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1 Introduction

In this note, we prove the following result:

Theorem A. Let A𝑘 be an 𝑛 × 𝑛 matrix obtained by switching 𝑘 random entries of 0 from 0 to 1.
Then

P
[
A2

𝑘
= 0

]
=

1(
𝑛2

𝑘

) 𝑘∑
𝑠=1

𝑘∑
𝑡=1

(
𝑛

𝑠

) (
𝑛 − 𝑠

𝑡

) 𝑠∑
𝑖=0

𝑡∑
𝑗=0

(−1)𝑖+𝑗
(
𝑠

𝑖

) (
𝑡

𝑗

) (
(𝑠 − 𝑖)(𝑡 − 𝑗)

𝑘

)
.

This result generalizes the 𝑘 = 2 case as discussed at [1].

2 Proof of Theorem A

We begin with some several elementary definitions in graph theory.

Definition 1. The adjacency matrix of a directed graph with vertices {𝑣1 , . . . , 𝑣𝑛} is an 𝑛 × 𝑛

matrix M with entries given by

𝑚𝑖 𝑗 =

{
1, if there is a directed edge 𝑣𝑖 → 𝑣 𝑗 ,

0, otherwise,

where 1 ≤ 𝑖 , 𝑗 ≤ 𝑛. Note that A𝑖𝑖 = 1 indicates there is a loop at 𝑣𝑖 .

Definition 2. The adjacency matrix of a directed bipartite graph with bipartition (𝑈,𝑊), where
𝑈 = {𝑢1 , . . . , 𝑢𝑚} and 𝑊 = {𝑤1 , . . . , 𝑤𝑛}, is the 𝑚 × 𝑛 matrix M with entries given by

𝑚𝑖 𝑗 =

{
1, if there is a directed edge 𝑢𝑖 → 𝑤 𝑗 ,

0, otherwise,

where 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛.

Definition 3. A walk of length 𝑘 is a sequence of vertices 𝑣1 , . . . , 𝑣𝑘 (possibly with repetition)
such that there exists an edge 𝑣𝑖 → 𝑣𝑖+1 for all 1 ≤ 𝑖 ≤ 𝑘 − 1.

We now prove some helpful results.

Proposition 4. Let A be the adjacency matrix of a directed graph with vertices 𝑉 = {1, . . . , 𝑛}.
Then 𝑎𝑚

𝑖𝑗
counts the number of walks of length 𝑚 from 𝑖 to 𝑗.
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Proof. For 1 ≤ 𝑖 , 𝑗 ≤ 𝑛, let 1𝑖 𝑗 be the 𝑛×𝑛 matrix whose (𝑖 , 𝑗)-entry is 1, and all other entries
are 0. Suppose there are 𝑘 edges, and label them as

𝐸 =
{
(𝑖1 , 𝑗1), . . . , (𝑖𝑘 , 𝑗𝑘)

}
.

Then we may decompose A as

A =

∑
(𝑖 , 𝑗)∈𝐸

1𝑖 𝑗 =
𝑘∑

𝑡=1
1𝑖𝑡 𝑗𝑡 .

Now consider higher powers of A. Since

1𝑎𝑏1𝑐𝑑 =

{
1𝑎𝑑 , if 𝑏 = 𝑐,

0, otherwise,

one can inductively show that

1𝑖𝑡1 𝑗𝑡1 . . . 1𝑖𝑡𝑚 𝑗𝑡𝑚 =

{
1𝑖𝑡1 𝑗𝑡𝑚 , if 𝑗𝑡𝑟 = 𝑖𝑡𝑟+1 for all 1 ≤ 𝑟 ≤ 𝑚 − 1, ]
0, otherwise.

Thus,
A𝑚 =

∑
(𝑡1 ,...,𝑡𝑚)∈𝒫𝑚

1𝑖𝑡1 𝑗𝑡𝑚 ,

where 𝒫𝑚 is the set of all length 𝑚 sequences of edges (𝑖𝑡𝑟 , 𝑗𝑡𝑟 ) such that 𝑗𝑡𝑟 = 𝑖𝑡𝑟+1 for all
1 ≤ 𝑟 ≤ 𝑚 − 1. But each sequence in 𝒫𝑚 describes a walk of length 𝑚 from (𝑖𝑡1 , 𝑗𝑡1) to
(𝑖𝑡𝑚 , 𝑗𝑡𝑚 ):

𝑖𝑡1 → 𝑗𝑡1 = 𝑖𝑡2 → 𝑗𝑡2 = · · · = 𝑖𝑡𝑚 → 𝑗𝑡𝑚 ,

and adds 1 to the (𝑖𝑡1 , 𝑗𝑡𝑚 ) entry in A𝑚 . Thus, 𝑎𝑚
𝑖𝑗

counts the number of walks of length 𝑚

from 𝑖 to 𝑗. □

Proposition 5. Let 𝑆 and 𝑇 be disjoint sets of size 𝑠 and 𝑡 respectively. The number of ways to
draw 𝑘 arrows from 𝑆 to 𝑇 such that

• every element of 𝑆 is the tail of at least one arrow, and

• every element of 𝑇 is the head of at least one arrow,

is given by
𝑠∑

𝑖=0

𝑡∑
𝑗=0

(−1)𝑖+𝑗
(
𝑠

𝑖

) (
𝑡

𝑗

) (
(𝑠 − 𝑖)(𝑡 − 𝑗)

𝑘

)
.

Proof. We may view the given set-up as a directed bipartite graph (𝑆, 𝑇, 𝐸) with |𝐸| = 𝑘.
Let M be the adjacency matrix of this graph. By construction, every row and every column
of M must have at least one non-zero entry. It thus suffices to count the number of 𝑠 × 𝑡

matrices with entries in {0, 1} with no all-zero rows or columns, and exactly 𝑘 1’s.
We proceed by inclusion-exclusion. Consider an arbitrary 𝑠 × 𝑡 matrix with entries in

{0, 1} and exactly 𝑘 1’s. Let 𝑅𝑖 and 𝐶 𝑗 be the event that the 𝑖th row and 𝑗th column is all
zero, respectively. By inclusion-exclusion, the number of matrices that avoid all-zero rows
and columns is precisely ∑

𝐴⊆[𝑠]

∑
𝐵⊆[𝑡]

(−1)|𝐴|+|𝐵|
�����⋂
𝑎∈𝐴

𝑅𝑎 ∩
⋂
𝑏∈𝐵

𝐶𝑏

����� .
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Fix |𝐴| = 𝑖 and |𝐵| = 𝑗, and consider the event
⋂

𝑎∈𝐴 𝑅𝑎 ∩
⋂

𝑏∈𝐵 𝐶𝑏 . In this case, all rows
with indices in 𝐴 and all columns with indices in 𝐵 are forced to be all-zero. This leaves
(𝑠 − 𝑖)(𝑡 − 𝑗) available positions to place the 𝑘 1’s in, so�����⋂

𝑎∈𝐴
𝑅𝑎 ∩

⋂
𝑏∈𝐵

𝐶𝑏

����� = (
(𝑠 − 𝑖)(𝑡 − 𝑗)

𝑘

)
.

Note further that there are
(
𝑠
𝑖

)
possibilities for 𝐴 and

(
𝑡
𝑗

)
possibilities for 𝐵 for a total

contribution of
(−1)𝑖+𝑗

(
𝑠

𝑖

) (
𝑡

𝑗

) (
(𝑠 − 𝑖)(𝑡 − 𝑗)

𝑘

)
.

Enumerating over all possible sizes 𝑖 and 𝑗, we get a final count of

𝑠∑
𝑖=0

𝑡∑
𝑗=0

(−1)𝑖+𝑗
(
𝑠

𝑖

) (
𝑡

𝑗

) (
(𝑠 − 𝑖)(𝑡 − 𝑗)

𝑘

)
as desired. □

We now prove Theorem A.

Proof of Theorem A. We may view A𝑘 as the adjacency matrix of a directed graph 𝐺 = (𝑉, 𝐸),
where 𝑉 = {𝑣1 , . . . , 𝑣𝑛} and |𝐸| = 𝑘. By Proposition 4, A2

𝑘
= 0 if and only if 𝐺 does not

contain any walk of length 2. Equivalently, all walks of 𝐺 must have length 1.
We count the number of such graphs. Let 𝑆 and 𝑇 be the sets of vertices with non-zero

outdegree and indegree respectively. Since all walks have length one, we have 𝑆 ∩ 𝑇 = ∅.
Thus, for fixed sizes 𝑠 = |𝑆| and 𝑡 = |𝑇|, there are(

𝑛

𝑠

) (
𝑛 − 𝑠

𝑡

)
ways to choose 𝑆 and 𝑇 from 𝑉 . Next, Proposition 5 tells us that for any choice of 𝑆 and 𝑇,
there are

𝑠∑
𝑖=0

𝑡∑
𝑗=0

(−1)𝑖+𝑗
(
𝑠

𝑖

) (
𝑡

𝑗

) (
(𝑠 − 𝑖)(𝑡 − 𝑗)

𝑘

)
ways to assign 𝑘 edges from 𝑆 to 𝑇. Enumerating over all possible sizes 𝑠 and 𝑡, the number
of valid graphs (and thus matrices) is

𝑘∑
𝑠=1

𝑘∑
𝑡=1

(
𝑛

𝑠

) (
𝑛 − 𝑠

𝑡

) 𝑠∑
𝑖=0

𝑡∑
𝑗=0

(−1)𝑖+𝑗
(
𝑠

𝑖

) (
𝑡

𝑗

) (
(𝑠 − 𝑖)(𝑡 − 𝑗)

𝑘

)
.

Since there are
(
𝑛2

𝑘

)
matrices without restriction, we have the desired result. □

3 Particular Values

For 1 ≤ 𝑘 ≤ 6, we list the closed-form expressions for P
[
A2

𝑘
= 0

]
. We define

𝐴𝑚 =

𝑚−1∏
𝑖=0

(𝑛 − 𝑖) and 𝐵𝑚 =

𝑚−1∏
𝑖=0

(
𝑛2 − 𝑖

)
.
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P
[
A2

1 = 0
]
=

𝐴2
𝐵1

(𝑘 = 1)

P
[
A2

2 = 0
]
=

𝐴3
𝐵2

(𝑛 − 1) (𝑘 = 2)

P
[
A2

3 = 0
]
=

𝐴4
𝐵3

(
𝑛2 − 3𝑛 + 4

)
(𝑘 = 3)

P
[
A2

4 = 0
]
=

𝐴4
𝐵4

(
𝑛4 − 10𝑛3 + 43𝑛2 − 96𝑛 + 86

)
(𝑘 = 4)

P
[
A2

5 = 0
]
=

𝐴5
𝐵5

(
𝑛5 − 15𝑛4 + 105𝑛3 − 415𝑛2 + 886𝑛 − 810

)
(𝑘 = 5)

P
[
A2

6 = 0
]
=

𝐴5
𝐵6

(
𝑛7 − 26𝑛6 + 320𝑛5 − 2380𝑛4 + 11341𝑛3 − 34168𝑛2 + 59752𝑛 − 46440

)
(𝑘 = 6)

The following Python snippet yields simplified expressions for fixed 𝑘:
1 import sympy as sp
2
3 def closed_form(k):
4 n = sp.symbols(’n’, integer=True)
5
6 term = 0
7
8 for S in range(1, k+1):
9 for T in range(1, k+1):

10 inner = 0
11 for I in range(0, S+1):
12 for J in range(0, T+1):
13 inner += (-1)**(I+J) * sp.binomial(S, I) * sp.binomial(T, J

) * sp.binomial((S-I)*(T-J), k)
14 term += sp.binomial(n, S) * sp.binomial(n-S, T) * inner
15
16 expr = term / sp.binomial(n**2, k)
17 return sp.simplify(expr)

4 Final Remarks

We leave the following questions and extensions for the reader.

• Can the result in Theorem A be further simplified?

• Let
P
[
A2

𝑘
= 0

]
=

𝐴𝑎𝑘

𝐵𝑏𝑘

𝑃

for some polynomial 𝑃 in 𝑛.
– Is 𝑏𝑘 = 𝑘 for all 𝑘?
– What pattern does 𝑎𝑘 follow?
– Are there any patterns to the coefficients of 𝑃?

• Determine P
[
A𝑚

𝑘
= 0

]
for integers 𝑚 > 2.

• Construct another matrix B𝑘 independently of A𝑘 . What is P[A𝑘B𝑘 = 0]?
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