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1 Introduction

Define

fn(x) =
1

(x2 + 1)n+1 ,

and let In and Jn be the definite and indefinite integrals of fn(x) as so:

In =

∫ ∞

−∞
fn(x) dx and Jn(x) =

∫
fn(x) dx.

In this note, we prove using contour integration that for n ∈ N1,

In =
π

22n

(
2n

n

)
. (A.1)

We extend our result with the beta function and show that for n ≥ 0, we have the formula

In = B

(
1

2
, n+

1

2

)
. (A.2)

Lastly, we evaluate Jn to be

Jn =
1

22n

(
2n

n

)[
arctanx+

n∑
k=1

22k−1

k

(
2k

k

)−1 x

(x2 + 1)k

]
+ C, . (B)

2 Evaluating In

2.1 The Discrete Case

Consider the case where n ∈ N. We evaluate In using contour integration.
We look at a more general integral. Define

f(z) =
eiωz

(z2 + 1)n+1
.

Let γ1 = [−R,R] and γ2 = {z = Reiθ, θ ∈ (0, π)}, where R > 0, as illustrated in Figure 1.
We evaluate ∫ ∞

−∞

cosωx

(x2 + 1)n+1
dx = Re lim

R→∞

∫
γ1

f(z) dz.
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1We take the convention that 0 ∈ N.
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Figure 1: The semicircular, anti-clockwise contour Γ and the enclosed singularity i.

Proposition 1. In the limit R → ∞, we have
∮
Γ f(z) dz =

∫
γ1
f(z) dz.

Proof. If ω > 0, then a simple application of Jordan’s lemma reveals∣∣∣∣∫
γ2

f(z) dz

∣∣∣∣ ≤ π

ω
sup

θ∈[0,π]

∣∣∣∣ 1

(R2e2iθ + 1)n+1

∣∣∣∣ = O

(
1

R2n+2

)
→ 0.

If ω = 0, the ML inequality gives the same result:∣∣∣∣∫
γ2

f(z) dz

∣∣∣∣ ≤ πR sup
θ∈[0,π]

∣∣∣∣ 1

(R2e2iθ + 1)n+1

∣∣∣∣ = O

(
R

R2n+2

)
→ 0.

Thus,

lim
R→∞

∮
Γ
f(z) dz = lim

R→∞

(∫
γ1

f(z) dz +

∫
γ2

f(z) dz

)
= lim

R→∞

∫
γ1

f(z) dz.

Definition 2. The nth reverse Bessel polynomial θn(x) is defined as

θn(x) =

n∑
k=0

(n+ k)!

k!(n− k)!

xn−k

2k
.

Proposition 3. The residue of f at the singularity z = i is

Res
z=i

(f) =
θn(ω)

n! eω2n+1 i
.

Proof. The singularity at z = i has order n+ 1, so

Res
z=i

(f) =
1

n!
lim
z→i

dn

dzn
(z − i)n+1f(z) =

1

n!
lim
z→i

dn

dzn
eiωz

(z + i)n+1
.

By the general Leibniz rule, we have

dn

dzn
eiωz

(z + i)n+1
=

n∑
k=0

(
n

k

)
dk

dzk
(z + i)−n−1 dn−k

dzn−k
eiωz

=
n∑

k=0

(
n

k

)[
(−n− 1)(−n− 2) . . . (−n− k)

(z + i)n+1+k

] [
(iω)n−keiωz

]
=

n∑
k=0

[
n!

k!(n− k)!

] [
(−1)k

(n+ k)!

n!

1

(z + i)n+1+k

] [
in−kωn−keiωz

]
= eiωz

n∑
k=0

(n+ k)!

k!(n− k)!

in+kωn−k

(z + i)n+1+k
.
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As z → i, we have

lim
z→i

dn

dzn
eiz

(z + i)n+1
= e−ω

n∑
k=0

(n+ k)!

k!(n− k)!

in+kωn−k

(2i)n+1+k

=
1

eω2n+1 i

n∑
k=0

(n+ k)!

k!(n− k)!

ωn−k

2k

=
θn(ω)

eω2n+1 i
.

We hence have

Res
z=i

(f) =
θn(ω)

n! eω2n+1 i

as desired.

Lemma 4. For n ∈ N and ω ≥ 0, we have∫ ∞

−∞

cosωx

(x2 + 1)n+1
dx =

π

eω
θn(ω)

n! 2n
.

Proof. From Proposition 1, we have∫ ∞

−∞

cosωx

(x2 + 1)n+1
dx = Re lim

R→∞

∫
γ1

f(z) dz = Re lim
R→∞

∮
Γ
f(z) dz.

Since the only singularity enclosed by Γ is z = i, by Cauchy’s residue theorem and Propo-
sition 3, we obtain∫ ∞

−∞

cosωx

(x2 + 1)n+1
dx = Re lim

R→∞

2π iθn(ω)

n! eω2n+1 i
=

π

eω
θn(ω)

n! 2n
.

Remark. Taking n = 0, a = 1, and ω = 1 recovers the celebrated result∫ ∞

−∞

cosx

x2 + 1
dx =

π

e
.

Proposition 5. For all n ∈ N, we have θn(0) = (2n− 1)!!.

Proof. From the definition of θn(x), we have

θn(0) =

n∑
k=0

(n+ k)!

k!(n− k)!

0n−k

2k
.

Taking the combinatorial view that

0m =

{
1, m = 1,

0, otherwise,

we see that everything apart from the k = n term vanishes. Thus,

θn(0) =
(2n)!

n! 2n
=

(2n)!

(2n)!!
= (2n− 1)!!,

which was what we wanted.

We are now ready to evaluate In.
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Theorem A.1. For n ∈ N, we have

In =
π

22n

(
2n

n

)
.

Proof. Observe that our goal integral In corresponds to the case where ω = 0. Applying
Lemma 4 and Proposition 5 gives∫ ∞

−∞

1

(x2 + 1)n+1
dx =

πθn(0)

n! 2n
=

π(2n− 1)!!

n! 2n
=

π

22n

(
2n

n

)
,

where we used the identity that

(2n− 1)!!

n! 2n
=

(2n− 1)!!

(2n)!!
=

1

2n

(
2n

n

)
in the last step.

2.2 The Continuous Case

In this section, we use the beta function to extend the domain of our integral In from the
natural numbers to the non-negative real numbers.

Definition 6. The beta function B(z1, z2) is defined as the definite integral

B(z1, z2) =

∫ ∞

0

tz1−1

(1 + t)z1+z2
dt,

where z1 and z2 are complex parameters with positive real parts.

Theorem A.2. For n ≥ 0, we have

In = B

(
1

2
, n+

1

2

)
.

Proof. Under the substitution t = x2, we obtain

In = 2

∫ ∞

0

1

(x2 + 1)n+1
dx =

∫ ∞

0

t−1/2

(t+ 1)n+1
dt,

which we observe to be the beta function with parameters z1 = 1/2 and z2 = n+1/2.

2.3 Identities

Comparing our results for the discrete and continuous cases, we obtain a simple expression
for B(1/2, n+ 1/2) when n ∈ N.

Proposition 7. For n ∈ N, we have

B

(
1

2
, n+

1

2

)
=

π

22n

(
2n

n

)
.

We can also derive the generating function for the central binomial coefficients easily.

Proposition 8. The generating function for the central binomial coefficients is 1/
√
1− 4t.
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Proof. Consider the infinite sum

S =
∞∑
n=0

(
2n

n

)
tn =

∞∑
n=0

[
4n

π

∫ ∞

−∞

1

(x2 + 1)n+1
dx

]
tn.

Switching the order of summation and integration gives us our desired result:

S =
1

π

∫ ∞

−∞

1

x2 + 1

∞∑
n=0

[
4t

x2 + 1

]n
dx

=
1

π

∫ ∞

−∞

1

x2 + 1

(
1

1− 4t
x2+1

)
dx

=
1

π

∫ ∞

−∞

1

x2 + (1− 4t)
dx

=
1

π

[
1√

1− 4t
arctan

(
t√

1− 4t

)]∞
−∞

=
1√

1− 4t
.

3 Evaluating Jn

In this section, we evaluate Jn by means of a recurrence relation.

Lemma 9. For k ≥ 1, we have

Jk − αkJk−1 = βkfk−1,

where

αk =
2k − 1

2k
and βk =

x

2k
.

Proof. Consider

Jk−1 =

∫
1

(x2 + 1)k
dx.

Integrating by parts, we obtain

Jk−1 =
x

(x2 + 1)k
+ 2k

∫
x2

(x2 + 1)k+1
dx

=
x

(x2 + 1)k
+ 2k

(∫
1

(x2 + 1)k
dx−

∫
1

(x2 + 1)k+1
dx

)
=

x

(x2 + 1)k
+ 2k (Jk−1 − 1Jk) ,

which rearranges to the first order recurrence relation

Jk −
2k − 1

2k
Jk−1 =

x

2k
fk−1(x)

as desired.

Proposition 10. For 0 ≤ k ≤ n, we have

αk+1αk+2 . . . αn = 22k−2n

(
2n

n

)(
2k

k

)−1

.
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Proof. We have

αk+1αk+2 . . . αn =

n∏
i=k+1

2i− 1

2i

=
(2n− 1)!!

(2n)!!

(2k)!!

(2k − 1)!!

=

[
1

22n

(
2n

n

)][
1

22k

(
2k

k

)]−1

= 22k−2n

(
2n

n

)(
2k

k

)−1

.

Note that in the case where k = 0, the result still holds with the standard convention that
0!! = (−1)!! = 1.

Theorem B. For n ∈ N, we have

Jn =
1

22n

(
2n

n

)[
arctanx+

n∑
k=1

22k−1

k

(
2k

k

)−1 x

(x2 + 1)k

]
+ C.

Proof. Using the recurrence relation derived in Lemma 9, we easily obtain the following
n equations:

Jn − αn Jn−1 = fn−1βn,
αn Jn−1 − αn−1αn Jn−2 = fn−2βn−1αn

αn−1αn Jn−2 − αn−2αn−1αn Jn−3 = fn−3βn−2αn−1αn
...

...
...

α2α3α4 . . . αn J1 − α1α2α3 . . . αn J0 = f0β1α2α3 . . . αn.

Summing each column yields

Jn − α1 . . . αnJ0 =

n∑
k=1

fk−1βkαk+1 . . . αn.

Substituting J0 = arctanx+ C and invoking Proposition 10, we finally obtain

Jn = 2−2n

(
2n

n

)
arctanx+

n∑
k=1

[
1

(x2 + 1)k

] [ x
2k

] [
22k−2n

(
2n

n

)(
2k

k

)−1
]
+ C

=
1

22n

(
2n

n

)[
arctanx+

n∑
k=1

22k−1

k

(
2k

k

)−1 x

(x2 + 1)k

]
+ C.

Remark. Given this formula for Jn, we can easily verify Theorem A.1:

In =
1

22n

(
2n

n

)[
arctanx+

n∑
k=1

22k−1

k

(
2k

k

)−1 x

(x2 + 1)k

]∞
−∞

=
1

22n

(
2n

n

)
[arctanx]∞−∞

=
π

22n

(
2n

n

)
.
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