular coordinate of the point is (3/v/2, —3v/2).

Part (a)(ii). Note that r =1 and 8 = 7. This gives

x=rcosf =—1, y=rsinfd =0.
Hence, the rectangular coordinate of the point is (—1,0).
Part (a)(iii). Note that r = % and 6 = %71 This gives

x=pcosf =0, y=rsind= —5

Hence, the rectangular coordinate of the point is (0, —1/2).
Part (b).
Part (b)(i). Note that x = 3 and y = —3. This gives

r2:x2+y2 = 7‘:3\/5, tan@zg — 0 =-

T

Hence, the polar coordinate of the point is (3v/2, —m/4).
Part (b)(ii). Note that z = —1 and y = —v/3. This gives

2
X

Hence, the polar coordinate of the point is (2,7/3).

T :x2+y2 — r =2, tanH:g = 0=

w3

365
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Part (b)(iii). Note that z = 2 and y = 0. This gives

=224y = r=2, tang = 2 = 0=0.
T

Hence, the polar coordinate of the point is (2,0).
Part (b)(iv). Note that x = 4 and y = 2. This gives

=241y = r=2V5, tanf = % — 9:arctan%.
Hence, the polar coordinate of the point is (2v/5, arctan(1/2)).
* ok K ok K
Problem 2. Rewrite the following equations in polar form.
(a) 222 +3y? =4
(b) y =227
Solution.

Part (a).

4 4
222 4 3y% = 2 0)> +3(rsing)? =4 = r? = = '
2”4 3y” = 2(rcos )" + 3(rsin ) " T 2cos?0+ 35020 2+sin0

Part (b).

1
y =22 = Y — 9 — tanf = 2rcosf —> 'r:itanesecﬁ.
x

* ok k% ok

Problem 3. Rewrite the following equations in rectangular form.

1
(a) r= 1—2cos@
(b) r =sinfd
Solution.
Part (a).
1
r=—— = r—92rcosf=1 = r=20+1 = r> =422 +4x+1
1—2cosf
— 22+t =d?+ 4241 = =32+ 4+ 1.
Part (b).

2

r=sinf = r?=rsinf = 22+1y°> =y.
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Problem 4.

(a) Show that the curve with polar equation r = 3a cos 6, where a is a positive constant,
is a circle. Write down its centre and radius.

(b) By finding the Cartesian equation, sketch the curve whose polar equation is r =
a sec (9 — %), where a is a positive constant.

Solution.
Part (a).

2 2

=3arcos = 2°+1y? =3ax = 2% —3ax+1y> =0.

_3a\' o (3a)?
.21?2 y2.

Thus, the circle has centre (3a/2,0) and radius 3a/2.
Part (b).

r=3acosl = r

Completing the square, we get

rzasec(@—%) = rcos(&—%) =a = r(cosf+sinf) =v2a = z+y=2a.

Yy T4y =12a

V2a |

O V2a
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Problem 5. Sketch the following polar curves, where r is non-negative and 0 < 6 < 27.

(a) r=2
(b) =17
(c) r= %9
(d) r=2cscb
Solution
Part (a)
0=73 r=2
2
=0
3} O 2
2
Part (b).
=73 0=m/4
=0
@)
Part (c).
=735 r=120/2
i
s =0
%ﬁ 0 T
3n
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Part (d).

S
Il

r=2cscl

N

\V)

* ok k% ok

Problem 6. A sketch of the curve r =1+ sing is shown. Copy the diagram and indicate
the z- and y-intercepts.

Yy r =1+ sin(6/3)

Solution. Observe that the curve is symmetric about the y-axis. Also observe that
9 € 10,2m), hence we take 6 € [0, 67).

For z-intercepts, y = rsinff = 0 = 60 = nm, where n € Z. Due to the symmetry of
the curve, we consider only n = 0,2, 4.

Case 1. n=0 = ’I“:l—I—Sin%ﬂ':l.

Case 2. n=2 — r:1+sin%7r:1+§.

Case 3. n=4 = T:1+Sin%ﬂ:1—§.

Hence, the curve intersects the z-axis at z = 1,1 + \/g ,1— @ Correspondingly, the
curve also intersects the z-axis at © = —1,—1 — i ,—1 —|— \/g

For y-intercepts, xt =rcos =0 = 0 = (n+ )7T Where n € Z. Due to the restriction
on 6, we consider n € [0,5).

Case 1. n=0,r =1+sin % :%.
Case 2. n—lr—l—i—sm/ =2
Case 3. n:2r:1—|—sm5/27r:%.
Case 4. n—3r—1+sm7/ %

Case 5. n =4, T—1+sm9/ m=0.
Hence, the curve intersects the y-axis at y = —2, —%,

N
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. Y r =1+ sin(6/3)
31
3 3
‘—1+§ 13 \
_1__@ —1 _l,O 1 1_{_@

2

_2,,

* % % % %

Problem 7.
2

(a) A graph has polar equation r = ————=-—0—— where a is a constant. Express
the equation in Cartesian form. Hence, sketch the graph in the case a = 7, giving
the Cartesian coordinates of the intersection with the axes.

(b) A graph has Cartesian equation (22 + y?)2 = 422. Express the equation in polar
form. Hence, or otherwise, sketch the graph.

Solution.
Part (a).

2
r= - - — rcosfsina —rsinfcosa =xsina —ycosa = 2
cos @ sin o — sin 6 cos

— y =axtana — 2seca.

When a = 7, we have y = x — 2v/2.

Yy r— 2
~ cosfsina—sin 6 cos o

_2\/§ g
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Part (b).

(2% +y?)? =42 = (7’2)2 = 4(rcos0)? = rt=4r?cos’ = r? = 4cos’ 6.

s
D] r?2 =4cos? 6

* ok k% ok

Problem 8. Find the polar equation of the curve C' with equation 2® + y° = 5bx?y?,
where b is a positive constant. Sketch the part of the curve C' where 0 < 0 < 7/2.

Solution.
2’ 4+ y° = 5ba?y? = (rcosf)® + (rsinf)® = 5b(r cos §)*(rsin )?

bcos? 6 sin 6
= r(cos50+sin59) = 5bcos® fsin’ ) = r = E)C()S—S?HE).
cos® f + sin® 6

>
I
B
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Problem 9. The equation of a curve, in polar coordinates, is 7 = e~ 2?, for 0 < 6 < 7.
Sketch the curve, indicating clearly the polar coordinates of any axial intercepts.

Solution.
0 = % r=e 20
(e 3)
1O 0 =0
(e72m,7) (1,0)
k ok ok ok ok

Problem 10. Suppose that a long thin rod with one end fixed at the pole of a polar
coordinate system rotates counter-clockwise at the constant rate of 0.5 rad/sec. At time
t = 0, a bug on the rod is 10 mm from the pole and is moving outward along the rod
at a constant speed of 2 mm/sec. Find an equation of the form r = f(#) for the part of
motion of the bug, assuming that § = 0 when ¢t = 0. Sketch the path of the bug on the
polar coordinate system for 0 < ¢ < 4.

Solution. Let 6(¢) and r(¢) be functions of time, with §(0) = 0 and r(0) = 10. We know
that df/dt = 0.5 and dr/dt = 2. Hence,

dr dr dt dr <d9

-1
—_— = YT = —_— = . -1 =
o dt do dt dt) 2:-(05) 4

Thus, r = 460 + r(0) = 460 + 10.
Since df/dt = 0.5 and 6(0) = 0, we have § = 0.5¢. Hence, 0 <t <47 = 0<6 < 27.

SR r =46+ 10

0 =
Ar 4+ 10 0 10 87 4+ 10

6r + 10
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Problem 11. The equation, in polar coordinates, of a curve C' is r = ae2?, 0 <0 < 2,

where a is a positive constant. Write down, in terms of 6, the Cartesian coordinates, x and

y, of a general point P on the curve. Show that the gradient at P is given by % = ff“z‘ f;fe.

Hence, show that the tangent at P is inclined to Oﬁ at a constant angle «, where
tan a = 2. Sketch the curve C.
1
=0
2

Solution. Note that z = rcos€ and y = rsin 6, whence x = ae2’ cosf and y = ae3? sin 6.

1 1g .
Hence, P (aeie cos b, aez? sin 9) .
1
Observe that 92 = Lge2? = 1. Hence,
dg — 2 2

dy %sin@—i—rcos@ B %rsin@—i—rcos@ sin) +2cosf  tan6 + 2

dx %cose—rsinﬂ - %rcos@—rsinﬁ ~ cosf —2sinfl  1—2tanf’

T
Let t = < 1> represent the direction of the tangent line. Then

15
&= 1 _ 1 _ 1 1—2tand
~ \dy/dz) — \{B02 ] 7 1 _2tand \ tan6 +2

0
O? _ <x> _ [ae QC?SH _ geb? (C?S 0) '
Y ae2’ sin 0 sin 6

By the definition of the dot-product, we have t - ﬁ = |t] ‘O.P)‘ cos a,, whence

and

= N

cos o — t.OP B (1 —2tané)cosf + (tan6 + 2) sin
|t ‘O?‘ V(1 —2tan6)? + (tan @ + 2)2 - \/cos? 6 + sin? §
_cosf +tanfsinf cos? ) + sin? 0

1
Stan0+5 V/5sin? 6 + 5 cos? 0 VB

1—22

x )

1 >: V1-(1/v5)° ,

tan o = tan| arccos —
< 1/v5

Thus, o = arccos % Since tan(arccos z) =

V5

Hence, the tangent at P is inclined to O? at a constant angle «, where tana = 2.

0

—_ T 1
0_2 r=aez2

L1
ae4

wl= |

ae

3
ae4
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Problem 12. The polar equation of a curve is given by r = e where 0 < § < 5. Cartesian
axes are taken at the pole O. Express  and y in terms of  and hence find the Cartesian

equation of the tangent at (e%, g)

Solution. Recall that © = rcosf and y = rsinf, whence z = e’ cosf and y = e’ sin 6.
Thus, ‘é—z = e%(cosf — sin §), and g—z = ¢’(cos § + sin#). Hence,

dy dy/d0  e’(cosf +sinf)  cosf +sinf

de  dxz/df  ef(cosf —sinf) cosh —sinf’

At (e%, g), we clearly have z = 0 and y = ¢™/2. Also, dy/dx = —1. By the point-slope

formula, the equation of the tangent line at (e%, g) is given by y = —x + ez,

* ok k% ok

Problem 13. A curve C has polar equation r = acotf, 0 < § < 7, where a is a positive
constant.

(a) Show that y = a is an asymptote of C.

(b) Find the tangent at the pole.

Hence, sketch C and find the Cartesian equation of C in the form y?(2? + y?) = ba?,
where b is a constant to be determined.
Solution.
Part (a). Note that
r=acot = y=rsinf = acosb.
As § — 0, r — oo. Hence, there is an asymptote at § = 0. Since cosf = 1 when 6 = 0,
the line ¥y = acosf = a is an asymptote of C.

Part (b). For tangents at the pole, r =0 = cotf =0 = 0 = 7.

0:% r =acotf
y=a
=0
O
y=—a

Note that

<rcos€> (1:)
r=acotd =a - =al—).
rsin 6 Y

Thus,

whence b = a2.
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Problem 14.

)
Il
S

Relative to the pole P and the initial line § = 0, the polar equation of the curve shown is
either

i. 7=a+ bsinnd, or
ii. = a -+ bcosnb

where a, b and n are positive constants. State, with a reason, whether the equation is (i)
or (ii) and state the value of n.

The maximum value of 7 is & and the minimum value of r is % Find the values of a

2
and b.

Solution. Since the curve is symmetrical about the horizontal half-line # = 0, the polar
equation of the curve is a function of cosnf only. Hence, the polar equation of the curve
is r = a4+ bcosnf, with n = 5.

Observe that the maximum value of r is achieved when cos50 = 1, whence r = a + b.
Thus, a+b = 12—1 Also observe that the minimum value of r is achieved when cos 50 = —1,

whence r = a — b. Thus,a—b:g. Solving, we geta:4andb:%.
k ok ok ok ok

Problem 15.

Stage ‘ r=06(1+siné) ‘

Microphone
°

Audience

Sound engineers often use a microphone with a cardioid acoustic pickup pattern to
record live performances because it reduces pickup from the audience. Suppose a cardioid
microphone is placed 3 metres from the front of the stage, and the boundary of the optimal
pickup region is given by the cardioid with polar equation

r = 6(1 + sin )
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where r is measured in metres and the microphone is at the pole.
Find the minimum distance from the front of the stage the first row of the audience can
be seated such that the microphone does not pick up noise from the audience.

Solution. Note that r = 6(1 + sin¢) = 6(1 + £), whence r? = 67 + 6y. Thus,
2 —6r—6y=0 = r=3+/94+6y = 946y =(r—3)>

Since 9 + 6y = (r — 3)2 > 0, we have y > —1.5. Thus, the furthest distance the audience
has to be from the stage is [—1.5| +3 = 4.5 m.

X Xk Xk % X

Problem 16. To design a flower pendant, a designer starts off with a curve C1, given by
the Cartesian equation

2
where a is a positive constant.

(a) Show that a corresponding polar equation of C is % = a?(1 + 2 cos 26).

(b) Find the equations of the tangents to C; at the pole.

™

Another curve Cs is obtained by rotating C anti-clockwise about the origin by % radi-

ans.

(c) State a polar equation of Cl.

(d) Sketch C7 and C5 on the same diagram, stating clearly the exact polar coordinates
of the points of intersection of the curves with the axes. Find also the exact polar
coordinates of the points of intersection with C7 and Cs.

The curve (3 is obtained by reflecting C3 in the line 6 = 7.

(e) State a polar equation of Cj.

(f) The designer wishes to enclose the 3 curves inside a circle given by the polar equation
r = r1. State the minimum value of r; in terms of a.

Solution.
Part (a). Observe that (22 + y2)2 =r* and 32? — y? = 1% (3cos? § — sin§). Hence,

(332 + y2)2 =a’ (3332 - y2) — r? =q? (3 cos® § — sin® 9) .
Note that
3cos?h —sin?0 =1+ 2cos?0 — 2sin? 0 = 1 + 2 cos 26.

Thus,
2 =a? (1 +2cos26).
Part (b). For tangents at the pole,

1
r=0 = 14+2cos20=0 = COSQQ:_§'
Since 0 < 20 < 27, we have § = 7/3,27/3. For full lines, we also have § = 47/3 and

0 =b5m/3.



Tutorial A6 377

Part (c).
2_ 2 o _ 2 . 2
r“=aq [1+2COS(2<9 3))} =aq |:1+QCOS<20 37r>].
Part (d).
(v2a, 37) A0 :g &

(Vo k)

/

N 8 —0
(V3a, ) : ©,0) 0
g (\/ia, %7’[’) ‘

AN

Consider the horizontal intercepts of C1. When 6 = 0, r» = v/3a. Hence, by symmetry,
(7 intercepts the horizontal axis at (\/ga, 0) and (\/g(l,ﬂ').

Consider the vertical intercepts of Co. When 6 = 7/2, r = v/2a. Hence, by symmetry,
Cs intercepts the vertical axis at (v/2a,7/2) and (v2a,37/2).

Now consider the intersections between C'y and Cs. By symmetry, it is obvious that the
points of intersections must lie along the half-lines 7/6 and 77 /6, or along the half-lines
47 /6 and 107 /6. By symmetry, we consider only the half-lines 7w/6 and 47 /6.

Case 1: § = 7/6. Substituting § = 7/6 into the equation of Cy, we obtain r = v/2a.
Hence, C1 and (s intersect at (\/ia,w/6) and, by symmetry, at (\/5@, 77T/6).

Case 2.0 = 4w /6 Substituting § = 47 /6 into the equation of Cj, we obtain r = 0.
Hence, C; and Cs intersect at (0,0).

Part (e). Reflecting about the line § = 7/2 is equivalent to applying the map 6 — 0+ /3
to C4. Hence,

1 2
r? = q? [1+2cos<2 <9+37r>)] = q? [1+2008<29+37r>] .

Part (f). r, = v/3a.
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Self-Practice A6

Problem 1. A curve C has equation, in polar coordinates, r = a\/(4+ sin? 9) cos ),

—%w <6< %W, where a is a positive constant.

(a) Show that (f—e [(4 + sin? 9) cos 0] =— (2 + 3sin? 9) sin . Hence, state, with a reason,
whether r increases or decreases as # increases, for 0 < 6 < %71.

(b) Sketch the curve C.

(c) Find the Cartesian equation of C' in the form (1'2 + y2)m = a’x (bx2 + cyQ), giving
the numerical values of m, b and c.

Solution.
Part (a).

% [(4 + sin? 0) cos 0] =—(4+ sin? 0) sinf + 2 sin 6 cos® 0
= —sinf (sin29 —2cos? 6 +4)
= —sinf [sin® 6 — 2 (1 — sin® @) + 4]
= —sin6 (3sin® 6 +2) .
For ¢ € (0,7/2], we have sin# > 0 and 3sin? 6 + 2 > 0. Hence, r is decreasing.
Part (b).

Part (c). Squaring, we have
r? = a? (4 + sin? 9) cos .
Recall that x = rcosf and y = rsinf, so
2
=t o (2] () = o= )
r r

Since 22 + y? = r2, we get

5/2

(x2 + y2) =d’z (4x2 + 5y2) ,

whence m =5/2, b =4 and ¢ = 5.
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Problem 2. The diagram shows a sketch of the curve C' with polar equation r = a cos? 6,
where a is a positive constant and —%W <6< %w.

0=

Sl
!

(a) Explain briefly about how you can tell from this form of the equation that C' is
symmetrical about the line § = 0 and that the tangent to C at the pole O is
perpendicular to the line 6§ = 0.

(b) Show that the equation of C' in Cartesian coordinates may be expressed in the form
y? = a3 _ 22,

Solution.

Part (a). Observe that
acos’§ = acos’(—0).

Hence, C is invariant under the transformation 8 +— —60, whence it is symmetrical about
the line 6 = 0.

For tangents to the pole, we have r = 0. Since a > 0, we require cosf = 0, whence
6 = +7/2, which are clearly perpendicular to the line 6 = 0.

Part (b). We have
x

2
r=acos’l =a (—) — 3 =z’
r
Hence,
2/3
22 +12 =12 = (az?) / g2 = a3t — 42,
k ok ok ok ok

Problem 3. The equation of curve C is given in polar coordinates by r = 1 + sin 26,
0<6<2r.

(a) Prove that C' is symmetric about the pole.

(b) Sketch C and any tangents to C' at the pole. Label any points of intersection with
the axes, and show clearly the symmetries and curvature near the pole.

(¢) Determine whether each loop of C' is a circle. Justify your answer.

(d) Show that the Cartesian equation of C'is (22 + y2)3 = (z+y)*
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Solution.
Part (a). Observe that

1+sin20 =1+sin(20 +27) =1 +sin(2(60 + 7)) .

Hence, C' is invariant under the transformation 8 — 6 4+ 7, whence C' is symmetric about
the pole.

Part (b).
. .
. b=1
\\\ 9: %Tﬂ
L)
=0
1 (ONRNNY 1
N0
1/ .

Part (c). Consider the top-right loop. 7 attains a maximum of 2 when 6§ = 7/4. Sup-
pose the loop is a circle (with radius 1). Then the centre should be (1,7/4), which is
(1/v/2,11/2) in Cartesian coordinates. The distance between (1/v/2,1/4/2) and (1,0) is

given by
(G Gy e

Hence, the loop is not a circle.
Part (d). We have

r=1+sin20 =1+ 2cosfsinf = 1+2<§> <y>
r/ \r

Thus,

3

=124 2y = (x2 + y2)3/2

=22+ y? + 22y = (z +y)*
Squaring both sides yields the desired equation:

(2 +9?)" = (@ +p)".

% 3k ok ok ok

Problem 4 (). Prove that at all points of intersection of the polar curves with equations
r = a(l + cosf) and r = b(1 — cos#), the tangent lines are perpendicular.

Solution. Consider the gradient of Cy. Firstly, we have

de dr . . . . .
W= cosf —rsinf = —asinf — 2asinf cosf = —a (sin 0 + sin 26) .
Next, we have
dy dr

i asin@—l—rcos@zacosﬁ—acoszﬁ—i—asinze:a(cosﬁ—cos29).
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Thus,

dy dy/dd (cos@— cos29)

dz ~ dz/d0 ~  \sinf +sin20

Consider the gradient of Cy. Firstly, we have
dez dr

0= @0089—1“51119 = —bsinf + 2bcosfsinf = b (sin 20 — sinf) .

Next, we have

d d
d—’g:d—ZsinH—FTCOSQ:bcose—bCOSZH—i—bsinQQ:b(COSH—COSQH).
Thus,
dy dy/df  cosf — cos20

dr  dz/df  sin20 —sinf’
Consider the product of the gradients:

B <cos€—cos?9> <cos€—cos2t> cos? 6 — cos? 260

sin 6 4+ sin 20 sin 20 — sin 0 - sin226 — sin26

Observe that
cos? § — cos® 20 = cos® 6 — (2 cos? 6 — 1)2 = —4cos*0 +5cos20 — 1.
Also observe that
sin® 260 — sin®# = 4 sin® 0 cos® § — sin’ 6
=4 (1 — cos? 9) cos? 6 — (1 — cos? 9)
= —4cos*O +5cos?6 — 1.

Hence, the product of the gradients is

7(:0529—(:03229 B 7—4cos49+500529— I
sin?20 —sin?0®  —4costf+5cos2—1

—1.

Thus, for any given 6, the tangents of Cy and Cy are perpendicular. This immediately
implies that the tangent lines at all intersection points of C'y and Cs are perpendicular.
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Assighment Ab

Problem 1. The planet Mercury travels around the sun in an elliptical orbit given

approximately by
3.442 x 107

" T 10206080
where r is measured in miles and the sun is at the pole.
Sketch the orbit and find the distance from Mercury to the sun at the aphelion (the
greatest distance from the sun) and at the perihelion (the shortest distance from the sun).

Solution.

f = % r— 3.442x107
~ 1—0.206 cos @

Observe that r attains a maximum when cos 8 is also at its maximum. Since the maxi-
mum value of cos@ is 1,

3.442 x 107

= T — 434 %107 (3s.f).
"= 1 70.206(1) <107 (3 s.)

Hence, the distance from Mercury to the sun at the aphelion is 4.34 x 107 miles.
Observe that r attains a minimum when cos 6 is also at its minimum. Since the minimum

value of cosf is —1,
3.442 x 107

" T 10.206(—1)

Hence, the distance from Mercury to the sun at the perihelion is 2.85 x 107 miles.

=285 x 107 (3 s.f.).

X %k Xk % X

Problem 2. A variable point P has polar coordinates (r,6), and fixed points A and
B have polar coordinates (1,0) and (1,7) respectively. Given that P moves so that the
product PA - PB = 2, show that

r? = cos 20 + /3 + cos? 26.

(a) Given that r > 0 and 0 < 0 < 2, find the maximum and minimum values of r, and
the values of 6 at which they occur.

(b) Verify that the path taken by P is symmetric about the lines § = 0 and 6§ = g

giving your reasons.

)

Solution. Note that A and B have Cartesian coordinates (1,0) and (—1,0) respectively.
Let P(z,y). Then

PA*=(z—1)*+y?  PB*=(z+1)*+4%
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Hence,
PA.-PB = ((1: —1)? —|—y2) ((:L' +1)? —|—y2) = ({L‘2 +y2)2 -2 (:1:2 — y2) + 1.
Since 22 — y? =r? (0052 6 — sin? 9) = r2 cos 20, the polar equation of the locus of P is
=22 c0s204+1= (PA-PB)?* =4 — r* —2r?cos20 —3=0.

By the quadratic formula, we have

2 20 + /4 cos? 20 + 12
P2 = 209 2COS T2 cos 20 + /cos? 20 + 3.

Since v/cos? 20 + 3 > cos 20 and 72 > 0, we reject the negative case. Thus,

r? = cos20 + /3 + cos? 26.

Part (a). Differentiating with respect to 6, we obtain

dr 1
2r— = —2sin 260 1—|—> .
do < 2v/3 + cos? 26

For stationary points, dr/df = 0. Since 1+ 1/2v/3 + cos? 26 > 0, we must have sin 260 = 0,
whence 0 = 0,7/2,7,37/2. By symmetry, we only consider § = 0 and 0 = 7/2.

Case 1. When 0 = 0, we have 72 = 3, whence r = /3.

Case 2. When 6 = 7/2, we have 2 = 1, whence r = 1.

Thus, maxr = v/3 and occurs when 6 = 0,7, while minr = 1 and occurs when 0 =
7/2,37m/2.
Part (b). Recall that the path taken by P is given by

(=1 +9%) ((x+1)* +4%) =4

Observe that the above equation is invariant under the transformations x — —z and
y — —y. Hence, the path is symmetric about both the z- and y-axes, i.e. the lines § =0
and 6 = /2.

k 3k ok ok ok

Problem 3.

(a) Explain why the curve with equation x3 + 2xy? — a?y = 0 where a is a positive
constant lies entirely in the region |z| < 27 1a.

2

a”tan6

(b) Show that the polar equation of this curve is r* = ————.
2 —cos? 0

(c) Sketch the curve.

Solution.
Part (a). Consider the discriminant A of 23 + 2xy? — a?y = 0 with respect to y:

A= (—a2)2 —4(2z) = a* — 8z,
For points on the curve, we clearly have A > 0. Thus,

-8 >0 = <273t = |z| < 2-3/44.



384 A6 Polar Coordinates

Part (b).
23422 —ad*y=0 = 2(x2+y2)—x2—a2g:0 — 22 —r?cos’ ) — a’tanf = 0
x
2 a’tan@
2 —cos26’
Part (c).
0:% 2 _ a’tand
— 2-—cos?6
=0
(@]
* %k ok ok ok

Problem 4. The curve C has polar equation r = 1 — sin 30, where 0 < 0 < 27.

(a) Sketch the curve C, showing the tangents at the pole and the intersections with the
axes.

(b) Find the gradient of the curve at the point where 6 = g, giving your answer in the

form a + bv/3, where a and b are constants to be determined.

Solution.
Part (a).

(2 E) 10=73 r=1—sin30

When 6 = 0 or § = 7, we have r = 1. Thus, C intersects the horizontal axis at (1,0)
and (1,7). When 0 = 7/2, we have r = 2. Thus, C intersects the vertical axis at (2,7/2).
When 6 = 37/2, we have r = 0. Thus, C passes through the pole.

For tangents at the pole, r =0 = sin30 =1 = 0 = x/6,57/6,37/2.
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Part (b). Note that dr/df = —3 cos 30 evaluates to 3 when § = /3. Thus,

dy %sin@—i—rcos@ —3\/§+1—12+10\/§—2+5\/§
dz b=1 %cos&—rsin@ 9:£_ 3-v3 6 N 3

3

Hence, when 6 = /3, the gradient of the curve is 2 + 5v/3/2.



386

A7 Vectors | - Basic Properties and Vector
Algebra

Tutorial A7

Problem 1. The vector v is defined by 3i — 4j + k. Find the unit vector in the direction
of v and hence find a vector of magnitude 25 which is parallel to v.

Solution.

v 1 SV (2 e (2
G AN ARZAN A V2o |

X %k Xk % X

Problem 2. With respect to an origin O, the position vectors of the points A, B, C and
D are 4i + 7j, i+ 3j, 2i + 4j and 3i + dj respectively.

—
(a) Find the vectors BA and BC.

(b) Find the value of d if B, C' and D are collinear. State the ratio %.

Solution.
Part (a). Note that

sicot-oi-()-()-(). -oe-01-()-()-()

Part (b). If B, C and D are collinear, then BC = ACD for some A eR.

et — () -+(09-09) () - (0] (u o)

Hence, A =1 and A(d — 4) = 1, whence d = 5. Also, BC =CD. Thus,

BC  BC ~ BC 1
BD BC+CD BC+BC 2
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Problem 3. The diagram shows a roof, with horizontal rectangular base OBC D, where
OB =10 m and BC = 6 m. The triangular planes ODE and BCF are vertical and the
ridge E'F' is horizontal to the base. The planes OBFE and DCFFE are each inclined at
an angle 6 to the horizontal, where tanf = 4/3. The point O is taken as the origin and
vectors i, j, k, each of length 1 m, are taken along OB, OD and vertically upwards from
O respectively.

Find the position vectors of the points B, C, D, E and F'.

Solution. Note that OB = 10i and BC' = 6j. Thus, OC = OB + BC = 10i + 6. Also,
note that AODFE =2 ABCF'. Hence, O‘ﬁ = B? = 6j. Note that AODE is isosceles. Let
G be the mid-point of OD. Since tanf = 4/3, we have

EG 4 4 2 2
Hence,
OF =00 +GE = ,0D +GE = 3j + 4k
Hence,
OF = OB + BE = OB + OF = 10i + 3j + 4k.
Thus,

OB =10i, OC =10i+6j, OD=6j, OF =3j+4k, OF = 10i+ 3j+ 4k.

koK ok k%

Problem 4. Find u- v, u x v and the angle between u and v given that
(a) u=i—j+k,v=3i+2j+7k
(b) u=2i—3k, v=—-i+7j+2k

Solution.
Part (a). We have u= (1, —1,1)" and v = (3, 2, 7)". Hence,

(=D(7) = (2)(1) —9
u-v=M0E)+(=1)2)+ M) =8, uxv=| 1B)-(N1) | =|-4
(1)(2) = B)(=1) 5

Let the angle between u and v be 6.

u-v

8
uf[v] V362

cosf = — 6§ =>54.1° (1 d.p.).
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Part (b). We have u = (2,0, —3)" and v = (-1, 7, 2)". Hence,

(0)(2) = (7)(=3) 21
u-v=2)(-1)+0)(7)+(=3)2)=-8, u-v=[(=3)(-)-(2)2)]=1]-1
(2)(7) = (=1)(0) 14
Let the angle between u and v be 6.
u-v -8
0= = f# =107.6° (1 d.p.).
0 v T VisveL e
k sk ok ok ok
Problem 5. Find u- v and |u x v| given that u = 2a — b, v = —a + 3b, where |a| = 2,

|b| = 1 and the angle between a and b is 60°.
Solution.
u-v=(2a—b)-(—a+3b)=-2a-a+6a-b+b-a—3b-b
= —2/al* = 3|b|* + 7|a| |b| cos § = —2(2)® — 3(1)% + 7(2)(1) cos 60° = —4.
luxv|=|(2a—b) x (—a+3b)|=|-2axa+6axb+bxa—3bxb|
= [5a x b| = 5 |a| |b|sin 6 = 5(2)(1) sin 60° = 5v/3.

¥ K ok k%
Problem 6. Ifa=i+4j—k, b=i—j+ 3k and c = 2i + j, find
(a) a unit vector perpendicular to both a and b,
(b) a vector perpendicular to both (3b — 5¢) and (7b + c).
Solution.

_ T PN | T
Part (a). Note that a x b = (11, —4, —5) . Hence, a x b = Ties (11, —4, —=5) .

Part (b). Observe that (3b — 5¢) x (7Tb 4+ ¢) = Ab x ¢ for some A € R. It hence suffices
to find b x ¢, which works out to be (-3, 6, 3)".

X ok Xk % X

Problem 7. The position vectors of the points A, B and C' are given by a = 2i+ 3j — 4k,
b = 5i —j+ 2k, ¢ = 11i + A\j + 14k respectively. Find

(a) a unit vector parallel to E;

(b) the position vector of the point D such that ABCD is a parallelogram, leaving your
answer in terms of A;

(c) the value of X if A, B and C are collinear;

(d) the position vector of the point P on ABis AP: PB=2:1.
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Solution.
Part (a).
) 2 3
AB=b-a=|-1|-[3|=[-4
2 —4 6

V61
Part (b). Since ABCD is a parallelogram, we have that AD = BC. Thus,

Note that ‘x@‘ = v/61. Hence, the required vector is —= (3, —4, 6)T.

2 5 11 8
OD—a=c—-b — OD=a—-b+c=|3|-[=1]+[r]=[r+4
4 2 14 8

Part (c). Given that A, B and C are collinear, we have AB = kBC for some k € R.
Hence,

3 11 5 6
A =kc=b) =k || X]|-[-1]]|=k[r+1
6 14 2 12

We hence see that & = 1/2, whence A = —9.
Part (d). By the ratio theorem,

2
op-2at2 _ L) o 1) 2L,

2+1 3|\, ) 3

X ok Xk % X

Problem 8. ABCD is a square, and M and N z&the midpoints of BC and CD
respectively. Express ﬁ in terms of p and q, where AM = p and ﬁ =q.

Solutiﬂ;. Let ABCD be a square with side length 2k with A at the origin. Then
p =AM = (2k, —k)" and q = AN — (k, —2k)T. Hence, p +q = (3k, —3k)". Thus,
AC = (2k, —2k)T = 2 (3k, —3k)" = 2 (p + q).

* ok k% ok

Problem 9. The points A, B have position vectors a, b respectively, referred to an origin
O, where a and b are not parallel to each other. The point C' lies on AB between A and
B and is such that é—g = 2, and D is the mid-point of OC. The line AD produced meets

OB at E.
Find, in terms of a and b,

(a) the position vector of C' (referred to O),
(b) the vector AD. Find the values of % and g—g.

Solution.
Part (a). By the ratio theorem,

a+2b 1 2
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Part (b). Since D is the midpoint of OC, we have oD =

AD = 0D — OA = <a+b>

Using Menelaus’ theorem on ABCO,

BO ED AC

BACD OE

ACDOEB ~
Using Menelaus’ theorem on ABFEA,

OEDACB

Problem 10.

(a) The angle between the vectors (3i — 2j) and (6i+ dj —

2d% — 117d + 333 = 0.

ED

= —— = 1
AD 5

k 3k ok ok ok

—

1 1
sa+ 3b. Hence,

5 1
—a=——-a+ -b.
a a+zg

AE _AD+DE _

ED

ED

V7k) is arccos

. Show that

(b) With reference to the origin O, the points A, B, C and D are such that O_1>4 = a,
@ =b, ﬁ = ba, Eﬁ = 3b. The lines AD and BC cross at E.

D

(i) Find OF in terms of a and b.

(ii) The point F' divides the line C'D in the ratio 5 : 3. Show that O, E and F are

collinear, and find OF : EF.

Solution.
Part (a). Let a = (3, —2,0)" and b = (6, d, —/7)"
the angle between a and b.
cosG—ab :>£——18_2d :>g—
lal b 13 V43 + V13 13
= 9(43 +d?) = 13(d* — 18d + 81) = 2d* — 117d + 333 = 0.
Part (b).
Part (b)(i). By Menelaus’ theorem,
OCAEDBE | _ A
CAED BO ED

Since /ﬁ = @ — OA = 4b — a. Thus,

(9 —a)?
43+ d?

. Note that a-b = 18 — 2d. Let 6 be

:% . ﬁ:%ﬁ . (ﬁ:oﬁ+%,ﬁ.

OF —a+ - (4b—a) =

23

8
232

+oob,
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Part (b)(ii). By the ratio theorem,

oF BB (B, 1) By

5+3 8

Thus, OF : OF =8 : 23.

% 3k ok ok ok

Problem 11. Relative to the origin O, two points A and B have position vectors given
by a = 14i + 14j + 14k and b = 11i — 13j + 2k respectively.

(a) The point P divides the line AB in the ratio 2 : 1. Find the coordinates of P.
(b) Show that AB and OP are perpendicular.

(c) The vector c is a unit vector in the direction of O.]->’ Write ¢ as a column vector and
give the geometrical meaning of |a - c|.

(d) Find a x p, where p is the vector O?, and give the geometrical meaning of |a x p|.
Hence, write down the area of triangle OAP.

Solution.
Part (a). We have a = (14, 14, 14)T = 14(1, 1, 1) and b = (11, —13, 2)". By the ratio
theorem,

14 11 12 6

% 1
ﬁ:a;l — s () +2 ()| = (-] =2| 2
+ 14 2 6 3
Hence, P(12,—4,6)
Part (b). Consider AL - OP.
11 14 12 1 6
ap-ob=|[-13] = (14| - [=4]l==3[9] -2[=2]=o0.
9 14 6 4 3

Since ﬁ . (ﬁ) =0, AB and OP must be perpendicular.
Part (c). We have

O? 1 6 1 0

‘076‘:\/62+(—2)2+32 _32 7\,

C =

la - ¢ is the length of the projection of a on ﬁ
Part (d). We have

1 6 1-3—(-2)-1 5
axp=14|1]|x2[-2]=28| 1.6-3-1 | =283
1 3 1--2-6-1 -8

la x p| is twice the area of AOAP.

[AOAP| = % |a x p| = 14v/98 = 98V/2 units?.
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Problem 12. The points A, B and C have position vectors given by i —j+k, j — k and
2i — j — k respectively.

(a) Find the area of the triangle ABC. Hence, find the sine of the angle BAC.
(b) Find a vector perpendicular to the plane ABC.
(c¢) Find the projection vector of AC onto AB.
(d) Find the distance of C to AB.
Solution.
Part (a). We have OA = (1, -1,1)" (ﬁ —1)" and 0C = (2, -1, —=1)". Note
that AB = (~1, 2, —2)7 and A0 — (1, 0, — ) . Thus,
4 .
[AABC] = )ﬂ% xﬁ’ =5[] | =56 =3 units®
-2
We have
AB x AC
sin BAC = _ 5 _ 2v5
4B||ac] 35 5

Part (b). (2, 2, 1)" is parallel to AB x AC and is hence perpendicular to the plane ABC.
Part (c). The projection vector of 1@ onto AB is given by

AL\ 4B 1_1
] e

Part (d). Observe that

ﬂ%
AC ‘ @ x AC| =2.
Hence, the perpendicular distance between C' and AB is 2 units.

% 3k ok ok ok

Problem 13.
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The diagram shows a vehicle ramp O BC D EF with horizontal rectangular base ODEF
and vertical rectangular face OBCD. Taking the point O as the origin, the perpendicular
unit vectors i, j and k are parallel to the edges OF, OD and OB respectively. The lengths
of OF, OD and OB are 2h units, 3 units and h units respectively.

(2) Show that OC = 3j + k.

(b) The point P divides the segment C'F in the ratio 2 : 1. Find OP in terms of h.
For parts (c) and (d), let h = 1.

(c¢) Find the length of projection of OP onto OC.

(d) Using the scalar product, find the angle that the rectangular face BC' EF' makes with
the horizontal base.

Solution.
Part (a). We have

OC = OD + DC = OD + OB = 3j + hk.

Part (b). By the ratio theorem,

0 2h 4h
O?:MZE 31 +21 0 :1 3
241 3 L 0 3 h

Part (c). The length of projection of ﬁ% onto (ﬁ is given by

4 0
? O? 3 3 —@units.

‘3\F1'1_3

Part (d). Note that 07“ (2,0,0)7 and BF = OF — OB = (2,0, —1). Let @ be the
angle the rectangular face BCEF makes with the horizontal base.

cosf = ‘gg = 2\4[ = 0 =26.6° (1 d.p.).
% K Kk

Problem 14. The position vectors of the points A and B relative to the origin O are
OA =i+ 2j— 2k and O? = 2i — 3j + 6k respectively. The point P on AB is such that
AP :PB = \X:1— A\ Show that OP = (1+ \)i+ (2 —5))j + (—2+ 8)k where A is a real
parameter.

(a) Find the value of A for which OP is perpendicular to AB.

(b) Find the value of A for which angles ZAOP and ZPOB are equal.

Solution. By the ratio theorem,

— 2 1 1+ A
—};:AO_B>+(1—A)OA: k Y R N
) Y A3 +a-n 5A

6 -2 -2+ 8\
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Part (a). Note that A-B> = @ — O—1>4 = (1, -5, 8)T. For OP to be perpendicular to AB,
we must have O—}% . E = 0.

1+A 1
? ? )
OP -AB=0 = 2—-5X || -5 :O:>—25+90)\:0:>)\:1—8.
-2+ 8\ 8

Part (b). Suppose ZAOP = ZPOB. Then cos ZAOP = cos ZPOB. Thus,

OP.-0A OD.-0OB _ .
‘%;‘ ‘Z_}i‘ - ’%;‘ ‘(Oﬁ‘ — ﬁ-(;OA—;O?>:0 — (ﬁ;-(mA—:so?):o.

This gives
14+ A 1 2 1+ A 1
2—=5X |- |71 2 |—-3]|-3 = 2-5Xx |- 23 | =0.
-2+ 8\ -2 6 —2 48X —32

Taking the dot product and simplifying, we see that 111 — 370\ = 0, whence \ = 1%.

* ok ¥ % ok

Problem 15.

O

— OB
The origin O and the points A, B and C' lie in the same plane, where OA =a, OB =b
and O(E =c,

(a) Explain why c can be expressed as ¢ = Aa + ub, for constants A and u.
The point N is on AC such that AN : NC =3 : 4.
(b) Write down the position vector of N in terms of a and c.

(c) It is given that the area of triangle ONC' is equal to the area of triangle OMC,
where M is the mid-point of OB. By finding the areas of these triangles in terms of
a and b, find A in terms of y in the case where A and p are both positive.

Solution.

Part (a). Since a, b and c are co-planar and a is not parallel to b, ¢ can be written as a
linear combination of a and b.

Part (b). By the ratio theorem,

W_4a+3C_4 3
ON = 314 —7a+7c.

Part (c). Let ¢ = Aa+ pb. The area of AONC is given by

[AONC] :%)O_YVX 0?‘ —;Hja—l—i(ka—i—ub)] X (Aa+ub)’ — 27’u|a>< b|.



Tutorial A7 395

Meanwhile, the area of AOMC' is given by
1
[AOMC) = ‘OM 07( - 2' b x ( /\a+ub)‘ —]ax b|.
Since the two areas are equal,

2 8
[AONC] = [AOMC] = 7’u|a><b|:%|axb| — A=z
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Self-Practice A7

Problem 1. The position vector of points A, B and C relative to an origin O are a, b
and ka respectively. The point P lies on AB and is such that AP = 2PB. The point
lies on BC' such that CQ = 6QB. Find, in terms of a and b, the position vector of P and
Q. Given that OPQ is a straight line, find

(a) the value of k,
(b) the ratio of OP : PQ.

The position vector of a point R is %a. Show that PR is parallel to BC'.

Solution. By the ratio theorem,

a-+2b 1 2
OP = — Za+t b
0 112 32713

and

ka+6b £k 6

Part (a). Since OPQ is a straight line, there exists some A € R such that

2
O@:)\O? = §a+gb:§a+§b.

Comparing coefficients of b terms, we have A = 9/7, whence

k97
—=—-—— = k=3
7 3
Part (b). Note that Oﬁ = %O? Hence, OP : PQ =2:7.
Note that - . ) 5
Ph=ta—(-a+Zb)=2a— b
37 (35”r 3 ) 273
Hence,

Bi?zi’)a—b:§ <2a—2b> = §P§
2 3 2
Hence, PR || BC.

X ok Xk % X

Problem 2. The position vectors of the points P and R, relative to an origin O, are p
and r respectively, where p and r are not parallel to each other. ) is a point such that

O@ = 20P and S is a point such that O? = 20?. T is the midpoint of @S.
Find, in terms of p and r,

(a) PE,
(b) QT,
(¢) TR

What shape is the quadrilateral PRT' Q7 Name another quadrilateral that has the same
shape as PRTQ).
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Solution. By the midpoint theorem,

57 _0G+08 _
2

pP+r.
Part (a).
PR=r— p.
Part (b).
QT =(p+r)~(2p) =r —p.
Part (c).

ﬁ:r—(r—i—p):—p.

Consider the following diagram:

Clearly, PRT(Q is a parallelogram. Likewise, ORT P is also a parallelogram.

% 3k ok ok ok

—
Problem 3. The position vectors of points A, B, C are given by OA = 5i, O? =i+ 3k,
O? =i+ 4j. A parallelepiped has OA, OB and OC' as three edges, and the remaining
edges are X, Y, Z and D as shown in the diagram.

X D

0 A

(a) Write down the position vectors of X, Y, Z and D in terms of i, j and k, and
calculate the length of OD.

(b) Calculate the size of angle OZY'.

(¢) The point P divides C'Z in the ratio A : 1. Write down the position vector of P, and
evaluate A if O_})’ is perpendicular to 67 .
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Solution.
Part (a). We have

OB +0C = 2i +4j + 3k,

oxX
OY —=0A  +0C =6i+4j,
0% — OA + 0B — 6i + 3k,

OD = OA + OB + OC = 7i + 4j + 3k.

Part (b). Note that ZY = (0, 4, —3)". Hence,

0z-7% 9
Z e

Part (c). By the ratio theorem,

cos LZOZY = = Z0ZY =744° (1d.p.).

(ﬁ:O?Jr/\O?_ 1

1+X 14X\

2 1
MN[0 + (4
1 0

Note that C? = (5, —4, 3)T. Since Oﬁ € 67, we have

0P CZ =0.
Hence,
2 9 1 b
SA|0 -4 +14]-|—-4]=39A-11=0,
1 3 0 3
whence A\ = 11/39.
¥ ok ok %k ok

Problem 4. The vectors a, b and ¢ are such that a-b=b-¢c =0 and a-c = 2. Given
that |a| =1, |b| =2, |c| = 3, find

(a) |a—bl;
(b) la—b —c|.

Solution.
Part (a). Observe that

la—bl?=(a—b)-(a—b)=a-a—a-b—b-a+b-b.
Since a- b = 0, we get
la—bl>’=a-a+b-b=a*+ b?*=1'+22=5.

Thus, |a — b| = /5.
Part (b). Observe that

la—b—c/?’=(a—b—c)-(a—b—c)=(a—b)-(a—b)—2c-(a—b)+c-c.
Since a-c =2 and b-c =0, we have

la—b—cl>=la—b[*—-2(2)+|c|* =5—2(2) + 3% = 10.
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Thus, |a—b —c¢| = V10.

* ok k% ok

Problem 5. The position vectors of the points M and N are given by
OM =Xi+(2\—1)j+k  ON= )i+ 3Aj — 2k,

where A is a scalar. Find the values of A\ for which O—J\>é[ and 0_1\? are perpendicular. When
A =1, find the size of ZM NO to the nearest degree.

Solution. Since O—]\>4 L OTt we have

A 1-A
OM-ON=[2x—1]-[ 3x | =522—-2x—2=0.
1 -2
Solving the quadratic, we get
A\ 1++11
-
When A =1, we have
. 0 -1
oM=1[1], oN=|[3]|, MN=] 2
1 —2 -3
Hence, W
cos ZMNO = 2 MN 12 — /MNO =27°.

joN|[prw| - VISV

% 3k ok ok ok

Problem 6. The points A, B, C and D have position vectors i—2j+ 5k, i+3j, 10i+j+2k
and —2i + 4j + 5k respectively, with respect to an origin O. The point P on AB is such
that AP : PB = X:1— X and point Q on C'D is such that CQ : QD = p : 1 — p. Find
O‘P) and Oﬁ in terms of A and pu respectively.

Given that PQ is perpendicular to both AB and C'D, show that ]@ =i+ 2j+ 2k.

Solution. By the ratio theorem,

—>
ﬁ:(l_f)of+i@=ﬂ+A( f2 +5) 1
( - )+ -1
and
0G = 1?1_(?§7j?—(7c<+ﬂ(073 0C) = ( +3u 1
Note that
10 —4 1 0 3 —4 0
PO=|| 1 | 43u| 1 ||=|{=2)4+5n| 1 || =3[1]+3u]1]=5xr][1

2 1 ) -1 -1 1 01
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Since P( is perpendicular to AB, we have

3 4 0 0
PO-AB= 3|1 | +3u| 1] =sx[1]|-|5]1]]=56-100=0.
1 1 01 1
Thus, A = 3/5.
Since PQ is perpendicular to C'D, we have
3 4 0 4
PO-CD= 131 | +3ul 1 |=sx{1]]|-]3[1||=3-36+54u)=0.
1 1 01
Thus, p = 2/3.
Hence,
3 4 0 |
2
PO=3] 1 +3<3> 1 —5<§) 1] =12
1 1 1 2
k ok ok ok ok

Problem 7. The position vectors of the vertices A, B and C of a triangle are a, b and ¢
respectively. If O is the origin and not within the triangle, show that the area of triangle
OAB is % la x b|, and deduce and expression for the area of the triangle ABC.

Hence, or otherwise, show that the perpendicular distance from B to AC' is

laxb+bxc+cxal
c - a| '

Solution. Let # = ZAOB be the angle between a and b. Clearly,
1 1
[AOAB] = S(0A)(OB)sind = 3 [a x b].
Note that AB = |b — a|] and AC = |c — al|. Hence,
1
[AABC] = 5 |(b—a) x (c—a).
Expanding, we get
1 1
[AABC]:§|b><c—b><afa><c|:§\a><b+b><c+c><a|.

Let the perpendicular distance from B to AC be h. Then

IAABC] = %h(AC) _ %h!c—a\.
Hence,
b 2[AABC] |axb+bxc+cxal
~ Jc—a] lc —a| ’
k ok ok ok ok

Problem 8 (J)._>The points A, B and C' lie on a circle with centre O and diameter AC.
It is given that OA = a and O? =b.

(a) Find B? in terms of a and b. Hence, show that AB is perpendicular to BC.
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(b) Given that L&;O}B = 30°, find O? where F' is the foot of perpendicular of B to AC.
Hence, find OB’, where B’ is the reflection of B in the line AC.

Solution.
Part (a). Since A, B and C lie on the same circle, |a|] = |b| = |c|. Since AC is the
diameter of the circle, ¢ is in the opposite direction as a. Hence, ¢ = —a. Thus,

BC=0C—-0B=-a—b.

Also note that

Considerﬁ-B?:
ﬂ%.ﬁ:(b—a)-—(ﬁb):—(b-b—a-a):—(\b\2—|a|2):o.

E:O?—O—Zl:b—a.

Thus, AB is perpendicular to BC.
Part (b). Observe that

V3 or |0F| V3
5 cos LZAOB = 0B~ T — ‘07‘ =5 lal.
Since O? is in the same direction as O_}l, we have
of = V2,
2
Note that
B = YPa .

By the midpoint theorem,

OB+ OB —
57 = OB+08 _ G357 5T = Via b
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Assignment A7

Problem 1. The points A and B have position vectors relative to the origin O, denoted
by a and b respectively, where a and b are non-parallel vectors. The point P lies on AB
such that AP : PB = X : 1. The point @ lies on OP extended such that OP = 2P and
l@ = 0—121 + NO?. Find the values of the real constants A and pu.

Solution. By the ratio theorem,

a-+ b 3 3 a+Ab

However, we also have

0G = OB + BO =a+ (1+ ub.

3 a+Ab

2 1+
Since a and b are non-parallel, we can compare the a- and b-components of both vectors
separately. This gives us

This gives the equality

=a+ (1+ pu)b.

3 A
7:1 7'7:1
© 9 T + K

which has the unique solution A = 1/2 and p = —1/2.

X Xk Xk % X

Problem 2. Given that a=1i+j, b =4i — 2j+ 6k and p = Aa+ (1 — A\)b where X € R,
find the possible value(s) of A for which the angle between p and k is 45°.

Solution. Observe that

1 4 4- 3\
p=Ja+(1—-XNb=A[1]+01-N[-2]=[-2+3A
0 6 6 — 6

Thus,
Ip|? = (4 =302+ (=24 302+ (6 — 6))2 = 541> — 108\ + 56.

Since the angle between p and k is 45°,

-k 1 —6X 2
cosaro = Pk 1 6260 el gy

Ip| K| V2 Ip| 2

We thus obtain the quadratic equation

5422 — 108\ + 56
2

=360 — 720 +36 = 9XZ — 18\ +8 =0,

which has solutions A = 2/3 and A = 4/3. However, we must reject A = 4/3 since
6 —6\=|p|/vV2>0 = X< 1. Thus, A =2/3.
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Problem 3.

(a) a and b are non-zero vectors such that a = (a- b)b. State the relation between the
directions of a and b, and find |b|.

(b) a is a non-zero vector such that a = v/3 and b is a unit vector. Given that a and
b are non-parallel and the angle between them is 57/6, find the exact value of the
length of projection of a on b. By considering (2a+ b) - (2a+ b), or otherwise, find
the exact value of |2a + b|.

Solution.
Part (a). a and b either have the same or opposite direction. Let b = Aa for some X € R.

a=(a-b)b=(a-da))a=N|a’a = N |a’=1 = |b|=|\|a]| = 1.

Part (b). Note that |a - b| = |a| [b|cos(57/6) = —3/2. Hence, the length of projection of
aonbis ’a : B’ = 3/2 units.
Observe that

2a+b|> = (2a+Db)-(2a+b) =4]al> +4(a-b) + [b* = 7.
Thus, [2a + b| = /7.
k ok ok ok ok

Problem 4. The points A, B, C, D have position vectors a, b, ¢, d given by a = i+2j+ 3k,
b=i+2j+2k, c=3i+2j+k,d=4i—j—k, respectively. The point P lies on AB
produced such that AP = 2AB, and the point @ is the mid-point of AC.

a) Show that P(Q is perpendicular to AQ.

(a)
(b) Find the area of the triangle APQ.

(c) Find a vector perpendicular to the plane ABC.

(d) Find the cosine of the angle between AD and BD.

Solution. Note that AB = (0,0, —1)7, AC' = (2, 0, —2)T and AD = (3, -3, —4)T.
Part (a). Note that

1
OP = OA+ AP = OA + 248 = | 2
1

and

N DN DN

Thus,

56 -00_0P- (o). A6-00-04— | o
1

-1

Since 1@ . z@ =0, the two vectors are perpendicular, whence PQ 1L AQ.
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Part (b). Note that AP = (0,0, —2)7. Hence,

0 1
[AAPQ] = % ‘E% X @( - % 0] x| 0] =1units
-2 -1
Part (c). The vector AB x AC = (0, =2, 0)" is perpendicular to the plane ABC.
Part (d). Let the angle between AD and BD be 6. Note that BD = —3 (-1,1,1)".

e AD-BD 30 10
AB|[BD|  VEL-3VE Vi

cosf =
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Problem 1. For each of the following, write down a vector equivalent of the line [ and
convert it to parametric and Cartesian forms.

(a) [ passes through the point with position vector —i + k and is parallel to the vector

i+ j.

(b) 1 passes through the points P(1,—1,3) and Q(2,1,—2).

(c) I passes through the origin and is parallel to the linem : r = (1, —1, 3)T+)\ (1, 2, 3)T,

where A € R.

(d) [ is the x-axis.

(e) I passes through the point C(4,—1,2) and is parallel to the z-axis.

Solution.
Part (a).
Form Expression
Vector r=(—1,0, 1)T +A(1, 1, O)T, AeR
Parametric r= -1 y=Az=1
Cartesian z+1l=y,z=1
Part (b).
Form Expression
Vector r=(1,-1,3)  +A(1,2, -5, AeR
Parametric r=A+1,y=2\—1,2=-5X+3
Cartesian r—1= %1 = 3?
Part (c).
Form Expression
Vector r=\(1,2, 3)T, AeR
Parametric r=Ay=2\ z=3X\
Cartesian r=4=%
Part (d).
Form Expression
Vector r=X(1,00", AeR
Parametric r=A\y=0,2=0
Cartesian reR, y=0,2=0
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Part (e).
Form Expression
Vector r=(4,-1,2)"+X(0,0,1)T, AeR
Parametric r=4,y=—-1,2=X1+2
Cartesian r=4,y=-1,2€R
* ok ok ok ok

Problem 2. For each of the following, determine if /; and Iy are parallel, intersecting or
skew. In the case of intersecting lines, find the position vector of the point of intersection.
In addition, find the acute angle between the lines /1 and Is.

(a) iz —1=—-y=2—2andly: %52 = L= = %
() Lh:r=(1,0,0 +a(4 -2, -3)",acRand lr:r=(0,10,1)" +3(3,8,1)"
() i:r=(1-0k)+Ai—-j+k),AeRandlr:r=>G0—-j+k)+pbBi—4j—k),neR

Solution.
Part (a). Note that /; and Iy have vector form

1 1 2 2
h:r=[0]+A[-1], 2 €Randly:r=|1]+pul|l-2],pnekRr
2 1 4 2

Since (2, —2,2)" = 2(1, —1,1)", I and I, are parallel (§ = 0). Since (1,0, 2)" #
(2,1, )7 + 1 (2, =2, 2)7 for all real p, we have that l; and I, are distinct.
Part (b). Since (4, —2, 3)7 # (3,8, 1) for all real 3, it follows that {; and Iy are not
parallel.

Consider 1 = [5.

1 4 0 3 4 3 -1
h=lh = [0)]+a|-2]=|10|4+8(8] = al|—-2]|-5[8] =10
0 -3 1 1 -3 1 1

This gives the following system:

da— 38 = -1
—2a -84 =10
—3a— pf=1

There are no solutions to the above system. Hence, [ and I3 do not intersect and are thus
skew.
Let 6 be the acute angle between [; and [s.

((4, 2, -3)7.(3, 8, 1)T’ - )
cosf = ‘(4’ iy _3)T‘ ‘(37 ; 1)T‘ = % = 0 =281.3° (1 d.p.).

Part (c). Note that {; and I have vector form

1 1 1 5
Lh:r=10 | +A|-1] andly:r=-1|4+p|—-4],\puek
-5 1 1 -1
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Since (1, —1, 1)T # (5, —4, —1)T for all real p, it follows that I and l5 are not parallel.
Consider 1] = Is.

1 1 1 5 1 5) 0
L=l = 0 +Al-1]=1-1]4+nu|—-4 = A|-1]|—-ul|-4]=1]-1
-5 1 1 -1 1 -1 6

This gives the following system:

—ou+A=0
dp—A=-1
L+A=6

The above system has the unique solution A =5 and u = 1. Hence, [; and [y intersect at
(1,0, =5)" +5(1, =1, 1)" = (6, =5, 0)".
Let 6 be the acute angle between [; and [s.

o 0176 4 ] — 6 =445° (1dp.)
cost = = =44. .p.)-
’(17 _17 1)T‘ ‘(57 _47 _1)T‘ 3\/ﬂ
* %k ok ok ok
Problem 3.

(a) Find the shortest distance from the point (1,2,3) to the line with equation r =
31+ 2j + 4k + A(i + 2§ + 2k), A € R.

(b) Find the length of projection of 4i— 5j+ 6k onto the line with equation ”"T‘% = 3”3;5 =
10 — 2z.

. . . . . . . . +5 _ -5
(c) Find the projection of 4i — 5j + 6k onto the line with equation > = Y32 =10 —2z.

Solution.
Part (a). Let OP = (1, 2, 3)" and OA = (3, 2, 4)7. Note that AP = (=2, 0, —1)". The
shortest distance between P and the line is thus

‘(_27 07 _1)T X (L 27 Q)T‘ ‘(27 _3a _4)T) \/E

Shortest distance = = = units.
(1,2, 2)7] 3 3

Part (b). Note that the line has vector form

-5 4 -5 8
r=(5|+XN[ 3 =5 ]4+X] 6|, eR.
5 —1/2 5 —-1

The length of projection of (4, —5, 6)T onto the line is thus given by

‘(47 =5, 6)T ’ (87 6, _1)T‘
Length of projection = = units.

’(8, 6, —1)T) V101

Part (c).

(47 _5a 6)T i (87 6a _1)T (87 65 _1)T —4 5

Projection = . = —
8,6, -1)7] 8.6, -)7| 101\
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Problem 4. The points P and @ have coordinates (0, —1,—1) and (3,0, 1) respectively,
and the equations of the lines [ and ls are given by
0 0 -3 2
h:r=1]+X| 1 |, AeéRandle:r=| 3 |+pu|-1],pekRr
-3 —1 1 0
(a) Show that P lies on I; but not on lo.
(b) Determine if [y passes through Q.

(c) Find the coordinates of the foot of the perpendicular from P to ls. Hence, or
otherwise, find the perpendicular distance from P to ls.

(d) Find the length of projection of ]% onto lo.

Solution. We have that O—f’ = (0, -1, T and Oﬁ (3,0, 1
Part (a). When A = —2, we have (0, 1, —3) —2(0,1, -7 = (o, —1,-1)T = OP.
Hence, P lies on (.

Observe that all points on [ have a z-coordinate of 1. Since P has a z-coordinate of
—1, P does not lie on I5.
Part (b). When 1 = 3, we have (=3, 3, )T +3(2, =1,0)" = (3,0, 1)" @ Hence, o
passes through Q.
Part (c). Let the foot of the perpendlcular from P to ls be F. Since F'is on lo, we have that
OF = (=3, 3,1) 4+ (2, —1, 0)" for some real . We also have that PE. (2, —-1,0)" = 0.
Note that

-3 2 0 —34+2u
PE=0F-0P=|3 |+ul-1|-|-1]=| 4-u
1 0 ~1 2
Hence,
2 —3+2,u
PE-[-1]=0 = 1 0 = —10+5u=0 = pu=2
0
Hence, OF = (—3, 3, T -1,0)" =1, 1 1)T. Thus, F(1,1,1). The perpendicular
distance from P to Iy is thus ’ﬁ’ ’
3

Part (d). Note that ]@ = Oﬁ — ﬁ = | 1|. The length of projection of ]@ onto lo is

\)

thus given by

‘(37 1, 2)T ’ (27 _17 O)T‘
Length of projection = =

5
’(2, -1, O)T( V5

5 units.

X Xk Xk % X

Problem 5. The lines I; and Iy have equations

0 1 -2 2
r=|1]+s|0] andr = 3 |1+¢t|1
2 3 1 0

respectively. Find the position vectors of the points P on I; and ) on [y such that O, P
and @) are collinear, where O is the origin.
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Solution. We have that OP = (0, 1, 2)T +s(1, 0, 3)T and 00 = (-2, 3, 1)T+¢(2, 1, 0)"
for some s,t € R. For O, P and @ to be collinear, we need O? = )\@ for some A\ € R:
0 1 -2 2 S -2+ 2t
1] +s{0]=A 3 1+t|1 = 1 =X 3+t

2 3 1 0 24 3s 1
This gives us the system:
s = A-2+2t)
1=X3+1)
24+3s=2A

Substituting the third equation into the first two gives the reduced system:
s=(243s)(—2+ 2t)
1=(2+3s)(3+1)

Subtracting twice of the second equation from the first yields s —2 = —8(2 + 3s), whence
s = —14/25. It quickly follows that ¢ = 1/8. Hence,

0\ (1) 4 [ 2\, (2 [

obp=|1 S HUEAERE 00=| 3 (1) =5

2 3 8 1 0 8
%k ¥ ok %

Problem 6. Relative to the origin O, the points A, B and C have position vectors
5i + 4j + 10k, —4i + 4j — 2k and —5i 4 9j + 5k respectively.

(a) Find the Cartesian equation of the line AB.

(b) Find the length of projection of 1@ onto the line AB. Hence, find the perpendicular
distance from C' to the line AB.

(¢) Find the position vector of the foot N of the perpendicular from C' to the line AB.

(d) The point D is such that it is a reflection of point C' about the line AB. Find the
position vector of D.

Solution. We have that OA = (5, 4, 10)7, OB = (—4, 4, —2)T and OC = (~5, 9, 5)7
Part (a). Note that AB = (=9, 0, —12)T = —3(3, 0, 4)T. The line AB hence has the

vector form

5 3
r=|4|+X[0],X2eER
10 4
and Cartesian form %;5 = = 10, y = 4.
Part (b). Note that AC = —10, 5, —5)" = —5(2, —1, 1)". Hence, the length of projec-
tion of z@ onto the line AB is given by
jac- ﬂ%( 3
Length of projection = —1 -3 10| =10 units.
‘E‘ | 1

Since ‘ﬁ‘ = 5v/6, the perpendicular distance from C' to the line AB is (5\/6)2 —10% =
5v/2 units.
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Part (c). Let AN = A (=9, 0, —12)7 for some A € R such that ‘m’ = 10.

‘ﬁ‘:10:>15A:10:>A:§.
Hence, AN = 2 (=9, 0, —12)" (60 T Thus, ON = OA + AN = (~1, 4, 2)7

Part (d). Note that NC = OC — ON = —4, 5, 3)". Since D is the reflection of C' about
AB, we have that ]@ = —]ﬁ. Thus,

~1 4 3
OD—ON+ND=ON-NC=[4 -5 ]=(-1
2 3 1

* ok k% ok

Problem 7. The points A and B have coordinates (0,9, ) nd (d,5,—2) respectively,
z+3 _ _ z=
: =

Cﬂ

(a) Given that d = 22/7 and the line AB intersects [, find the value of ¢. Find also the
coordinates of the foot of the perpendicular from A to [.

(b) Given instead that the lines AB and [ are parallel, state the value of ¢ and d and
find the shortest distance between the lines AB and [.

. ——
Solution. We have that OA = (0, 9, ¢) and O? . We also have that the
line [ is given by the vector r = (=3, 1, 5)7 + A (—1, 4, 3) for )\ eR.
18— oF _ o T : o

Note that AB = OB — OA = (d, —4, —2 — ¢) . Hence, the line AB is given by the
vector rap = (d, 5, —=2)" + p(d, —4, =2 —¢)" for p e R.
Part (a). Consider the direction vectors of AB and I. Since (22/7, —4, =2 —¢)' #
A(—1, 4, 3)T for all real A and ¢, the lines AB and [ are not parallel. Hence, AB and [
intersect at only one point. Thus, there must be a unique solution to r =r4p.

-3 -1 22/7 22/7
r=rj g — 1 1+A| 4| = 5 + u —4
5 3 -2 —2-—c
=7 22 43
= A 28| —pu —28 = 28
21 —14 —T7c —49
This gives the following system:
“A— 224 = 43
4N+ 28 = 28

BN+ (14 +Tc)p=—49

Solving the first two equations gives A = 91/3 and pu = —10/3. It follows from the third
equation that ¢ = 4.

Let F be the foot of the perpendicular from A to I. We have that O? -3, 1, 5)T +
A(—1, 4, 3)7 for some A € R. We also have that ﬁ ~1,4,3)T =0. Note that

3\
AF = OF — OA = | -8 + 4\
1+ 3A
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Hence,
1 —3) 1
AF-[ 4 =0 = [=8+arx] - |4 )20 = —26+260=0 — A=1.
3 1+3) 3

Hence, OF = —3,1,5) 4+ (1,4, 3)T = (=4, 5, 8)". The foot of the perpendicular from
A to [ hence has coordmates (—4,5,8).

Part (b). Given that AB is parallel to [, one of their direction vectors must be a scalar
multiple of the other. Hence, for some real A\, (—1, 4, 3)T =\, -4, -2 — c)T. It is
obvious that A = —1, whence c=1 and d = 1.

Note that the direction vector of [ and AB is (—1, 4, 3)T. Also note that [ passes through
(—3,1,5) and AB passes through (1,5, —2). Since (1, 5, —=2)" — (=3, 1,5)" = (4,4, =7)7,
the shortest distance between AB and [ is

T T —
CLadTxa D g () s
= — - = —— units.
(_17 47 3)T’ 26 —20 26
X ok Xk % X

Problem 8. The equation of the line L is r = (1, 3, 7)T +t(2, -1, 5)T, t € R. The
points A and B have position vectors (9, 3, 26)" and (13, 9, a)" respectively. The line L
intersects the line through A and B at P.

(a) Find a and the acute angle between line L and AB.

The point C' has position vector (2, 5, 1)T and the foot of the perpendicular from C to
Lis Q.

(b) Find the position vector of (). Hence, find the shortest distance from C' to L.

(¢) Find the position vector of the point of reflection of the point C' about the line L.
Hence, find the reflection of the line passing through C' and the point (1, 3,7) about
the line L.

Solution.

Part (a). Note that AB = OB — OA = (4, 6, a — 26)7. The line AB is thus given by
rag =(9,3,26)" +u(4, 6, a—26)" for u € R. Note that AB is not parallel to L. Hence,
OP is the only solution to the equation r = r4p.

1 2 9 4 2 4 8
31 +tl-1]l=|3]+u 6 — t|-1] —u 6 =10
7 5 26 o — 26 5 a— 26 19

This gives the following system:
2t — du =8
—t— 6u =20
5t — (@ —26)u =19

Solving the first two equations gives t = 3 and u = —%. It follows from the third equation
that a = 34.
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Let the acute angle between L and AB be 6.

2, -1,5)7-(4,6,9)] 4
)(2, -1, 5)T‘ ‘(4, 6, 8)T‘ - BoVile

cos ) = 0 =44.6° (1 d.p.).

Part (b). SIHC% is on L, we have that @ (1,3, 7)" —|— t(2, —1,5)" for some real t.
)

Further, since CQ) L L, we have that@ —1,5)" =0. Note that
—142¢
CO=0G-0C=|-2-1
6 4 ot
Thus,
-1+4+2t 2
CO-[-1]=0—= | —2—¢| - [-1] =0 = 30+30t=0 — t=1.
5 6 + 5t 5

Hence @ (1,3, )" + (2, =1, 5)" = (=1, 4, 2)T. The shortest distance from C to L

1 2 3
‘c@‘ —|la]=1{5]=|[=1]|=vIT units.
2 1 1

Part (c). Let C’ be the reflection of C' about L. Note that

~1 -3 —4
—0G-QC=0G+CqG~=| 4 |+[-1] =3
2 1 3

Note that (1,3,7) is on L and is hence invariant under a reflection about L. Let the
reflection about L of the line passing through C and (1,3,7) be L’. Since (—4, 3, 3)T -
(1,3, 7)" = (=5,0, =4)" || (5,0, 4)7, L' hence has direction vector (5, 0, 4)'. Thus, L/
is given by ' = (1, 3, )T + A (5, 0, 4)" for X € R.

X Xk Xk % X

Problem 9.
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In the diagram, O is the origin of the square base ABCD of a right pyramid with vertex
V. The perpendicular unit vectors i, j and k are parallel to AB, AD and OV respectively.
The length of AB is 4 units and the length of OV is 2h units. P, ), M and N are the
mid-points of AB, BC', CV and V A respectively. The point O is taken as the origin for
position vectors.

Show that the equation of the line PM may be expressed asr = (0, —2, 0)T+t (1, 3, h)T,
where t is a parameter.

(a) Find an equation for the line QN.

(b) Show that the lines PM and QN intersect and that the position vector OX of their
point of intersection is r = % (1, —1, h'.

(c) Given that OX is perpendicular to V B, find the value of h and calculate the acute
angle between PM and QN, giving your answer correct to the nearest 0.1°.

Solutlon We are given that OP = O? (2,2,0)" and oV = (0,0, 2h)".
Hence, oV = ov OC = (—2, -2, 2h)T. Thus ch 10_1} (~1, -1, 1)". Since
OM = OC + CM = (1,1, )", we have that PM = OM — OB = (1, 3, h) . Thus, PM
is given by

0 1
r=|-2|+t|3],teR.
0 h

Part (a). Since O—]\>4 =(1, 1, h)T, by symmetry, OW = (-1, -1, h)T. Given that (ﬁ =
(2,0, O)T, we have that 67]?7 = (7]?? — Oﬁ = (-3, —1, h)T. Thus, @N is given by

2 -3
r=|0]4+u|-1],ueR.
0 h
Part (b). Consider PM = QN.
0 1 2 -3 1 -3 2
PM=QN = | -2|+t|3]|=|0]4+ul-1])] = t|[3]|—ul-1])]=]2
0 h 0 h h h 0
This gives the following system:
t+ 3u =2
St+ u=2
ht —hu =0
From the first two equatlons we see that ¢t = 5 and u = % which is consistent with the
third equation. Hence, OX = —2,0)" + 3 (1, 3, h' = %( -1, h)
Part (c). Note that OB = (2, =2, 6)", whence VB=0B-0V = —2, —2h)". Since
OX is perpendicular to V B, we have that O+X> ﬁ = 0.
1 1 1
OX - VBE=0— _[-1]-2(-1] =0 = n*=2
h —h

We hence have that h = v/2. Note that we reject h = —/2 since h > 0.
Let the acute angle between PM and QN be 6.

—

‘ PM -Q R?‘ 1 1 -3

1 o
(WHW(:@@ \% : \—/% =3 — 0=705 (1dp.).

cosf =
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Self-Practice A8

Problem 1. The points A and B have positions vectors (8, 3, 2)T and (-2, 3, 4)T re-
spectively.

(a) Show that AB = 2+/26.
(b) Find the Cartesian equation for the line AB.

(¢) The line [ has equation r = (—2, 3, 4)T +¢(2, 6, 5)". Find the length of the projec-
tion of AB onto .

(d) Calculate the acute angle between AB and [, giving your answer correct to the
nearest degree.

(e) Find the position vector of the foot N of the perpendicular from A to [. Hence, find
the position vector of the image of A in the line [.

Solution.
Part (a). Note that

8
Ab—0B-0A=[3]=-1(3)=2o0
9

Hence,

AB = ‘1@‘ = 2/(—5)2 + 02 + 12 = 2v/26 units.

Part (b). The vector equation of the line AB is

8 -5
r=[3]+A[ 0], XAeR
2 1
Hence, the Cartesian equation is
x—38
=z—-2,y=3.
— =22y

Part (c). The length of projection of AB onto [ is given by

’2 (_57 07 l)T : (27 6a 5)T‘ 10

26,5

Part (d). Let the acute angle be 6.

(5.0, 1)7-(2,6,5)] -
‘(—5, 0, 1)T‘ ‘(2, 6, 5)T) ~ V/65v/26

cosf = = § = 83°.

Part (e). Since N is on [, there exists some ¢ € R such that

2

ﬁ:ﬁ4+t 6
3 5
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Hence,
-2 8 2
AN = || 3 3] =2 +t |6
4 2 )
Since AN is perpendicular to [, we have
2 2
AN - [6] = |2 6| = —10+ 65t = 0.
5) )
Hence, t = 2/13, whence
-2 2 —22
2 1
ON=| 3|+ Sle]=5| =
4 5 62
Let the image of A in [ be A’. By the midpoint theorem,
— —%
ON — OA+ OA '
2
Hence,
—22 8 —148
H 2
014’:20_1\?—0_21:ﬁ 51| -3 :113 63
62 2 98
* ok K ok K

Problem 2. The position vectors of the points A and B are i + 2j + 3k and 2i + 3j + pk
respectively, where p is a constant. The point C is such that OABC is a rectangle, where
O is the origin.

(a) Show that p = 2.
(b) Write down the position vector of C'.

(c) Find a vector equation of the line BC'

The equation of line [ is given by %‘1 = yT_l, z=1.

(e) Show that the lines BC' and [ are skew.

Solution.
Part (a). Note that

2 1 1
AB=0B-04A= (3] - [2]=[ 1
p 3 p—3
Since OABC is a rectangle, O—fl 1L /@ Hence,
. 1 1
OA-AB=|2]|-[ 1 |=3+3p-3=0 = p=2.
3 p—3
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Part (b). Since OABC is a rectangle,
OC=A4B=(,1,-1".

Part (c). Since OABC is a rectangle,
H 1
BC=04=(2].
3

Thus, the vector equation of line BC' is

1 1
o :r = 1 +A12], AeER.
-1 3

Part (d). Note that the vector equation of [ is

1 3
r=[1]+pl|3
1 0
Consider [ Nipc:
1 1 1 3 1 3 0
L1+212)=1(1)4+pul3] = A|2]—-wul|3|=10
-1 3 1 0 3 0 2
This gives the system
A=3u=3
22 —3u =3,

3AN=2

which has no solution. Since the direction vectors of | and Ipc are not parallel (i.e.
(1,2,3)T }(3,3,0)7), the two lines are skew.

X Xk X % X

Problem 3. The lines /1 and I3 have equations r = (3, 1, 2)T—|—)\ (b, 1, —l)T, where b > 1,
andr = (4,0,1)" + (=1, =1, 1)" respectively.

(a) Given that the acute angle between [; and I is 30°, find the value of b, giving your
answer correct to 2 decimal places.

For the rest of the question, use b = 3.

(b) Find the coordinates of the points A and B where [; and ls meet the xy-plane
respectively.

(¢) The point C has position vector 2i + 7j 4+ 3k. Find whether C is closer to 1 or 5.

Solution.
Part (a).
‘<b7 17 _1)T ' (_17 _17 I)T‘ |7b — 2‘

‘(b, 1, —1)T‘ ‘(—1, 1, 1)T) VRT3

~—— =co0s30° =
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Since b > 1, we clearly have |—b — 2| = b+ 2. Thus,

b+2 3
V212 2

Using G.C., we have b = 0.13 or b = 3.07. Since b > 1, we take b = 3.07.

Part (b). Note that the zy-plane has equation z = 0. Consider the intersection between
1 and the xy-plane. Clearly, we need A\ = 2, whence

. 3 3 9
2 -1 0
and A(9,3,0).
Consider the intersection between I and the zy-plane. Clearly, we need u = —1, whence
4 -1 5
0B=|o]-(-1]=[1],
1 1 0
and B(5,1,0).

Part (c). The perpendicular distance between C' and [; is given by

(k2,7,3ﬂ'—(3,1,2ﬂ? x(3,1,—1fw ’(—7,2,unT‘ JiTi

= = = 6.13 units.
3.1, -1 Vi Vi
The perpendicular distance between C and Is is given by
[@73T=@o )] [x -1 -1L 17 |0,0.97 |
= = = 7.35 units.

‘(—1,—1,1ﬂw V3 V3

Thus, C'is closer to [j.

k 3k ok ok ok

Problem 4. Relative to an origin O, points C' and D have position vectors (7, 3, 2)T and
(10, a, b)T respectively, where a and b are constants.

(a) The straight line through C' and D has equation r = (7, 3, 2)" +¢(1,3,0)7, t € R.
Find the values of a and b.

(b) F in%he position vector of the point P on the line C'D such that O? is perpendicular
to C'D.

(c¢) Find the position vector of the point @ on the line C'D such that the angle between
O@ and O? is equal to the angle between O@ and @

Solution.
Part (a). Note that
10 7 3
@ =|lal]—-1[3]=a-3
b 2 b—2



418 A8 Vectors II - Lines

Since CD is parallel to (1, 3, 0)7, we have

3 1 3
a=3|=3(3|=19],
b—2 0 0
whence a = 12 and b = 2.

Part (b). Since P is on CD, there exists some ¢ € R such that

7 1
op=[3|+¢(3
2 0

Since O? is perpendicular to @, we have

7 1 1
obp-cD=|3]+¢(3]]|-3|3]=16+10t=0,
2 0 0
whence t = —8/5 and
N g (1 4 (%
oP=3]-2(3]=2[-9
2/ S\o) °\1o

Part (c). By the angle bisector theorem,

oC 0D
- = . D = : D
c6-D0 — CQ:QD=0C:0
7 10
oC=||3]|=v62 and OD=|[12]] =248,
2 2

we have

CQ:QD=+62:v248=1:2.
By the ratio theorem,

10 7 8
OD + 2 1
oﬁ:Of;@zg 12 +2(3]] = (s
+ 2 2 2
Xk %k ok k ok

Problem 5. Relative to an origin O, points A and B have position vectors (3, 4, 1)" and
(-1, 2, O)T respectively. The line [ has vector equation r = (6, a, O)T +t(1, 3, a)T, where
t is a real parameter and a is a constant. The line m passes through the point A and is

parallel to the line OB.

(a) Find the position vector of the point P on m such that OP is perpendicular to m.

(b) Show that the two lines [ and m have no common point.

(c) If the acute angle between the line [ and the z-axis is 60°, find the exact values of

the constant a.
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Solution.
Part (a). Note that the line m has vector equation

3 -1
m:r=[4]+s| 2|, seR
1 0

Since P is on m, there exists some s € R such that

3 1
ob= 4] +s| 2
1 0

Since O? is perpendicular to m, we have

ob-[ 2 =[a)+s|2])| [2]=5+55=0
0 1 0 0
whence s = —1 and
3 -1 4
O?: 4 2 1 =12
1 0 1

Part (b). Consider [ N m:
6 1
al+t|3] =
0 a

Comparing z-coordinates, we have

3 -1
41 +s| 2
1 0

1
ta=1 —= t=—.

a
Substituting this into the equation, we get
6 1 3 -1
al+—-13])=14|+s]| 2
0/ “\a 1 0
This yields the system
1
6+-=3-—s
a
3
a+—=4+2s
a

Adding the second equation to twice the first yields
1 3 5
2(6+—-|+la+-)=2B—-5)+(4+2s) = a+—-+2=0.
a a a
Multiplying through by a gives the quadratic

a? +2a+5=(a+1)>+4=0,

which clearly has no real solution. Hence, [ N'm has no solution, whence the two lines do
not have any common point
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Part (c). Note that the z-axis is parallel to the vector (0, 0, 1)". Thus,

’(1, 3, )7 (0, 0, 1)T(

1 |al
— = cos60° = = .
2 3, )T| 0.0, )T VI0+aAVI
Squaring, we get
1 a? 10 10
e = 104+d’=4d® = == = a==+/—.
1 10 + a2 +a a a 3 a 3

X ok Xk X X

Problem 6. The lines /; and l» have vector equations

1 0 1 1
r=|-2|+X|2 and r=[0] +p| -2
3 1 4 1

respectively, where \ and p are real parameters.

(a) Find the acute angle between the two lines {1 and l2, giving your answer to the
nearest 0.1°.

(b) Show that [; passes through the point P with position vector (1, —4, 2)T. Hence,
show that the distance between point P and any point on the line Iy is given by
\/ 612 — 12 + 20. Deduce the shortest distance between point P and the line Is.

Solution.
Part (a). Let the acute angle be §. Then

T T
0 ‘(07 2, 1) ' (17 -2, 1) ’ 3 .9 56.8°
cosf = = = 56.8°.
’(07 2a 1)T‘ (17 _27 1)T \/5\/6
Part (b). Take A = —1. Then
1 0 1
21 —-12 —4
3 1 2
Hence, I} passes through P(1,—4,2).
Note that [ has vector equatlon
1 1 1+p
r=|0]4+p|-2]=|—-2u
4 1 4+ p
Hence,
1+p 1 I
r—0P=| —2u | = [-4|=[4-24
4+ p 2 2+

Thus, the distance between P and any point on I is given by

ViIZ+ (4 =2u)2 + (24 )2 = /2 + (4u2 — 161 + 16) + (2 + 4 + 4)
= /612 — 121 + 20 units.
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Since 6u? — 124 + 20 = 6(u + 1)2 + 13, the shortest distance is v/14 units.

* ok k% ok

Problem 7 (#). The coordinates of the points A, B and C are given by A(0,2,4),
B(4,6,11) and C(8, 1,0).

(a) Show that the triangle with vertices A, B and C'is an isosceles right-angled triangle.

(b) Find the position vector of point D in the same plane as A, B and C such that BC'D
is an equilateral triangle.

Solution.
Part (a). Observe that

4 0 4
a=[6|-[2]=(4] = aB=vVe12+72=9
11 4 7
and
. 0 8 -8
CA=(2]|-[1]=|1] = AC=/(-8)2+12+42=0.
4 0 4

Since AB = AC, t_ri)angle ABC is isosceles.
Consider /ﬁ -CA:

A /-8
AB-CA= (4] [ 1] =-32+4128=0.
7 4

—
Thus, E 1 CA, whence triangle ABC' is a right-angled triangle.
Hence, triangle ABC' is an isosceles right-angled triangle.
Part (b). Let N be the foot of perpendicular of A on BC'. Since AABC is isosceles, with
AB = AC, by symmetry, N is the midpoint of BC:

12
W:M:} 7
2 2 11

Consider point D. Since ABCD is equilateral, it must also be isosceles, with DB = DC.
Hence, D lies on AN (extended). Also, we have ND/BC = sin60° = v/3/2.

1 12 0 3 4
AN — L7 -12) =511
11 4 1
the line AN has vector equation
0 4
r=|2]4+A|1], XeER
4 1
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Thus,
0 4 1 12 3 4
ND= |2 x[1])| 2|7 :<>\—> 1
4 1 2 11 : 1

Note that B? = (4, -5, —11)T. Hence,

ND [N=3/2[ve2+12+12  [A-3/2[VI8 V3
BC /42 4 (=5)% + (—11)2 V162 2

Rearranging, we get

3] V3162 3V3 3+3V3
2 2v/18 2 2
Thus,
0 4
o°F +
4 1
k 3k %k %k %

Problem 8 (). The equations of the lines /; and I3 are given by

1 1 1 1
h:r=[0]+X[2],A€eR and L:r=|0]4+pu| 0 |],pelR.
0 3 0 -1

(a) The point P with coordinates (2,2, 3) lies on the line /5. Find the reflection of P in
the line [s.

(b) The line I3 is the reflection of the line /1 in the line l3. Find an equation for the line
l3.
(c) The line l4 is such that it is parallel to /; and its distance between the two lines is

\/13/14. Find two possible vector equations of I4.

Solution.

Part (a). Let N be the foot of perpendicular of P on ly. Since N lies on la, there exists
some p € R such that

1
ON={0o|+ul o0
0 -1
Thus,
2 1 1
PN=lo]+ulo || =(2]==(2]+n
0 -1 3 3 -1
Since PN is perpendicular to lo,
R 1 1 1
PN-1 O |=|[—-12]+nl O - 0 ) =242u=0,

-1 3 -1 -1
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whence p = —1 and
1 1 0
oN=1[o]l-[0o]=]0
0 ~1 1
Let P be the reflection of P in [5. By the midpoint theorem,
-~ 0 2 2
! —
07\;:0_}34;013 — oP =20N-0P=2|0|-[2]=—(2
1 3 1

Part (b). Note that I, and /3 have a common point (1,0,0). Under reflection, this point is
an invariant. Hence, I3 must also contain the point (1,0,0). Additionally, I3 must contain
P’, the reflection of P in l5. Since

2 1 3 3
—{2l-=10]1=—=12]112],
1 0 1 1
I3 has vector equation
1 3
AM:r=[0|+v]|2], veER.
0 1
Part (c). Clearly, l4 is given by
a 1
ly:r=1[b|&12], £€R
c 3

The perpendicular distance between [y and l4 is hence given by

H(a, b, )T — (1, 0, O)To} x (1, 2, 3)T‘ B ‘(31;—20, c—3a+3,20-2-8)"| 73
(1,2,3)7] = vid
Hence,
3b—2¢
c—3a+3||=V13.
20 —2—0

This immediately gives
(30— 2¢)? + (¢ — 3a + 3)? + (2a — 2 — b)* = 13.

Taking a = 0, b = 0, this reduces to

6
(=2¢)2 + (¢ +3)2+(—2)?=13 = 5% +6c=0 = c=0o0r — —.

5
Thus,
0 1
ly:r=10]+&[2], €€R
0 3
or
0 1
ly:r= 0 +&12], €€R
—6/5 3
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Assighment A8

Problem 1. Find the position vector of the foot of the perpendicular from the point with
position vector ¢ to the line with equation r = a + Ab, A € R. Leave your answers in
terms of a, b and c.

Solution. Let the foot of the perpendicular be F. We have that 07 = a+ Ab for some

real A, andﬁ b=0. Notethatﬁ O?—O?—a—i—)\b—c Thus,
—_a)-b
C_F>-b:0:>(a+Ab—c)-b:oz>Ayb2+(a—c)-b:0=>A:(°“j‘g.

Thus,

O?—a-i—(c_a) b)b.

[bl?
k 3k ok ok ok

Problem 2. The point O is the origin, and points A, B, C have position vectors given
by OA = 61, @ = 3j, O? = 4k. The point P is on the line AB between A and B, and
is such that AP = 2P B. The point @) has position vector given by Oﬁ = qi, where ¢ is a
scalar.

(a) Express, in terms of i, j, k, the vector ﬁ

(b) Show that the line BQ has equation r = 3j+t(qi— 3j), where ¢ is a parameter. Give
an equation of the line C'P in a similar form.

(c) Find the value of ¢ for which the lines CP and B(Q are perpendicular.

(d) Find the sine of the acute angle between the lines CP and BQ in terms of q.

Solution. We have that OA = (6,0, 0)", OB = (0, 3, 0)" and OC' = (0, 0, 4)T
Part (a). By the ratio theorem,

- 0 6 2 2
20B+ 04 1
op="Y"7C2 _tlal3)+|o)||=(2] = cBP=0P-0C=| 2
142 3
0 0 0 —4
Hence, C?—Qi+2j—4k
Part (b). Note thatBﬁ @ O? , —3, 0 . Thus, BQ is given by
0 q
r=|3]|+t|-3],teR <= r=3j+1t(¢gi—3j),teR.
0 0

Note that Cﬁ = (2,2, —4)T =2(1, 1, —2)T. Hence, CP is given by

0 1
r=|0]4+u|l 1 |, ueR < r=4dk+u(i+j—2k),ueR.
4 —2

Part (c). Since C'P is perpendicular to BQ, we have Cﬁ . l@ = 0. Thus,

q
CP-BO=0—2[1]-|-3]20= ¢g—3+0=0— ¢=3
9 0
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Part (d). Let 6 be the acute angle between C'P and BQ).

in 6 ‘(1’ L-2)" = (e, 3 O)T) ‘(_6’ 20, 3~ Q)T‘ 5¢2 — 6q + 45
sinf = _ _ [P —6g+45
‘(1, 1, —2)T‘ ](q, -3, O)T( V6V/g? +9 6> + 54

X %k %k % X

Problem 3. Line [; passes through the point A with position vector 3i— 2k and is parallel
to —2i + 4j — j. Line [o has Cartesian equation given by xT_l =y=z+3

(a) Show that the two lines intersect and find the coordinates of their point of intersec-
tion.

(b) Find the acute angle between the two lines I; and /3. Hence, or otherwise, find the
shortest distance from point A to line [o.

(c¢) Find the position vector of the foot N of the perpendicular from A to the line ls.
The point B lies on the line AN produced and is such that N is the mid-point of
AB. Find the position vector of B.

Solution. We have

3 -2 1 2
li:r=1 0 ]4+AX]l 4 ]|,2eR, Lb:r=10 | +pul|l],ueR.
—2 -1 -3 1

Part (a). Consider [; = .

3 -2 1 2 2 -2 2
h=l = 0O |+X]| 4 = O | +pll] = pull]—X]| 4 =10
-2 -1 -3 1 1 -1 1
This gives the following system:
224+2u=2
—4A+ p=0
A+ p=1

which has the unique solution p = 4/5 and A = 1/5. Thus, the intersection point P has
position vector (3, 0, —2)7 + % (=2, 4, -1)T = é(137 4, —11)" and thus has coordinates
(13/5,4/5,—11/5).

Part (b). Let 6 be the acute angle between I; and ls.
T T
’(_27 47 _1)T‘ ‘(27 17 1)T’ 126

cos ) = = 6 =284.9° (1 d.p.).

Note that

AP:\/<157—3>2+<—§—0>2+<—§—(—2)>2: 3;:?

Since sinf = g—]}[, we have that AN = APsin6. Note that

2
0 (V126)" =1 125 55
SN ¢ = S1n arccos = = = .
V126 V126 V126 /6421
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Thus,
AN = Y2l 5V5 5
5 V621 6
The shortest distance between A and Iy is hence /2 units.

6

—
Part (c). Since N is on Iy, we have that ON = (1, 0, —=3)" + (2, 1, 1) for some real 4.
Additionally, since m 1 ls, we have m (2, 1, 1)T = 0. Note that

1 2 3 ~2+2p
AN=0ON-OA=[o0 |+pul1]-{o0o]=| =«
-3 1 -2 —1+p
Thus,
2 —242u 2
5
AN - |1] =0 — po (1) =0 = srou=0 = u=2.
1 —14+p 1
Hence,
1 2 16
1
ON = 0 +% e
-3 1 —13
Note that O—]>\7 = (ﬁg(ﬁ) Hence,
., . o (10 s 1 (7
O_B)ZQON—OAZ6 5 ) -lo]=5(>
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A9 Vectors Il - Planes

Tutorial A9

Problem 1. A student claims that a unique plane can always be defined based on the
given information. True or False? (Whenever a line is mentioned, assume the vector
equation is known.)

Statement T/F
(a) Any 2 vectors parallel to the plane and a point lying on the plane. False
(b) Any 3 distinct points lying on the plane. False
(c) A vector perpendicular to the plane and a point lying on the plane. True
(d) A line [ perpendicular to the plane and a particular point on [ lying on the True

plane.
(e) A line [ lying on the plane. False
(f) A line [ and a point not on [, both lying on the plane. True
(g) A pair of distinct, intersecting lines, both lying on the plane. True
(h) A pair of distinct, parallel lines, both lying on the plane. True
(i) A pair of skew lines both parallel to the plane. False
(j) 2 intersecting lines both parallel to the plane. False

* ok K % %

Problem 2. Find the equations of the following planes in parametric, scalar product and
Cartesian form:

(a) The plane passes through the point with position vector 7i + 2j — 3j and is parallel
to i+ 3j and 4j — 2k.

(b) The plane passes through the points A(2,0,1), B(1,—1,2) and C(1,3,1).

(c) The plane passes through the point with position vector 7i and is parallel to the
planer = (2—p+¢q)i+ (p+3¢)j + (-2 — 3¢)k, p,q € R.

(d) The plane contains the line [ : r = (—2i+ 5j — 3k) + A(2i +j + 2k), A € R and is
perpendicular to the plane 7 : r- (7i + 4j + 5k) = 2.

Solution.

Part (a). Parametric. Note that (0,4, —2)" | (0,2, —1)". Hence, the plane has
parametric form

7 1 0
r=| 2 | +A3|+ul|l 2 |, peR
-3 0 -1

Scalar Product. Note that n = (1,3,0)" x (0,2, -1)T = (-3,1,2)7 = d =
(7, 2, —3)T (=3, 1, 2)T = —25. Thus, the plane has scalar product form

-3
r- 1 = 2.
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Cartesian. Let r = (z, y, z)T. From the scalar product form, we have
=3 +y+2z=-25.

Part (b). Parametric. Since the plane passes through the points A, B and C, it is parallel
to both AB — — (1,1, —=1)" and AC = (=1, 3, 0)". Hence, the plane has parametric form

2 1 —1
r=|0]+Xl 1 |+l 3|, \peR
1 —1 0

Scalar Product. Note that n = (1,1, —=1)" x (=1, 3,0)"T = (3,1,4)"T = d =
(2,0, 1)T (3, 1, 4)T = 10. Thus, the plane has scalar product form

r-|1] =10.
4

Cartesian. Let r = (z, y, z)T. From the scalar product form, we have
3z +y+ 4z =10.

Part (c). Parametric. Note that the plane is parallel tor = (2, 0, —1)" +p (=1, 1, 0)" +
q(1,3, —3)T and passes through (7,0,0). Hence, the plane has parametric form

7 -1 1
r=(0)+A| 1 |4+pul|l 3|, pek
0 0 -3

Scalar Product. Note that (—1,1,0)" x (1,3, =3)7 = (=3, =3, —0)7 || (3, 3,4)".
We hence take n = (3, 3, 4)T, whence d = (7, 0, O)T -(3, 3, )T = 21. Thus, the plane has
scalar product form

Cartesian. Let r = (z, y, z)T. From the scalar product form, we have
3r + 3y + 4z = 21.

Part (d). Parametric. Since the plane contains the line with equation r = (-2, 5, —3) '+
A(2, 1, 2)T, A € R, the plane passes through (—2,5,—3) and is parallel to the vec-
tor (2, 1, 2)T. Furthermore, since the plane is perpendicular to the plane with normal
(7, 4, 5)T, it must be parallel to said vector. Thus, the plane has the following parametric

-2 2 7
r= |5 |+A|1])+uld], peR
-3 2 5

Scalar Product. Note that n = (2,1,2)" x (7,4,5)7 = (=3,4,1)7 = d =
(=2, 5, —3)T (=3, 4, 1)T = 23. Thus, the plane has scalar product form
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Cartesian. Let r = (z, y, z)T. From the scalar product form, we have

—3x +4y + z = 23.

* ok % % ok

Problem 3. The line [ passes through the points A and B with coordinates (1,2,4) and
(—2,3,1) respectively. The plane p has equation 3x — y + 2z = 17. Find

the coordinates of the point of intersection of [ and p,

(a)
(b) the acute angle between [ and p,
c)

(¢) the perpendicular distance from A to p, and
(d) the position vector of the foot of the perpendicular from B to p.

The line m passes through the point C' with position vector 6i + j and is parallel to
2j + k.

(e) Determine whether m lies in p.

. -—
Solution. Note that OA = (1, 2, 4)T and OB = —2,3,1)7, whence AB = (3, -1,3)".
Thus, the line ! has vector equatlon
1 3
r=|2]+X|-1],2eR
4 3

Part (a). Let the point of intersection of I and p be P. Consider [ = p

1 3 3
1
l=p = 21 +A1 -1 - -1 :17:>9+16)\:17:>)\:§.

4 3 2
Thus, OP = (1,2, 4)" + 1 (3, =1, 3)7 = (5/2, 3/2, 11/2)", whence P(5/2,3/2,11/2).
Part (b). Let 6 be the acute angle between [ and p.

6, -13)7-6, 12T 4

sinf = ’(37 = 3)T‘ ’(3, = 2)T‘ = o = 0 =78.8° (1d.p.).

1 The perpendicular distance from A to p is hence

Part (c). Note that AP = 5 (3, —1, 3T

‘%(3 1,373, 1, 2)T‘

8
‘(3a 715 2)—]—‘ \/ﬁ

units.

4P 5
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Part (d). Let F' be the foot of the perpendicular from B to p. Since F' is on p, we have
OT?‘ - (3, —1, 2)T = 17. Furthermore, since BF' is perpendicular to p, we have ﬁ =
An = A(3, =1, 2)7 for some A € R. We hence have OF = OB + BF = (-2, 3, )7 +
A(3, —1,2)". Thus,

9 3 3 -
sl ea(=1)| . [=1] 217 — —741an =17 — x= =,
1 2 2 7

Hence, OF = (-2, 3, 1) + 12(3,-1,2)" = 1(22,9,31)".
Part (e). Note that m has the vector equation

6 0
rm=|1]+X[2],2€eR
0 1
Consider r,,, - n:
6 0 3
Iy N = 114+A[2 l-1] =17
0 1 2

Since ry, -n =17 for all A € R, it follows that m lies in p.

k 3k ok ok ok

Problem 4. A plane contains distinct points P, (), R and S, of which no 3 points are
collinear. What can be said about the relationship between the vectors ]@, ﬁ and ]Tg ?

Solution. Each of the three vectors can be expressed as a unique linear combination of
the other two.

)k 3k ok ok ok

Problem 5.

(a) Interpret geometrically the vector equation r = a + tb where a and b are constant
vectors and ¢ is a parameter.

(b) Interpret geometrically the vector equation r - n = d, where n is a constant unit
vector and d is a constant scalar, stating what d represents.

(c) Given that b-n # 0, solve the equations r =a+tb and r-n = d to find r in terms
of a, b, n and d. Interpret the solution geometrically.

Solution.

Part (a). The vector equation r = a + tb represents a line with direction vector b that
passes through the point with position vector a.

Part (b). The vector equation r - n = d represents a plane perpendicular to n that has a
perpendicular distance of d units from the origin. Here, a negative value of d corresponds
to a plane d units from the origin in the opposite direction of n.

Part (c).
rrn=d = (a+th)-n=d = a-n+tb-n=d
= t_fd—a-n == r—a—i—id_a'nb
" b-'n N b-n

a+ dgz“ b is the position vector of the point of intersection of the line and plane.
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Problem 6. The planes p; and p; have equations r- (2, =2, 1) =1 and r- (=6, 3, 2)" =
—1 respectively, and meet in the line [.

(a) Find the acute angle between p; and ps.
(b) Find a vector equation for .

(c) The point A(4,3,c) is equidistant from the planes p; and pe. Calculate the two
possible values of c.

Solution.
Part (a). Let 6 the acute angle between p; and ps.

‘(27 _27 l)T : (_67 37 2)T) 16
cosf = ‘ = = = 6 =40.4° (1 d.p.).
(27 _2a ]-) ‘ ‘(_67 35 2) ‘

Part (b). Observe that p; has the Cartesian equation 2z — 2y + z = 1 and po has the
Cartesian equation —6x + 3y + 2z = —1. Consider p; = ps. Solving both Cartesian
equations simultaneously gives the solution

x 1 1 7
r=\y|=-¢ 41 +t(110],teR.
z 0 6

Part (c). Let Q be the point with position vector —& (1, 4, 0)". Then 1@ = —1(25, 22, 6c)".
Since @ lies on [, it lies on both p; and ps. Since A is equidistant to p; and p2, the per-
pendicular distances from A to p; and po are equal.

The perpendicular distance from A to p; is given by:

N
‘@ (2, -2, 1) ‘ 1] 1 (% 2 1
2 -2, 1)7] 6c) \ 1

Meanwhile, the perpendicular distance from A to ps is given by:

HQ-con 2] 4l AN L -1+ 2]
=z|—= - =-|- c|.
‘<_67 37 2)T’ f 6 6¢ 2 7

Equating the two gives

1 1

§|1—|—c| = ?|—14+2c| = [T+ Tc|=|-42+6¢|.
This splits into the following two cases:

Case 1. (T+7c)(—42+46¢) >0 = T+ Tc=—42+6c = c= —49.
Case 2. (T+7c)(—42+46¢) <0 = T+ Tc=—(—42+6¢c) = c= —35/13.
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Problem 7. A plane II has equation r - (2i 4 3j) = —6.

(a) Find, in vector form, an equation for the line passing through the point P with
position vector 2i 4 j + 4k and normal to the plane II.

(b) Find the position vector of the foot @ of the perpendicular from P to the plane II
and hence find the position vector of the image of P after the reflection in the plane

II.

(c) Find the sine of the acute angle between OQ and the plane II.
The plane II" has equation r - (i+j+ k) = 5.

in e position vector of the poin where the planes II, an e plane wi
d) Find th iti tor of th int A where the pl II, I’ and the pl ith
equation r - i = 0 meet.

(e) Hence, or otherwise, find also the vector equation of the line of intersection of planes
IT and IT'.

Solution.

Part (a). Let [ be the required line. Since [ is normal to II, it is parallel to the normal
vector of I1, (2, 3, O)T. Thus, ! has vector equation

2 2
Lir=[1]+2[3],2eRr
4 0

Part (b). Since @ is on II, 07)2 (2, 3, O)T = —6. Furthermore, observe that @ is also on
the line [. Thus, OQ = (2, 1, 4)T + A (2,3, O)T for some A € R. Hence,

9 9
00- 3] =-6 = |[1]+x
0 4

=—6 = 7T+13A=—6 = A=-1

S W N
S W N

Thus, 0Q = (2, 1, 47T — (2,3, 0)T = (0, -2, 4)".
Let the reflection of P in II be P’. Then

PG =QP — 0Q-0P=0P —00 = OF =200 - 0P.

——
Hence, OP' =2(0, =2, 4)" — (2, 1,4)" = (=2, =5, ).
Part (c). Let 6 be the acute angle between OQ and II.

‘(o, 2,47 (2, 3, O)T‘ 5
’(0, _2, 4)T’ ‘(2, 3, O)T‘ Y

sinf =

—
Part (d). Let OA = (z, y, z)'. We thus have the following system:

(z,y,2)"(2,3,0)T =—6 = 22+3y=—6
(x,y,z)T-(l,l,l)T:5 — rz+y+z=5
(z,9,2)"-(1,0,00T=0 = 2=0

—
Solving, we obtain x =0, y = —2 and z = 7, whence OA = (0, —2, 7)T.
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Part (e). Let the line of intersection of II and II' be I’. Observe that A is on IT and IT'
and thus lies on !’. Hence,

0
U':r=|-2]4+Xb, A €eR.
7

Since !’ lies on both II and II', b is perpendicular to the normals of both planes, i.e.
(2,3,0)" and (1,1, 1)". Thus, b= (2, 3,0)" x (1,1, 1) = (3, =2, —1)" and

0 3
Uir=-2]+X[-2],)eR
7 —1
k 3k %k %k %
Problem 8.
L M
"H G
6.
2m
D
C
ke J 2 m
A > B
’i 3 m

The diagram shows a garden shed with horizontal base ABCD, where AB = 3 m
and BC' = 2 m. There are two vertical rectangular walls ABFE and DCGH, where
AFE = BF = CG = DH = 2 m. The roof consists of two rectangular planes FF M L and
HGM L, which are inclined at an angle 6 to the horizontal such that tanf = %.

The point A is taken as the origin and the vectors i, j and k, each of length 1 m, are
taken along AB, AD and AFE respectively.

(a) Verify that the plane with equation r - (22i + 33j — 12k) = 66 passes through B, D
and M.

(b) Find the perpendicular distance, in metres, from A to the plane BDM.
(c¢) Find a vector equation of the straight line EM.

(d) Show that the perpendicular distance from C' to the straight line FM is 2.91 m,
correct to 3 significant figures.
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Solution.

Part (a). We have AB = (3, 0,0)T, BE' = AE = (0,0, 2)" and FG = AD = (0, 2, 0)"
Let T be_tl;e midpoint of FG. We have FT' = (0,1, 0)" and TM/FT = tanf = 3/4,
whence TM = (0, 0, 3/4)T. Hence,

3 0 0 0 12
1
AM=AaB+BE+FT+TM= o)+ o]+ 1]+ o =714
0 2 0 3/4 11
Consider AB - (22, 33, —12)T, AD - (22, 33, —12)" and AM - (22, 33, —12)7.
92 3 22
aB-[ 33 ] =10 33 | =66
12 o) \—12
22 0 22
AD-| 33 | =2 33 | =66
—12 o) \—12
2 (12 22
AM-| 33 | =5 (4| 33 |=66
—12 1) \-12

Since zﬁ, zﬁ and m satisfy the equation r - (22, 33, —12)T = 66, they all lie on the

plane with said equation.

Part (b). The perpendicular distance from A to the plane BDM is given by

‘(3, 0,0)7 - (22, 33, —12)T)
Perpendicular distance = ’zﬁ . fl‘ = = 06 m
(22, 33, —12)T‘ VIT17

Part (c). Observe that EM = AM — AE = 1 (12, 4, 3)T. Hence, the line EM has vector
equation

r=1{0 —l-/\(
2

Part (d). Note that EC' = AC — AE = (3,
to the line M is hence given by

, . The perpendicular distance from C'

BCx (12,437 4 [(3 12 L[ 1429

— 2 x[4a])l==][-33 — 291 m (3s.f).
)(12, 4, 3)T( 131\ 9 3 B\ 12 13
k ok ok ok ok

Problem 9. The planes m and 7y have equations
r+y—z=0and 2z —4y+2+12=0
respectively. The point P has coordinates (3,8,2) and O is the origin.

(a) Verify that the vector i+ j + 2k is parallel to both 7; and 2.
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(b) Find the equation of the plane which passes through P and is perpendicular to both
7 and y.

(c¢) Verify that (0,4,4) is a point common to both 7 and 79, and hence or otherwise,
find the equation of the line of intersection of 71 and o, giving your answer in the
formr =a+ A\b, A € R.

(d) Find the coordinates of the point in which the line OP meets ms.

(e) Find the length of projection of OP on .

Solution. Note that 7; and 7 have vector equationsr-(1, 1, —=1)T = 0 and r-(2, —4, 1)T =
—12 respectively.
Part (a). Observe that (1,1,2)"- (1,1, —1)" = (1,1, 2)7 - (2, =4, 1) = 0. Thus, the
vector (1, 1, 2)T is perpendicular to the normal vectors of both m; and 7 and is hence
parallel to them.

Part (b). Let the required plane be m3. Since 73 is perpendicular to both 71 and s,
its normal vector is parallel to both planes. Thus, n = (1, 1, 2)T = d = (3,8, 2)T .
(1,1, 2)" = 15. 73 hence has the vector equation

r-|1] =15.
2

Part (c). Since (0,4,4)T - (1,1, -1)" = 0 and (0,4, 4)" - (2, =4, )T = —12, (0,4,4)
satisfies the vector equation of both m; and 7o and thus lies on both planes.

Let | be the line of intersection of 7; and me. Since (0,4,4) is a point common
to both planes, [ passes through it. Furthermore, since [ lies on both 7 and mg, it
is perpendicular to the normal vector of both planes and hence has direction vector
(1, 1, —l)T x (2, —4, I)T =-3(1, 1, 2)T. Thus, [ can be expressed as

0 1
lir= 4] +A|1], eR
4 2

Part (d). Note that the line OP, denoted lpp has equation

3
lOP:r:N 8 7IU’ER‘
2

Consider the intersection between lpp and 7.

3 2 .
pl8] |4 =-12 = -2p=-12 = p=.
2 1

Hence, OP meets my at (3/2,4,1).
Part (e). The length of projection of OP on 7 is given by
1 LV sve

3
81 x 1 = — 5 =
2 -1 V3 -5 V3

OD x (1,1, -7 _ 1
‘(1, 1, —1)T‘ V3

= 5\/§ units.
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Problem 10. The line [; passes through the point A, whose position vector is 3i —5j — 4k,
and is parallel to the vector 3i 4+ 4j + 2k. The line /5 passes through the point B, whose
position vector is 2i 4+ 3j + 5k, and is parallel to the vector i — j — 4k. The point P on [y
and @ on [y are such that P() is perpendicular to both /1 and l,. The plane II contains
PQ and [;.

(a) Find a vector parallel to PQ.

(b) Find the equation of II in the forms r =a+ Ab+ uc, A,y € Rand r-n = D.

)
)
(c) Find the perpendicular distance from B to II.
(d) Find the acute angle between II and ls.

)

(e) Find the position vectors of P and Q.

Solution.
Part (a). Note that /; and I have vector equations

3 3 2 1
r=|-5|+A[4], A eRandr= (3| +p|-1],preR
—4 2 5 —4

respectively. Since PQ is perpendicular to both I; and g, it is parallel to (3, 4, 2)T X
(1, =1, =4)T = (=14, 14, -7)T = =7(2, =2, )",

Part (b). Since II contains PQ and Iy, it is parallel to (2, —2, 1)T and (3, 4, 2)T. Also
note that II contains (3, —5, —4)". Thus,

3 2 3
Hir=|-5]1+A[-2|4+pld],peR.
—4 1 2

Note that (2, =2, 1)7 x (3,4, 2)7 = (=8, =1, 14)7 || (8, 1, —14)". We hence take n =
(8,1, —14)", whence d = (3, =5, —4)T - (8, 1, —14)T = 75. Thus, |Pi is also given by

8
II:r- 1 =T75.
—14

Part (c). Note that jﬁ = (-1, 8, 9)T. Hence, the perpendicular distance from B to II is
given by

T T
(L8 9T, 1 -197| 1y
= units.

‘(8, 1, —14)T‘ V261

Part (d). Let 6 be the acute angle between II and [5.

‘(17 -1, _4)T ’ (87 1, _14)T‘

7 o
-1 —aT[[s 1 1T VB — 6=66.8 (1 dp.).

sinf =

Part (e). Since P is on lj, we have 0P = (3, =5, —4)T + A (3,4, 2)" for some \ € R.
Similarly, since Q is on l5, we have Oﬁ = (2, 3, 5)T (1, -1, 4)T for some p € R. Thus,

3 +
1 3 |
PO=00—-0P=|8 | =x[4a]+ul-1
9 2
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Recall that PQ is parallel to (2, —2, 1)T. Hence, @ can be expressed as v (2, —2, 1)T
for some v € R. Equating the two expressions for ]@, we obtain

—1 3 1 2 3 ~1 2 ~1
8| —ala)+pl-1|=v|-—2| = A4]+p| 1 |+v|-2]=]23
9 2 —4 1 2 4 1 9

This gives the following system:

3N— p+2v=-1
AN+ p—2vr=2_8
2 +4p+ v=9

which has the unique solution A =1, u = 2 and v = —1. Thus,

3 3 6 2 1 1
ob=|-5|+a]=(-1], 00=|3])+2(-1]=]1
4 2 2 5 4 -3

X %k Xk % X

Problem 11. The equations of three planes pi, ps and p3 are

20 =5y + 32 =3
3x+ 2y —5z2= -5
S5x + Ay + 17z = p

respectively, where A and p are constants. The planes p; and ps intersect in a line [.

(a) Find a vector equation of [.
(b) Given that all three planes meet in the line [, find A and pu.

(c) Given instead that the three planes have no point in common, what can be said
about the values of A and u?

(d) Find the Cartesian equation of the plane which contains [ and the point (1,—1,3).

Solution.

Part (a). Consider the intersection of p; and pa:

2 -5y +3z2=3
3z + 2y — 52 = =5

The above system has solution
r=—-14+t y=-14+t, 2z=t
for all t € R. Thus, the line [ has vector equation

-1 1
l:r=|-1]1+¢t|1], teR.
0 1
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Part (b). Since all three planes meet in the line [, [ must satisfy the equation of ps.
Substituting the above solution to the given equation, we have

5(—1+t)+M=1+8)+1Tt=p = (224Nt — 5+ A+ pu) = 0.
Comparing the coefficients of ¢ and the constant terms, we have the following system:
A +22=0
Adpu+ 5=0

which has the unique solution A = —22 and p = 17.

Part (c). If the three planes have no point in common, we have
(224Nt —(B+A+p) #0
for all t € R. To satisfy this relation, we need 22+ A = 0 and 5+ A + u # 0, whence

A= —-22and p # 17.

Part (d). Note that (-1, —1, O)T lies on [ and is thus contained on the required plane.
Observe that (—1, —1,0)" — (1, =1, 3)" = (=2, 0, —3)". Thus, the required plane is
parallel to (1, 1, 1)T and (-2, 0, —3)T and hence has vector equation

—1 1 —2
r=—-1|+X|1|+up] 0|, AueR
0 1 -3

Observe that n = (1, 1, 1)T x (=2, 0, 3)T = (-3, 1, 2)T, whence d = (-1, —1, O)T .
(-3, 1, 2)T = 2. The required plane thus has the equation

Let r = (z, v, z)T. It follows that the plane has Cartesian equation

=3z +y+2=2

k 3k ok ok ok

Problem 12. The planes p; and ps, which meet in line [, have equations x — 2y + 2z = 0
and 2z — 2y 4+ z = 0 respectively.

(a) Find an equation of [ in Cartesian form.
The plane p3 has equation (x — 2y + 22) + ¢(2x — 2y + 2z) = d.
(b) Given that d = 0, show that all 3 planes meet in the line [ for any constant c.

(c) Given instead that the 3 planes have no point in common, what can be said about
the value of d?

Solution.
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Part (a). Consider the intersection of p; and py. This gives the system

T—2y+22=0
20 —2y+ 2=0

which has solution x = ¢, y = %t and z = t. Thus, [ has Cartesian equation

T=_-y =2z

3
Part (b). When d = 0, p3 has equation

(x —2y +22)+c(2z — 2y +2) = 0.

Observe that the line [ satisfies the equations x — 2y 4+ 2z = 0 and 2z — 2y + z = 0. Hence,
[ also satisfies the equation that gives ps for all ¢. Thus, ps contains [, implying that all 3
planes meet in the line [.

Part (c). If the 3 planes have no point in common, then [ does not have any point in
common with p3. That is, all points on [ satisfy the relation

(x — 2y +22) +c(2z — 2y + 2) # d.

Since x — 2y + 2z = 0 and 2z — 2y + z = 0 for all points on [, the LHS simplifies to 0.
Thus, to satisfy the above relation, we require d # 0.

* ok x % ok

Problem 13.

Screen

A B °F

A right opaque pyramid with square base ABC D and vertex V is placed at ground level
for a shadow display, as shown in the diagram. O is the centre of the square base ABCD,
and the perpendicular unit vectors i, j and k are in the directions of zﬁ, AD and 51_)/
respectively. The length of AB is 8 units and the length of OV is 2h units.

A point light source for this shadow display is placed at the point P(20,—4,0) and a
screen of height 35 units is placed with its base on the ground such that the screen lies on
1

a plane with vector equation r- [ 0 | = «, where a < —4.
0
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(a) Find a vector equation of the line depicting the path of the light ray from P to V
in terms of h.

(b) Find an inequality between « and h so that the shadow of the pyramid cast on the
screen will not exceed the height of the screen.

The point light source is now replaced by a parallel light source whose light rays are
perpendicular to the screen. It is also given that h = 10.

(c) Find the exact length of the shadow cast by the edge V B on the screen.
A mirror is placed on the plane V BC to create a special effect during the display.

(d) Find a vector equation of the plane VBC and hence find the angle of inclination
made by the mirror with the ground.
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Solution.
Part (a). Note that OV = (0, 0, 21)T and OP = (20, —4, 0)7, whence PV = (—20, 4, 2h)T =
2(-10, 2, h)T. Thus, the line from P to V, denoted [py, has the vector equation

20 —10
lpy:r=|—-4]+A 2 , AER.
0 h

Part (b). Let the point of intersection between [py and the screen be I.

20 -10 1 50
—Al a2 || [0)=a = 20-100=a = A="7—
0 h 0

Hence, o1 = (20, —4, 0)T + 20-0 (-10, 2, h)T. To prevent the shadow from exceeding the

screen, we require the k-component of 07 to be less than the height of the screen, i.e. 35

units. This gives the inequality 20160‘ - h < 35, whence we obtain

350
h < .
20—«

Part (c). Since the light rays emitted by the light source are now perpendicular to the
screen, the image of some point with coordinates (a, b, ¢) on the screen is given by (a, b, ¢).
Thus, the image of B(4,—4,0) and V(0,0,20) on the screen have coordinates (a, —4,0)
and (a,0,20). The length of the shadow cast by V B is thus

V(e —a)2 4 (=4 —0)2 + (0 — 20)2 = 41/26 units.

Part (d). Note that BV = 4(-1,1,5)" and BC = 8(0,1,0)". Hence, the plane VBC
is parallel to (—1, 1, 5)" and (0, 1, 0)". Note that (=1, 1,5)" x (0, 1, 0)" = — (5, 0, 1)".
Thus, n = (5, 0, 1)7, whence d = (0, 0, 20)T - (5, 0, 1)T = 20. Thus, the plane V BC has
the vector equation

Observe that the ground is given by the vector equation r - (0, 0, 1)T = 0. Let 0 be the
angle of inclination made by the mirror with the ground.
T
: 1
cosf = ( (0. 0, = — 0 ="78.7° (1 d.p.).

T ‘ V26
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Self-Practice A9

Problem 1. The position vectors of the vertices of A, B and C of a triangle are a, b and
c respectively.

If O is the origin, show that the area of triangle OAB is 1 |a x b| and deduce an
expression for the area of the triangle ABC.

Hence, or otherwise, show that the perpendicular distance from B to AC is

laxb+bxc+cxal
c —a '

Solution. Let 6 be the angle between OA and OB. Then

[Aauﬂ:%mAmﬂﬂmw:%Viﬂpﬁsme:%mxby

Similarly, let ¢ be the angle between AB and AC. Then

IAABC] = MBXACﬁm¢:iHE§x23w:%Kb—a)x@—aﬂ

1

2

1 1

:§|b><c—a><c—b><a+a><a|:§\b><c—a><c—b><a|
1

:§|a><b—i—b><c+c><a|.

Let h be the perpendicular distance from B to AC. Then

1 2[AAB
[AABC] = =(AC)(h) = h= [ C]:\aXb—i-bxc—i—cxa]'
2 ¢ c—al

* ok k% ok

ProE}em 2. Points A, B, C and D have position vectors, relative to the origin O, given
by OA — i+2j—k, OB — —i+2j + ck, OC = 2i +j + 4k and OD = i+ j +k, where ¢ is
a constant. It is given that OA and OB are perpendicular.

(a) Find the value of c.
(b) Show that OA is normal to the plane OBC.
(c) Find an equation of the plane through D and parallel to OBC.

Also, find the position vector of the point of intersection of this plane and the line AC.
Find the acute angle between the plane OBC and the plane through D normal to OD.

Solution.
Part (a). Since OA and OB are perpendicular, we have

1 1
OA-0oB=[2] |2 |=3-c=0—=— c=3
1

Part (b). The normal vector of the plane OBC' is given by

1 2 1
oBxoC=|2|x[1]=52| =504,
3 4 1

hence 0—121 is normal to the plane OBC.
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Part (c). Note that

1 1 1
-1 1 -1

Note that the line AC has vector equation

1 1 1 1
—
r—0A+xaC=| 2 |+al{1l=(2]l=[2]+r[=1], rer
-1 4 -1 -1 )
When this line intersects 11, we have

1 1 1 9

2 1 +2] -1 - 2 :6—6)\:2:>)\:§.

-1 5) -1

Thus, the point of intersection has position vector

Let 0 be the acute angle between the plane OBC' and the plane through D normal to
OD. Then

‘(1, L0712 —1)T‘ 5
’(1, 1, 1)T’ ‘(1, 2, —1)T) VNG

cosf =

— 0 =61.9° (1d.p.).

* ok % % ok

Problem 3. The equations of the line I; and the plane II; are as follows:

5 1
Lir=[-1]+X|-1], XeR,
4 0

I :za+2=5a+4, acRT.
(a) If the angle between [; and II; is /6, show that a = 1.
Using the value of a in (a),
(b) Verify that I; and II; intersect at the point A(5,—1,4).
(
(

)

c¢) Given that C(7,—3,4), find the length of projection of ﬁ on II;.

d) Find the position vector of N, the foot of perpendicular of C' to II;.
)

(e) Point C’ is obtained by reflecting C' about IT;. Determine the vector equation of the
line that passes through A and C’.
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Solution. Note that II; has vector equation

II,: r- = 5a + 4.

— O Q

Part (a). Since the angle between [/; and II; is 7/6, we have

1 T ‘(15 -1, O)T ’ (aa 0, 1)T‘ a
— =sin— =

2 6 ‘(1, -1, o)T’ . ’(% 0, 1)T) - NNk

which yields a = 1.
Part (b). (5,—1,4) is clearly on [;. Since

5 1
—1]-[0o] =9=501)+4,
4 1

it follows that (5, —1,4) is also on II;. Thus, {; and II; intersect at (5, —1,4).
Part (c). Note that

(T 5 2
AC=0C-0A=-3]|-|-1|=[-2
4 4 0

The length of projection of B on II; is hence given by

‘(2, —2,0)7 x (1, 0, 1)T‘ B ‘(—2, 2, 2)T‘ B
((1, 0, 1)T‘ N ‘(1, 0, 1)T( e

Part (d). Observe that 5]7 is parallel to the normal vector of 111, so

7 1
ON=0C+CN=|-3)|+ul0
4 1
for some p € R. Since N lies on II;, we have
7 1 1
3] 4+pl0 |0 =114+2u=9 = pu==-1.
4 1 1
Thus, the position vector of IV is
7 1 6
ON=|[-3|-{0o]=[-3
4 1 -3
Part (e). By the midpoint theorem,
e 6 7 5
oc+0C"  —
O_Nf:% — 0C'=20N-0C=2-3|=(-3]=[-3

3 4 2
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Thus,
5 5 0
—_— -
A =00 —0h=|-3|-|-1]==2(1],
2 4 1

hence the vector equation of the line AC” is given by

5 0
r=|—-1|+v|1l], vekR.

4 1

%k ok k%

Problem 4. The equation of the plane IIy is z +y — 2z = 3.

(a) Find the vector equation of the line /1, which lies in both the plane II; and the yz
plane.

(b) Another plane II contains the line lo with equation x = 1, % = z and is perpen-

dicular to II;. Find the equation of the plane Il in scalar product form. Determine
whether [y lies on Ils.

Solution. Note that the vector equations of II; and the yz plane are

1 1
II: r-| 1 ] =3 and r-{0] =0
-2 0
respectively.
Part (a). Note that
1 1 0 0
1] x|0l=1-2]=—-]2
-2 0 -1 1

Since (0,1, —1) lies on both II; and the yz plane, it follows that the vector equation of Iy
is

0 0
h: r=[1]+x[2], rer
-1 1
Part (b). Let the normal vector of Il be (x, y, 2)", so it has vector equation

for some constant d.
The vector equation of [5 is

1 0
lo: r=-1|4+pl2], pekR.
0 1

Since lo lies on Iy, for all 4 € R, we must have

1 0 T
1| +pul2 |y =d.
0 1 z
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This simplifies to
(z—y)+uQy+2)=d

whence we conclude that 2y + 2z = 0 and © — y = d. The vector equation of Il hence
updates as
x
Iy: r- Y =T —y.
—2y

Since II; and IIy, we have that

T ’(17 1, _2)T ’ (.’E, Y, _Qy)T‘
0=cos— = — x+ 5y =0.

‘(1» 1, —1)T( ‘(ﬂz Y, —2y)T’

[\

Thus, the normal vector is

T -5y -5
y |=1vy |=y|l
—2y —2y -2

Taking y = 1, we get x = —5, so d = x — y = —6. Thus, the vector equation of Il is

Note that [ is parallel to ls. Since ls lies on Ilo, this implies that [ is parallel to 1ls.
Since

it follows that (0,1, —1) does not lie on Iy, thus /3 does not lie on II,.
ko K kK
Problem 5. The lines /1 and I intersect at the point P with position vector i+ 5j + 12k.

The equations of [; and Iy are r = (1 +3A\)i+ (5+2M\)j+ (12 -2 )k and r = (1 +8u)i+
(5+ 11p)j + (12 4 6 )k respectively, where A and p are real parameters.

(a) Find an equation of the plane II;, which contains /; and I in the form r - n = d.

II, and II3 are two planes with equations 2x 4+ az = b and x — 3y — z = 7 respectively,
where a and b are constants.

(b) Find the line of intersection between II; and IIs.
(¢) (i) Find the condition satisfied by a if the three planes II;, IIy and II3 intersect at
one unique point.
(ii) Given that all three planes meet in a line [, find a and b.

iii) Given instea at the three planes have no point in common, what can be sai
1) Gi instead that the three pl h point i hat b id
about the values of a and b7
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Solution. Rewriting, we see that the equations of I; and Iy are

1 3
Lh: r=[5]+A| 2|, AeR,
12 -2
1 8
lb: r=[5|4+plll]), pek
12 6
Part (a). Note that
3 8 34 2
2 | x |11 ) =|-34] =17 -2
-2 6 17 1
Thus, the equation of II; is
2 1 2
Im: r-(-2]=15 -2 =4
1 12 1

Part (b). Note that IT3 has vector equation

1
Hg . r- -3 =1.
-1

By inspection, we see that (—1/2,—3/2,0) lies on both II; and II3. Since

2 1 5
2| x|{-3]=131],
1 -1 —4

the vector equation of the line of intersection [ is

1 1 5
r:—i 31 4+v| 3|, veR
0 —4

Part (c)(i). If the three planes intersect at a common point, it must be that [ intersects
II> at a single point. Consider now the intersection between [ and Ils:

1 1 ) 2
—=13]+v] 3 {0 =-14+v(10—4a) =b.
2
0 —4 a

In order for this equation to have a unique solution, we must be able to write

b+1
V=—
10 — 4a

i.e. 10 —4a # 0. Thus, so long as a # 5/2, the three planes will intersect at a unique
point.
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Part (c)(ii). If the planes intersect at a common line, then [ must lie on Ily. Thus,
—14+v(10—4a) =b

must hold true for all v € R. This can only happen when 10 —4a = 0 and b = —1. Hence,
the three planes meet in a line when a = 5/2 and b = —1.

Part (c)(iii). The complement of (a # 5/2) or (a = 5/2 and b = —1) is (a = 5/2 and b #
—1), which corresponds to the case where the three planes neither meet in a point nor in
a line, i.e. they have no common point.

* ok k% ok

Problem 6. The point A and B have position vectors 3i+ j and 3i+ 3j respectively. The
line [; and the planes II; and II; have equations as follows:

2 1 0
—
lh:r=0A4a| 1 |, TIi:z422=3, Ie:r=A|1|+pull],
-1 0 1

where a, A and p € R.
It is given that the planes II; and Ils intersect in the line lo and B lies on [s.

(a) Find a vector equation of the line lo and show that the line Iy is parallel to the line
1. Hence, find the shortest distance between the lines 1 and Is.

(b) The plane II3 is parallel to the plane I and is equidistant to both point A and the
plane ITs. Show that the equation of the plane II3 is given by r- (i—j+k) = 1. Find
the position vector of the foot of perpendicular from the point A to the plane II3.

Solution. Note that

1 0 1
1 x[1]=[-1],
0 1 1
hence Ils has vector equation
1
HQ r- -1 =0
1
Part (a). Note that
1 1 2
Ol x|—-1] = 1
2 1 —1
Thus, the equation of Iy is
3 2
Iy r=|3]+¢tl 1], teR
0 -1

Since Iy and lo have the same direction vector, they are parallel. The shortest distance
between them is

ABx 21, -1 [0,20"7x21 -0 |20 -9T g .
‘ ’ ’ ‘ ’ \fé)\/?umts.

‘(2, 1, —I)T‘ ‘(2, 1, —1)T‘ )(2, 1, -7
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Part (b). Let A’ be the reflection of A in II3. Let M be foot of perpendicular from A to
II3, so that it is the midpoint of AA’. By the midpoint theorem,

— —)/

Since II3 is parallel to Ilg, it is normal to (1, —1, 1)T. Thus, its vector equation is

1 1 1 1

_, 1| =— —

My: r-|-1|=0M-[-1|=2|0A-|-1]|+04 |-1]]| =
1 1 2 1 1

(2+0) =1,

N =

where we used_t}>1e fact that A’ lies on IIy and M lies on Il3.
Note that AM is parallel to the normal vector (1, —1, 1)T, S0

3 1
OM=0A+AM = (1] +s[ -1
0 1

for some s € R. Since M lies on II3, we must have

3 1 1 ,
L) +s|=1]] [ -1]=243s=1 = s=—2.
0 1 1
Thus,
3 1 8
oM = |1 —% 1 :% 4
0 1 1
k ok ok ok ok

Problem 7. The planes pi, p2 and ps have equations © = 1, 2z + y + az = 5 and
x4+ 2y + z = b, where a and b are real constants. Given that p; and ps intersect at the
line [, show that the vector equation of [, in terms of a, is r = i+ (3 — Aa)j + Ak, where A
is a real parameter.

(a) The acute angle between [ and p3 is 60°. Without using a calculator, find the possible
values of a.

(b) Given that the shortest distance from the origin to p3 is v/6/3 and without solving
for the value of b, determine the possible position vectors of the foot of perpendicular
from the origin to ps.

(¢) What can be said about a and b if p;, po and ps do not have any points in common?

Solution. Note that p;, ps and p3 have vector equations

1 2 1
pr: r- |0 =1, pa: r-|1] =5, ps: r-|2] =hb
0 a 1

Consider the intersection of p; and ps. Substituting x = 1 into the equation for po, we
get y = 3 — az. Thus,

1 1 1
l: r=|yl=1|3—az]=1|3]l4+2z|—-al=1|3]4+A|—-a],
z 0 0

where A = z is a real parameter.
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Part (a). We have

v ‘(07 —a, )T -(1, 2, 1)T) |1 —24]
o = ‘(07 a, 1)T‘ ‘(1’ 2. 1)T‘ Va2 +1v6

This yields

3
11— 2al :E\/az—kl — (1-2a)%=

N} N}

(a2 + 1) ,
which simplifies to

a>+8a+7=(a+T7)(a+1)=0.
Thus, the possible values of a are a = —1 or a = —7.

Part (b). Let N be the foot of perpendicular from the origin to p3. Then |ON| =
s(1,2,1)" for some s € R. The given condition implies

1
6 1
YO _oN| =|s (2] | = 1s1V6 = 1s1= 1.
1

so s = +1/3, thus
— 1

1 [
ON=-(2] o ON=-2[2].
3 \1 3\1

Part (c). If the three planes do not have any points in common, it must be that [ does
not intersect p3. Thus,

1 0 1
3l +Al—all|l- 2| =7T+AX1—2a)#b
0 1 1

for all A € R. This implies that 1 —2a =0soa=1/2, and b # 7.

* ok k% ok

Problem 8 (). The points A and B have position vectors a and b respectively. The

plane 7, with vector equation r = b+ Au+pv, where A and p are real parameters, contains
B but not A.

(a) Show that the perpendicular distance of A from 7 is p, where

(axv) - (b—a)|
lu x v|

p:

(b) The perpendicular from A to m meets 7w at C, and D is the point on AB such that
CD is perpendicular to AB. Show that AD = p?/AB and hence, or otherwise, show
that the position vector of D is

a+(b€ﬂ>ab®.

In the case where a = —i+7j+8k, b = 2i+7j+ 5k, u = i—2j+2k and v = 3i+2j+ 2k,
find the value of p, and show that

8v2 4
o=t 3y,

—
where x and y are the unit vectors of C@ and C A respectively.
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Solution.

Part (a). Note that the normal vector of 7 is n = u x v. Thus, the perpendicular distance
of A from 7 is
nxAB  |(uxv)-(b—a)|

n| ux v

p =
Part (b).

A

B C

Consider the above diagram. Observe that AACB is similar to AADC, so

AD AC AC?
ac i — Y=am

But AC is the perpendicular distance from A to 7, so AC = p and AD = p*/AB as
desired.

Note that
AD p?

AB ~ AB?’

thus
AD AD 1 1 p?

DB~ AB-AD ~ ABJAD -1~ AR 1 AB? - p*

Thus, by the Ratio Theorem,

O—D>:p2b+(ABQ—p2)a:ABQa+<p)Q(b_a):a+< P )2(b_a)'

p? + (AB? — p?) AB? AB b — a|
We have
1 3 2 2 1 1
uxv=|-2|x[2] =41 and AB= |7 7)=3[0].
2 2 2 5 8 1
thus
12 ‘(—2, 1,2)7 x (1,0, —1)T‘
b= =4 and  AB=|4B|=3/2
4 ‘(72, 1, 2)T)
This gives
AD p?

2 16 8
DB~ AB?— 2 3v2 0=5=7

By the Ratio Theorem,

H
o3 SCBE+CA _s

5 —§(CB)x+é(CA)y.
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Note that CA = p = 4. Meanwhile, using the Pythagorean theorem, we see that

2
AB%? = BC? + CA? — CB2 = AB? - CA? = (3\/5) 42—,

SO

@:8\9/5)(_'_;1},.
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Assighment A9

Problem 1. The equation of the plane II; is y + 2 = 0 and the equation of the line [ is

=5 _ y—=2 _ 2-2 .
52 =45 = %3=. Find

a) the position vector of the point of intersection of [ and II,

(a)

(b) the length of the perpendicular from the origin to I,

(c) the Cartesian equation for the plane ITs which contains [ and the origin,
)

e acute angle between the planes II; an 2, giving your answer correct to the
d) th t le bet the pl II dII ivi t to th
nearest 0.1°.

Solution. Note that IT; has equation r- (0, 1, 1)T = 0 and [ has equation r = (5, 2, 2)T +
A2, -1, 3T, AeR.

Part (a). Let P be the point of intersection of II; and I. Then OP = (5,2,2)" +
A(2, =1, 3)7 for some A € R. Also, oP - (0,1, 1)T = 0. Hence,

5 2 0
214+ -1 1] =0 = 442 =0 = A= -2.
2 3 1
Thus,
) 2 1
O?: 2 =-21-1]1=1] 4
2 3 —4

Part (b). The perpendicular distance from the origin to [ is

‘(5, 2,2)" x (2, -1, 3)T‘ 1 8 /266 ‘
= —11 || = —— = v 19 units.
@ -1,3)| VIR g ]| VI

Part (c). Observe that II, is parallel to (5, 2, 2)" and (2, —1, 3)". Thus, n = (5, 2, 2)" x
(2, —1, 3)T = (8, —11, —9)T. Since II5 contains the origin, d = 0. Hence, IIs has vector
equation r - (8, —11, —9)T = 0, which translates to 8z — 11y — 9z = 0.

Part (d). Let the acute angle be 6.

T T
‘(0, 1,17 (8, ~11, —9) ‘ o
‘(07 1a 1)T‘ ‘(87 *11’ 79)1—‘ \/i 266

cosf =

— 6 =29.9° (1 d.p.).

k ko ok ok

Problem 2. The plane IT; has equation r - (—i + 2k) = —4 and the points A and P have
position vectors 4i and i 4+ «j + k respectively, where o € R.

(a) Show that A lies on IIj, but P does not.
(b) Find, in terms of «, the position vector of N, the foot of perpendicular of P on II;.

The plane Il5 contains the points A, P and N.

(c) Show that the equation of Il is r- (2ai+5j+ ak) = 8« and write down the equation
of [, the line of the intersection of II; and Il.
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The plane I3 has equation r - (i + j + 2k) = 4.

(d) By considering I, or otherwise, find the value of v for which the three planes intersect

in a line.
Solution. Note that IT; : r- (=1, 0, 2)T = —4, OA = (4,0, 0)T and OP = (1, a, 1)7
Part (a). Since OA - (=1,0,2)" = (4,0,0)T - (=1,0,2)T = —4, A4 lies on II;. On the

other hand, since oP - (=1,0,2)" = (1, o, 1)7 - (=1, 0, 2)7T =1 # —4, P does not lie on
II;.

Part (b). Note that NP = A(=1,0,2)" for some A € R, and ON - (-1,0,2)7 = —4.
Hence,

1 -1
NP=0P-0ON=|a|-0ON=x[0
1 2
Thus,
N ] [t ~1\ /-1
al-ON|-[o]=x[0o] - [0] = 1-(-4=51 = rx=1
1 2 2 2

Hence, ]@ = (-1, 0, 2)T, whence O—]\; O? ]W’ (2, a, — )T

Part (c). Note that II, is parallel to NP = (-1,0,2) and AN = ON — OA =
(=2, a, —=1)T. Since (=1, 0, 2)" x (=2, a, =1)T = — (2, 5, a)', we take n = (2a, 5, )T,
whence d = (4, 0, O)T-(2a, 5, a)T = 8a. Thus, I, has vector equation r- (2c, 5, a)T = 8«
which translates to r - (2ai + 5j + ak) = 8a.

Meanwhile, the line of intersection between II; and Iy has equation

4 -2
|0l +pul o), weR.
0 -1
Part (d). If the three planes intersect in a line, they must intersect at {. Hence, [ lies on
I13.
4 —2 1
0l +pn| o N1l =4 = 4+ (a—4)p=4 = (a—4)p=0.
0 -1 2

Since (v — 4)p = 0 must hold for all p € R, we must have o = 4.

k 3k ok ok ok

Problem 3. When a light ray passes from air to glass, it is deflected through an angle.
The light ray ABC' starts at point A(1,2,2) and enters a glass object at point B(0,0,2).
The surface of the glass object is a plane with normal vector n. The diagram shows a
cross-section of the glass object in the plane of the light ray and n.

A
n
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(a) Find a vector equation of the line AB.

The surface of the glass object is a plane with equation x 4+ z = 2. AB makes an acute
angle # with the plane.

(b) Calculate the value of 6, giving your answer in degrees.

The line BC' makes an angle of 45° with the normal to the plane, and BC' is parallel to
the unit vector (—=2/3, p, ¢)".

(c) By considering a vector perpendicular to the plane containing the light ray and n,
or otherwise, find the values of p and q.

The light ray leaves the glass object through a plane with equation 3x + 3z = —4.
(d) Find the exact thickness of the glass object, taking one unit as one cm.
(e) Find the exact coordinates of the point at which the light ray leaves the glass object.

Solution. Let Il be the plane representing the surface of the glass object.
S
Part (a). Note that AB = OB — OA = (0,0, 2)T — (1,2,2)7 = — (1, 2, 0)7. Hence,

lAB:I':

N OO

1
“al2], reRr.
0

Part (b). Observe that Il has equation r - (1, 0, 1)7 = 2. Hence,

‘(1, 0, )7 (1, 2, o)T’ .
1,0, 1)7| |1, 2, 0)7] VNG

sinf = = 0 ="71.6° (1 d.p.).

Part (c). Since line BC makes an angle of 45° with ng,

sin45° = — —

‘(1, 0, 1)T‘ ‘(_2/37 D, q)T‘ V2 W

(1,0, )7 (=2/3,p, )| 1 lg—2/3] ‘ 2

Hence, ¢ = —1/3. Note that we reject ¢ = 5/3 since (—2/3, p, q)T is a unit vector, which
implies that |q| < 1.

Let II;, be the plane containing the light ray. Note that 11y is parallel to 1@ and B?
Hence, ny, = (1, 2, O)T x (—2/3, p, q)T = % (6q, —3q, 3p + 4)T. Since II;, contains n¢g, we
have that ny | ng, whence ny, - ng = 0. This gives us

6q 1 1 9
-3¢ |-10 :0:>6q+3p+4:0:>6(—>+3p+4:0:>p:—.
3 3

3p+4 1

Part (d). Let IIj; be the plane with equation 3z + 3z = —4. Observe that Il is parallel
to ITj,. Also note that (—4/3,0,0) is a point on IIj,. Hence, the distance between Il and
II;, is given by

2= (=4/3,0,0T- (1,0, )| g

= c1m.

‘(1, 0, 1)T’ 32
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Part (e). Observe that (—2/3, p, q)' = (=2/3, —=2/3, —1/3)" = -1(2, 2, 1)T, whence
the line BC has equation r = (0, 0, 2)T + w1 (2, 2, 1)T, i € R. Let P be the intersection
between line BC and IIj,. Also note that OP = (0, 0, DT+ u(2,2,1)7 for some p € R,
and (ﬁ’ - (3,0, 3)T = —4. Hence,

0 2 3 10
o) +pul2]]| [0)]=-4 = 6-9p=-4— p=—"—.
2 1 3 )

Hence, OP = (0, 0, 2)7 — 02,2, 1)" = (~20/9, —20/9, 8/9)". The coordinates of the
point are hence (—20/9, —20/9.8/9).
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A10.1 Complex Numbers - Complex
Numbers in Cartesian Form

Tutorial A10.1

Problem 1. Given that z = 3 — 2i and w = 1 + 4i, express in the form a + bi, where
a,beR:

(e) 2
Solution.
Part (a).
24 2w=(3—2i)+2(1+4i)=3—2i+2+8i =5+ 6i.
Part (b).
2w = (3—2i)(1+4i) =3+ 12i — 2i +8 = 11 + 10i.
Part (c).
2 3-2i  (3-2i)(1-4i) 3-12i-2i—-8 514 5 14,

w 1+4i (1+4i)(1—4Q) 12+42 17 17 17
Part (d).

(w —w*)? = [2Im(w) i]® = (81)3 = —512i.
Part (e).
=320t =314+4-3%(-2i)+6-3%(—2i)> +4-3(-2i) + (-2i)*
= 81 — 216i — 216 + 96i + 16 = —119 — 120i.

k ok ok ok ok

Problem 2. Is the following true or false in general?

(a) Im(zw) = Im(z) Im(w)

(b) Re(zw) = Re(z) Re(w)
Solution. Let z = a+bi and w = ¢+di. Then zw = (a+bi)(c+di) = (ac—bd)+ (ad+bc)i.
Part (a). Observe that

Im(zw) = ad 4 be # bd = Im(z) Im(w) .

Hence, the statement is false in general.
Part (b). Observe that

Re(zw) = ac — bd # ac = Re(z) Re(w) .

Hence, the statement is false in general.
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Problem 3.

(a) Find the complex number z such that 222 =1+ 1i.

(b) Given that v = 2+ 1 and v = —2 + 41, find in the form a + bi, where a,b € R, the
complex number z such that % = % + %

Solution.
Part (a).
z—2 : : . 2.
=141 = 2-2=z+4+1iz = iz=-2 = z=——- =21
z i
Part (b).
11 1 1 uv (24 1)(—2+4i) —-8461 6 8,
z u ju+1/v u+v (2+1)+(—2+4i) 51 5 5
%k ok kK

Problem 4. The complex numbers z and w are 1 + ai and b — 2i respectively, where a
and b are real and a is negative. Given that zw* = 8i, find the exact values of a and b.

Solution. Note that

2w* = (1+ai)(b+2i) = (b—2a) + (2 + ab)i.
Comparing real and imaginary parts, we have b —2a = 0 = b = 2a and 2 + ab = 8.
Hence, 2a® = 6, giving a = —v/3 and b = —2/3.

k 3k ok ok ok

Problem 5. Find, in the form x + iy, the two complex numbers z satisfying both of the
equations
4
=—+4+—-i and zz*=05.

z 5 5
Solution. Multiplying both equations together, we have 22 = 3 + 4i. Let z = = + iy,
with z,y € R. We thus have 22 = 22 — y% 4+ 2zyi = 3 +4i. Comparing real and imaginary
parts, we obtain the following system:

z 3

2?2 —y? =3, 2uy=A4

Squaring the second equation yields 22y = 4. From the first equation, we have 22 = 3+y2.
Thus, ¥’ (3+¢y?) =4 = 3> =1 = y =41 = 1z =42 Hence, z = 2+1i or
z=-2—-1.
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Problem 6.

(a) Given that iw+ 3z =2+ 4i and w+ (1 — i)z =2 — i, find z and w in the form of
x + iy, where = and y are real numbers.

(b) Determine the value of k such that z = \l/gfi is purely imaginary, where k € R.

Solution.
Part (a). Let w = a + bi and z = ¢+ di. Then

iw+3z=1i(a+0bi) +3(c+di) = (=b+3c) + (a+3d)i =2+ 4i
and
w+(1—-i)z=(a+bi)+ (1 —-i)(c+di)=(a+c+d)+(b—c+d)i=2—1i.
Comparing the real and imaginary parts of both equations yields the following system:

—b+3c =2
a +3d=4
a + ¢+ d=2

b— ¢+ d=-1

which has the unique solution a =1, b = =2, ¢ =0 and d = 1. Hence, w = 1 — 2i and
z =1.

Part (b).

L—ki _ (1-ki)(V3—1i) L vE i kB ok =

= A NCIRE 1 (V3—k)— (1 +kV3)i|.

EN

Since z is purely imaginary, Re(z) = 0. Hence, 2(v3—k) =0 = k= /3.
%k ok ok ok

Problem 7.

(a) The complex number x + iy is such that (x + iy)? = i. Find the possible values of
the real numbers x and y, giving your answers in exact form.

(b) Hence, find the possible values of the complex number w such that w? = —i.

Solution.
Part (a). Note that (z +iy)? = 22 — y? + 2xyi = i. Comparing real and imaginary parts,
we have
2 2 _ —

- —y° =0, 22y=1.
Note that the second equation implies that both x and y have the same sign. Hence, from
the first equation, we have x = y. Thus, 22 =¢y? =1/2 = 2z =y = +1/V/2.
Part (b).



460 A10.1 Complex Numbers - Complex Numbers in Cartesian Form

Problem 8.

(a) The roots of the equation z? = —8i are z; and z3. Find 2; and z in Cartesian form

x + iy, showing your working.

(b) Hence, or otherwise, find in Cartesian form the roots w; and ws of the equation
w? + 4w + (4 + 2i) = 0.
Solution.
Part (a). Let z = z + iy where z,y € R. Then (z + iy)? = 2% — y? + 22yi = —8i.
Comparing real and imaginary parts, we have the following system:

2 —y? =0, 2xy=38.

From the second equation, we know that x and y have opposite signs. Hence, from the
first equation, we have that z = —y. Thus, 22 =4 = 2 = 42 =— y = F2. Thus,
z==22(1 — i), whence z; =2 — 2i and 29 = —2 + 2i.

Part (b).

w4+ 4w+ (4421) =0 = (w+2)?=-2i = (2w+4)?=-8i
= 2w+4==42(1-i) = w=2+(1-1).

k ko ok ok

Problem 9. One of the roots of the equations 222 — 922 + 22 + 30 = 0 is 3 + i. Find the
other roots of the equation.

Solution. Let P(z) = 223 —92?4+22+30. Since P(x) is a polynomial with real coefficients,
by the conjugate root theorem, we have that (34 1)* =3 —1 is also a root of P(x). Let o
be the third root of P(x). Then

P(z) =22 - 922 + 22+ 30 =2(z —a) [z — (3+4)] [z — (3—1)].

Comparing constants,

. . 15 3
2(-0)(=3 - )(-3+1) =30 = 0=~ g =

Hence, the other roots of the equation are 3 — i and —3/2.

* % % % %

Problem 10. Obtain a cubic equation having 2 and 2 — %i as two of its roots, in the form

az3 +bz?> +cz+d = 0, where a, b, ¢ and d are real integral coefficients to be determined.
Solution. Let P(2) = az®+ bz +cz+d. Since P(z) is a polynomial with real coefficients,
by the conjugate root theorem, we have that (g — %i) = % + %i is also a root of P(z).

We can thus write P(z) as

P(z) = k(z—2) |z - (i-*ﬁ)] [z— <i+\fi>

— k(= —2) <z—i)2+<\f)2 — k(z—2) <22—22+2>
1
T2
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where k is an arbitrary real number. Taking k = 2, we have P(z) = 22% — 922 4+ 142 — 8,
whence a =2, b= -9, c=14 and d = —8.

* ok ¥ % ok

Problem 11.

(a) Verify that —1 + 5i is a root of the equation w? + (=1 — 8i)w + (=17 + 7i) = 0.
Hence, or otherwise, find the second root of the equation in Cartesian form, p + iq,
showing your working.

(b) The equation 22 —522 4162+ k = 0, where k is a real constant, has a root z = 1+ai,
where a is a positive real constant. Find the values of a and k, showing your working.

Solution.
Part (a). Let P(w) = w? + (=1 — 8i)w + (=17 + 7i). Consider P(—1 + 5i).
P(—1+5i) = (=14 5i)% + (=1 — 8i)(=1 + 5i) + (=17 + 7i)
= (1 —10i — 25) + (1 — 51 + 81 + 40) + (=17 + 7i) = 0.

Hence, —1 + 5i is a root of w? + (=1 — 8i)w + (=17 + 7i) = 0.
Let a be the other root of the equation. By Vieta’s formula, we have

—-1-8i

a+(—1+5i):—< >:1+8i:>a:2—|—3i.

Part (b). Let P(z) = 23 — 522 + 162 + k. Then P(1 + ai) = 0. Note that

P(1+4ai) = (1+ai)® —5(1 +ai)®> +16(1 +ai) + &
= [1 + 3ai — 3a® — a®i] — 5(1 + 2ai — a®) + (16 + 16ai) + k
= (124 k + 2d®) + (9 — a?)ai.

Comparing real and imaginary parts, we have a(9 —a?) =0 = a = 3 (since a > 0) and
124 k+2a*>=0 = k=-30.
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Self-Practice A10.1

Problem 1. By writing z = z + iy, =,y € R, solve the simultaneous equations

P4zw—2=0 and 2= -,

where z* is the conjugate of z.

Solution. From the second equation, we see that w = (1 + 1)z*. Substituting this into
the first equation yields
2422 (14+1)—2=0.

Let z = xz + iy, where x,y € R. Then
(z+iy)* + (2 +y?) 1 +1i) —2=0.

Simplifying, we get
2 (22— 1) + (z+y)°i=0.

Comparing real and imaginary parts, we require 2> —1 =0 and z +y =0, so = £1 and
y=—x=F1,%0 z==+1FIi.

When z = 1 — i, we have w = (1 +i)? = 2i. When z = —1 + i, we have w =
(—14+i)(1+1i)=-2.

k ok ok ok ok
Problem 2. Given that the complex numbers w and z satisfy the equations
w'+2z=1 and w+ (1-2i)z=3+3i,

find w and z in the form a + bi, where a and b are real.

Solution. From the first equation, we obtain w = —i — 2z*. Substituting this into the
second equation, we see that

(—=1—22")(1—2i)z =3+ 3i.
Let z = a + bi, where a,b € R. Then
[—i—2(a—0bi)]+ (1 —2i)(a+bi)=3+3i,
which upon simplification yields
(2b —a) +1(3b—2a) = 3 + 4i.

Comparing real and imaginary parts, we require 2b — a = 3 and 3b — 2a = 3, which gives
a=1and b=2. Thus, z=1+42iand w=—1—2(1—2i) = -2+ 3i.

* % % % %
Problem 3.

(a) Determine the complex numbers v and v for which

24+ (6-20)z2=(2—u)?—v, VzeC.

(b) Write down the square roots of 7 — 24i. Hence, solve the quadratic equation 22 +
(6 — 2i)z = —1 — 18i.
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Solution.
Part (a). Completing the square, we see that
22— (6-2)z=(24+B-1)* =31,
sou=—(3—i)=-3+iandv=(3—1i)%=8—6i.
Part (b). Using G.C., £4/7 — 24i = £+ (4 — 3i). From (a), we see that
(z+(3—1))* = (8 —6i) = 22 + (6 — 2i) z = —1 — 18i,
thus
(z+(3—1))% = —1—18i+8 — 6i = 7 — 24i,

24+ (3—1i)=+(4-3i).

Finally, we obtain z =1 —2i or 2 = —7 + 4i.

* ok K Kk
Problem 4. If z = i is a root of the equation 23+ (1 —3i)2% — (2+3i)z—2 = 0, determine
the other roots. Hence, find the roots of the equation w3 + (14 3i)w? + (3i —2)w —2 = 0.

Solution. By inspection,
(=1)% + (1 = 3i)(=1)2 = (2+3i)(=1) —2 =0,

so z = —1 is a root. Let a be the other root. By Vieta’s formula, i + (—1) + o =
—(1—-3i) = «a = 2i. Thus, the roots are z =1, z = 2i and z = —1.
Conjugating the cubic in w, we see that

(w*)® + (1 = 31) (w*)* + (=2 = 3i)w* —2 =0,

SO
w*=1,2i,-1 = w=—1i,-2i,—1.

* ok % % ok

Problem 5. Show that the equation 2z — 223 4+ 622 — 82 + 8 = 0 has a root of the form
ki, where k is real. Hence, solve the equation z* — 223 + 622 — 82 +8 = 0.

Solution. Let z = ki. Then
(ki)* — 2(ki)® + 6(ki)? — 8(ki) + 8 = (k* — 6k* +8) + i (2k* — 8k) = 0.

We hence require
k' —6k*+8=0 and 2k*—8k=0.

By inspection k& = 2 satisfies both equation, so z = 2i is a root.
Since the coefficients of the quartic are all real, by the conjugate root theorem, z = —2i
is also a root. Let P(z) be a degree two polynomial such that the quartic factorizes as

2234622 — 82+ 8= (z—2i) (2 +2i) P(2).

Then . 5 )
2% —22°462°—82+8 9
P(z) = o =2"—-2z+2
Solving P(z) = 0, we get z = 1 + i, so the roots to the quartic are z = 2i, —2i, 1 4 i,
1—1.
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Problem 6. Verify that —2 + i is a root of the equation z* 4+ 24z + 55 = 0. Hence,
determine the other roots.

Solution. Substituting 2 = —2 + i, we see that
(=24 )"+ 24 (=2 +1) + 55 =0,

so it is a root. Since the coefficients of z* + 24z + 55 are real, by the conjugate root
theorem, z = —2 — i is also a root. Let P(z) be a degree two polynomial such that the
quartic factorizes as

24242 455 = (2 — (=241)) (2 — (-2 — 1)) P(2).

Then

4
A424z 455
P = = 4 11.
(2) 2244245 SR

Solving P(z) = 0, we get z = 2 + /7i. Hence, the roots of the quartic are z = —2 + i,

—2—1, 24+ /71, 2 — /Ti.
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Assignment A10.1

Problem 1. The complex number w is such that ww* + 2w = 3 + 4i, where w* is the
complex conjugate of w. Find w in the form a + ib, where a and b are real.

Solution. Note ww* = (Rew)? 4+ (Imw)? € R.
Taking the imaginary part of the given equation,

Im(ww* +2w) =Im(3+ 4i) = 2Imw =4 = Imw =2.
Taking the real part of the given equation,
Re(ww* + 2w) = Re(3 + 4i) = |(Rew)? + (Im w)Q] +2Rew =3
— (Rew)?*+2Re(w)+1=0 = (Rew+1)*>=0 = Re(w) = —1.

Hence, w = —1 + 2i.

k 3k ok ok ok

Problem 2. Express (3 —i)? in the form a + ib.
Hence, or otherwise, find the roots of the equation (z + i)? = —8 + 6i.

Solution. We have
(3—1)>=3%—6i+i%>=8— 6i.

Consider (z 4+ i)? = —8 + 6i. Note that —(z +1i)% = (iz — 1)2.
(z+i)>=-846i = (iz—1)?=8-61 = iz—1=+(3-1)

_ z:%(1j:(3—i)):—i(li(3—i)):—1—4ior1+2i.

% ok ok ok ok

Problem 3.

(a) It is given that z; = 14 v/3i. Find the value of 2}, showing clearly how you obtain
yOur answer.

(b) Given that 1+ +/3i is a root of the equation
228 4 az2 +bz+4=0
find the values of the real numbers a and b. Hence, solve the above equation.

Solution.
Part (a). We have

5= (1+\/§i)3:1+3(\/§i>+3<\/§i)2+(\/§i>3:1+3\/§i—9—3\/§i:—8.
Part (b). Since 1+ /3i is a root of the given equation, we have
2<1+\/§i>3+a(1+\/§i)2+b(l+\/§i>+4:0
— —16+a(—2+2\/§i) +b(1+\/§i) +4=0 = (—2a+b)+V3(2a + b)i = 12.

Comparing real and imaginary parts, we obtain —2a + b = 12 and 2a + b = 0, whence
a= -3 and b=06.
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Since the coefficients of 22% 4 az? + bz + 4 are all real, the second root is (1 + v/31)* =
1 — v/3i. Let the third root be .. By Vieta’s formula,

4 1
(14 V)1~ VBiJa=—3 = da=-2 = a=—__

The roots of the equation are hence 1 + \/gi, 1 —+/3i and —%.

k 3k ok ok ok

Problem 4. The complex number z is such that az? + bz + a = 0 where a and b are real
constants. It is given that z = zp is a solution to this equation where Im(zp) # 0.

(a) Verify that z = % is the other solution. Hence, show that |z| = 1.
Take Im(zg) = 1/2 for the rest of the question.

(b) Find the possible complex numbers for z.

(c) If Re(zo) > 0, find b in terms of a.

Solution.
Part (a).

1)’ 1 1)’
a() —i—b()—l—a—() (a+bzo+az§):0
20 20 20

Hence, z = 1/z is a root of the given equation.
Since a,b € R, by the conjugate root theorem, 2} = 1/zp. Hence,

207 =1 = Re(z0)? +Im(20)® = |20 =1 = |20| = 1.

Part (b). Let zo = z + i. Then

1 1 2 3 3
VIRV E: S SN
Hence, zg:§+%10r Zoz—é—l-%i.

Part (c). Since Re(zp) > 0, we have zy = @ + %i. By Vieta’s formula,

b 1
—E220+Z=Zo—l—z§:2Re(zo):\/§ — b:—\/§a_
0
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Numbers in Polar Form

Tutorial A10.2

Problem 1. Is the following true or false in general?
2
(a) [w?| = w]
(b) |2+ 2w| = |2] + |2w]

Solution.
Part (a). Let w = re'?, where 7,6 € R. Note that |eie‘ = ’ezie‘ =1.

2 2 2

‘w2’:‘T26219 Q20| — 2 — 2], 9

=r? ‘ = )re1

The statement is hence true in general.
Part (b). Take z =1 and w = —1.

lz4+2w=1-2|=1#3= |1+ [2(-1)] = |2| + |2w] .
The statement is hence false in general.

* ok k% ok

= [wl*.

467

Problem 2. Express the following complex numbers z in polar form r(cos # + i sin §) with

exact values.

(a) z2=2—-2i

(b) z=—-1+iV3

(¢) z=—bi

(d) z=-2V3-2i
Solution
Part (a)

Im
Re
O 0 2

—21 +
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We have 12 = 22 4 (-2)2 = r = 22 and tanf = —2/2 = 6§ = —7/4. Hence,
s
4

2 —2i =22 [cos(—%) +isin(—Z)].
Part (b).

Im

Vi |

0
Re

We have 12 = (—=1)? + (v/3)? = r =2 and tant = /3/(—1) = 6 = 27/3. Hence,
—1++V3i=2 [cos(%“) + isin(%’r)].
Part (c).

_}1 (0]

Im

an

—5i Z(2)

We have r =5 and § = —7/2. Hence, —5i =5 [cos(—F) + isin(—%)].
Part (d).

Im

0] Re

_2}\/5 d

—21

We have 12 = (—2v/3)? + (—2)> = r =4 and tant = —2/(-2V/3) = 0 = —57/6.
Hence, —2/3-2i=14 [cos(—%r) + isin(—%’r)].
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Problem 3. Express the following complex numbers z in exponential form rei.

(a) z=—-1+ i
(b) z = cos50° — isin50°

Solution.
Part (a).

Im

0
Re

We have 72 = (—1)? + (%)2 — r = 1.01 (3s.f.) and tant = %113 = 0 =
2.99 (3 s.f.). Hence, —1 + Zi = 1.01e*%.

Part (b). We have r =1 and § = —50° = — 7. Hence, cos50° + isin 50° = e itsT,
k ok ok ok ok
Problem 4. Express the following complex numbers z in Cartesian form.
(a) z = Tel ™5
(b) z= 6(008% — isin%)

Solution.
Part (a). We have

z=Te!™5 = Te. e = Te[cos(—5) + isin(—5)] = 5.40 + 18.2i (3 s.f.).
Part (b). We have

=6 (cos% — isin %) = 5.54 — 2.30i (3 s.£.).
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Problem 5. Given that z = v/3 — i, find the exact modulus and argument of z. Hence,
find the exact modulus and argument of 1/2% and 2!°.

Solution.

Im

Z(2)

We have r? = (v/3)2 4+ (-1)2 = r =2 and tanf = —1/v/3 = 0 = —7/6. Hence,
|z| = 2 and arg z = —7 /6.

Note that ’1/22‘ = |2|7% = 1/4. Also, arg(1/2%) = —2argz = m/3.

Note that|z1?| = 2| 0 = 1024. Also, arg 20 = 10arg z = —57/3 = 7/3.

* %k ok ok ok

Problem 6. If arg(z — 1/2) = 7/5, determine arg(2z — 1).

Solution.
(22 —1) = 1 _ 1 — _ 1 _r
arg(2z = arg 5 Z 5 =arg| z 5] =5

k 3k ok ok ok

Problem 7. In an Argand diagram, points P and ) represent the complex numbers
z=141and w =1+ 2i respectively, and O is the origin.

(a) Mark on the Argand diagram the points P and @, and the points R and S which
represent z + w and tw respectively.

(b) What is the geometrical shape of OPRQ?
(c) State the angle SOP.

Solution.
Part (a).
Im
R(z 4+ w)
3i f
2i | Q(w)
S(iw) _
1 P(2)
Re
-2 O 1 2
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Part (b). OPRQ is a parallelogram.
Part (c). ZSOP = /2.

* K ok k%
Problem 8. B and D are points in the Argand diagram representing the complex numbers

1451 and 54 3i respectively. Given that BD is a diagonal of the square ABC D, calculate
the complex numbers represented by A and C.

Solution.
Im
C
5i | B
31t D
A
‘ ‘ Re

O] 1 5

Let A(z + iy). Since AB 1 AD, we have b —a = i(d — a).

b—a=1i(d—a) = (1+5i)— (z+1iy) =i[(b+ 31) — (x + iy)]
= (1-2)+6G-yi=(3+y)+B-2)i = (z+y)+(y—2)i=4
Comparing real and imaginary parts, we obtain = = y = 2. Hence, A(2 + 21i).
Let C(u + iv). Since CB L CD, we have d — ¢ = i(b — ¢).
d—c=ilb—c) = (5b+3i)— (u+iv) =1[(1+5i) — (u+ iv)]
= G-—u)+B-v)i=(-b+v)+(1—-uw)i = (u+v)+ (v—u)i=10+ 2i.

Comparing real and imaginary parts, we obtain v = 4 and v = 6. Hence, C'(4 + 61).

k 3k ok ok ok

Problem 9.

(a) Given that u =2 (cos % +isinZ) and w =4 (cos § — isin §), find the modulus and
argument of u*/w? in exact form.

(b) Let z be the complex number —1 + iy/3. Find the value of the real number a such
that arg(z? 4+ az) = —m/2.

Solution.
Part (a). Note that |u| = 2, argu = 7/6, |w| = 4 and argw = —7/3. Hence,

u* lw | Jul 2 1

T T T 43 32

w3

and

argﬁ =argu’ —argw” = —argu — Jargw = 5 _3(_7) I
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Part (b). Since arg(22 + az) = —m/2, we have that 22 + az is purely imaginary, with a
negative imaginary part. Since

2 4az = (—1+i\/§>2+a(—1+i\/§> - (—2—2\/§i)+a<—1+i\/§>.

Hence,
Re(z2+az):0 — 2—-—a=0 = a=—-2.

k 3k ok ok ok

Problem 10. The complex number w has modulus 7 and argument 6, where 0 < 6 < 7/2,
and w* denotes the conjugate of w. State the modulus and argument of p, where p = w/w*.
Given that p® is real and positive, find the possible values of .

Solution. Clearly, [p| =1 and argp = 26.
Since p° is real and positive, we have arg p> = 27n, where n € Z. Thus, argp = 27n/5 =
20 = 0 = 7n/5. Since 0 < 0 < 7/2, the possible values of § are 7/5 and 27 /5.

X %k %k % X

Problem 11. The complex number w has modulus v/2 and argument —37/4, and the
complex number z has modulus 2 and argument —7 /3. Find the modulus and argument
of wz, giving each answer exactly.

By first expressing w and z in the form z + iy, find the exact real and imaginary parts
of wz.

Hence, show that sin {5 =

V3-1
2V2

Solution. Note that
lwz| = |w||z| = 2v2

and

3 1 13 11
arg(wz) = argw + argz = TR =
Also,
w = \/§ [cos(—w) + isin<—7r>] = \fZ (—1 — i1 =—-1-1
a - V2 V2
and
1 V3
z-2[cos(——)+1sm(—§>] 2(2—2 ) =1-—+3i

Hence,

wz = (=1 —1i)(1 - V3i) = (=1 + V3 —i—V3) = (=1 - V3) + (V3 - 1)i,

whence Re(wz) = —1 — v/3 and Im(wz) = v/3 — 1.

From the first part, we have that wz = 2v/2 [cos(%w) + isin(%w)]. Thus, Im(wz) =
2v/2sin(H7) = 2v/2sin %. Equating the result for Im(wz) found in the second part, we
have 3

us 7r 3—-1
2v2sin — =v3—-1 = sin—— = ———.
V2sin D V3 sin 5 o
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Problem 12. Given that 2t2 = e/, show that z can be written as 5i tan g.
Solution. Note that

5 : : : : 0 _1
+Z:e“9:>5+z:ele(57,z)22+elez:561075:>z:5 6.97 .
95—z e’ +1

Hence,
0 _ i0/2 _ —i0/2 C s
_s(C ) oy ) g (A2 0
el +1 elf/2 4 e—i0/2 2cos(60/2) 2
ok % %k

Problem 13. The polynomial P(z) has real coefficients. The equation P(z) = 0 has a
root rel’, where r > 0 and 0 < 0 < 7.

(a) Write down a second root in terms of r and 6, and hence show that a quadratic
factor of P(z) is 22 — 2rzcos + 2.

(b) Given that 3 roots of the equation 26 = —64 are 215, 2¢'2 and 2e_i%ﬂ, express
2% + 64 as a product of three quadratic factors with real coefficients, giving each
factor in non-trigonometric form.

(c) Represent all roots of 26 = —64 on an Argand diagram and interpret the geometrical
shape formed by joining the roots.

Solution.
Part (a). Since P(z) has real coefficients, by the conjugate root theorem, (reia)* = re 10
is also a root of P(z). By the factor theorem, a quadratic factor of P(z) is

(z —rel?)(z —re™) = 22 — r2(e? 4 e719) 4 127 = 2% — 2rzcosf + 12
Part (b). Let ry =ro =r3 =2 and 0; = 7/6, 02 = 7/2 and 03 = —57/6.

20 4+64= (22 — 2rizcosfy + r%) (22 — 2r9zcos by + r%) (22 — 2r3z cos 03 + r%)

= (-4 cos(%) +4) (-1 cos(%) +4) (,22 e cos<—27r) + 4)

= <z2 — 2\/§z+4> (2% +4) <22 +2\/§z+4>

Part (c).
Im
Zo
Zg Zl
Re
0]
Z4 ZG
Zs

The geometrical shape formed is a regular hexagon.
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Self-Practice A10.2

Problem 1. The complex numbers 2¢'7/12 and 2e1(>7/12) are represented by the points A
and B respectively in an Argand diagram with origin O. Show that the triangle OAB is
equilateral.

Solution. Note that OA = OB = 2 and

/BOA = arg (261(5”/12)> — arg (261(”/12)> -
3
It follows that AOAB is equilateral.

* ok ¥ % ok

Problem 2. The complex numbers z and w are such that

2 3
|z| =2, arg(z)= —g, and |lw| =5, arg(w)= T
(a) Find the exact values of the modulus and argument of w/z2. Hence, represent z, w
and w/z? clearly in an Argand diagram.

(b) Express w/z? in the exponential form. Hence, or otherwise, find the smallest positive
integer n such that (w/2%)" is a real number.

Solution.
Part (a). We have
wi_lwl _5_5
22
and 3 2
Y e T
arg( 2) = arg(w) — 2arg(z) = o 9 <_3> =
I
Q (w) m
R(%
(ZQ) Re
0]
P(z)

Part (b). For (w/2?)" to be real, its argument must be an integer multiple of T, i.e.

n
arg (%) :narg<z%> = % =kr = n=12k

for some k € Z. It is clear that the smallest value n can be is 12 (occurring when k = 1).

X %k Xk % X

Problem 3. Express 232 gf% in the exponential form.
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Solution. We have :
cot@+1 cosf +isin@ B el? 210

cot® —i cosh —isinf e 10
k 3k %k %k ok

Problem 4. Do not use a calculator in answering this question.
Two complex numbers are z; = 2 (cos 1g — isin %) and 2z = 21i.

(a) Show that
2

z .
f}lk—f-Zg:\/g-Fl.
21

(b) A third complex number, z3, is such that

27 27
—+z)zeR and — +t22 )23
21 21

Find the possible values of z3 in the form of r (cosf + isinf), where r > 0 and
—mT <0 <m.

Solution.
Part (a). Note that

21 =2 (COS(—%) + isin(—%)) = ¢ i7/18,

Thus,
2 3 23 —im/6
%+2222712+222672+2i:2 [COS(—E) +isin(—z)} +2i = V3 +1i.
Zl ‘Zl| 2 6 6

Part (b). Let w = 27/2} + 22. Note that

1
lw| =/ V3 +12=1 and arg(w) = arctan(\/§> = %,

so w = 2e"/6. Let z3 = rel?. Since wzs is real, its argument must be an integer multiple
of m, i.e.
7 (6k —1)

6

for some k € Z. The only solutions for # within the specified range (—m,7) are § = —7/6
and 0 = 57/6. Further, we have

arg(wzs) = arg(w) + arg(z3) = % +0=kr = 0=

2 — Jwzs| = ol |25 = 2 = =
— = |wzs| = |w||z3] =2r r=_.
3 3 3 3

1( (71')+,_< ﬂ)) 1 57r+,_ 5%
Z3 = — | COS| —— 1SsIm|{ —— or zZ9 = — COS — 1S1n — .
573 6 6 373 6 6

X ok Xk % X

Thus,

Problem 5. Do not use a calculator in answering this question.
The complex numbers z and w satisfy the following equations:

w—z:l—\/g, iz+w:<\/§+1)i.

Find w in the form rel?, where r > 0 and —7 < @ < 7. Give r and 0 in exact form.
Hence, find the three smallest positive whole number values of n for which (iw)™ is an
imaginary number.
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Solution. Multiplying the second equation by i yields
iwfz:f(lJr\/g).

Along with the first equation, this gives

2 2(1+i -
w—iw=(1-vV3)+(1+V3) =2 = w= == ( ;1) —1+i=12ei"4
—1
For (iw)™ to be purely imaginary, its argument must be a half-integer multiple of 7, i.e.
1 4k + 2
arg((iw)") = n (arg(i) + arg(w)) =n (g + Z) = </~c + 2) T = n= ;

for some k € Z. The first three smallest positive values of n are hence n = 2,6,10
(occurring when k = 1,4, 7 respectively).

kK K ok K
Problem 6 (). It is given that z = cosf + isinf, where 0 < § < /2.

(a) Show that ¢(®=™/2) = sinf — icosé.

(b) Hence, or otherwise, show that arg(l — 22) = 0 —m/2 and find the modulus of 1— 22,

2

)
)

(c) Hence, represent the complex number 1 — 2% on an Argand diagram.
)

(d) Given that ﬁiﬁ) is real, find the possible values of 6.

Solution.

Part (a). By trigonometric identities, we readily have
el(t=m/2) — cos(@ — g) + isin(@ - g) =sinf — icosf.
Part (b). Note that z = re'?. Thus,
1—2%=— (ezie - 1) = —el? (eie - e_ie) = —¢l? (2ising)
= (2sinf) e%e ™2 = (25in §) 'O/,

Thus, arg(1 — 2?) =60 — /2 and |1 — 22| = 2sin .
Part (c).

Im

IS

P(1-22)
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Part (d). Note that

Z*

arg<z3(1_z2)> = arg(2*) — 3arg(z) — arg(1 — 22) =(—6)—30 — (9 - g) = —50 + 5

. * . . . . . .
Since ﬁ is real, its argument is an integer multiple of 7, i.e.

(1 —2k)

T
—594—5—]{37{':9— 10

for some k € Z. Since § € (0,7/2), the only possible values of # are § = 7/10 and
6 = 31/10 (corresponding to k = 0 and k = —1 respectively).
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Assignment A10.2

Problem 1. On an Argand diagram, mark and label clearly the points P and ) repre-
senting the complex numbers p and g respectively, where

= COS — 1S1n — = COS — 1S1n —.
P 4 1 4 4

Find the moduli and arguments of the complex numbers a, b, ¢, d and e, where a = p?,
b=¢* c=—ip,d=1/q, e =p+p*

On your Argand diagram, mark and label the points A, B, C, D and FE representing
these complex numbers.

Find the area of triangle COQ.

Find the modulus and argument of p3/3¢45/2,

Solution.

Im

41 6B

D
ISB

S
D[ =
-
ANK
e

D=
Q

Note that p = e!™/* and ¢ = 2ei™/4.

a=pt= (eiw/4)4 AL S i - ( m/4) — feim/2

—_
?—‘

c=—ip= e—i7r/2617r/4 — e—iﬂ'/4, d= - - —17r/4
q 2
™
e=p+p"=2Rep= 2COS(Z>

z |z arg z
a 1 s

b 4 /2
c 1 —m/4
d 1/2 —m/4
e V2 0

Since ZCOQ = /2, we have [ACOQ)] = 3(2)(1) = 1 units?.

We have » i
13 45 iT\ 3 iT\ 2 45 ;161w 45 17w
p3q2 = (e4 2¢e'4 =922 24 =922 24,
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Hence, |p13/3q45/2’ — o%5/2 gnd arg(p13/3q45/2) _ %W_

k ok ok ok ok

Problem 2. The complex number ¢ is given by ¢ = %, where 0 < 6 < 27. In either
order,

(a) find the real part of q,
(b) show that the imaginary part of ¢ is %cot 0.

Solution. We have

ei2? el? cosf +1isind 1 1 ‘0 1+i ‘0
= = — = =—— — —cotl =—= 4+ —cotd.
T= 77620 = 10 _oi0 “2ising 2 2i 272
Hence, Req = —% and Imq = %cot 6.
%k K k%

Problem 3. The complex numbers z and w are such that z = 4 (cos %7‘(‘ + isin %ﬂ') and

w=1—1v/3. z* denotes the conjugate of z.
(a) Find the modulus 7 and the argument 6 of w?/z*, where r > 0 and —7 < 6 < 7.
(b) Given that (w?/ z*)n is purely imaginary, find the set of values that n can take.

Solution.

Part (a). Note that z = 4¢!™/4 and w = 2 (% - 1@) = 2¢~17/3, Hence,

. 2
2 2e~ 13 —i2x
w 4e '3 o
_— = = = e 12,
2 4e

L _j3m
1 de 'z

Thus, r =1 and § = 7w/12.

Part (b). Note that w2/z*)n = (ei”/m)n = el"™/12 Since (wz/z*)n is purely imaginary,
we have arg (w?/z*)" = /2 + wk, where k € Z. Thus, nm/12 = 7/2 + 7k, whence
n =6+ 12k. Hence, {n € Z:n =6+ 12k, k € Z}.

X ok %k % X

Problem 4. The complex number w has modulus v/2 and argument 7/4 and the complex
number z has modulus /2 and argument 57 /6.

(a) By first expressing w and z in the form x + iy, find the exact real and imaginary
parts of w + z.

(b) On the same Argand diagram, sketch the points P, ), R representing the complex
numbers z, w, and z+w respectively. State the geometrical shape of the quadrilateral
OPRQ.

(c) Referring the Argand diagram in part (b), find arg(w + z) and show that tan Fm =

‘f/‘%ﬁ, where a and b are constants to be determined.
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Solution.
Part (a). Note that

. 1 1
w:ﬁe1”/4:\/§(cosﬂ+isin7r>:\@(—|—1>—1+1
gy vzt
and
: 1 1
z=/2e97/6 = /2 cos§7r+isin§7r =2 —ﬁ—i—if :—ﬁ—i—i—.
6 6 2 2 2 2
Hence,
arva) (%) (e )
wrz=14+D)+ [ -Yeti—|=(1-L2)+i(1+—).

ey ( vzt V2 )

Part (b).
Im
R
Q
P
5 1 Re
@)
OPRQ is a thombus.
Part (c). Note that ZPOQ_TF—%—%: &, Since |z| = |w|, we have OP = 0Q,
whence ZROQ = 5 1277— 471' Hence, arg(w + 2) = 7 + 47r—137r. Thus,
. <13> 1+1/vV2 V241 2442
an = = =
24 1-V3/vV2 V2-v3 2-V6
However, tan(%w) = — tan(7r — %) = — tan(24 ) Hence,
tan(n )__2+ﬂ_2+\@
24°)  2-v6 V62
whence a = 2 and b = —2.
* ok ok ok ok

Problem 5. The complex number z is given by z = 2 (cos § + isin §) where 0 < § < §

(a) Show that ;=5 = (kcsc )i, where k is positive real constant to be determined.

(b) State the argument of giving your reasons clearly.

4— Z27

(c) Given the complex number w = —+/3 + i, find the three smallest positive integer

values of n such that (4f22) (w*)™ is a real number.
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Solution.
Part (a). Observe that z = 2(cos B + isin 8) = 2e'’. Hence,

2 2¢1P 1 1 1 1 1 )i
= n = — — = — R —— = — CSC 1
4—22 4—4ei28 2\ e 1P —eif 2 \ —2isinf 4 ’

thus £ = 1/4.
Part (b). Since 0 < 8 < /2, we know that csc 8 > 0. Hence, Im(ﬁ) > 0. Further-
more, Re(ﬁ) = 0. Thus, arg(ﬁ) =7/2.

Part (c). Note that w = —v/3 4 i =2 (—73 + %1) = 2¢~157/6 Hence,

() or) o0 () < (3-%).

For (ﬁ) (w*)™ to be a real number, we require arg((ﬁ) (w*)”) = 7k, where k € Z.
Hence,

1 1
77(—5n):7rk = 5—211216 = 3-5n=6k = n=3 (mod6).

Hence, the three smallest possible values of n are 3, 9 and 15.
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A10.3 Complex Numbers - Geometrical
Effects and De Moivre’'s Theorem

Tutorial A10.3

Problem 1. Given that 2 = 1 +i and w = 1 + 2i, mark on an Argand diagram, the
positions representing: z, w, z + w, z —w, iz and 2z*.

Solution.
Im
Z3(z +w)
31+
' Za(w)
21
Z5(iz)
i Z1(z)
Re
-1 ) 1 2
—ie
Zy(z — w)
_21 i
Z6(2Z*)
k ok ok ok ok
Problem 2.

(a) Write down the exact values of the modulus and the argument of the complex number
1 + @1
2 T2 b

(b) The complex numbers z and w satisfy the equation

22— zw+w?=0.

Find z in terms of w. In an Argand diagram, the points O, A and B represent
the complex numbers 0, z and w respectively. Show that AOAB is an equilateral

triangle.
Solution.
2
Part (a). We have r? = (%)2 + (73 —> r =1 and tanf = % = ¢ = 5. Hence,

‘%—i—?i‘ =1 and arg(%—{—@i) =3

Part (b). From the quadratic formula, we have

w:l:\/w2—4w2:w<1 \/§>

-+ —i
2 2 2
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Im

Ai(z1)

Since ‘% + @1‘ =1, we have that OB = OA; = OAs. Further, since arg(% + @1) =
+7/3, we know LZA;0B = LA,0B = 7/3, whence AA;0B and AAOB are both equi-
lateral.

% ok ok ok ok

Problem 3. Find the exact roots of the equations
(a) 22 =1
() (z—1)*=-16

in the form = + iy.

Solution.
Part (a). Note that

2mn

e127rn/3 7
3

: 2mn . .
B =1=e?™ — ;= :COST—FISIH

for n € Z. Evaluating z in the n = 0, 1,2 cases, we see that the roots of 23 =1 are

1 V3. 1 3.
z=1 —=4+ —=—1i, —— — —1.
2 " 2 2 2

Part (b). Note that (z — 1)* = —16 = 16e"2"*1), Hence,

1 2 1
7r> —i—isin( n;— 7T>:| ,

where n € Z. Evaluating z in the n = 0, 1, 2, 3 cases, we see that the roots of (z—1)* = —16

2= (14+V2) +iv2, (1 -V2) +iv2, (1 - V2) —iv2, (1 +V2) —iV2.

: 2
2 =14 2@t D/4 _ 1 4 9 [cos< nt

* %k ok ok ok

Problem 4.

(a) Write down the 5 roots of the equation 2° — 1 = 0 in the form re!’, where r > 0 and
—mT <0 <m.

(b) Show that the roots of the equation (5 + 2)®> — (5 — 2)° = 0 can be written in the
form 5i tan %”, where k =0, +1,+2.
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Solution.
Part (a). Note that
2’5 —1= ei27rn — = ei27rn/5
Since —m < 0 < 7, we have
v = e7i47r/5, 671277/5’ 1, ei27r/57 ei47r/5'

Part (b). Note that

5
G+2°=5-2°=0 = <§+Z> _1:0:>¥:ei2k7r/5.
—Z —Z

Solving for z, we get

i2km/5 _ ikw/5 _ ,—iknw/5 S
z:5<e 1) :5<e e ) :5{21811&(]4:77/5)} :5itank§.

ei2km/5 4 1 elkm/5 4 e—ikm/5 2 cos(km/5)

X %k Xk % X

Problem 5. De Moivre’s theorem for a positive integral exponent states that
(cosf + isinf)"™ = cosnf + isinnd.
Use de Moivre’s theorem to show that
cos 70 = 64 cos’ O — 112 cos® O + 56 cos®  — 7 cos 6.
Hence, obtain the roots of the equation
12827 — 2242° +1122% — 142+ 1 =0

in the form cos gm, where ¢ is a rational number.

Solution. Taking n = 7, we have cos 76 + isin76 = (cos® + isin6)7, whence cos 70 =
Re(cosf +isinf)7. Let ¢ = cosf and s = sinf. By the binomial theorem,

7
cos 70 = Re(c+1is)” = Re Z <Z> ikFskeT=k,
k=0

Note that Rei* is given by

0, k=1,3 (mod4)
Rei*={1, k=0 (mod4)
-1, k=2 (mod4)

We hence have

cosTl = ¢" — 21c%s% + 35¢%s* — Tes® = ¢ — 21¢° (1 — 02) +35¢3 (1 — c2)2 —Tc (1 — 02)3
= 64c” — 112¢° 4+ 56¢ — Te = 64 cos” 0 — 112 cos® +56 cos®  — 7 cos 6.

Observe that we can manipulate the given equation into

1
12827 — 2242° +1122° — 142 +1 =0 — 6427 — 1122° + 562° — T = —5
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Under the substitution = = cos 6, we see that
1 2 2
cos 70 = —5 = 70 = §7T+27rn = 0= %(Bn—k 1),
where n € Z. Taking 0 < n < 7,

21 &1 147 207 267 321 38w
T = COS —, COS —, COS ——, COS ——, COS , COS 3

21’ 21’ 21° 21 21 21 21
2 47 8 107 14m 167 207
= cOS —, COS —, COS —, COS ——, COS ——, COS ——, COS ——.
21 21 21 21 21 21 21
% % % %k %

Problem 6. By considering 25:1 227=1 where z = ¢!’ or by any method, show that

N )
sin“ N6
in(2n —1)0 =
Zsm( n—1) g

provided sin 0 # 0.
Solution. Observe that

N N N
Z sin(2n — 1)0 = Imz [cos(2n — 1)0 + isin(2n — 1)0] = Imz 221
n=1 n=1

Since
N N 2 2 N>_ }
ZZQn—1ZEZ(Z2)n:1 < [(Z) 1 :22N_1
z z 22 -1 z—z"1
n=1 n=1
_ N N — N _ N 2isin N0 _ N sin N6
z—z1 2isin @ sinf )’
we have

N . ) L
> sinzn - 10 = (L0 () = (D) g - I

sin 0

k 3k ok ok ok

Problem 7. By considering the series ZTJLO (e219)n, show that, provided sin 6 # 0,

N :
Zcos onf — sin(N + 1)8 cos N6

sin @

and deduce that
N _ sin(NV +1)fcos N¢
E sin’nf = .

2 2 2sin 0

Solution. Let z = €. Then

N N N N
Z cos 2nf = Re Z (cos2nb + isin2nf) = Re Z el — Re Z (z%)"
n=0 n=0
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Observe that

i\f:( 2)n B (ZQ)NJrl ~1 SN+1 [ N+1 _  —(N+1) o [sin(N +1)f
—~ T T z—z71 — sin 4 ‘

N ) .
Zcos 2l = <s1n(N+1)0> Re(zN) _ sin(N + 1)0COSN9.
n=0

sin 0 sin 0
Recall that cos2nf = 1 — 2sin?nf = sinnf = 1(1 — 2cos 2nf). Thus,
N

N .
) 1 N+1 sin(N +1)0cos N0
2
nE_O sin“nf = 3 E (1 —cos2nb) = 5~ Y50 .

n=0

% 3k ok ok ok

Problem 8. Given that z = ei?, show that z¥ 4+ 1/2% = 2coské, k € Z.

Hence, show that cos® § = 1< (cos 86 + 8 cos 66 + 28 cos 46 + 56 cos 20 + 35).

Find, correct to three decimal places, the values of 6 such that 0 < 6 < %7? and cos 86 +
8 cos 66 + 28 cos 40 + 56 cos 20 + 1 = 0.

Solution. Note that

1 o\ k Nk .
Sk = NI (ele) i (ele) — oikf 4 o—ikd
= [cos(kf) + isin(k)] + [cos(—kB) + isin(—kO)] = 2 cos(k0) .
Observe that
1 1 1
cos®h = 2—56(2 cos )% = 2—56(z + 2718 = %z’g (z* + 1)8
1
=55 (2_8 + 8270 42827 + 56272 4 70 + 5627 + 282* + 820 + zs)

1 B4 278 284 276 24 4274 22 4272 70
= AL L og (2"~ e -
[ R e e R G A
1

:@(C0889+860869+28COS40+5600829+35).

Note that we rewrite the equation as

cos 80 + 8 cos 60 + 28 cos 46 + 56 cos 20 + 35 = 128 cos® § = 34.

Thus,

4
cosf = 13—28 — 0 =0.560 (3 s.f.).
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Self-Practice A10.3

cot 0+i
cot 0—1i

Problem 1. Express
of the equation

in the exponential form. Hence, show that one of the roots

4 V3+i
V3 —i

, and find three more roots in the exponential form.

z

is ei7r/12

Solution. Note that

cot@+i cosh+ising  elf 2i0
= = = e,

coth —i cosf —isinf e-i¢
Note that cot§ = /3 = 0 = 7/6, so
A V3+i _ 27/6 _ gim(1/3+2k)
V3—i ’
where k € Z. Taking fourth roots,

5 — im(1/12+k/2)

Taking £ = 0,1,2, 3, we see that the four roots are

P elﬂ’/lQ’ e7l7r/12, el317r/127 619171'/12'

k 3k ok ok ok

Problem 2. Find the cube roots of the complex number 1 + iv/3. Give your answers

exactly, in the form re!?. Hence, solve the equation 2% — 223 + 4 = 0. Give your answers

exactly, in the form re'?.

Solution. Consider
2 =1+4iV3=2e"/3 = Qei”(1/3+2k),

where k € Z. Taking roots,
5 = 91/3,im(1/9+2Kk/3)

Taking k = —1,0, 1, the cube roots of 1 + i1/3 are
o — 91/3,=8im/9 91/3,im/9 91/3,Tix/9
Consider 2% — 223 +4 = 0. Then
B =143

From the positive branch, we get the aforementioned roots. Since the coefficients of the
sextic are all real, by the conjugate root theorem, the six roots are

2 = 21/3e8IT/9 9l/3,=Tin/9 91/3=in/9 ol/3in/9 ol/3Tin/9 ol/38im/9.

X %k Xk % X

Problem 3. Express 8 (\/§ - i) in the form r (cos @ + isinf), where r > 0 and —7 < 0 <
7, giving  in terms of 7. Hence, obtain the roots of the equation z* = 8 (\/g — i) in the
same form.
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Solution. Note that

8 (\/ﬁ— i) — 16 (*f - ;) — 16 [cos<—%) n ism(—%ﬂ — 160~ i7/S,
We are given
A=g (\/§ - i) — 16e717/6 = 16eim(-1/6+2k)

for k € Z. Taking roots,
o — 9eim(—1/24+k/2)
Taking £k = —1,0, 1,2, the roots are

5= 26—1317r/247 26—171'/247 26111#/247 262317T/24.

% 3k ok ok ok

Problem 4. Write down, in any form, the five complex numbers which satisfy the equation
2> — 1 = 0. Hence, show that the five complex numbers which satisfy the equation

<2w + 1)5 .
w
-2+ cos(%wk) - isin(%wk:)
5— 4cos(%7rk:)

are

)

where k£ =0,1,2,3,4.
Solution. The fifth roots of unity are given by

5 = e2ki71'/57
where k£ =0,1,2,3,4.
h
We have ) . . okin/s _ g
w L okinfs = _*®
w e2kin/5 _ 2 |e2kin/5 2‘2'
Note that

’e%i”/“r’ — 2’2 = (ezki”/5 — 2) (e*%i”/s’ — 2) =1-2 <2 coS 21”) +4=5—4cos 2k77r
5 5

Thus,
-2+ cos(%wk:) — iSiH(%ﬂ'k‘)
5— 4cos(%7rk:)

w =

for k=0,1,2,3,4.

* ok ¥ % ok

Problem 5.

(a) Show that, for all complex numbers z and all real numbers «,
(z — eio‘) (z — e_io‘) =22 —92zcosa+ 1.

(b) Write down, in any form, the seven complex numbers which satisfy the equation
7
zl—1=0.
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(c) Hence, show that, for all complex numbers z,

2 4 6
Z—1=(z-1) 22—2200s77r+1] [z2—2zcos77r+1] [22—22:005;7—#1 .

Solution.
Part (a). We have

(z— eio‘) (z — e_i") =22 - (eio‘ + e_i") z+1=2%—2zcosa+ 1.
Part (b). The seventh roots of unity are

o — o2kin/T

where k = —3,-2,-1,0,1,2,3.
Part (c). Let P, = z — ?*17/7. Observe that

) . 2k
— _ 2kim/7 _ o 2kim/TY 2 3
P.P_; (z e ) <z e ) z 2z cos - + 1.
Hence,
2T —1=PR (P1P_1) (PyP_3) (P3P_3)

2 4 6
=(z—1) [ZQ—chos;r—{—l] [22—2zcos7ﬁ+1} |:Z2—2ZCOS,;T+1 .

k 3k ok ok ok

Problem 6. Use De Moivre’s theorem to show that
cos60 = 32cos® @ — 48 cos* § + 18 cos® 0 — 1.

Deduce that, for all 6,

3 9 1

< o0 2 cogd o2 < —

0 < cos’ 0 2COS 9+16(:os o< 16
Solution. Let ¢ = cos# and s = sinf. Then

cos 60 = ReeS'? = Re (¢ + is)°

(- ()ee (oe-()-

=515 (1= ) + 152 (1 - 2)° = (1 - &)
=% —15¢* (1 — %) +15¢% (1 — 2 + ¢*) — (1 — 3¢® + 3¢* — F)
=32c5 —48¢1 + 182 — 1

= 32c0s% 0 — 48 cos 6 + 18 cos? 6 — 1.

3

Observe that

1 cos 66
<
32~ 32

3 9 1 1
6 4 2

= — - R <

cos’ 0 9 cos™ 0 + 16 cos“ 0 39 32,

SO

3 9 1
< o080 — 2 codd 2 o2l < —
0 <cos’f 2cos 9+16(:os 9_16
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Problem 7. Show that for z # —1,

7 z+ 28

3 .. e .
+z 112

z—zQ—l-z —

Hence, by substituting z = €', show that

7 . 7
S (-1)F T sinkd = sindfcos 56

1
— cos 50
where 6 is not an odd multiple of .
Solution. Observe that z — 22 + 2% — - - - 4 27 is a geometric series with common ratio —z,
so it evaluates to
1—(— 7 _ .8
Z—Z2+Z3—"'+27:Z ( Z) :Z Z,
1—(—=2) 1+z2
with the condition z # —1.
We have
7 7 7 R
~1) " tsinkd =) (1) 'Im2F =1 1)k =1
;( )* " sin ;( ) mz m;( )Tz m T2

L PR 2eos(30)  cos(3) sind
(19 |

— A (21/2 + 271/2) "~ 92cos cos 36

Note that z = el? # —1 = ¢™*+D) for k € Z, s0 6 # (2k + 1)7, i.e. # cannot be an odd
multiple of .
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Assignment A10.3
Problem 1.

(a) Solve z* = —4 — 44/3i, expressing your answers in the form rel? where r > 0 and
- <0 <m.

(b) Sketch the roots on an Argand diagram.
(c) Hence, solve w* = —1 + /3i, expressing your answers in a similar form.

Solution.
Part (a). Observe that —4 — 44/3i = 8 (—% - @1) = 8el 5™ 2k 1 for all k € Z. Hence,

(4 i R UG 3 243k
24:86137r+2k7r1 2284e1371'+2k7r1 —921¢l76 T,
Taking k = —2,—1,0, 1, we see that the roots are
3 ;2 3 ;1 3 41 3 ;5
z_9 = 24e 137r7 z_1 = 24e 16”, Z0:24el37r, 2’1:246167r.
Part (b).
Im
T e
Zl / GJ/V \\
/ \
/ \
/ z ‘
\ 3 ' Re
) :
\ 1
\ /
\ /
R 071
Z_9 R

Part (c). Observe that w! = —1+/3i = 1(—4 +4v/3i) = 272(2*)%. Hence, w = 27/22*,
Thus, the roots are

ilry

152 141 1 1 5.
w_g =24e'3", w_1 =21e6", wy=24e 3", w; =21e '6".

* ok ¥ % ok

Problem 2. Let

2 2 2
cC=1- <1n> cos O + <2n> cos 20 — <3n> cos360 4+ ...+ cos2nf
S = _<21n> sin @ + <22n> sin 20 — (2;) sin30 + ...+ sin2n6

where n is a positive integer.
Show that C' = (—4)" cos(n#) sin®*(0/2), and find the corresponding expression for S.
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Solution. Clearly,

C = i (2;’) (~1)*coskd, S = i (?) (—1) sin k.

k=0 k=0
Hence,
. o (2n k - o (2n 16\ k i0) 2"
C+1S:Z I (—1) (cosk0+1smk9)zz I (—e'”) :(l—e )

k=0 k=0
. 2n . . 2n . 0 2n . 0
— (if/2 —i6/2 _ i6/2 _ oint s 2 _ oinf g\ 2n 7
(e ) (e e ) e (21 sin 2> e (—4)" sin 5

= (cosnf + isinnh)(—4)" sin®"

NGRS

Comparing real and imaginary parts, we have

C = (—4)" cos(nf) sin*" g, S = (—4)" sin(nf) sin®"

| D

¥k K K %
Problem 3. Given that z = cosf + isin 6, show that
(a) z—1/z=2isind,
(b) 2"+ 27" = 2cosné.

Hence, show that

sin® @ = — (10 — 15 cos 26 + 6 cos 46 — cos 66)

35

Find a similar expression for cos® 6, and hence express cos® @ —sin® # in the form a cos 260 +
bcos 66.

Solution.
Part (a). Note that

z— L z—z 1 =e —e7% = [cosf + isin @] — [cos(—0) + isin(—0)] = 2isin.
z

Part (b). Note that
2 = e 4 o717 — [cos nf 4 isinnb] + [cos(—nb) + isin(nd)] = 2 cosnb.

Observe that

1
6 sl 6 _ —1\6
sin —(2i)6(21sm9) ——64(2—,2 )
1
:—@(z6—6z4+15z2—20+152_2—62_4+z_6)

1 20 224272 24274 P
| — T s () e () (e
32 2 2 2 2

1
=33 (10 — 15cos 26 4 6 cos 40 — cos 60) .
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Similarly,
50— o (20080)° = (4 270
cos® 0 = —(2cos
26 Gii e
1
= 6—4 [z +62* +1522 4+ 20+ 152~ +6z74+z*6]

_ 1 @+15 22 4 272 46 224 N 20 4 276
32 2 2 2
1
=3 (10 4 15 cos 26 + 6 cos 460 + cos 60) .

Hence,

1 15 1
69 _ wnbpg_ _ 190 2
cos’ § —sin” 0 32(3000520+2cos69) 16 cos 260 + 16 cos 66,

whence a = 15/16 and b = 1/16.
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A10.4 Complex Numbers - Loci in Argand
Diagram

Tutorial A10.4

Problem 1. A complex number z is represented in an Argand diagram by the point P.
Sketch, on separate Argand diagrams, the locus of P. Describe geometrically the locus of
P and determine its Cartesian equation.

(a) |22 —6—8i| =10
(b) |z +2| =z —i]
(c) arg(z+2—1i) = —n/4

Solution.
Part (a). Note that [2z — 6 — 8i| =10 = |2 — (3 + 4i)| = 5.

Im ’ locus of P

3 +4i

The locus of P is a circle with centre (3,4) and radius 5. Its Cartesian equation is
(x—3)2+ (y —4)? =52
Part (b). Note that [z 4+ 2| = |z —i| = |z — (-2)| = |z —i].

Im ’ locus of P
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The locus of P is the perpendicular bisector of the line segment joining (—2,0) and
(0,1). Its Cartesian equation is y = —2z — 1.5.

Part (c). Note that arg(z +2 — i) = —7/4 = arg(z — (—2+1)) = —n/4.

Im ’ locus of P ‘

—2+1
Q

G

The locus of P is the half-line starting from (—2,1) and inclined at an angle —m/4 to
the positive real axis. Its Cartesian equation is y = —x — 1

* ok k% ok

Problem 2. Sketch the following loci on separate Argand diagrams.

(a) Re(2?) =1

(b) 16— izl =2,
(c) arg(lsz/gi) =7
Solution.

Part (a). Let z = r(cosf + isinf). Then Re(2?) =1 = r?cos20 =1 = 1% = sec26.

Im required locus

Part (b). Note |6 —iz| =2 = |—i(2+6i)| =2 = |2 +6i| =2 = |z — (61)| =2.
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Im Re required locus
(@)

Part (c). Note arg(l_i\z/gJ =71 = T targ(z) - (-1) = arg(z) = .

Im ’ required locus

X %k %k % X

Problem 3. Sketch, on separate Argand diagrams, the set of points satisfying the follow-
ing inequalities.

(a) 2 < |z —2i| < |3 —4i]
(b) |z+1i| > |z +1—1]
() §<arg(3) =3

Solution.
Part (a). Note 2 < |z — 2i| < |3 —4i] = 2 < |z —2i| <5.

required locus

Re
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Part (b). Note |z +i| > [z +1—i] = |z—(—1)| > |z — (-1 +1)|.

Im ’ required locus
—1+i
. -
P -
N Re
R
il —ie
1
Part (c). Note T <arg(1) <3 = T < —arg(z) <5 = —F >arg(z) > %
Im ’ required locus
Re
\y\ E
O \\_4/
* ok ok ok ok

Problem 4. Sketch on separate Argand diagrams for (a) and (b) the set of points repre-
senting all complex numbers z satisfying both of the following inequalities.

(a) |z —3—1i| <3 and |z| > |z —3 — i
(b) I <arg(z+1) < Zr and 3Im(z) > 2

Solution.
Part (a). Note [z—3—-1| <3 = [z—(3+1i) <3 and |z]| > |z—-3—-i] = |z| >
|z — (3+1)].

’ required locus ‘
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Part (b). Note I < arg(z+1) < 27 = I <arg(z — (1)) < 37 and 3Im(z) > 2 =

2
\ ; R
% ‘ Im ’ required locus ‘
N l
\ |
\ |
\ 1
\ I
A I
A |
A |
\\ |
\ |
\ I
Vo 2.
S S U 1 D
N 3
AN
M Re
L
-1 0]
k ok ok ok ok

Problem 5. Tllustrate, in separate Argand diagrams, the set of points z for which

(a) Re(2?) <0
(b) Im(2*) >0

Solution.
Part (a). Let z = r(cos@ —|— isinf), 0 < 0 < 27. Then Re(2?) <0 = r?cos20 <0 =
(30829<O:>29€( ) (f %):>9€(47T,4)U(%7T,£7T).
N Im ,// ’ required locus
L Re
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Part (b). Let z = r(cosf + isinf), 0 < 6 < 27. Then Im(2%) >0 = r®sin30 >0 =
sin30 >0 = 30 € (0,7) U (2m,37) U (47, b7) — 0 € (0, %W) U (%ﬂ',ﬂ) U (%ﬂ', %7‘()

. Im 4 ’ required locus ‘

* ok x % ok

Problem 6. The complex number z satisfies |z + 4 — 4i| = 3.

(a) Describe, with the aid of a sketch, the locus of the point which represents z in an
Argand diagram.

(b) Find the least possible value of |z — i|.
(c¢) Find the range of values of arg(z — 1).

Solution.
Part (a). Note |z +4 —4i| =3 = |z — (-4 +4i)| = 3.

Im required locus
C(—4 + 4i) *B
0 eI(i)
A Re
(0]

Part (b). Observe that the distance CT is equal to the sum of the radius of the circle and
min |z — i|. Hence,

min|z —i|=+/(-4-02+ 4 —-12-3=2.

Part (c). Let A and B be points on the circle such that Al and BI are tangent to the
circle. Let ZCIA = 0. Then tanf = % = 0 = arctan %. By symmetry, we also have
ZCIB = 0, whence ZAIB = 2 = 2arctan 2. Hence, minarg(z — i) = 7 — 2arctan 2 (at

B) and maxarg(z — i) = 7 (at A). Thus, 7 — 2arctan 3 < arg(z — 1) < 7.
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Problem 7. Sketch, on the same Argand diagram, the two loci representing the complex
number z for which z =4 + ki, where k is a positive real variable, and |z — 1| = 4. Write
down, in the form x + iy, the complex number satisfying both conditions.

Solution.

Im ol =4
z=4+ki

Note that z is of the form 4 + ki, k € RT. Since |z — 1| = 4, we have [3+ ki| =4 =
324+ k%2=4 — k = /7. Note that we reject k = —+/7 since k > 0. Thus, z = 44+ +/Ti.

% 3k ok ok ok

Problem 8. Describe, in geometrical terms, the loci given by |z —1| = |z 41| and
|z — 3 + 3i| = 2 and sketch both loci on the same diagram.

Obtain, in the form a 4+ ib, the complex numbers representing the points of intersection
of the loci, giving the exact values of a and b.

Solution. Note that |z — 1| =|z+i] = |z—1| =]z —(~i)| and |z -3+ 3i| =2 =
2 — (3 — 31)| = 2.

The locus given by |z — 1| = |z 4 i| is the perpendicular bisector of the line segment
joining 1 and —i. The locus given by |z — 3 + 3i| = 2 is a circle with centre 3 — 3i and
radius 2.

Im Re ]z—l]:].z—i—i]
|z —=3+4+3i|=2
o 1
i -
3 —3ie
Observe that the locus of |z — 1| = |z + i| has Cartesian equation y = —z and the locus

of |z — 3 + 3i| = 2 has Cartesian equation (z —3)? + (y +3)? = 22. Solving both equations
simultaneously, we have
(=32 +w+32=@2-32+0B-2)?=22 = 22 —62+7=0
— z=3+V2 = y=-3T7V2
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Hence, the complex numbers representing the points of intersections of the loci are (3 +
V2) + (=3 —+/2)i and (3 —v/2) + (=3 + V/2)i.

k 3k ok ok ok

Problem 9. Sketch the locus for arg(z — (4v/3 — 2i)) = %77 in an Argand diagram.

(a) Verify that the points 2i and 2+/3 lie on it.

(b) Find the minimum value of |z| and the range of values of arg(z).

Solution.

Im ’ required locus

3(2\/5) Re

44/3 — 2i

Part (a). Note that

arg<2i — (4V3 — 21)) = arg(—\/§+ i) = arctan —1/5 = %ﬂ'

and

1 5
arg(2v/3 — (4v/3 — 2i > = ar (—\/§+ i) = arctan = —T.

g( ( ) g ~ /36
Hence, the points 2i and 2+/3 satisfy the equation arg(z — (4V3 — 2i)) = %77 and thus lie
on its locus.
Part (b). Let A(2i) and B(2v/3). Let C be the point on the required locus such that
OC 1 AB. Observe that AOAB, ACOB and ACAOQ are all similar to one another.
Hence,

oc A0 1 1 OC BO 3

Hence, AB=AC + CB = (\/g + %) OC, whence

. AB 2+ (2V3)? 43
m1n|z|—OC—\/§+1/\/§— N RN = V3.

Observe that maxarg(z) = gﬂ' and minarg(z) = minarg(4v/3 — 2i) = arctan —

4\f

5
— arctan 2\[ Thus, — arctan f <arg(z) < g
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Problem 10. The complex number z satisfies [z — 3 — 3i| > [z — 1 — i| and § < arg(z) <

™

g.
(a) On an Argand diagram, sketch the region in which the point representing z can lie.
(b) Find the area of the region in part (a).

(c) Find the range of values of arg(z — 5+ 1).

Solution.
Part (a). Note that [z —3—=3i|<|z—1—-1i] = |[z—(3+31)| < |z = (1 + 1)

Im ) ’ required locus ‘
83+ 3i .
A P
-~ B
o -
14+1--
//’/ Re
o
S )

Part (b). Note that the locus of |z —3 — 3i| = |z — 1 — i| has Cartesian equation y =

—x + 4, while the loci of § = arg(z) and arg(z) = § have Cartesian equations y = %x

and y = v/3z respectively. Let A and B be the intersections between y = —z + 4 with
y =3z and y = %m respectively.

— — 4 4V3
At A, we have y = V/3z = —x + 4, whence A (1+\/§’ 1+\/§)' Thus,

o L e
S\ \1+v3 1+v3/)  1+V3

By symmetry, we also have OA = OB. Finally, since ZAOB = 5 — ¢ = %,
1 1 1 1 2
[AAOB] = ~(OA)(OB) sin ZAOB = ~ ( 8 > LS - (1 - \/5) .
2 2\1+v3/) 2 (1+3)

Part (c). Observe that minarg(z — (5 — i)) = 37 and maxarg(z — (5 — i)) = arctan 2 +

T =T — arctan % Hence, %ﬂ' <arg(z —5+1) <7 — arctan %
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Problem 11. Sketch on an Argand diagram the set of points representing all complex
numbers z satisfying both inequalities

iz—2-2/[<2 and  Re(z) > ’1+\/§i

Find
(a) the range of arg(z — 2 — 2i),
(b) the complex number z where arg(z — 2 — 2i) is a maximum.

The locus of the complex number w is defined by |w — 5+ 2i| = k, where k is a real
and positive constant. Find the range of values of k such that the loci of w and z will
intersect.

Solution. Note |iz—2i—2| <2 = [i(z—2+42i)| <2 = [z2—(2—-2i)| <2 and
Re(z) > |1+ V3i| = 2.

’ required locus ‘

Part (a). Note |z —2 — 2i| = arg(z — (24 2i)). Let A(2+2i) and C(2—2i). Let T be the
point at which AT is tangent to the circle. Then ZATC = 5, AC = 4 and TC = 2. Hence,
ZCAT = arcsin? = Z. Thus, minarg(z — 2 —2i) = —% and maxarg(z — 2 — 2i) =
minarg(z — 2 — 2i) + ZCAT = -5 + § = —%. Hence, —§ < arg(z —2 —2i) < — 7.
Part (b). Relative to C, T is given by 2 (cos Z 4+ isinZ) = /3 +1i. Thus, T = (V3+1i) +
(2-2i)=2+V3—1i.

Note |w—5+2i]| =k = |w—(5—2i)] = k. Let D(5 — 2i). Observe that CD is
given by the sum of the radius of the circle and min k. Hence, mink = 3 — 2 = 1. Let
B(2 — 4i). Then maxk is given by the distance between B and D. By the Pythagorean
Theorem, we have maxk = /(5 — 2)2 + (=2 — (—4))2 = V13. Thus, 1 < k < V/13.
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Self-Practice A10.4

Problem 1. If arg(z — 2) = 27/3 and |z| = 2, determine arg(z).
Solution. Let A(2+ 0i) and Z(z).

Im

O ! TA

Observe that ZOAZ =7 —2n/3 = w/3. Since OA = OZ = 2 it follows that AOAZ is
equilateral, so arg(z) = LZAOZ = m/3.

k 3k ok ok ok

Problem 2. : is a complex number such that arg(z — 1) = 7/3 and arg(z — i) = 7/6.
By finding the Cartesian equations of the two half-lines, or otherwise, find the value of
arg(z).

Solution. Let z = x + iy, where z,y € R. Then

— Y B —= y=32-3

— 1) = arct =
arg(z — 1) = arctan p—

_r
xr—1 3

and . ) .
arg(z—i):arctany =l =Y =— — y=1+—7u.

7r

Equating the two, we have

1 _ 1+V3 V343
\/gx—\/g—l—l—%x:x—\/g_l/\/g— 5

Thus,

y=\/§(x—1):\/§<\/§2+3—1> = 3+2\/§,

so x =y and
Y us
arg z = arctan = = arctan1 = —.
T 4
* ok ok ok ok

Problem 3. The complex number z is given by z = rel?, where » > 0 and 0 < 0 < 7/2.

(a) Given that w = (1 —1v/3) z, find |w| in terms of r and argw in terms of 6.

(b) Given that r has a fixed value, draw an Argand diagram to show the locus of z as
0 varies. On the same Argand diagram, show the corresponding locus of w. You
should identify the modulus and argument of the end-point of each locus.
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Solution.
Part (a). Note that 1 — iv/3 = 2¢~™/3. Thus,

w= (1 — \/51) z= (2e_”/3> (rew) = 2rel(0=7/3),

Hence, |w| = 2r and arg(w) = 60 — 7/3.

Part (b).
Im locus of z
—— locus of w
e
2r .-
476 Re
°
O \\—71'/3 T
\\
\
\
\
\
A\
2r
\
%k K k%

Problem 4. The complex number z satisfies the equation |z| = |z + 2|. Show that the
real part of z is —1. The complex number z also satisfies the equation |z| = 3. The two
possible values of z are represented by the points P and () in an Argand diagram. Draw
a sketch showing the positions of P and @, and calculate the two possible values of arg z,
giving your answers in radians correct to 3 significant figures.

It is given that P and @ lie on the locus |z — a| = b, where a and b are real, and b > 0.
Give a geometrical description of this locus, and hence find the least possible value of b
and the corresponding value of a.

Solution. Observ