Nilpotent 0 — 1 Matrices
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1 Introduction

In this note, we prove the following result:

Theorem A. Let Ay be an n X n matrix obtained by switching k random entries of 0 from 0 to 1.
Then
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This result generalizes the k = 2 case as discussed at [1].

2 Proof of Theorem A

We begin with some several elementary definitions in graph theory.

Definition 1. The adjacency matrix of a directed graph with vertices {vy,...,v,} isann Xn
matrix M with entries given by

1, if there is a directed edge v; — v,
P
g 0, otherwise,

where 1 < i,j < n. Note that A;; = 1 indicates there is a loop at v;.

Definition 2. The adjacency matrix of a directed bipartite graph with bipartition (U, W), where
U={uy,...,up}yand W ={wy,...,wy}, is the m X n matrix M with entries given by

1, if there is a directed edge u; — wj,
-
g 0, otherwise,

wherel <i<mand1<j<n.

Definition 3. A walk of length k is a sequence of vertices v1, . . ., vk (possibly with repetition)
such that there exists an edge v; — v;41 forall1 <i < k-1.

We now prove some helpful results.

Proposition 4. Let A be the adjacency matrix of a directed graph with vertices V. ={1,...,n}.
Then al’.’]? counts the number of walks of length m from i to j.
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Proof. For1 < i,j < n,let1;; be the n X n matrix whose (i, j)-entry is 1, and all other entries
are 0. Suppose there are k edges, and label them as

E={Gi1,j1),-.., (K ji)} -

Then we may decompose A as

=2 Lf—lem

(i,j)eE

Now consider higher powers of A. Since

1,1 = 1,4, ifb=c,
abted = o0, otherwise,

one can inductively show that

1 iy, iy =i, foralll<r<m-1,]
]t Lty Jtm 0, otherwise.

Thus,

A" = Z litljtm ,

(tlrm:tm)epm

where P, is the set of all length m sequences of edges (i;,, ji,) such that j;, = i;,,, for all
1 < r < m — 1. But each sequence in P, describes a walk of length m from (i, j,) to

(itm’ jtm):

Ih = jn =ity = i =0 = by = i,
and adds 1 to the (i, j;,,) entry in A™. Thus, a?]? counts the number of walks of length m
from i to j. O

Proposition 5. Let S and T be disjoint sets of size s and t respectively. The number of ways to
draw k arrows from S to T such that

e cuvery element of S is the tail of at least one arrow, and

* cvery element of T is the head of at least one arrow,

S5 )

i=0 j=0

is given by

Proof. We may view the given set-up as a directed bipartite graph (S, T, E) with |E| = k.
Let M be the adjacency matrix of this graph. By construction, every row and every column
of M must have at least one non-zero entry. It thus suffices to count the number of s X t
matrices with entries in {0, 1} with no all-zero rows or columns, and exactly k 1’s.

We proceed by inclusion-exclusion. Consider an arbitrary s X t matrix with entries in
{0,1} and exactly k 1’s. Let R; and C; be the event that the ith row and jth column is all
zero, respectively. By inclusion-exclusion, the number of matrices that avoid all-zero rows
and columns is precisely

Z Z( 1)lAlI+Bl
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Fix |A| = i and | B| = j, and consider the event (1,4 Rz N (pep Cp. In this case, all rows
with indices in A and all columns with indices in B are forced to be all-zero. This leaves
(s = i)(t — j) available positions to place the k 1’s in, so

ﬂRaﬂﬂC ((S—Z)(f—]))

acA beB

Note further that there are () possibilities for A and ( ) possibilities for B for a total

contribution of ( 2 - )
ivi[S\[EY[(s =)t =7
GG )

Enumerating over all possible sizes i and j, we get a final count of

ZZ( W( )( )((S e —f>)

i=0 j=0
as desired. O
We now prove Theorem A.

Proof of Theorem A. We may view Ay as the adjacency matrix of a directed graph G = (V, E),
where V = {vy,...,v,} and |E| = k. By Proposition 4, Ai = 0 if and only if G does not
contain any walk of length 2. Equivalently, all walks of G must have length 1.

We count the number of such graphs. Let S and T be the sets of vertices with non-zero
outdegree and indegree respectively. Since all walks have length one, we have SNT = @.
Thus, for fixed sizes s = |S| and ¢t = |T|, there are

()

ways to choose S and T from V. Next, Proposition 5 tells us that for any choice of Sand T,

Sl

i=0 j=0

ways to assign k edges from S to T. Enumerating over all possible sizes s and ¢, the number
of valid graphs (and thus matrices) is

k&
TSz )
Since there are (”kz) matrices without restriction, we have the desired result. O

3 Particular Values

For 1 < k < 6, we list the closed-form expressions for P[Ai = 0]. We define

3
-

m—1
:l_[(n—i) and B, =| [ (n?*-1).
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IP>[A§_0]=B—1 (k=1)

P[AS =0] :ﬁ(n—l) (k =2)
2 B2

P[A§=O]=%(n2—3n+4) (k =3)

P[Aﬁ:ﬂ]:%( * —10n° +43n* — 961 + 86) (k=4)

P[AZ=0] = ‘;—: (n® - 15n* + 105n° — 415n> + 886n — 810) (k=5)

P[AZ=0] = % (n” —26n° +320n° — 2380n* + 11341n° — 34168n> + 59752n — 46440)

6

(k =6)

The following Python snippet yields simplified expressions for fixed k:

import sympy as sp

def closed_form(k):
n = sp.symbols(’n’, integer=True)

term = 0

for S in range(l, k+1):
for T in range(l, k+1):
inner = 0
for I in range(®, S+1):
for J in range(®, T+1):

inner += (-1)**(I+]) * sp.binomial(S, I) * sp.binomial(T, J

) * sp.binomial ((S-I)*(T-1), k)
term += sp.binomial(n, S)

* %

sp.binomial (n-S, T) inner

expr = term / sp.binomial(n**2, k)
return sp.simplify(expr)

4 Final Remarks
We leave the following questions and extensions for the reader.

¢ Can the result in Theorem A be further simplified?

e Let

A
2 _ —
P[A7 =0] = By,

for some polynomial P in 7.
— Isby = k for all k?
— What pattern does aj follow?

— Are there any patterns to the coefficients of P?
¢ Determine P[A? = 0| for integers m > 2.

¢ Construct another matrix By independently of Ax. What is P[A;By = 0]?
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