
1 Preamble

The AM-GM inequality and Bernoulli’s inequality are two classical results in real analysis.

(AG) AM-GM Inequality. For x1, . . . , xn ≥ 0,

x1 + · · ·+ xn
n

≥ (x1 . . . xn)
1/n .

(B) Bernoulli’s Inequality. For n ∈ N and x > −1,

1 +
x

n
≥ (1 + x)1/n .

It is easily shown that (AG) and (B) are equivalent.
By considering the concavity of lnx, we can derive a generalized inequality that inter-

polates (B):

(GB) Generalized Bernoulli’s Inequality. For n ∈ N and x > −1,

1 +
x

n
≥

(
1 +

2x

n

)1/2

≥
(
1 +

3x

n

)1/3

≥ · · · ≥
(
1 +

nx

n

)1/n
.

Definition. The kth elementary symmetric polynomial in n variables x1, . . . , xn is defined
as

ek(x1, . . . , xn) =
∑
I⊆[n]
|I|=k

∏
i∈I

xi,

where 1 ≤ k ≤ n. We also define e0(x1, . . . , xn) = 1 and en+1(x1, . . . , xn) = 0. The
corresponding kth elementary symmetric mean in n variables is defined as

Ek(x1, . . . , xn) =
ek(x1, . . . , xn)(

n
k

) .

For example,

E3(x, y, z, w) =
e3(x, y, z, w)(

4
3

) =
xyz + yzw + zwx+ wxy

4
.

Motivated by the observation that

E1(x1, . . . , xn) =
x1 + · · ·+ xn

n
≥ (x1 . . . xn)

1/n = En(x1, . . . , xn),

we can similarly interpolate (AG) to obtain the following inequality:

(M) Maclaurin’s Inequality. Let n ∈ N and x1, . . . , xn ≥ 0. Then

E1(x1, . . . , xn) ≥ E2(x1, . . . , xn)
1/2 ≥ E3(x1, . . . , xn)

1/3 ≥ · · · ≥ En(x1, . . . , xn)
1/n.

Using the identity

Ek(x1, . . . , xn) =

(
1− k

n

)
Ek(x1, . . . , xn−1) +

k

n
Ek−1(x1, . . . , xn−1)xn,

we can prove that (M) and (GB) are equivalent.
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2 Motivating Maclaurin’s Inequality as a Generalization of the
AM-GM Inequality

Let x and y be the side lengths of a rectangle. Can we construct a square that “best
approximates” this rectangle? Of course, our construction depends on which quantity we
wish to preserve.

• If we preserve the perimeter of the rectangle, the resulting square has side length

l1 =
x+ y

2
,

which is the arithmetic mean.

• If we preserve the area of the rectangle, the resulting square has side length

l2 =
√
xy,

which is the geometric mean.

The AM-GM inequality hence gives

l1 ≥ l2. (∗)

We can ask the same question for higher-dimensional analogues of rectangles. For
instance, suppose we have a cuboid with side lengths x, y, z.

• If we preserve the perimeter, the resulting cube has side length

l1 =
x+ y + z

3
.

• If we preserve the total area of all faces, the resulting cube has side length

l2 =

√
xy + yz + zx

3
.

• If we preserve the total volume, the resulting cube has side length

l3 = 3
√
xyz.

Continuing the pattern in (∗), we have

l1 ≥ l2 ≥ l3.

In general, for a n-dimensional orthotope with side lengths x1, . . . , xn, we have

l1 ≥ l2 ≥ l3 ≥ · · · ≥ ln,

where

lk = k

√
ek(x1, . . . , xn)(

n
k

) .1

This is precisely Maclaurin’s inequality!

1An n-dimensional orthotope has a k-dimensional volume of
(
2n−kek(x1, . . . , xn)

)
and

(
2n−k

(
n
k

))
k-

dimensional faces. Thus, 2n−k
(
n
k

)
lkk = 2n−kek(x1, . . . , xn), or lk = k

√
ek(x1, . . . , xn)/

(
n
k

)
.
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3 Outline of Question

a. Prove that (AG) ⇐⇒ (B).

b. By considering the concavity of lnx, prove (GB). Determine when equality holds.

c. i) Show that

Ek(x1, . . . , xn) =

(
1− k

n

)
Ek(x1, . . . , xn−1) +

k

n
Ek−1(x1, . . . , xn−1)xn

for 1 ≤ k ≤ n.

ii) Hence, prove that (GB) =⇒ (M). Determine when equality holds.

d. i) Explain why |Sk(n)| =
(
n
k

)
.

ii) Deduce that
Ek(1, . . . , 1) = Ek−1(1, . . . , 1) = 1,

where the arguments of Ek and Ek−1 both contain (n− 1) 1’s.

iii) Hence, prove that (M) =⇒ (GB).

4 Solution

Part (a). We begin with the forwards direction. For all x > −1, we have by (AG)

(
1 +

x

n

)n
=

(x+ 1) +

(n− 1) times︷ ︸︸ ︷
1 + 1 + · · ·+ 1

n


n

≥ (1 + x) · 1 · . . . · 1 = 1 + x.

Taking nth roots, we get

1 +
x

n
≥ (1 + x)1/n ,

which is (B).
We now prove the backwards direction. Define

An =
x1 + · · ·+ xn

n
and Gn = (x1 . . . xn)

1/n .

Since x1, . . . , xn are positive,

x1 + · · ·+ xn−1 + xn
x1 + · · ·+ xn−1

> 1.

It readily follows that

n

(
An

An−1
− 1

)
> −1.

Invoking (B) on the above object, we see that

1 +
1

n

[
n

(
An

An−1
− 1

)]
≥

[
1 + n

(
An

An−1
− 1

)]1/n
.

Taking nth powers and simplifying, we get(
An

An−1

)n

≥ nAn − (n− 1)An−1

An−1
=

xn
An−1

,
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so
An

n ≥ xnA
n−1
n−1.

Repeatedly applying this inequality, we obtain

An
n ≥ xnxn−1 . . . x2x1 = Gn

n

and (AG) holds.

Part (b). Because lnx is concave,

ln(au+ bv) ≥ a lnu+ b ln v

for u, v ∈ R and a, b ≥ 0 with a+ b = 1. Taking

a =
1

k + 1
, b =

k

k + 1
, u = 1, v = 1 +

(k + 1)x

n
,

where k = 1, . . . , n− 1, we see that

1

k
ln

(
1 +

kx

n

)
=

1

k
ln(au+ bv) ≥ 1

k
(a lnu+ b ln v) =

1

k + 1
ln

(
1 +

(k + 1)x

n

)
.

Exponentiating both sides,(
1 +

kx

n

)1/k

≥
(
1 +

(k + 1)x

n

)1/(k+1)

.

Chaining the above inequality for k = 1, . . . , n− 1, we obtain

1 +
x

n
≥

(
1 +

2x

n

)1/2

≥
(
1 +

3x

n

)1/3

≥ · · · ≥
(
1 +

nx

n

)1/n

so we are done.
Equality is achieved when u = v, which is equivalent to x = 0.

Part (c)(i). Define

Sk(n) = {I : I ⊆ [n], |I| = k} and P (I) =
∏
i∈I

xi.

Note that
ek(x1, . . . , xn) =

∑
I∈Sk(n)

P (I).

For each I ∈ Sk(n), either I contains n or it doesn’t. We hence obtain a recursive
formula for Sk(n).

Sk(n) = {I : I ⊆ [n], |I| = k, n /∈ I} ·∪ {I : I ⊆ [n], |I| = k, n ∈ I}
= {I : I ⊆ [n− 1], |I| = k} ·∪ {I ∪ {n} : I ⊆ [n− 1], |I| = k − 1}
= Sk(n− 1) ·∪ [Sk−1(n− 1) + {xn}] .2

We thus get the following recursion for ek(x1, . . . , xn) too:

ek(x1, . . . , xn) =
∑

I∈Sk(n)

P (I)

=
∑

I∈Sk(n−1)

P (I) +
∑

I∈Sk−1(n−1)

P (I ∪ {xn})

=
∑

I∈Sk(n−1)

P (I) +
∑

I∈Sk−1(n−1)

P (I)xn

= ek(x1, . . . , xn−1) + ek−1(x1, . . . , xn−1)xn.

2This notation sucks.
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Note that this formula still holds in the extreme cases where k = 1, n due to the way we
defined e0(x1, . . . , xn−1) and en(x1, . . . , xn−1).
Dividing through by

(
n
k

)
, we obtain our desired result

Ek(x1, . . . , xn) =
1(
n
k

)ek(x1, . . . , xn)
=

1(
n
k

)ek(x1, . . . , xn−1) +
1(
n
k

)ek−1(x1, . . . , xn−1)xn

=

(
n−1
k

)(
n
k

) Ek(x1, . . . , xn−1) +

(
n−1
k−1

)(
n
k

) Ek−1(x1, . . . , xn−1)xn

=

(
1− k

n

)
Ek(x1, . . . , xn−1) +

k

n
Ek−1(x1, . . . , xn−1)xn.

Part (c)(ii). We induct on n. The n = 1 case is trivial, so we take n = 2 as our base case.
(GB) for n = 2 states that

1 +
x

2
≥ (1 + x)1/2

for x > −1. For x1, x2 ≥ 0, we have

E1(x1, x2) =
x1 + x2

2
= x2

[
1 +

1

2

(
x1
x2

− 1

)]
≥ x2

[
1 +

(
x1
x2

− 1

)]1/2
= (x1x2)

1/2 = E2(x1, x2)
1/2.

Our base case n = 2 thus holds.
Now assume that (M) holds for n − 1 variables, where n ≥ 3. To simplify notation,

write
Ek = Ek(x1, . . . , xn) and εk = Ek(x1, . . . , xn−1)

for 1 ≤ k ≤ n− 1. Note that ε0 = 1 and εn = 0. We can rewrite the result in Part (c)(i)
as

Ek =

(
1− k

n

)
εk +

k

n
εk−1xn.

By our induction hypothesis,

ε
1/(k−1)
k−1 ≥ ε

1/k
k

for 2 ≤ k ≤ n− 1. We can rewrite this in two ways:

εk−1 ≥ ε
(k−1)/k
k and εk+1 ≤ ε

(k+1)/k
k

for 1 ≤ k ≤ n− 1. We thus obtain

Ek ≥
(
1− k

n

)
εk +

k

n
ε
(k−1)/k
k xn = εk

[
1 +

k

n

(
ε
−1/k
k xn − 1

)]
(1)

and

Ek+1 ≤
(
1− k + 1

n

)
ε
(k+1)/k
k +

k + 1

n
εkxn = ε

(k+1)/k
k

[
1 +

k + 1

n

(
ε
−1/k
k xn − 1

)]
. (2)

Let ck = ε
−1/k
k xn − 1. Note that ε

−1/k
k xn > 0, so ck > −1. By (1), (2) and (GB), we

obtain

E
1/k
k ≥ ε

1/k
k

(
1 +

kck
n

)1/k

≥ ε
1/k
k

(
1 +

(k + 1)ck+1

n

)1/(k+1)

≥ E
1/(k+1)
k+1 .
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Since this is true for 1 ≤ k ≤ n− 1, we have

E1 ≥ E
1/2
2 ≥ E

1/3
3 ≥ · · · ≥ E1/n

n ,

so (M) holds for n variables. This closes the induction.
Equality holds in (M) when ck = 0 for all 1 ≤ k ≤ n− 1, so

xn = ε
1/k
k ≤ ε1 =

x1 + · · ·+ xn−1

n− 1
.

Because each Ek(x1, . . . , xn) is symmetric in xi, we may assume without loss of generality
that xn is maximal, so

x1 + · · ·+ xn−1

n− 1
≤ xn.

Thus, equality occurs only when x1 = · · · = xn.

Part (d)(i). Recall that
Sk(n) = {I : I ⊆ [n], |I| = k} .

Sk(n) is hence the set of all k-subsets of [n]. Since there are
(
n
k

)
ways to choose k elements

from [n] to form I, it follows that |Sk(n)| =
(
n
k

)
.

Part (d)(ii). We have

Ek(1, . . . , 1) =
1(

n−1
k

) ∑
I∈Sk(n−1)

1 =
|Sk(n− 1)|(

n−1
k

) =

(
n−1
k

)(
n−1
k

) = 1.

Similarly,

Ek−1(1, . . . , 1) =
1(

n−1
k−1

) ∑
I∈Sk−1(n−1)

1 =
|Sk−1(n− 1)|(

n−1
k−1

) =

(
n−1
k−1

)(
n−1
k−1

) = 1.

Part (d)(iii). Fix x > −1 and let x1 = · · · = xn−1 = 1 and xn = 1 + x. By Parts (c)(i)
and (d)(ii), for 1 ≤ k ≤ n,

Ek(1, . . . , 1, 1 + x) =

(
1− k

n

)
Ek(1, . . . , 1) +

k

n
Ek−1(1, . . . , 1) (1 + x) = 1 +

kx

n
.

(M) thus states

1 +
x

n
≥

(
1 +

2x

n

)1/2

≥
(
1 +

3x

n

)1/3

≥ · · · ≥
(
1 +

nx

n

)1/n
,

which is exactly (GB).
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