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1 Introduction

Let µ(n) be the Möbius function. Define

A(x) =
∑

1≤n≤x

µ(n)

n
and M(x) =

∑
1≤n≤x

µ(n).

In this note, we examine the following equivalence:

A(x) = o(1) ⇐⇒ M(x) = o(x). (∗)

2 The Forward Direction

The forward direction is fairly trivial.

Lemma 1. Suppose A(x) = o(1). Then
∫ x
1 A(t) dt = o(x).

Proof. Fix ε > 0. Since A(x) = o(1), there exists some T ∈ N such that for all t > T , we
have the bound |A(t)| < ε. It readily follows that∣∣∣∣1x

∫ x

1
A(t) dt

∣∣∣∣ ≤ 1

x

∫ x

1
|A(t)| dt

=
1

x

(∫ T

1
|A(t)| dt+

∫ x

T
|A(t)| dt

)
<

CT + ε (x− T )

x

=
CT − T

x
+ ε,

where CT is a constant depending solely on T . In the limit as x → ∞, we have∣∣∣∣1x
∫ x

1
A(t) dt

∣∣∣∣ < ε,

so
∫ x
1 A(t) dt = o(x) as desired.

Claim A. The forwards direction of (∗) holds:

A(n) = o(1) =⇒ M(x) = o(x).
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Proof. By Abel’s summation formula, we have

M(x) =
∑

1≤n≤x

(
µ(n)

n
· n

)
= xA(x)−

∫ x

1
A(t) dt.

Under our hypothesis and Lemma 1,

M(x) = xo(1) + o(x) = o(x),

which was what we wanted.

3 The Backward Direction

The proof presented below is due to Diamond[1].
Define

S(x) = xA(x) =
∑

1≤n≤x

µ(n)
x

n
.

Lemma 2. We have the identity

S(x) = 1 +
∑

1≤n≤x

µ(n)
{x

n

}
.

Proof. It is well known that

1 =
∑

1≤n≤x

∑
d|n

µ(d).

Switching the order of summation, we obtain

1 =
∑

1≤d≤x

µ(d)
∑
n≤x
d|n

1

=
∑

1≤d≤x

µ(d)
[x
d

]
,

from which it follows

S(x) =
∑

1≤n≤x

µ(n)
([x

n

]
+
{x

n

})
= 1 +

∑
1≤n≤x

µ(n)
{x

n

}
.

Lemma 3. Fix N ∈ N. Then∑
x
N
<n≤x

µ(n)
{x

n

}
=

∫ N

1
M

(x
t

)
dt−

∑
2≤n≤N

M
(x
n

)
.

Proof. By Abel’s summation formula, one has∑
x
N
<n≤x

µ(n)
x

n
= M(x)−NM

( x

N

)
−
∫ x

x
N

M(t) d
(x
t

)

= M(x)−NM
( x

N

)
+

∫ N

1
M

(x
t

)
dt. (3.1)
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Since [xn ] = k for x
k+1 < n ≤ x

k , we have∑
x
N
<n≤x

µ(n)
[x
n

]
=

∑
1≤k≤N−1

k
∑

x
k+1

<n≤x
k

µ(n)

=
∑

1≤k≤N−1

k

(
M

(x
k

)
−M

(
x

k + 1

))
= M(x)−NM

( x

N

)
+

∑
2≤k≤N

M
(x
k

)
. (3.2)

Subtracting (3.2) from (3.1), we obtain

∑
x
N
<n≤x

µ(n)
{x

n

}
=

∫ N

1
M

(x
t

)
dt−

∑
2≤n≤N

M
(x
n

)
as desired.

Claim B. The backward direction of (∗) holds:

A(x) = o(1) ⇐= M(x) = o(x).

Proof. Fix N ∈ N. We first split our result from Lemma 2 and then apply Lemma 3:

S(x) = 1 +
∑

1≤n≤x

µ(n)
{x

n

}
= 1 +

∑
n≤ x

N

µ(n)
{x

n

}
+

∑
x
N
<n≤x

µ(n)
{x

n

}

= 1 +
∑
n≤ x

N

µ(n)
{x

n

}
+

∫ N

1
M

(x
t

)
dt−

∑
2≤n≤N

M
(x
n

)
.

Using our hypothesis that M(x) = o(x), we obtain the bound

|S(x)| ≤ 1 +
∑
n≤ x

N

∣∣∣µ(n){x

n

}∣∣∣+ ∫ N

1

∣∣∣M(x
t

)∣∣∣ dt+ ∑
2≤n≤N

∣∣∣M(x
n

)∣∣∣
≤ 1 +

x

N
+

∫ N

1
o
(x
t

)
dt+

∑
2≤n≤N

o
(x
n

)
=

x

N
+ o(x).1

In the limit as N → ∞, we have S(x) = o(x), so A(x) = S(x)
x = o(1).
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1Easy exercise: show that
∫ N

1
o
(
x
t

)
dt = o(x) and

∑
2≤n≤N o

(
x
n

)
= o(x)
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