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1 Introduction

Definition 1. A Möbius transformation is a function f : C∞ → C∞ given by

f(z) =
az + b

cz + d
,

where z ∈ C, and a, b, c and d are complex constants with ad− bc ̸= 0.

We denote M to be the set of all Möbius transformations. It is readily seen that M
forms a group when equipped with function composition.1

Definition 2. The period of a Möbius transformation f is the least positive integer m
such that fm = idC∞ . If m does not exist, then f has infinite period.

In this note, we prove the following result:2

Theorem A. A Möbius transformation f(z) = (az+ b)/(cz+ d) has period 2 if and only
if a+ d = 0.

In the following sections, we present two proofs of the above theorem.

2 Elementary Algebra Proof

Proof of Theorem A. ( =⇒ ) Suppose f has period 2. Then for all z ∈ C∞, we have

f2(z) =

(
a2 + bc

)
z + b (a+ d)

c (a+ d) z + (bc+ d2)
= z =⇒

[
cz2 + (d− a)z − b

]
(a+ d) = 0. (∗)

By the definition of a period, there exists some w ∈ C∞ such that f(w) ̸= w. Equivalently,

aw + b

cw + d
̸= w =⇒ cw2 + (d− a)w − b ̸= 0.

Hence, from (∗), we must have a+ d = 0.
( ⇐= ) Suppose a+ d = 0. For all z ∈ C∞, we have

f2(z) =

(
a2 + bc

)
z + b (a+ d)

c (a+ d) z + (bc+ d2)
=

(
a2 + bc

)
z

bc+ (−a)2
= z,

where we note that bc+ (−a)2 = −(ad− bc) ̸= 0, so the reduction of the fraction is valid.
Thus, f2 = idC∞ . To complete the proof, we must show that f ̸= idC∞ . Indeed, for

f(z) =
az + b

cz − a
= z ⇐⇒ cz2 − 2az − b = 0

to hold for all z ∈ C∞, we require c = 0 and a = 0, which implies ad − bc = 0, a
contradiction.
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1As it turns out, M is precisely the automorphism group of C∞.
2Adapted from Nanyang Junior College H3 Mathematics Preliminary Examination 2021.
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3 Abstract Algebra Proof

Definition 3. We define the equivalence relation ∼ between two matrices A,B ∈ GL2(C)
as

A ∼ B ⇐⇒ (∃λ ∈ C∗)A = λB.

The fact that ∼ indeed satisfies reflexivity, symmetry and transitivity is immediate.

Definition 4. The projective linear group PGL2(C) is the group of 2×2 complex matrices
up to scalar multiplication:

PGL2(C) = GL2(C)/ ∼ .

Proposition 5. The projective linear group PGL2(C) is isomorphic to the group of Möbius
functions M.

The following proof is taken from [1].

Proof. Define φ : GL2(C) → M with mapping

φ

((
a b
c d

))
=

az + b

cz + d
.

Let A,B ∈ GL2(C) with

A =

(
a b
c d

)
and B =

(
a′ b′

c′ d′

)
.

Then

φ(A)φ(B) =
(aa′ + bc′) z + (ab′ + bd′)

(ca′ + dc′) z + (cb′ + dd′)
= φ(AB),

so φ is a group homomorphism. Further, φ is surjective, since every Möbius transformation
f(z) = (az + b)/(cz + d) can be identified with the matrix(

a b
c d

)
which lies in GL2(C) by the condition that ad− bc ̸= 0.
Next, suppose some A ∈ GL2(C) is in the kernel of φ. Then

az + b

cz + d
≡ z,

which immediately implies b = c = 0 and a = d, so A is a scalar multiple of the identity
matrix:

kerφ = {λI : λ ∈ C∗} = [I] .

Thus, by the First Isomorphism Theorem,

M ∼= GL2(C)/ kerφ = PGL2(C).

With the above result, we can rephrase our question on the periods of Möbius transfor-
mations to a question on the order of matrices in PGL2(C).

Proposition 6. Suppose f ∈ M is represented by A ∈ GL2(C). Then the period of f is
equal to the order of [A] in PGL2(C).
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Proof. Recall that the period of f is the least positive integer m such that fm = idC∞ .
In the context of PGL2(C), the identity is [I], while fm corresponds to [Am] = [A]m.
Translating the definition of order, we have that m is the least positive integer such that
[A]m = [I]. But this is precisely the definition of the order of an element in a group, so
ord([A]) = m.

Theorem A is thus equivalent to the following claim:

Theorem B. Let A =

(
a b
c d

)
∈ GL2(C). Then the order of [A] in PGL2(C) is 2 if and

only if trA = 0.

Proof. ( =⇒ ) Suppose [A] has order 2. Then there exists some λ ∈ C∗ such that A2 = λI.
By the Cayley-Hamilton theorem, we have

λI = A2 = tr(A)A− det(A) I ⇐⇒ tr(A)A = (λ+ det(A)) I.

But [A] ̸= [I], which forces tr(A) = 0 as desired.
( ⇐= ) Suppose trA = 0. We must have [A] ̸= [I], since A = λI for some λ ∈ C∗ would

force A = 0 /∈ GL2(C), a contradiction. Next, by the Cayley-Hamilton theorem, we have

A2 = −det(A) I.

Since det(A) is non-zero, we have [A]2 = [I], thus ord(A) = 2.

4 A Generalization to Higher Orders

Theorem C. The equivalence class [A] ∈ PGL2(C) has finite order m > 1 if and only if

tr(A)2

det(A)
= 4 cos2

πk

m
,

where k is an integer coprime to m.

Note that tr(A)2 / det(A) is invariant under scalar multiplication, hence it is indeed
meaningful to associate the equivalence class [A] with it.

Proof. ( =⇒ ) Suppose [A] has finite order m ≥ 1. Then m is the least positive integer
such that there exists some λ ∈ C∗ such that Am = λI. Let λ1, λ2 be the eigenvalues of
A. Then λm

1 = λm
2 = λ, so the ratio ζ = λ1/λ2 is a primitive mth root of unity. Write

ζ = exp(2π ik/m), where k is an integer coprime to m. Then

tr(A)2

det(A)
=

(λ1 + λ2)
2

λ1λ2
=

(ζ + 1)2λ2
2

ζλ2
2

= ζ + 2 + ζ−1 = 2

(
1 + cos

2πk

m

)
= 4 cos2

πk

m
.

( ⇐= ) Suppose

tr(A)2

det(A)
= 4 cos2

πk

m

for some integers m and k with m ≥ 1 coprime to k. Write r =
√
det(A) ̸= 0 and

θ = πk/m. Let λ1 and λ2 be the eigenvalues of A. Then λ1 and λ2 satisfy the quadratic

x2 − tr(A)x+ det(A) = 0,

which can be rewritten as
x2 − (2r cos θ)x+ r2 = 0,
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whence it is obvious that λ1 = reiθ and λ2 = re−iθ. Since k and m are coprime, the
eigenvalues are distinct, so A is diagonalizable as

A = P

(
reiθ 0
0 re−iθ

)
P−1.

Taking mth powers, noting that θm = kπ, we see that

Am = P

(
(−1)krm 0

0 (−1)krm

)
P−1 = (−1)krmI,

whence [A]m = [I]. Because k and m are coprime, m is minimal, thus [A] has order m.

Remark. If m = 1, the forwards direction holds, but the backwards direction does not.
This is because we have k = 1, so θ = π and the two eigenvalues are identical. This gives
rise to the possibility that A is not diagonalizable, which would imply that ord([A]) = ∞
and not 1 as desired.

Example 7. Note that k = 1 is the only (positive) integer coprime to m = 2. Thus,
Theorem C asserts that [A] has order 2 if and only if

tr(A)2

det(A)
= 4 cos2

π

2
= 0,

whence tr(A) = 0, recovering Theorem B.
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