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1. Introduction

In this paper, we showcase three methods of evaluating definite integrals of the form

In =

ˆ ∞

−∞

1

(x2 + a2)n+1
dx,

where a ∈ R+ and n ∈ R+
0 . The first method (Section 2) exploits a recurrence

relation involving the indefinite integralˆ
1

(x2 + a2)n+1
dx .

The second method (Section 3) follows a standard complex analysis argument to
evaluate In using contour integration. Both the first and second methods hold only
for n ∈ N0, yielding

(1) In =
π(2n− 1)!!

n! 2na2n+1
.

The third method (Section 4) uses a clever substitution to transform In into the
Beta function, yielding a closed form valid for n ∈ R+

0 :

(2) In =
1

a2n+1
B

(
1

2
, n+

1

2

)
.

On our quest to derive closed forms for In, we evaluate several general definite
integrals of which In is a specific case, such asˆ ∞

−∞

cosωx

(x2 + a2)n+1
dx =

π

eωa
θn(ωa)

n! 2na2n+1

and ˆ ∞

0

xµ−1

(xν + aν)n+1
dx =

1

νaνn+ν−µ
B
(µ
ν
, 1 + n− µ

ν

)
.

Next, in Section 5, we reconcile the gap between discreteness and continuity by
showing that (2) is a generalization of (1). Lastly, in Section 6, we use our results
to derive a relationship between In and the series expansion of 1√

1−t
, which gives us

several stunning identities, such as

π =
√
1− t

∞∑
n=0

B

(
1

2
, n+

1

2

)
tn,

and
∞∑
n=0

1

n

B(n+ 1, k + 1)

B(n, k)
= 1.
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2. Method 1: Recurrence Relation

In this section, we evaluate In by considering the recurrence relation given by the
indefinite integral

Jn =

ˆ
1

(x2 + a2)n+1
dx .

The recurrence relation is as such:

Lemma 1. For all n ∈ N, a ∈ R+,

Jn =
x

2na2(x2 + a2)n
+

2n− 1

2na2
Jn−1.

Proof. Consider

Jn−1 =

ˆ
1

(x2 + a2)n
dx .

Integrating by parts with u = 1
(x2+a2)n

and dv = 1, we obtain

Jn−1 =
x

(x2 + a2)n
+ 2n

ˆ
x2

(x2 + a2)n+1
dx

=
x

(x2 + a2)n
+ 2n

(ˆ
1

(x2 + a2)n
dx−a2

ˆ
1

(x2 + a2)n+1
dx

)
=

x

(x2 + a2)n
+ 2n

(
Jn−1 − a2Jn

)
.

Isolating Jn, we obtain

Jn =
x

2na2(x2 + a2)n
+

2n− 1

2na2
Jn−1

as desired. □

With our recurrence relation in place, we are now ready to evaluate In.

Theorem 1. For all n ∈ N0, a ∈ R+,

In =
π(2n− 1)!!

n! 2na2n+1
.

Proof. By the fundamental theorem of calculus, we have

In = [Jn]
∞
−∞

=

[
x

2na2(x2 + a2)n
+

2n− 1

2na2
Jn−1

]∞
−∞

=

[
x

2na2(x2 + a2)n

]∞
−∞

+
2n− 1

2na2
In−1

Observe that for all n ∈ N,∣∣∣∣ lim
x→±∞

x

2na2(x2 + a2)n

∣∣∣∣ = lim
x→±∞

∣∣∣∣ x

2na2(x2 + a2)n

∣∣∣∣
≤ 1

2na2
lim

x→±∞

∣∣∣ x

x2n

∣∣∣
= 0.

We thus get the first order recurrence relation

In =
2n− 1

2na2
In−1
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which has the solution

In = I0

n∏
k=1

2k − 1

2ka2
.

By the definition of the factorial and double factorial, we have n! =
∏n

k=1 k and
(2n− 1)!! =

∏n
k=1(2k − 1). Hence,

In = I0 ·
(2n− 1)!!

n! 2na2n
.

By our definition of In, we have

I0 =

ˆ ∞

−∞

1

x2 + a2
dx

=

[
1

a
arctan

x

a

]∞
−∞

=
π

a
.

Thus, we finally obtain

In =
π(2n− 1)!!

n! 2na2n+1
.

□

3. Method 2: Complex Analysis

Using techniques from complex analysis, one can show that the integral
ˆ ∞

−∞

cosx

x2 + 1
dx

evaluates elegantly to π
e
. Indeed, this integral is commonly used as an example to

showcase the power of evaluating definite integrals using contour integration. In this
section, we extend this classic integral by examining the more general form

ˆ ∞

−∞

cosωx

(x2 + a2)n+1
dx,

where n, ω and a are free variables. We then use this result to find a closed form
for In.

Lemma 2. For all n ∈ N0, a ∈ R+ and ω ∈ R+
0 ,

ˆ ∞

−∞

cosωx

(x2 + a2)n+1
dx =

π

eωa
θn(ωa)

n! 2na2n+1
,

where θn(x) is the nth reverse Bessel polynomial.
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Figure 1. The semicircular, anti-clockwise contour Γ and the en-
closed singularity ai.

Proof. Let

f(z) =
eiωz

(z2 + a2)n+1
.

Let γ1 = [−R,R] and γ2 = {z = Reiθ, θ ∈ (0, π)}, where R ∈ R+. Consider the
integral

¸
Γ
f(z) dz over the closed contour Γ = γ1 ∪ γ2 as shown in Figure 1. We

clearly have ˛
Γ

f(z) dz =

ˆ
γ1

f(z) dz+

ˆ
γ2

f(z) dz .

Now observe that
´
γ2
f(z) dz vanishes by a simple bounding argument:

lim
R→∞

∣∣∣∣ˆ
γ2

f(z) dz

∣∣∣∣ = lim
R→∞

∣∣∣∣∣
ˆ π

0

eiωReiθ

((Reiθ)2 + a2)n+1
iReiθ dθ

∣∣∣∣∣
≤ lim

R→∞

ˆ π

0

∣∣∣∣∣ eiωReiθ

((Reiθ)2 + a2)n+1
iReiθ

∣∣∣∣∣ dθ
≤ lim

R→∞

R

R2n+2

ˆ π

0

e−ωR sin θ dθ

= 0.

We can thus express our goal integral asˆ ∞

∞

cosωx

(x2 + a2)n+1
dx = Re lim

R→∞

ˆ
γ1

f(z) dz = Re lim
R→∞

˛
Γ

f(z) dz .

We now wish to show that
¸
Γ
f(z) dz = π

eωa

θn(ωa)
n! 2na2n+1 . It is clear that the only

singularity enclosed by γ is at ai. Moreover, it is a pole of order n + 1. Invoking
Cauchy’s residue theorem yields˛

Γ

f(z) dz = 2πiRes(f, ai)

= 2πi · 1

n!
lim
z→ai

dn

dzn
(z − ai)n+1f(z)

= 2πi · 1

n!
lim
z→ai

dn

dzn
eiωz

(z + ai)n+1
.
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By the general Leibniz rule, we have

dn

dzn
eiωz

(z + ai)n
=

n∑
k=0

(
n

k

)
dk

dzk
(z + ai)−n−1 dn−k

dzn−k
eiωz

=
n∑

k=0

(
n

k

)
(−n− 1)(−n− 2) . . . (−n− k)(z + ai)−n−1−k(iω)n−keiωz

=
n∑

k=0

(
n

k

)
(−1)k

(n+ k)!

n!
in−kωn−keiωz(z + ai)−n−1−k

=
n∑

k=0

(n+ k)!

k!(n− k)!
in+kωn−keiωz(z + ai)−n−1−k.

Taking the limit as z → ai, we see that

lim
z→ai

dn

dzn
eiz

(z + ai)n+1
=

n∑
k=0

(n+ k)!

k!(n− k)!
in+kωn−ke−ωa(2ai)−n−1−k

= e−ωai−12−n−1a−2n−1

n∑
k=0

(n+ k)!

k!(n− k)!

(ωa)n−k

2k
.

Recall that the nth reverse Bessel polynomial θn(x) is defined as

θn(x) =
n∑

k=0

(n+ k)!

k!(n− k)!

xn−k

2k
.

Our series hence simplifies to θn(ωa). Putting everything together, we obtain˛
Γ

f(z) dz = 2πi · 1

n!
e−ωai−12−n−1a−2n−1θn(ωa)

=
π

eωa
θn(ωa)

n! 2na2n+1

as desired. □

Corollary 1. Evaluating the integral at n = 0 and ω = 1, we get the interesting
result ˆ ∞

−∞

cosx

x2 + a2
dx =

π

aea
.

Taking n = 0 and a = 1 also yields another intriguing result:ˆ ∞

−∞

cosωx

x2 + 1
dx =

π

eω
.

Corollary 2. Taking the complex part of
¸
Γ
f(z) dz, we see thatˆ ∞

−∞

sinωx

(x2 + a2)n+1
dx = 0,

though this result is trivial from the substitution x 7→ −x.

Remark. It is sufficient to know either

(3)
ˆ ∞

−∞

cosωx

(x2 + 1)n+1
dx =

π

eω
θn(ω)

n! 2n

or

(4)
ˆ ∞

−∞

cosx

(x2 + a2)n+1
dx =

π

ea
θn(a)

n! 2na2n+1
,
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as each integral can be converted into the other by means of a substitution. For
instance, the substitution x 7→ x

ω
converts the integral in (3) to that of (4). For our

case, we consider both ω and a at the same time to simplify the workings.

We now use our result to evaluate

In =

ˆ ∞

−∞

1

(x2 + a2)n+1
dx .

Theorem 2. For all n ∈ N0, a ∈ R+,

In =
π(2n− 1)!!

n! 2na2n+1
.

Proof. Observe that our goal integral In corresponds to the case where ω = 0.
Applying Lemma 2 givesˆ ∞

−∞

1

(x2 + a2)n+1
dx =

πθn(0)

n! 2na2n+1
.

We now show that θn(0) = (2n− 1)!!. We do so by utilizing the recursive nature of
the reverse Bessel polynomials:

θn(x) = (2n− 1)θn−1(x) + x2θn−2(x).

At x = 0, we have
θn(0) = (2n− 1)θn−1(0).

Since θ0(0) = 1, we have

θn(0) = (2n− 1)(2n− 3) . . . 1

= (2n− 1)!!

as desired. □

4. Method 3: The Beta Function

In this section, we show that the integral in consideration In can be expressed in
terms of the Beta function. We first consider a more general definite integral:

Lemma 3. For all n ∈ R+
0 , a ∈ R+, 0 < µ

ν
< n+ 1,ˆ ∞

0

xµ−1

(xν + aν)n+1
dx =

1

νaνn+ν−µ
B
(µ
ν
, 1 + n− µ

ν

)
.

Proof. We begin by factoring out aν from the denominator:ˆ ∞

0

xµ−1

(xν + aν)n+1
dx =

1

aνn+ν

ˆ ∞

0

xµ−1(
1 +

(
x
a

)ν)n+1 dx .

Under the substitution t =
(
x
a

)ν , our integral transforms to

1

aνn+ν

ˆ ∞

0

(at
1
ν )µ−1

(1 + t)n+1 · a
ν
t
1−ν
ν dt .

Simplifying, we obtain
1

νaνn+ν−µ

ˆ ∞

0

t
µ
ν
−1

(1 + t)n+1
dt .

Now recall that the Beta function B(z1, z2) has the identity

B(z1, z2) =

ˆ ∞

0

tz1−1

(1 + t)z1+z2
dt .
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Looking at our integral, we have z1 =
µ
ν

and z2 = 1+n− µ
ν
. Hence, our integral can

be written as
1

νaνn+ν−µ
B
(µ
ν
, 1 + n− µ

ν

)
.

□

Remark. This closed form has appeared in integral tables in the literature (Grad-
shteyn and Ryzhik 2007). However, no such derivation could be found.

We now use this fact to evaluate In.

Theorem 3. For all n ∈ R+
0 , a ∈ R+,

In =
1

a2n+1
B

(
1

2
, n+

1

2

)
.

Proof. Observe that the integrand of In is an even function. Hence,

In = 2

ˆ ∞

0

1

(x2 + a2)n+1
dx .

From Lemma 3, taking µ = 1 and ν = 2, we have

In = 2 · 1

2a2n+2−1
B

(
1

2
, 1 + n− 1

2

)
=

1

a2n+1
B

(
1

2
, n+

1

2

)
as desired. □

5. Reconciling the Discrete and Continuous Results

In the previous three sections, we derived two expressions for In. On one hand,
when n is restricted to the non-negative natural numbers, we have

In =
π(2n− 1)!!

n! 2na2n+1
.

On the other hand, when n is allowed to take on any non-negative value, we have

In =
1

a2n+1
B

(
1

2
, n+

1

2

)
.

In this section, we aim to show that the latter expression is a natural extension of
the former.

Proposition 1. For all n ∈ R+
0 and a ∈ R+,

In =
1

a2n+1
B

(
1

2
, n+

1

2

)
.

Proof. As derived earlier, we have

In =
π(2n− 1)!!

n! 2na2n+1
.

We now extend our result to n ∈ R+
0 . The standard generalization for the odd

double factorial is given by

z!! =

√
2

π
2

z
2Γ
(z
2
+ 1
)
.
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Setting z = 2n− 1 yields

(2n− 1)!! =

√
2

π
2

2n−1
2 Γ

(
2n− 1

2
+ 1

)
=

2n√
π
Γ

(
n+

1

2

)
.

Altogether, we have

In =
π

n! 2na2n+1
· 2n√

π
Γ

(
n+

1

2

)
=

√
π

a2n+1

Γ(n+ 1
2
)

Γ(n+ 1)
.

Recall that Γ
(
1
2

)
=

√
π. Hence,

In =
1

a2n+1

Γ(1
2
)Γ(n+ 1

2
)

Γ(n+ 1)
.

Now recall that the Beta function has the following well-known relationship with
the Gamma function:

B(z1, z2) =
Γ(z1)Γ(z2)

Γ(z1 + z2)
.

Thus, In indeed extends to
1

a2n+1
B

(
1

2
, n+

1

2

)
.

□

6. Special Identities

In this section, we derive a relationship between In and the series expansion of
1√
1−t

. We then deduce several identities stemming from this relationship, of which we
separate into four classes: combinatorial identities, identities involving π, identities
involving the Gaussian integral, and identities involving the Beta function. These
identities are covered in Sections 6.1, 6.2, 6.3 and 6.4 respectively.

We begin by proving the following relationship between In and 1√
1−t

:

Proposition 2. Let Cn be the coefficient of tn in the series expansion of 1√
1−t

. Then

Cn =
a2n+1

π
In.

Proof. By the definition of Cn, we clearly have 1√
1−t

=
∑∞

n=0Cnt
n. It hence suffices

to show that
1√
1− t

=
∞∑
n=0

a2n+1

π

ˆ ∞

−∞

1

(x2 + a2)n+1
dx tn.

Let S denote the sum in consideration. Rearranging terms, we obtain

S =
a

π

∞∑
n=0

a2n

x2 + a2

ˆ ∞

−∞

1

(x2 + a2)n
dx tn.
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Changing the order of summation and integration gives us our desired result:

S =
a

π

ˆ ∞

−∞

1

x2 + a2

∞∑
n=0

(
a2t

x2 + a2

)n

dx

=
a

π

ˆ ∞

−∞

1

x2 + a2
1

1− a2t
x2+a2

dx

=
a

π

ˆ ∞

−∞

1

x2 + a2(1− t)
dx

=
a

π

[
1√

a2(1− t)
arctan

t√
a2(1− t)

]∞
−∞

=
1√
1− t

.

□

We now look at several types of identities that stem from the above claim. Of the
many identities derived below, only those of particular interest have been boxed.

6.1. Combinatorial Identities. There have been some combinatorial identities
involving In in the literature. For instance, Bailey et al. (2006) gives the following
identity relating In at a = 1 and the central binomial coefficient:

(5)
ˆ ∞

0

1

(x2 + 1)n+1
=

π

22n+1

(
2n

n

)
.

Their proof involves the substitution x 7→ tan θ and relating it to Wallis’ integrals,
which can be solved using a recurrence relation similar to that of Method 1. We
now give a more direct proof of (5) and generalize it over a.

Proposition 3. For all n ∈ R+
0 and a ∈ R+,

In =
π

22na2n+1

(
2n

n

)
.

Proof. It is a well-known identity that(
2n

n

)
=

2n(2n− 1)!!

n!
.

Recalling our previous result for In, we have

In =
π(2n− 1)!!

n!2na2n+1

=
π

22na2n+1

(
2n

n

)
as desired. □

We now prove an identity related to the negative binomial coefficient.

Proposition 4. For all n ∈ Z,(
n− 1

2

n

)
= (−1)n

(
−1

2

n

)
.
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Proof. We first observe that when n ∈ Z−, we have Γ(n+1) → ∞. Thus, both sides
clearly evaluate to 0, making the equality trivially true. We hence focus only on the
case n ∈ Z+

0 for the rest of the proof.
From Propositions 1 and 2, we have

Cn =
a2n+1

π
· 1

a2n+1
B

(
1

2
, n+

1

2

)
=

1

π
B

(
1

2
, n+

1

2

)
.

As previously discussed, we have

B

(
1

2
, n+

1

2

)
=

Γ(1
2
) Γ(n+ 1

2
)

Γ(n+ 1)
.

Since Γ(1
2
) =

√
π, we know 1

π
Γ(1

2
) = 1/Γ(1

2
), thus giving

Cn =
Γ(n+ 1

2
)

Γ(1
2
) Γ(n+ 1)

.

Abusing notation, we have

Cn =
(n− 1

2
)!

(−1
2
)!n!

,

which we recognize to be the binomial coefficient
(
n− 1

2
n

)
.

However, by the binomial theorem, we have

1√
1− t

=
∞∑
n=0

(
−1

2

n

)
(−t)n.

Comparing coefficients of tn, we arrive at the conclusion that(
n− 1

2

n

)
= (−1)n

(
−1

2

n

)
.

□

Remark. As previously mentioned, this is related to the negative binomial coefficient
identity, which states (

−r

k

)
= (−1)k

(
r + k − 1

k

)
,

where r, k ∈ N. In our case however, we have r = 1
2
− n and k = n. We have thus

extended the negative binomial coefficient identity where r is a half-integer.

6.2. Identities Involving π. Using our previous results, we obtain an infinite fam-
ily of expressions that evaluate to π:

Proposition 5. For all t ∈ [−1, 1),

π =
√
1− t

∞∑
n=0

B

(
1

2
, n+

1

2

)
tn.

Proof. Recall that Cn = 1
π
B(1

2
, n+ 1

2
). We thus have for all t ∈ [−1, 1),

(6)
1√
1− t

=
∞∑
n=0

1

π
B

(
1

2
, n+

1

2

)
tn,
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which upon rearranging yields

π =
√
1− t

∞∑
n=0

B

(
1

2
, n+

1

2

)
tn

as desired. □

Corollary 3. Using the relationship between the Gamma and Beta functions, we
can rewrite (6) as

(7)
∞∑
n=0

Γ(n+ 1
2
)

Γ(n+ 1)
tn =

√
π

1− t
.

When t = −1, we have the alternating sum
∞∑
n=0

(−1)n
Γ(n+ 1

2
)

Γ(n+ 1)
=

√
π

2
.

When t = 1
2
, we can express the sum in terms of τ = 2π:

∞∑
n=0

Γ(n+ 1
2
)

Γ(n+ 1)

1

2n
=

√
τ .

Corollary 4. Substituting t = cos θ into (7), we obtain
∞∑
n=0

Γ(n+ 1
2
)

Γ(n+ 1)
cosn θ =

√
π

2

∣∣∣∣csc θ2
∣∣∣∣ ,

which is valid for all θ ∈ R \ 2πZ.

When θ = 2π
3

, we have the beautiful identity
∞∑
n=0

Γ(n+ 1
2
)

Γ(n+ 1)
cosn

2π

3
=

√
2π

3
.

6.3. Identities Involving the Gaussian Integral. Again rewriting the identity
in (7), we have for all t ∈ (0, 2],

(8)
∞∑
n=0

Γ(n+ 1
2
)

Γ(n+ 1)
(1− t)n =

√
π

t
,

which we recognize to be the value of the Gaussian integralˆ ∞

−∞
e−tx2

dx .

We thus have a surprising connection between the Gamma function and the Gaussian
integral:

(9)
∞∑
n=0

Γ(n+ 1
2
)

Γ(n+ 1)
(1− t)n =

ˆ ∞

−∞
e−tx2

dx .

We now generalize this result.

Proposition 6. For all t ∈ (0, 2] and k ∈ N0,
∞∑
n=0

Γ(n+ k + 1
2
)

Γ(n+ 1)
(1− t)n =

ˆ ∞

−∞
x2ke−tx2

dx .
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Proof. Differentiating (9) k times with respect to t yields
∞∑
n=0

Γ(n+ 1
2
)

Γ(n+ 1)
(−1)k

(
k−1∏
i=0

(n− i)

)
(1− t)n−k =

ˆ ∞

−∞
(−1)kx2ke−tx2

dx .

Using basic Gamma function properties, we see that the LHS becomes
∞∑
n=0

Γ(n+ 1
2
)

Γ(n− k + 1)
(1− t)n−k

Now observe that for k > n, Γ(n− k + 1) → ∞, further simplifying the LHS down
to

∞∑
n=k

Γ(n+ 1
2
)

Γ(n− k + 1)
(1− t)n−k =

∞∑
n=0

Γ(n+ k + 1
2
)

Γ(n+ 1)
(1− t)n.

Thus,

(10)
∞∑
n=0

Γ(n+ k + 1
2
)

Γ(n+ 1)
(1− t)n =

ˆ ∞

−∞
x2ke−tx2

dx .

□

Remark. Taking t = 1 and k = 0, the LHS in the identity above becomes
∞∑
n=0

Γ(n+ 1
2
)

Γ(n+ 1)
0n.

For n > 0, the terms vanish. In the n = 0 case, taking 00 to be 1 gives
∞∑
n=0

Γ(n+ 1
2
)

Γ(n+ 1)
0n =

Γ(1
2
)

Γ(1)

=
√
π,

recovering the famous result ˆ ∞

−∞
e−x2

dx =
√
π.

6.4. Identities Involving the Beta Function. In this section, we prove that
∞∑
n=0

1

n

B(n+ 1, k + 1)

B(n, k)
= 1.

To do so, we first find a closed form for (9) and generalize it for non-negative k.

Lemma 4. For all t ∈ (0, 2] and k ∈ R+,
∞∑
n=0

Γ(n+ k)

Γ(n+ 1)
(1− t)n =

Γ(k)

tk
.

Proof. Observe that the integrand of the RHS in (10) is clearly even, giving usˆ ∞

−∞
x2ke−tx2

dx = 2

ˆ ∞

0

x2ke−tx2

dx .

Under the substitution u = tx2, this integral simplifies as
1

tk+
1
2

ˆ ∞

0

uk− 1
2 e−u du,
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which we recognize to be of the form

Γ(z) =

ˆ ∞

0

uze−u du .

We thus have
∞∑
n=0

Γ(n+ k + 1
2
)

Γ(n+ 1)
(1− t)n =

1

tk+
1
2

Γ

(
k +

1

2

)
.

Since the above identity is written in terms of the Gamma function, we can extend
k to the non-negative real numbers. With the translation k + 1

2
7→ k, we have the

desired identity:
∞∑
n=0

Γ(n+ k)

Γ(n+ 1)
(1− t)n =

Γ(k)

tk
.

□

Remark. Setting k = 1
2
, we recover (8):

∞∑
n=0

Γ(n+ 1
2
)

Γ(n+ 1)
(1− t)n =

Γ(1
2
)

t
1
2

=

√
π

t
.

Setting k = 1 and t 7→ 1− t recovers the infinite geometric series formula:
∞∑
n=0

tn =
Γ(1)

(1− t)1

=
1

1− t

We now prove the main result for this subsection.

Theorem 4. For t ∈ (0, 2] and k ∈ R+,
∞∑
n=0

1

n

B(n+ 1, k + 1)

B(n, k)
= 1,

Proof. After rearranging Lemma 4 and applying the property Γ(n+1) = nΓ(n), we
obtain

∞∑
n=0

1

n

Γ(n+ k)

Γ(n) Γ(k)
tk(1− t)n = 1,

where the n = 0 term should be taken as a limit. Invoking the relationship between
the Gamma and Beta functions once more, we have

∞∑
n=0

1

n

1

B(n, k)
tk(1− t)n = 1.

Integrating both sides with respect to t over the interval (0, 1) yields

(11)
∞∑
n=0

1

n

1

B(n, k)

ˆ 1

0

tk(1− t)n dt = 1.

Recall that the Beta function has the definition

B(z1, z2) =

ˆ 1

0

tz1−1(1− t)z2−1 dt .
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Hence, the inner integral in (11) collapses to B(k + 1, n + 1). Given the symmetry
of the Beta function, this is equivalent to B(n+ 1, k + 1), thus giving

∞∑
n=0

1

n

B(n+ 1, k + 1)

B(n, k)
= 1

as desired. □

Remark. It is not too hard to verify the above identity. Expanding the Beta function
in terms of the Gamma function gives

∞∑
n=0

1

n

B(n+ 1, k + 1)

B(n, k)
=

∞∑
n=0

1

n

Γ(n+ 1)Γ(k + 1)

Γ(n+ k + 2)

/
Γ(n) Γ(k)

Γ(n+ k)

=
∞∑
n=0

1

n

nΓ(n) kΓ(k)

(n+ k + 1)(n+ k)Γ(n+ k)

/
Γ(n) Γ(k)

Γ(n+ k)

=
∞∑
n=0

k

(n+ k + 1)(n+ k)
.

Performing partial fraction decomposition gives us the telescoping sum
∞∑
n=0

(
k

n+ k
− k

n+ k + 1

)
,

which takes on the value of its 0th term, i.e. k
0+k

= 1.
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