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1. Introduction

The following is a sample H3 Mathematics problem about the equivalence between Maclau-
rin’s inequality and a generalization of Bernoulli’s inequality.[1]. This equivalence can be
seen as a natural “interpolation” of the equivalence between the AM-GM inequality[2] and
the classical Bernoulli inequality.

2. Preamble

The AM-GM inequality and Bernoulli’s inequality are two classical inequalities in math-
ematics.

(AG) AM-GM Inequality. For xi,...,xy, >0,
1+ -+ Ty >

Fquality holds when x1 = -+ = x,.

(Ber) Bernoulli’s Inequality. For n € Z* and x > —1,
14+ 2> (1),
n

It is easily seen that both (AG) and (Ber) are logically equivalent.
By considering the concavity of the logarithm, we can derive a generalized inequality
that interpolates (Ber):

(GBer) Generalized Bernoulli’s Inequality. Forn € N and z > —1,

9\ 1/2 1/3 \n
1+$2(1+x> z<1+3x> 2---2(1+E) .
n n n n

Definition. The kth elementary symmetric polynomial in n variables x1, ..., x, is defined
as
ex(T1,. . Tn) = Z Hafz‘,
IC[n] i€l
|I|=k

where 1 < k < n. We also define eg(z1,...,z,) = 1 and ept1(z1,...,2,) = 0. The
corresponding kth elementary symmetric mean in n variables is defined as

ep(T1, ..., Ty)

7 .
(%)
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For example,

E3<1‘7y’z7 w) — eg(xuy’zy w) _ xyz—{—wa —+ wa+wxy

(3) 4

Motivated by the observation that

T4t
Ei(z1,...,2,) = Tﬂ > (:pl...xn)l/" = En(x1,...,Tp),

we can similarly interpolate (AG) to obtain Maclaurin’s inequality:

(Mac) Maclaurin’s Inequality. Letn € N and x1,...,x, > 0. Then
El(a:l, . ,xn) > EQ((L‘l,. . .,xn)1/2 > Eg(xl, . 71'71)1/3 > > En(arl, . ,{L’n)l/n.

Using the identity

k k
Ek(:vl, .. .,xn) = <1 — n> Ek(wl, . ,I‘n_l) + ﬁEk_l(xl’ - ,$n_1)xn,

we can prove that (GBer) and (Mac) are logically equivalent too.

3. Problem Statement

a. Prove that (AG) <= (Ber).
b. By considering the concavity of Inx, prove (GBer). Determine when equality holds.

c. i) Show that

k k
Ek(xl, ... ,l‘n) = <1 — n) Ek(xl, ... ,"L‘nfl) + EEk_l(wl’ R ,$n,1)$n

for 1 <k <n.
ii) Hence, prove that (GBer) = (Mac). Determine when equality holds.
d. i) Explain why [Si(n)| = (}).

ii) Deduce that
Ei(l,...,1) = Epq(1,...,1) = 1,

where the arguments of Ej and Ej_; both contain (n — 1) 1’s.

iii) Hence, prove that (Mac) = (GBer).

4. Solution

Part (a). We begin with the forwards direction. For all z > —1, we have by (AG)

(n — 1) times

——f
AL (+1D)+1+1+---+1
(1+%)" =
n

>(14z)-1-...-1=1+u=z.
n

Taking nth roots, we get
1+ 2> (1+2)/m,
n



which is (Ber).
We now address the backwards direction. Define
n

1/n

A, = and G = (z1...2,)

Since x1,...,x, are positive,

Ti+ -+ Tp—1+ Ty
T+ F+Tp

An 1) >-—1
nAn—l .

Invoking (Ber) on the above object, we see that

> 1.

It readily follows that

1 A, A, 1/n
= — > — .
e G )] = e (s )

Taking nth powers and simplifying, we get

A, \" S nA, —(n—1)A4,_1 T,
An—l - An—l AAn—l7

SO
n n—1
AL > 2, AN

Repeatedly applying this inequality, we obtain
Ay > xpxp_1...x221 = G,

and (AG) holds.

Part (b). Because Inz is concave,
In(au + bv) > alnu + blnwv

for u,v € R and a,b > 0 with a + b = 1. Taking

1 k (k+ 1)z
TRy Frp YTh VTR
where kK =1,...,n — 1, we see that

(alnu+blnv) =

1 kx 1
p— — = — >
kln(l—i— n> kln(au—i—bv)_

| =

Exponentiating both sides,

1/k 1/(k+1)
<1+lm> > <1+<k+1)$> .

n n

Chaining the above inequality for £k =1,...,n — 1, we obtain

1/2 1/3
1+:1:2<1+2x) Z<1_|_3$> 2...2(1_’_@
n n n n

so we are done.
Equality is achieved when u = v, which is equivalent to x = 0.

1
(1
l<:+1n<+

>1/n



Part (c)(i). Define

Sp(n)={I:I1C ], |I|=k} and P(I)=]]a
el

Note that
ep(zr,. .. xn) = Y, P(I).

]Esk(n)

For each I € Sg(n), either I contains n or it doesn’t. We hence obtain a recursive
formula for Si(n).

Sk(n)={1:1Cn],|I|=kn¢gl}U{l:I1C[n],|I|=k nel}
={I:ICn—-1],[I|=ktu{IU{n}:IC[n—-1],|I|=k—-1}
:Sk(n—l)U[Sk,l(n—1)+{azn}].

We thus get the following recursion for eg(z1,...,z,) too:
ex(z1,. . xn) = > P(I)

IGSk(n)

= > PO+ P(IU{z,})
IGSk(nfl) IESkfl(nfl)

= Y PO+ > P,
IESk(n—l) IeSk_l(n—l)

=ep(T1,. ., Tn-1) +€k—1(x1,...,Tn_1) Tn.

Note that this formula still holds in the extreme cases where k = 1,n due to the way we
defined eg(z1,...,2n—1) and ep(z1, ..., Tp_1).
Dividing through by (Z)v we obtain our desired result

1
Ey(z1,...,oy) = (n—)ek(xl, cey Ty)
k

1
= ﬁek(xl, cey Tpe1) + ﬁek,l(xl, ey Tp—1) T,

_ (") (1)
(%) (%)

k k
= (1 — n> Ek(l'l, e ,l’nfl) + ﬁEk‘—l(l‘la ce ,xn,1)$n.

Ey(w1,...,201) + Ep_1(z1,...,Tn-1)Tp

Part (c)(ii). We induct on n. The n =1 case is trivial, so we take n = 2 as our base case.
(GBer) for n = 2 states that

1+%Z(1+x)1/2

for x > —1. For x1,x9 > 0, we have

T+ X2 1 ([
Ei(r1,22) = = 1+-(—-1
1( L 2) 2 2 [ 2 (xg )]

T 1/2 1/2 1/2
> X9 |:1 + (x — 1>:| = (1‘11‘2) = Eg(xl,.%'2> / .
2

Our base case n = 2 thus holds.



Now assume that (Mac) holds for n — 1 variables, where n > 3. To simplify notation,
write
Ey = Ex(z1,...,2,) and e = Eg(z1,...,2p-1)

for 1 <k <mn—1. Note that ¢g = 1 and €, = 0. We can rewrite the result in Part (c)(i)
as

k k
FE = <1 - > €k + —€k—1Tn.
n n

By our induction hypothesis,
4D 5

for 2 < k <n — 1. We can rewrite this in two ways:

ey > E}gk—l)/k and  epy < ngrl)/k
for 1 <k <n—1. We thus obtain
k k (k—1)/k k —-1/k
>(1-2 r — z -
B, > (1 n> ek + nak Tp =€ |1+ - <€k T 1) (1)
and
k+1 k+1 k+1/ _
Epiq < <1 — :; ) 5,(;““)/]6 + j; €Ly = el(fﬂ)/k [1 + % <5k Ukacn — 1)] . (2

Let ¢ = agl/kxn — 1. Note that Egl/kxn > 0, so ¢ > —1. By (1), (2) and (GBer), we
obtain

1/k 1/(k+1)
BV > Lk (1 n ’“k) > Lk (1 n (k+ 1)Ck+1> > E;ii(f“)-

n n

Since this is true for 1 < k <n — 1, we have

1

Ei > B >EP>... > E/"

so (Mac) holds for n variables. This closes the induction.
Equality holds in (Mac) when ¢ =0 forall 1 <k <n -1, so

1/k Ty 4+ Tp_1
Ly = Ek/ <e = e
n—1
Because each Eg(z1,...,zy) is symmetric in x;, we may assume without loss of generality
that z,, is maximal, so
1+ -+ xp-1
= T
n—1
Thus, equality occurs only when z1 = - = z,,.

Part (d)(i). Recall that
Sk(n)={I:1C[n], |I|=k}.

Si(n) is hence the set of all k-subsets of [n]. Since there are (}) ways to choose k elements

from [n] to form I, it follows that |Sk(n)| = (}).
Part (d)(ii). We have




Similarly,

n—1
1 Sk—1(n—1 —
Epa(l,... )= Y 1= 15t 171(71 I _ (T’jj) =1L
(:71) res, St iy Py
Part (d)(iii). Fix x > —1 and let ;1 = --- = 1 = 1 and x, = 1 4+ z. By Parts (c)(i)

and (d)(ii), for 1 < k <mn,

k k k
En(1,...,1,1+x) = <1—n>Ek(1,...,1)+nEk1(1,...,1)(1—1—1:):1—1—$.

n

(Mac) thus states

T 22\ /2 32\ /3 nx\1l/n
1+ 2= (142 2 (142 ) 2z (142
n n n n

which is exactly (GBer).

A. Motivating Maclaurin’s Inequality as a Generalization of the
AM-GM Inequality

Let = and y be the side lengths of a rectangle. Can we construct a square that “best
approximates” this rectangle? Of course, our construction depends on which quantity we
wish to preserve.

o If we preserve the perimeter of the rectangle, the resulting square has side length

r+y
llz )
2

which is the arithmetic mean.
e If we preserve the area of the rectangle, the resulting square has side length
la = /zy,
which is the geometric mean.
The AM-GM inequality hence gives
I > lo. (%)

We can ask the same question for higher-dimensional analogues of rectangles. For
instance, suppose we have a cuboid with side lengths x, y, 2.

o [f we preserve the perimeter, the resulting cube has side length

r+y—+=z

h=""

o If we preserve the total area of all faces, the resulting cube has side length

Y + Yz + 2x
l2: f

o If we preserve the total volume, the resulting cube has side length

I3 = Jxyz.



Continuing the pattern in (x), we have
Iy > 1y > 13.
In general, for a n-dimensional orthotope with side lengths x1,
h>la>l3>- 21y,

where

This is precisely Maclaurin’s inequality!
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LAn n-dimensional orthotope has a k-dimensional volume of (2”_ ex(z1,..

.,xn)) and (2"_]“(

dimensional faces. Thus, 2"7’6(2) ¥ =2""%ep(xy1,...,2,), or Iy = ’\“/ek(:vh o xn)/(h

k
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