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1 Introduction

In 1985, Subbarao and Sitaramachandrarao[?] introduced an alternating analogue to
Tornheim’s double series given by

S(a,b,c) = Z (-)™
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Here, the parameters a, b and c are non-negative integers. Note that the double series is
symmetric in m and n, so S(a, b, c) = S(b, a, c).

In this note, we evaluate all convergent S(a, b, ¢) with parameters a,b, ¢ € {0,1} using
purely elementary methods. Our results are summarized below:

(A) 5(1,1,0) = In?2, 5(1,0,1) = ln 2, (©)
(B) 5(0,0,1) =In2 - % S(1,1,1) = ZC(3)‘ (D)

Quite clearly, S(0,0, 0) and S(1, 0, 0) are divergent and are hence omitted.

2 Evaluating S(1,1,0)
S(1,1,0) is perhaps the easiest of the four double series to evaluate.
Theorem A. S(1,1,0) = In?2.

Proof. By definition, we have

5(1,1,0) = Z(l

m,mn=>1

)m+n )m 1

] 5

Recognizing each sum as the series expansion of In(1 + x) at x = 1 finishes the proof. O

In general, S(a, b, 0) can easily be evaluated using the Dirichlet 1 function. Indeed, one
can trivially show that

S(a,b,0) =n(a)n(b).

This converges if and only if 2 and b are positive integers.
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3 Evaluating S(0,0,1)

Theorem B. 5(0,0,1) =In2 -
Proof. We have

1
5

5(0,0,1) = Z ™

m+n
m,n=1
— Z ( 1)m+n/ m+n—1 dx
m,n>1
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where the integral in the second-last line can be evaluated with the transformation
1+x — x. m]

We can use this result to “evaluate” Grandi’s series.

“_n 1

Corollary1. 1-1+1-1+--- 3
Proof. We have

1 (_1)m+n

In2- = = =

n2 2 Z m+n
mmn>1

Let k = m + n > 2. Noting that m + n = k has k — 1 solutions over N, we have

1 (—Dkk - 1) (—1)k1
1n2—§:ZT:Z(—1)"+(—1+Z - )

k>2 k>2 k>1

The first term is Grandi’s series, while the second term evaluates to —1 + In2. Thus,

1
DD =1-141-14- =" 5
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k>2

4 Evaluating S(1,0,1)

Theorem C. 5(1,0,1) = 1 In*2.
Proof. We have

5(1,0,1) = Z =nm

o m(n + m)
_ Z (_1)m+n /1xm+n—1 dx
m,n>1 m 0
m— 1
/Z(l) Z( x)nldx
m>1 n>1

:/ ln(1+x)dx
o 1+x



Denote the above integral by I. Integrating by parts reveals that [ = In*2 — I, so

5(1,0,1)=1= %11122

as desired. O

5 Evaluating S(1,1,1)

We begin by proving several integral identities.
Proposition 2. Let o and p be non-negative integers. Then
/1x“lnﬁxdx = (_1—)ﬁﬁ'
0 (a +1)pH1
Proof. Define
I(B) = ‘/01 x%Inf x dx.

Integrating by parts yields the recurrence relation

p
I(B) = - I(B —1).
() =-—L=1(6-1)
With the initial condition I(0) = -1, we immediately get the desired claim. m]

Proposition 3. We have
192
In"(I+x) . 1
The following proof is taken from [1] (with typos corrected).
Proof. Recall theidentity 2a®+2b% = (a+b)*+(a—b)?. Takinga = In(1 — x)and b = In(1 + x)

and rearranging, we have

1 1 1-x
2 = 2In2(1 = 3 + = 1n2 | —Z | —1n2(1 -
In“(1+x)==-In"(1-x%) + = In (1 ) In“(1 - x).

Dividing by x and integrating over (0, 1), we have

11,2 11201 _ 22 11n2 (1=x 11,201 _
/ 1n(1+x)dx:1/ In*(1 x)dx+%/ n (1+x)dx_/ In*(1 x)dx
0 0 0 0

X 2 X X X

1—x2|—)x l=x — X l-x—>x

1.2 1 1.2 1.2
:1/ In xdx+/ lnxdx_/ In xdx.
4 0 1-x 0 1—x2 0 1—-x

The latter two integrals can be combined and simplified, giving

1.2 1.2 1 2 11.2
/ lnxdx_/ lnxdx:_/ xlnxdx:_l/ lnxdx’
o 1—x2 o 1—x o 1—x2 8Jy 1—x
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where we applied the transformation x

integral becomes
11,2 112
/ ln(1+x)dx:1/ In X dr
0 X 8Jo 1—-x

+ x to obtain the last step. Altogether, the target




Using the series expansion of 1= and switching the order of summation and integration

yields
2
/ 1n(1+x) Z/xln xdx.
0

k>0

By Proposition 2 and the definition of the C function, we finally arrive at the desired result:

ln2(1 + x)
‘/0 x -8 Z (k+ 1)3 C( )

O

We now evaluate S(1,1,1). As the result of Proposition 3 hints, we will show that
2
5(1,1,1) is equal to /01 w dx.

Theorem D. S(1,1,1) = 1(3).
Proof. We have

5(1,1,1) = Z _=nm

4 mn(m + n)

Z (_1)m+n /1xm+n—l dx
mn J,

m,n>1
B ( 1)n 1 ( 1)m 1
[359F
ln2(1 +x) 1
- /0 T b = 200
as desired. O

In [5], Chen showed that for non-negative 4, b and c,

S@+1,b+1,c+1)= Z U(dy +1,dz + ¢ +2)

d] +d2=a+b

(o)« (3]

where the double-C function is defined as

ooy D
C(a, p) = 1; -

In the particular case of S(1,1, 1), we see that

> L)
mn

1<m<n

Elementary manipulation gives the identity

— (-1)"H,_1 1
D = 5.

n=2

Using this, we deduce the following inequality.



Proposition 4. We have

Q) = i <—11';1nn - ©)

Proof. Using the trapezium rule on 1/x over the interval 1 < x < n yields the inequality

1 1
H,_ 1>]nn+§—ﬂ

Thus,
1o N (ED"Hua (=1)"Inn (= 1)” N (= 1)” B
§C(3)_Z n? Z n? _ZZ 22 '
nx=2 n>2 n>2 n>2
We recognize the last two sums as 17(2) — 1 and 7(3) — 1 respectively, so
1)" lnn 1 1 1
> ELRE L@+ 3n@ - 5006).
n>2

Using the relationship 7(s) = (1 — 217%){(s), we obtain our desired result. O
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