1 Preamble
The AM-GM inequality and Bernoulli’s inequality are two classical results in real analysis.
(AG) AM-GM Inequality. For xi,...,xy, > 0,

TLF T,
n

> (21...20)Y".

(B) Bernoulli’s Inequality. Forn € N and z > —1,

1+=>(1+2)"".

x
n
It is easily shown that (AG) and (B) are equivalent.

By considering the concavity of Inx, we can derive a generalized inequality that inter-
polates (B):

(GB) Generalized Bernoulli’s Inequality. Forn € N and x > —1,

1/2 1/3 n
1+x2<1+2x> z<1+3m> z---z(1+@) .
n n

n n
Definition. The kth elementary symmetric polynomial in n variables x1, ..., x, is defined
as
er(T1,...,xy) = Z sz',
IC[n] i€l
|I|=k
where 1 < k < n. We also define eg(z1,...,2,) = 1 and eny1(x1,...,2,) = 0. The

corresponding kth elementary symmetric mean in n variables is defined as

ex(r1,...,x

Ey(z1,...,oy) = w
(%)

For example,

es(x,y,z,w) xyz+ yzw + zwr + wry
4 - :
(s) 4

E3<I’, Y, Z,’U]) =

Motivated by the observation that

T4+ T

" >(.ZL‘l...iﬁn)l/n:En(l‘lw'wxn)a

E1($1,...,£Cn) =

we can similarly interpolate (AG) to obtain the following inequality:

(M) Maclaurin’s Inequality. Letn € N and x1,...,x, > 0. Then
Ei(x1,...,2p) > Ea(xq,... ,xn)l/z > Es(xq,... ,:Un)l/3 > > Ey(xy,. .. ,:cn)l/”.
Using the identity

k k
Ek(ml, ... ,:L’n) = <1 — n) Ek(SCl, - ,ﬂjnfl) + ﬁEk—l(-Tla - ,xnfl)l‘n,

we can prove that (M) and (GB) are equivalent.



2 Motivating Maclaurin’s Inequality as a Generalization of the
AM-GM Inequality

Let = and y be the side lengths of a rectangle. Can we construct a square that “best
approximates” this rectangle? Of course, our construction depends on which quantity we
wish to preserve.

e If we preserve the perimeter of the rectangle, the resulting square has side length

r+y
ll: )
2

which is the arithmetic mean.

o If we preserve the area of the rectangle, the resulting square has side length

lo = /xy,
which is the geometric mean.
The AM-GM inequality hence gives
I > lo. (%)

We can ask the same question for higher-dimensional analogues of rectangles. For
instance, suppose we have a cuboid with side lengths x, y, z.

e If we preserve the perimeter, the resulting cube has side length

r+y—+=z

h=""

e If we preserve the total area of all faces, the resulting cube has side length

Ty +yz + zx
l2: #

e If we preserve the total volume, the resulting cube has side length
l3 = Jxyz.
Continuing the pattern in (x), we have
Iy > 1y > 13.
In general, for a n-dimensional orthotope with side lengths 1, ..., z,, we have
h=>zl>l3>- 21y,

where

This is precisely Maclaurin’s inequality!

An n-dimensional orthotope has a k-dimensional volume of (2"_kek(:r1, .. .,zn)) and (2”_]“ (Z)) k-

dimensional faces. Thus, 2"7’“(2) l’,§ = 2"7kek(wl7 ey Xn), Ol = {/ek(xh cee xn)/(Z)




3 Outline of Question

a. Prove that (AG) <= (B).

o

. By considering the concavity of Inz, prove (GB). Determine when equality holds.

c. 1) Show that

k k
Ek(xl, - ,wn) = <1 — n) Ek(xl, - ,:Bn_l) + EEk_l(xl, . ,.%'n_l).’ll'n

forl <k <n.
ii) Hence, prove that (GB) = (M). Determine when equality holds.

e

i) Explain why [Si(n)| = (}).

ii) Deduce that
Er(1,...,1) = Epq(1,...,1) = 1,

where the arguments of Ej and Ej_; both contain (n — 1) 1’s.
iii) Hence, prove that (M) = (GB).

4 Solution

Part (a). We begin with the forwards direction. For all z > —1, we have by (AG)

(n — 1) times

—N—
D4+1+14-- +1
( x>n: (EHD+1+1+- >(1+x)-1-...-1=1+=x.
n

Taking nth roots, we get
1+ 2> 1 +a)/,
n
which is (B).
We now prove the backwards direction. Define

Anzw and Gn:(xl...wn)l/".

Since x1,...,x, are positive,

r1+ -+ xp_1+ T
T1+ -+ T

A )
n i .
Invoking (B) on the above object, we see that
14 A s b - A "
—In - n - .
n An—l B Anfl

Taking nth powers and simplifying, we get
< A, >" S nA, — (n—1)A,—1 Tn

> 1.

It readily follows that

An—l An—l An—l ’



SO
Al > x, AT

Repeatedly applying this inequality, we obtain
AZ 2 InTlpn—1...2T1 = Gn

n

and (AG) holds.

Part (b). Because Inx is concave,
In(au 4+ bv) > alnu+ blnw
for u,v € R and a,b > 0 with a + b = 1. Taking

1 k (k+ 1)z
“Tr+r L
where £k =1,...,n — 1, we see that

(alnu+blnv) =

1 k 1
ln<1+x> = —In(au + bv) >
n

1 (k+1)x
k K P (1 L— ) '
Exponentiating both sides,

1/k 1/(k+1)
<1+lm> > <1+<k+1)$> .

n n

| =

Chaining the above inequality for K = 1,...,n — 1, we obtain

1/2 1/3 1/n
1+x2<1+2x) Z<1+3x> 2...2(1_’_@)/
n n n n

so we are done.
Equality is achieved when u = v, which is equivalent to x = 0.

Part (c)(i). Define
Sp(n)={I:IC ], |I|=k} and P(I)=]]a:
i€l
Note that
€k(l’1,.. . ,a;n) = Z P(I)

1€8k(n)
For each I € Si(n), either I contains n or it doesn’t. We hence obtain a recursive
formula for S(n).
Sk(n)={1:1Cn],|I|=kn¢gl}u{l:I1C[n],|I|=k nel}
={I:ICn—-1], [ I|=ktu{IU{n}:IC[n-1],|I|=k—-1}
= Sk(n - 1) U [Sk,l(n - 1) + {xn}] .2

We thus get the following recursion for ex(z1,...,z,) too:
er(m1,. . an) =y P(I)

IESk(n)

= Y PO+ > PIU{x})
1€Sk(n—1) IeSk_1(n—-1)

= > PO+ > P
IESk(nfl) IESkfl(nfl)

=ep(T1, ., Tn1) Fep—1(z1, ..., Tpo1) Tp.

2This notation sucks.



Note that this formula still holds in the extreme cases where k£ = 1,n due to the way we
defined eg(z1,...,2n—1) and e, (x1,. .., Tp_1).
Dividing through by (}), we obtain our desired resuls

1

B, ) = sl )
k
1 1
= —~ep(T1,. . Tn—1) + o er—1(21, .. Tno1) Ty
(%) (&)

_ (") (i-1)
(%) (%)

k k
= (1 - n> Ex(z1,...,2p-1) + EEk_l(xl, ey Tp—1) Ty

Ep(x1,...,20-1) + Ep_1(z1,...,2n-1)Tp

Part (c)(ii). We induct on n. The n =1 case is trivial, so we take n = 2 as our base case.

(GB) for n = 2 states that

1+§Z(1+x)1/2

for x > —1. For x1,x9 > 0, we have

1
Ey(x1,12) = nEr_ T2 [1 + = <xl - 1)]

2 2 \z2

1 1/2 1/2
= [1 * (x - 1” = (@122)"/? = By(er,20)"/2,
2

Our base case n = 2 thus holds.
Now assume that (M) holds for n — 1 variables, where n > 3. To simplify notation,
write
Ek:Ek(l'l,...,l‘n) and €k:Ek(l'1,...,l‘n71)

for 1 <k <n—1. Note that g = 1 and &, = 0. We can rewrite the result in Part (c)(i)
as

k k
E, = <1 - ) €k + —Ek—1Tn.
n n

By our induction hypothesis,
1/(k—1) _ 1/k
€1 Z &

for 2 < k < n —1. We can rewrite this in two ways:

oy > El(f—l)/k and  cpoy < Egc—&-l)/k:
for 1 <k <n—1. We thus obtain
k k (k1)K ko —1k
>(1-Z2 z = Z -
E, > (1 n> er + ok Ty =c¢p |1+ - (sk Tn, 1) (1)
and
k41 k41 k+1/ _
Fo < <1 B n) Sk L = (D) [1 TR (% kg _ 1)] @

Let ¢ = 5];1/k:17n — 1. Note that slzl/kxn > 0, so ¢ > —1. By (1), (2) and (GB), we
obtain

1/k 1/(k+1)
EYE > Uk (1 n kck) > l/k (1 N (k + 1)Ck+1> > E;/ﬁcﬂ)_
n n



Since this is true for 1 < k <n — 1, we have

1/2 1

B, >E?>E">...>E/"

o (M) holds for n variables. This closes the induction.
Equality holds in (M) when ¢y =0 forall 1 <k <n—1, so

1/k 1+ -+ Xp-1
Ty = sk/ <g = e
n—1
Because each Fy(z1,...,2,) is symmetric in z;, we may assume without loss of generality

that z,, is maximal, so
T1+ -+ Tyt <

T,
n—1

Thus, equality occurs only when z1 = --- = z,,.
Part (d)(i). Recall that
Suln) = {I:1C [n], |I] =k}

Si(n) is hence the set of all k-subsets of [n]. Since there are (}) ways to choose k elements

from [n] to form I, it follows that |Sk(n)| = (7).
Part (d)(ii). We have

n—1
Ek(la 71) - nil 1= ‘Sk(;z: 1)| = (nﬁl) =1
("¢) resiin ") )
Similarly,
n—1
1 Si—1(n—1 _
Epa(l,...,1) = = Z l= S 1n(—1 A (fi_i) =1
O ) R ()
Part (d)(iii). Fix 2 > —1 and let 1 = --- = 2,1 = 1 and x, = 1 + 2. By Parts (c)(i)
and (d)(ii), for 1 < k < mn,
Ei(l,...,1,1+2) = <1 z) Ek(1,...,1)+%Ek_1(1,...,1)(1+z) - 1+%x.

(M) thus states

T 22\ /2 32\ /3 nx\1l/n
1+2> (142 > (142 ) > (1427
n n n n

which is exactly (GB).
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