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1 Introduction

Define
1

(132 + 1)71-1—1 ’
and let I,, and J, be the definite and indefinite integrals of f,,(z) as so:

falz) =

oo
I, = / fo(z)dz and J,(z) = /fn(x) dz.
—0o0
In this note, we prove using contour integration that for n € N',

I = o5 <2:> (A1)

We extend our result with the beta function and show that for n > 0, we have the formula

1 1
I,=B(=n+=). A2
(2 n+2) (A.2)

Lastly, we evaluate J,, to be
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2 Evaluating I,
2.1 The Discrete Case

Consider the case where n € N. We evaluate I, using contour integration.
We look at a more general integral. Define

iwz

f(z)zm-

Let 41 = [-R, R] and 7o = {z = Re'?, 6 € (0,7)}, where R > 0, as illustrated in Figure 1.

We evaluate ~
COS wWT .
/OO de = Re]—fh;‘[};o/yl f(Z)dZ
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https://asdia.dev/expository/arctan-int.pdf

Im ~

iR
Y2

-R g R Rez

Figure 1: The semicircular, anti-clockwise contour I' and the enclosed singularity i.

Proposition 1. In the limit R — oo, we have §. f(z)dz = [ f(z)dz

Proof. If w > 0, then a simple application of Jordan’s lemma reveals
1 1
f(Z) dZ (n) —
[y , R2n+2
f(z)dz 5

(R2e210 1 1)n+1 0
If w = 0, the ML inequality gives the same result:
R
; <R2" =] —0.
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Definition 2. The nth reverse Bessel polynomial 0,(x) is defined as

T
< — sup
w ee[o 7]

=0
O

< 7R sup
0el0,7]

Thus,

xnk

(n+k)!
Zk, ol

Proposition 3. The residue of f at the singularity z =1 is

On(w)
Res () = nlew2ntli’
Proof. The singularity at z = i has order n + 1, so
dn il 1 ) dr eiwz
E{:els (f) = ﬁ ll—n dzn (=™ /) = n! ,]%—n dzn (2 + i)+l

By the general Leibniz rule, we have
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As z — i, we have

i 4 ei.z _ —wz ”+k' inthgnk
z—i dz™ (z 4 1)t kl(n — k)! (2i)nt+1+k
B (n+ k) " —k
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We hence have 0, ()
i ()= nlew2n+lj
as desired. ]

Lemma 4. Forn € N and w > 0, we have

/OO : coswz 7 Op(w)

0 dr = — :
oo (2 1)L e¥ nl2n

Proof. From Proposition 1, we have

/ ST 40— Re lim / f(z)dz = Re lim ¢ f()dz
( - R—oo J1

o x2 + l)n—l—l R—oo

Since the only singularity enclosed by I' is z = i, by Cauchy’s residue theorem and Propo-
sition 3, we obtain

©  coswr dz = Re lim 2716, (w) _ 7 bp(w)
oo (T2 1)t R—oco nlew2ntli  ew pl2n’

Remark. Taking n =0, a = 1, and w = 1 recovers the celebrated result

x
/ c2osx dr —
oo T2+ 1

Proposition 5. For alln € N, we have 0,,(0) = (2n — 1)!1.

[

Proof. From the definition of 6,,(z), we have

(n+ k)l on=F
Zkl ! 2k -

Taking the combinatorial view that

om 1, m=1,
0, otherwise,
we see that everything apart from the £k = n term vanishes. Thus,

(2n)!  (2n)!
n!2n — (2n)!

0,(0) = = (2n— 1),

which was what we wanted. O

We are now ready to evaluate I,.



Theorem A.1. For n € N, we have

T [(2n
I, = — .
22n<n>

Proof. Observe that our goal integral I,, corresponds to the case where w = 0. Applying
Lemma 4 and Proposition 5 gives

o 1 o — 10,(0)  7w2n-1" 7w (2n
oo (X2 1)L TS Talon T pion T o\ g )

where we used the identity that

-1 @n-1 1 <2n)

nl2n @2l T 2\ n

in the last step. O

2.2 The Continuous Case

In this section, we use the beta function to extend the domain of our integral I,, from the
natural numbers to the non-negative real numbers.

Definition 6. The beta function B(z1, z2) is defined as the definite integral

o tzlf].
B = ——dt
(Zla ZQ) /0 (1 + t)z1+22 )

where 21 and z9 are complex parameters with positive real parts.

Theorem A.2. Forn > 0, we have

1 1

Proof. Under the substitution ¢t = 22, we obtain

') 1 (e} t71/2
L=2| —  de= | —_a,
/0 (22 1 )t &7 /0 (t + 1)ntt

which we observe to be the beta function with parameters z; =1/2 and 2o =n+1/2. O

2.3 Identities

Comparing our results for the discrete and continuous cases, we obtain a simple expression
for B(1/2,n 4 1/2) when n € N.

Proposition 7. Forn € N, we have

B 1 +1 T [(2n
—n+ =] === .
2’ 2 22n \ n

We can also derive the generating function for the central binomial coefficients easily.

Proposition 8. The generating function for the central binomial coefficients is 1/+/1 — 4t.



Proof. Consider the infinite sum

o0 o
2n 4n [ 1
oS (e[ ]
2 0) =2 |7 L
Switching the order of summation and integration gives us our desired result:
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3 Evaluating J,

In this section, we evaluate J, by means of a recurrence relation.

Lemma 9. For k > 1, we have

Ik — g Ji—1 = Brfr-1,

where ok _ 1
— T

ap =
Proof. Consider

1
1= — —dzx.
Tt /<w2+1)’“ !

Integrating by parts, we obtain

J —x+2k/$2d
FL T 2 1)k (22 4 1)1 &7

:M—I—Zlﬁ(/mdx_/md:U)

X
B + 2k (Jp—1 — 1Jx),

which rearranges to the first order recurrence relation

2k —1 x
Ji — Tqu = ﬁfkfl(x)
as desired.

Proposition 10. For 0 < k < n, we have

o (20 [2k\ !
Oék+104k+2...04n:22k 2n<n><k> .



Proof. We have

n

2i—1
Og+10k+2 ... Op = ‘ H %
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(2n — 1)1 (2k)!
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Note that in the case where k = 0, the result still holds with the standard convention that
o= (-1)!l=1. O

Theorem B. Forn € N, we have

1 /2n " 92k-1 <2k> -1
Jp = — arctan z + _—
22”(”) [ kzl ko \k (z2 + 1)"

Proof. Using the recurrence relation derived in Lemma 9, we easily obtain the following

+C.

n equations:

In - oy Jpo1 = fnflﬁna

oy Jpo1 — 10y Jpo = fn—25n—1an

p_10p Jpo — Op_920n_10y, Jp_3 = fn—?)ﬁn—QO‘n—lan
Qo030 ...y Jq — ajaoas...qan Jy = fofrasas...an,.

Summing each column yields

n
Jp—ar...andy = E Je-1BkQk11 - - - Q.
k=1

Substituting Jy = arctanx + C' and invoking Proposition 10, we finally obtain
J —9~2n 2n arctanx-i-i # [£:| o2k—2n on\ /2k\ !

" n = (x2+ 1)k | L2k n k

1 (2n N S) AN
:2%(”) [arctanx—kz 2 (k:) 7(3:24—1)’“
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Remark. Given this formula for J,,, we can easily verify Theorem A.1:

1 /2n "t 92k—1 fopN T g
I, = ( > arctan x + < ) P uE—
221\ n [ ; k \k (22 + 1)"

1 (2n
= o ( N > larctan 2]

[e. 9]
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