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1 A Coin-Flip Problem

Our journey begins with a classic coin-flip problem:

A fair coin is flipped repeatedly until a given sequence of Heads and Tails
appears. On average, how many times is the coin flipped?

Let us unpack this problem and phrase it mathematically. To do so, we introduce the
following notation and terminology.

Definition 1. Let A be an alphabet, which is the set of characters from which words are
constructed.

In the case of coin-flips, A = {H,T}, where H represents Heads and T represents Tails.

Definition 2. A terminator is a word that terminates the coin-flipping. The set of all
terminators is denoted T .

Definition 3. A word w is said to be immediately terminated under T if

• w ends with a terminator t ∈ T ; and

• w contains no other terminators.

The set of all words immediately terminated under T is denoted IT .

Example 4. Let T = {HHT, THH}. That is to say, we stop flipping the coin the
moment we get HHT or THH. The set of words we might get when playing the game
is then

IT = {HHT,HHHT,HHHHT, . . . , THH,HTHH,TTHH, . . .} .

Note that the word HTHHT , despite ending with HHT , is not in IT . This is because
it contains another terminator: HTHHT .

To prevent nonsensical scenarios, such as T = {HTT,HT} or T = {HTH,TH}, we
require that a terminator cannot contain another terminator. Equivalently, T ⊆ IT .
We now rephrase our original problem:

Let WT be a word constructed by concatenating letters from A uniformly at
random until WT ∈ IT , and let LT = |WT | be its length. What is E[LT ]?

For now, we will simplify the problem and assume |T | = 1. In the following subsections,
we will present two common approaches one might take in answering this (simplified)
problem.
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1.1 A Naive Approach

Suppose T = {T}. Intuitively, because the probability of getting T is 1/2, one might guess
that we will, on average, get one T every two flips, so

E
[
L{T}

]
=

1

P[T ]
=

1

1/2
= 2.

This is indeed the correct answer.
Suppose now that T = {TH}. Following a similar line of reasoning, one might conclude

that

E
[
L{TH}

]
=

1

P[TH]
=

1

1/4
= 4,

which is once again the correct answer.
However, this argument quickly breaks down once we consider more complicated termi-

nators. For instance, if T = {THT}, the above pattern suggests that

E
[
L{THT}

]
=

1

P[THT ]
=

1

1/8
= 8.

However, empirical evidence suggests that E
[
L{THT}

]
is actually 10, as shown in Figure 1.
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Figure 1: 1 thousand samples of L{THT} suggests that E
[
L{THT}

]
is 10, not 8.

1.2 Case-by-Case Analysis

One might observe that depending on which face the coin lands on, the expected number
of flips will change accordingly. Thus, by analysing all possible cases, we can form an
equation in E[LT ], which we can then easily solve.
To facilitate further discussion, we first introduce the notion of a left- and right-slice of

a word.

Definition 5. The left-slice of a word w, denoted Ln(w), refers to the first n characters
of w. Analogously, the right-slice of w, denoted Rn(w), refers to the last n characters
of w.
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Example 6. Let w = HTHH. The following table gives the left- and right- slices of w
for different n.

n Ln(w) Rn(w)

1 H H

2 HT HH

3 HTH THH

4 HTHH HTHH

To illustrate the method of case-by-case analysis, consider T = {THT}.

1. If the first coin is H, we have effectively wasted one flip since starting with H does
not contribute to getting THT . Thus,

E[LT | L1(WT ) = H] = E[LT ] + 1.

2. If the first coin is T , we have two subcases to consider:

a) If the second coin is T , we have effectively “gone back” to the case where our
first coin is T . Thus,

E[LT | L2(WT ) = TT ] = E[LT ] .

b) If the second coin is H, we have two more subcases to consider:

i. If the third coin is T , we have reached the terminator. Thus,

E[LT | L3(WT ) = THT ] = 3.

ii. If the third coin is H, we have effectively “gone back” to the case where
our first coin is H. This means that we wasted 3 flips, so

E[LT | L3(WT ) = THH] = E[LT ] + 3.

Since all words must start with either H, TT , THT or THH, by the law of total
expectation,

E[LT ] = E[LT | L1(WT ) = H] P[L1(WT ) = H]

+ E[LT | L2(WT ) = TT ] P[L2(WT ) = TT ]

+ E[LT | L3(WT ) = THT ] P[L3(WT ) = THT ]

+ E[LT | L3(WT ) = THH] P[L3(WT ) = THH] .

Because the coin is fair, the probability that Ln(WT ) = w for some arbitrary word w is
simply 1/2n. Substituting the values we found,

E[LT ] =
E[LT ] + 1

21
+

E[LT ]

22
+

3

23
+

E[LT ] + 3

23
.

After simplification, we get E[LT ] = 10, which aligns with the results obtained from our
simulation.
Of course, this is a perfectly sound solution to the problem, and one can always calculate

the correct value of E[LT ] using this algorithm. However, it becomes incredibly inefficient
and tedious when the terminators become more complicated, rendering it effectively use-
less.
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2 Martingales and the Optional Stopping Theorem

Given the drawbacks of case-by-case analysis, we seek a more simple and elegant way to
calculate E[LT ]. For this, we turn to a special mathematical object called a martingale.

2.1 Martingales

Put simply, a martingale is a random process represented by a sequence of random variables
{Xn}, which typically models a gambler’s fortune in a fair game.

To motivate our formal definition of a martingale, we investigate what it means for a
game to be fair. Consider the following game:

Flip a fair coin. If it comes up Heads, we win $1, but if it comes Tails, we lose
$1. Repeat this process forever.

Let Xn be our wealth after the nth coin-flip, and let Yn represent the outcome of the
nth coin-flip. We make two observations regarding Yn:

1

• The coin is fair : The coin has a 50/50 chance of landing H or T . Mathematically,

P[Yn = H] = P[Yn = T ] =
1

2
.

• The coin-flips are independent : The outcomes of past flips will not influence the
outcomes of future flips. Mathematically,

P[Yn+1 | Y1, . . . , Yn] = P[Yn+1] .

Because of these two properties, we can derive an important fact about our wealth, Xn:

E[Xn+1 | Y1, Y2, . . . Yn]
= (Xn + 1)P[Yn+1 = H | Y1, . . . , Yn] + (Xn − 1)P[Yn+1 = T | Y1, . . . , Yn]
= (Xn + 1)P[Yn+1 = H] + (Xn − 1)P[Yn+1 = T ]

=
1

2
(Xn + 1) +

1

2
(Xn − 1) = Xn.

That is to say, our expected wealth after the next flip, given that we know all
previous outcomes, is exactly our current wealth. It is this equation,

E[Xn+1 | Y1, . . . , Yn] = Xn,

that is the defining property of a martingale.

Definition 7. A sequence of random variables {Xn} is a martingale with respect to the
sequence {Yn} if

• Xn is a function of Y1, . . . , Yn,

• E[Xn] is finite, and

• E[Xn+1 | Y1, . . . , Yn] = Xn.

1Though these properties may seem trivial, it is nevertheless important to highlight them as it may
sometimes run against our human intuition. For example, the probability that the next flip is Heads,
given that the previous 100 flips were all tails, will still remain at 1/2. This misguided belief that we
are more likely to win after a series of losses is commonly known as the Gambler’s Fallacy.
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Remark. Most of the time, Yn is the same sequence as Xn. This simply means that

E[Xn+1 | X1, . . . , Xn] = Xn.

Apart from gambling, another context in which martingales can be applied in is the
stock market.

Proposition 8. LetXn represent the price of a stock on day n. Then {Xn} is a martingale
with respect to itself.

Proof. Suppose E[Xn+1 | X1, . . . , Xn] > Xn. Two things happen:

• Buying the stock today and selling tomorrow yields a profit (in expectation). De-
mand thus increases.

• Those that own the stock today will not sell today, since its value is expected to
increase tomorrow. Supply thus decreases.

This increase in demand and decrease in supply bids up today’s stock price.
Now suppose E[Xn+1 | X1, . . . , Xn] < Xn. Two things happens:

• Those who want to buy the stock would rather buy it tomorrow, since it will be
cheaper. Demand thus decreases.

• Those that own the stock today will want to sell today, since its value is expected
to decrease tomorrow. Supply thus increases.

This decrease in demand and increase in supply drives down today’s stock price.
From the above two scenarios, it follows that today’s stock price will eventually reach

an equilibrium, where
E[Xn+1 | X1, . . . , Xn] = Xn.

This is exactly the condition for {Xn} to be a martingale!

2.2 Stopping Times and Strategies

We now introduce the notion of a stopping time.

Definition 9. A stopping time τ with respect to a sequence {Yn} is a random variable
taking values in N ∪ {∞} such that for all n ∈ N, the event {τ = n} depends solely on
Y1, . . . , Yn. This event is called the gambler’s stopping strategy.

In layman terms, τ can be thought of as the round at which a gambler quits playing the
game. The condition that {τ = n} depends solely on Y1, . . . , Yn means that the gambler
quits using only information available to him before round n; he cannot see into the future
(view the outcome of Yn+1, Yn+2, . . . ) to decide when to stop playing.

Example 10. Suppose a gambler employs a stopping strategy where he quits after playing
10 games. Then his stopping time is simply τ = 10.

Another gambler may employ a different stopping strategy, opting to quit after losing
three times in a row. If the gambler plays a fair game with a $1 stake, the event {τ = n}
can be expressed asY1 = −1, Y2 = −1, Y3 = −1, . . . , Yn−3 = −1︸ ︷︷ ︸

all losses

, Yn−2 = 1, Yn−1 = 1, Yn = 1︸ ︷︷ ︸
3 wins in a row

 .
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2.3 The Optional Stopping Theorem

Is there a stopping strategy that returns a profit (in expectation)? As it turns out, the
answer is generally a no. This result is known as Doob’s Optional Stopping Theorem, or
OST for short.

Theorem 11 (Doob’s Optional Stopping Theorem). Let {Xn} be a martingale and let τ
be a stopping time, both with respect to {Yn}. Then E[Xτ ] = X0 if at least one of the
following holds:

1. |Xn| is bounded.

2. τ is bounded.

3. E[τ ] is finite, and all increments of X are bounded, i.e. there exists a constant C
such that for all n,

|Xn+1 −Xn| ≤ C.

The OST tells us that as long as our stopping strategy is reasonable enough, our expected
payout, E[Xτ ], must be equal to the amount we started with, X0.
To see why all reasonable strategies obey the OST, suppose we somehow came up with

a profitable strategy. That is, we managed to force E[Xτ ] > X0. Then this strategy either

• breaks the validity of our stopping time, or

• breaks all three conditions of the OST.

An invalid stopping time implies that we can somehow look into the future, which is clearly
impossible. Furthermore, the three conditions of the OST are hard to break in real life:

• If |Xn| is unbounded, then we either gain or lose an infinite amount of money, which
is unrealistic since there is a finite amount of money in the world.

• If τ = ∞, then we must play the game forever. Unfortunately, we have finite
lifespans.

• The same problems arise if E[τ ] = ∞, or if |Xn+1 −Xn| is unbounded.

Thus, a profitable strategy is nigh impossible to come up with, and so for all practical
purposes, any strategy we come up with obeys the OST.

2.4 The Gambler’s Ruin Problem

A classic application of martingales and the OST is the Gambler’s Ruin Problem. Consider
the following scenario:

We start with $K. Each round, we flip a fair coin. If it lands H, we gain $1.
If it lands T , we lose $1. We keep playing until we go bankrupt, or have a total
of $N .

What is the probability of going bankrupt?

Let us formalize this with martingales. Let Yn be the outcome of the nth flip, and let
Xn be our wealth after the nth flip. The stopping time τ is defined as

τ = min{n : Xn = 0 or Xn = N} .

In our notation, the probability of going bankrupt is P[Xτ = 0], while the probability of
leaving with $N is P[Xτ = N ]. Our goal is to find these two probabilities.
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Recall back in Section 2.1, we showed that {Xn} is a martingale. Further, it is quite
clear that Xn is bounded (in particular, 0 ≤ Xn ≤ N). Thus, {Xn} and τ satisfy the first
scenario of the OST, from which we obtain

E[Xτ ] = X0 = K.

Now observe that we can also write E[Xτ ] in terms of the desired probabilities:

E[Xτ ] = N P[Xτ = N ] + 0P[Xτ = 0] .

It immediately follows from the previous two equalities that

P[Xτ = N ] =
K

N
and P[Xτ = 0] = 1− K

N
.

In context, this result should make sense. The greedier we are, the higher the probability
of us going bankrupt. For instance, if we have $1 thousand and want to gamble until we
have $2 thousand, the probability of us going bankrupt in the process is 1 − 1/2 = 0.5.
However, if we are greedier and change our target to $10 thousand, the probability of us
going bankrupt is now 1− 1/10 = 0.9.

3 The ABRACADABRA Theorem

With our knowledge of martingales and the OST, we are now ready to explore the simple
and elegant approach to our coin-flip approach.

3.1 The Fair Casino

To set the stage, imagine that you work as a dealer at D’Casino. At D’Casino, there is
only one game offered:

Each round, you, the dealer, flip a fair-coin. Gamblers go all-in, betting on
the outcome of this coin-flip. If they win, they double their money, and they
play again. If they lose, the casino takes everything and they go home.

This repeats until a terminator (say THT ) appears, at which point the casino
closes and everybody goes home.

Let Yn be the outcome of the nth coin flip, and let the stopping time of the game be τ .
Then {τ = n} is the event that the last three coin-flips come up THT . Mathematically,

{τ = n} := {Yn−2Yn−1Yn = THT} . (3.1)

A group of gamblers, obsessed with the sequence THT , frequents D’Casino. Every
flip, a new gambler from this group arrives with $1 and plays the game, betting that the
subsequent flips appear T , H, T in that order.

Let Rn and Cn be the total revenue earned and total cost incurred by the gamblers after
the nth flip. Define also Xn = Rn − Cn to be the combined wealth of the gamblers after
the nth flip.
To illustrate how the game goes, suppose the coins come up HTTHT .



8

n Event Rn Cn

1 Gambler #1 bets $1 that Y1 = T and loses. 0 1

2 Gambler #2 bets $1 that Y2 = T and wins. He bets $2 that Y3 = H and
loses. We record this as a net loss of $1.

0 2

3 Gambler #3 bets $1 that Y3 = T and wins. He bets $2 that Y4 = H and
wins. He bets $4 that Y5 = T and wins. We record this as a gain of $8,
and a loss of $1.

8 3

4 Gambler #4 bets $1 that Y4 = T and loses. 8 4

5 Gambler #5 bets $1 that the Y5 = T and wins. After the fifth coin-flip,
the casino closes, so he cannot continue betting. We record this as a
gain of $2 and a loss of $1.

10 5

We now make three key observations:

Proposition 12. E
[
L{THT}

]
= E[Cτ ].

Proof. The number of coin-flips, is equal to the number of gamblers. Also, because of
the way we recorded losses, each gambler incurs a loss of exactly $1. Hence, the number
of coin-flips made, L{THT}, is equal to the total cost incurred, Cτ . Taking expectations,
E
[
L{THT}

]
= E[Cτ ] .

Proposition 13. E[Cτ ] = E[Rτ ].

We will prove this result later.

Proposition 14. E[Rτ ] = Rτ = 10.

Proof. By the rules of the game, it is obvious that only the last three gamblers can earn
money. Thus, the total revenue Rτ depends solely on the last three coin-flips. However,
because the last three coin flips must always be THT (recall (3.1)), it follows that Rτ is
a constant. Hence, E[Rτ ] = Rτ = 10.

Chaining these three observations together yields

E
[
L{THT}

]
= E[C] = E[R] = R = 10,

which is indeed what we got using case-by-case analysis earlier.

3.2 Proof of Proposition 13

We now present a proof of Proposition 13. We begin by verifying that our wealth {Xn} is
a martingale with respect to the coin-flips {Yn}.

Lemma 15. {Xn} is a martingale with respect to {Yn}.

Proof. It suffices to show that (1) E[Xn] is finite, and (2) E[Xn+1 | Y1, . . . , Yn] = Xn.
Notice that Xn attains a maximum when all n gamblers win. Likewise, Xn attains a

minimum when all n gamblers lose. Thus, |Xn| ≤ n · 2n, so E[Xn] must also be bounded
and hence finite.

Let An be the total wealth of gamblers that have lost before the nth flip. Correspond-
ingly, let Bn be the total wealth of gamblers that are still betting at the nth flip. Since
An is constant, we have

E[An+1 | Y1, . . . , Yn] = An+1 = An.



9

Since the coin is fair and independent, and the gamblers bet double-or-nothing, we have

E[Bn+1 | Y1, . . . , Yn] =
1

2
(2Bn) +

1

2
(0) = Bn.

Because Xn = An +Bn, it follows that

E[Xn+1 | Y1, . . . , Yn] = E[An+1 | Y1, . . . , Yn] + E[Bn+1 | Y1, . . . , Yn] = An +Bn = Xn.

Thus, {Xn} is a martingale with respect to {Yn}.

We now complete our proof of Proposition 13, which requires us to prove that our wealth
martingale {Xn} and stopping time τ obey the OST.

Proof of Proposition 13. We show that our wealth {Xn} and our stopping time τ obeys
the OST via the third scenario. That is, E[τ ] is finite and all increments ofXn are bounded.
It is easy to see that ∆Xn is bounded. A loose upper bound on ∆Rn is 3 · 23, which

occurs when the last three gamblers bet on Yτ and win. Similarly, an upper bound on
∆Cn is 3, which occurs when the last three gamblers bet on Yτ and lose. It immediately
follows that ∆Xn ≤ ∆Rn +∆Cn are bounded.
To see why E[τ ] is finite, consider the following game:

Suppose the terminator has length n. Each round, n coins are flipped. If these
n coins matches the terminator (i.e. come up THT ), we stop flipping. If not,
we continue on with another round.

Let {Y ′
n} be the outcome of the nth coin-flip, and let the stopping time for this game be

τ ′. Its stopping event is given by{
τ ′ = 3m

}
:=

{
Y ′
3m−2 = T, Y ′

3m−1 = H, Y ′
3m = T

}
,

where m ∈ N. Quite clearly, E[τ ] ≤ E[τ ′].
Let the random variable M be the number of rounds played under this game. Each

round, the coin-flips have a 1/8 chance of matching the terminator. Thus, M follows a
geometric distribution with probability of success p = 1/8, whence E[M ] = 1/p = 8. Since
a total of 3M coin-flips are made in this game, it follows that 0 < E[τ ] ≤ E[τ ′] = 3 · 8, so
E[τ ] is bounded and thus finite.

Hence, {Xn} and τ obey the OST, which states E[Xτ ] = X0 = 0. Since Xτ = Rτ −Cτ ,
we have E[Rτ ] = E[Cτ ] as desired.

3.3 Correlations and the ABRACADABRA Theorem

Since Rτ depends solely on the last few gamblers, we now have an easy way of calculating
E[LT ].

Example 16. To illustrate, consider yet again the example where T = {THT}. Our goal
is to calculate Rτ . To do so, we simply imagine that the terminator THT has already
been flipped and then work backwards.

• The third-last gambler wins $23, since he sees THT .

• The second-last gambler wins $0, since he sees H and immediately loses.

• The last gambler wins $21, since he sees T before the casino closes.

Hence, we have E[LT ] = Rτ = 23 + 21 = 10.

We can abstract this process of calculating Rτ using the correlation of two strings.
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Definition 17. Let X and Y be two words. The correlation polynomial of X and Y ,
denoted ρz(X,Y ), is a polynomial in z of maximum degree |X|.

The coefficients of ρz(X,Y ) are determined as follows: place Y under X so that its
leftmost character is under the ith character of X (from the right). Then, if all pairs of
characters in the overlapping segment are identical, the coefficient of zi is 1, else it is 0.
Mathematically, using left- and right-slices,

ρz(X,Y ) =

|X|∑
i=1

zi1{Ri(X) = Li(Y )},

where the indicator function 1(P ) returns 1 if the statement P is true and 0 otherwise.

Example 18. Let X = HTHTTH and Y = HTTHT . Then ρz(X,Y ) = z4 + z1, as
depicted below:

X: H T H T T H

Y : H T T H T 0
H T T H T 0

H T T H T t4

H T T H T 0
H T T H T 0

H T T H T t1

Note that in general, ρz(X,Y ) ̸= ρz(Y,X). For instance, using the same X and Y as
the above example, we have ρz(Y,X) = z2.
With this new terminology, one can easily see that Rτ = ρ2(t, t), where t is the termi-

nator.

Example 19. Once again, suppose T = {THT}. Notice that ρz(THT, THT ) is z3 + z1,
as illustrated below:

X: T H T

Y : T H T z3

T H T 0
T H T z1

Thus, ρ2(THT, THT ) = 23 + 21 = 10, which is precisely Rτ !
We can summarize this data using a matrix:

T H T

THT 23 21

Unlike the case-by-case method we explored earlier, this method can easily be applied
to terminators of longer lengths, as demonstrated in the following example.
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Example 20. Let T = {THHTHHTHH}. Computing correlations, we obtain the
following matrix:

T H H T H H T H H

THHTHHTHH 29 26 23

Hence, E[LT ] = 29 + 26 + 23 = 584.
If we change the final character to a T , i.e. T = {THHTHHTHT}, then our matrix

becomes

T H H T H H T H T

THHTHHTHH 29 21

Hence, E[LT ] = 29 + 21 = 514.

From the above examples, one can see that it is the “self-repetition” of the terminators
that determines how long it takes to reach them. For instance, THHTHHTHH self-
repeats many times (at the sixth-last and third-last characters), while THHTHHTHT
only repeats itself at the last character.
Even if the alphabet A changes, the core idea remains the same:

Example 21. Consider the following problem:

A monkey types one random character on a typewriter every second. On av-
erage, how long would it take the monkey to type the word “ABRACADABRA”?

In this context, our alphabet now contains 26 characters (A, B, C, etc.). To maintain
the fairness of the casino, the payout for each win should now be 26 times the bet.
Hence, the base of our correlation should be 26.
Comparing the correlation “ABRACADABRA” with itself, we see that our matrix is

A B R A C A D A B R A

ABRACADABRA 2611 264 261

The expected time taken is thus 2611 + 264 + 26 seconds, or 116.4 million years.

More generally, we can state our result as follows:

Theorem 22 (ABRACADABRA Theorem). Let T = {t} with alphabet A. Then

E[LT ] = ρ|A|(t, t).

This result is known in the literature as the ABRACADABRA Theorem, named after
the problem posed in Example 21.

4 The Generalized ABRACADABRA Theorem

We now turn our attention to solving the problem in its most general form. First, let us
introduce one more piece of notation:

Definition 23. Let t ∈ T . We define [t] to be the set of all immediately terminated
words w that end with t. Mathematically,

[t] =
{
w ∈ IT : R|t|(w) = t

}
.
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Example 24. If T = {HHT, THH}, then

[HHT ] = {HHT,HHHT,HHHHT, . . .}

and
[THH] = {THH,HTHH,TTHH, . . .} .

4.1 Two Terminators

To build our intuition, we first look at the case where we have two terminators, say
T = {THT,HTT}.
We once again return to our D’Casino thought experiment. Suppose you quit your job

as a dealer at D’Casino. To fill in your absence, D’Casino management has introduced a
slight modification to the coin-flipping game:

Each round, a fair coin is flipped, and a game is played between two parties,
D (the “dealer”) and G (the “gambler”):

G goes all-in, betting on the outcome of the coin-flip. If G wins, D pays G,
and they play again. If G loses, G pays H, and the two stop playing.

This repeats until a terminator (either THT or HTT ) appears, at which point
the casino closes and everybody goes home.

Let Yn be the outcome of the nth coin-flip, and let the stopping time of the game be τ .
Suppose we have two groups of gamblers, Group 1 and Group 2, that frequent D’Casino.

The gamblers in Group 1 are obsessed with the sequence THT , while those in Group 2
are obsessed with HTT . Every flip, a new gambler from each group arrives with $1. The
two gamblers then play two games simultaneously:

• In the first game, the Group 1 gambler is G and the Group 2 gambler is D. The
Group 1 gambler bets that the next few coin-flips will be THT .

• In the second game, the Group 2 gambler is G and the Group 1 gambler is D. The
Group 2 gambler bets that the next few coin-flips will be HTT .

Note that the two games share the same coin-flips.
Like before, we consider the revenues gained and costs incurred by each group. Suppose

Group i plays as G. We define Rn(i) to be the revenue earned by Group i at the nth flip,
and Cn(i) to be the cost incurred by Group i at the nth flip.
To illustrate how the games go, suppose the coin-flips come up HHTHT . We focus on

Game 1 first. Recall that Group 1 is G, betting on THT , while Group 2 is D. As this is
almost identical to what we have seen before, we keep the descriptions brief.

n Event Rn(1) Cn(1)

1 Gambler #1 loses his first bet. 0 1

2 Gambler #2 loses his first bet. 0 2

3 Gambler #3 wins all three bets. He hence earns $7 overall. For
consistency, we record this as a gain of $8 and a loss of $1 for
Group 1.

8 3

4 Gambler #4 loses his first bet. 8 4

5 Gambler #5 wins his first bet before the casino closes. Like before,
we record this as a gain of $2 and a loss of $1 for Group 1.

10 5

We now do the same thing for Game 2. Here, Group 2 is G, betting on HTT , while
Group 1 is D.
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n Event Rn(2) Cn(2)

1 Gambler #1 loses his second bet. 0 1

2 Gambler #2 loses his third bet. 0 2

3 Gambler #3 loses his first bet. 0 3

4 Gambler #4 wins his first and second bet, but the casino closes
before his third. We record this as a gain of $4 and a loss of $1 for
Group 2.

4 4

5 Gambler #5 loses his first bet. 4 5

Like before, we make three key observations:

• E[LT ] = E[Cτ (i)] for i = 1, 2.

• E[Cτ (i)] = E[Rτ (i)] for i = 1, 2.

• Rτ (i), where i = 1, 2, depends solely on the last three coin-flips.

The proofs of these three observations are almost identical to that of Propositions 12, 13
and 14.
From the first two observations, it is easy to see that

E[LT ] = E[Rτ (1)] = E[Rτ (2)] . (4.1)

The last observation allows us to easily calculate E[Rτ (1)] and E[Rτ (2)], which we will
now do.

• Suppose WT ∈ [THT ]. Then

E[Rτ (1) | WT ∈ [THT ]] = ρ2(THT , THT ) = 23 + 21 = 10,

E[Rτ (2) | WT ∈ [THT ]] = ρ2(THT ,HTT ) = 22 = 4.

• Now suppose WT ∈ [HTT ]. Then

E[Rτ (1) | WT ∈ [HTT ]] = ρ2(HTT , THT ) = 21 = 2,

E[Rτ (2) | WT ∈ [HTT ]] = ρ2(HTT ,HTT ) = 23 = 8.

By the law of total expectation, it follows that

E[Rτ (1)] = 10P[WT ∈ [THT ]] + 2P[WT ∈ [HTT ]] ,
E[Rτ (2)] = 4P[WT ∈ [THT ]] + 8P[WT ∈ [HTT ]] ,

By (4.1), the two are equal, giving us the equation

10P[WT ∈ [THT ]] + 2P[WT ∈ [HTT ]] = 4P[WT ∈ [THT ]] + 8P[WT ∈ [HTT ]] .

Further, by the law of total probability,

P[WT ∈ [THT ]] + P[WT ∈ [HTT ]] = 1.

This gives us a system of two linear equations in two unknowns, which we can easily solve:

P[WT ∈ [THT ]] = P[WT ∈ [HTT ]] =
1

2
.

Plugging these values back into (4.1), we finally obtain the expected length:

E[LT ] = E[Rτ (1)] = 10P[WT ∈ [THT ]] + 2P[WT ∈ [HTT ]] = 10

(
1

2

)
+ 2

(
1

2

)
= 6.
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4.2 Three Terminators

Let us now go one step further and consider the case where we have three terminators,
say T = {THT,HTT,HHH}.

The set-up is going to remain mostly the same. The only difference is that we now have
three groups, each betting on one of the three terminators. Let Group 1 bet on THT ,
Group 2 on HTT and Group 3 on HHH. These three teams will now play three games:

• In the first game, the Group 1 gambler is G and the Group 2 gambler is D.

• In the second game, the Group 2 gambler is G and the Group 3 gambler is D.

• In the third game, the Group 3 gambler is G and the Group 1 gambler is D.

Observe the cyclical nature of these match-ups. Also, observe that each group plays
exactly one game as G, and another as D.
Like before, we define Rn(i) and Cn(i) to be the total revenue earned and total cost

incurred by Group i at the nth flip of the game where they play as G.
We make the same three observations:

• E[LT ] = E[Cτ (i)] for i = 1, 2, 3.

• E[Cτ (i)] = E[Rτ (i)] for i = 1, 2, 3.

• Rτ (i), where i = 1, 2, 3, depends solely on the last three coin-flips.

From the first two observations, we have

E[LT ] = E[Rτ (1)] = E[Rτ (2)] = E[Rτ (3)] . (4.2)

Using the last observation, we can easily calculate E[Rτ (i)] for i = 1, 2, 3:

• Suppose WT ∈ [THT ]. Then

E[Rτ (1) | WT ∈ [THT ]] = ρ2(THT , THT ) = 23 + 21 = 10,

E[Rτ (2) | WT ∈ [THT ]] = ρ2(THT ,HTT ) = 22 = 4,

E[Rτ (3) | WT ∈ [THT ]] = ρ2(THT ,HHH) = 0.

• Suppose WT ∈ [HTT ]. Then

E[Rτ (1) | WT ∈ [HTT ]] = ρ2(HTT , THT ) = 21 = 2,

E[Rτ (2) | WT ∈ [HTT ]] = ρ2(HTT ,HTT ) = 23 = 8,

E[Rτ (3) | WT ∈ [HTT ]] = ρ2(HTT ,HHH) = 0.

• Lastly, suppose WT ∈ [HHH]. Then

E[Rτ (1) | WT ∈ [HHH]] = ρ2(HHH,THT ) = 0,

E[Rτ (2) | WT ∈ [HHH]] = ρ2(HHH,HTT ) = 0,

E[Rτ (3) | WT ∈ [HHH]] = ρ2(HHH,HHH) = 23 + 22 + 21 = 14.

By the law of total expectation, it follows that

E[Rτ (1)] = 10P[WT ∈ [THT ]] + 2P[WT ∈ [HTT ]] + 0P[WT ∈ [HHH]] ,
E[Rτ (2)] = 4P[WT ∈ [THT ]] + 8P[WT ∈ [HTT ]] + 0P[WT ∈ [HHH]] ,
E[Rτ (3)] = 0P[WT ∈ [THT ]] + 0P[WT ∈ [HTT ]] + 14P[WT ∈ [HHH]] .
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By (4.2), these three expressions are equal. Further, the probabilities sum up to 1. This
gives us a system of linear equations, which we can easily solve. One can verify that the
probabilities are

P[WT ∈ [THT ]] =
11

28
, P[WT ∈ [HTT ]] =

8

28
, P[WT ∈ [HHH]] =

9

28
.

Substituting this back into (4.2), we obtain

E[LT ] = E[Rτ (3)] = 14

(
9

28

)
=

9

2
.

4.3 Correlation Matrices and Probability Vectors

Before we move on to the most general case, we introduce a more concise way of describing
our procedure.
Consider the system of equations we just derived:

E[Rτ (1)] = 10P[WT ∈ [THT ]] + 2P[WT ∈ [HTT ]] + 0P[WT ∈ [HHH]] ,
E[Rτ (2)] = 4P[WT ∈ [THT ]] + 8P[WT ∈ [HTT ]] + 0P[WT ∈ [HHH]] ,
E[Rτ (3)] = 0P[WT ∈ [THT ]] + 0P[WT ∈ [HTT ]] + 14P[WT ∈ [HHH]] .

One might observe that this can be expressed much more simply as a matrix equation!
Indeed, we have E[Rτ (1)]

E[Rτ (2)]
E[Rτ (3)]

 =

10 2 0
4 8 0
0 0 14

 P[WT ∈ [THT ]]
P[WT ∈ [HTT ]]
P[WT ∈ [HHH]]

 .

We call the matrix on the right the correlation matrix of T , since its values are the cor-
relations between pairs of terminators. We also call the vector on the right the probability
vector of T .

Definition 25. Let T = {t1, . . . , tn} with alphabet A. The correlation matrix of T is an
n× n matrix MT = (mij), where

mij = ρ|A|(tj , ti).

The probability vector of T , denoted pT , is defined as

pT =

P[WT ∈ [t1]]
...

P[WT ∈ [tn]]

 .

With these two objects in mind, let us find a general expression for E[LT ].

4.4 The Generalized ABRACADABRA Theorem

Suppose we now have n terminators, say T = {t1, . . . , tn}. Note that these terminators
may have different lengths.
We will reuse our set-up again. This time, however, we will have n groups, each betting

on one terminator. These groups will play a total of n games:

• Group 1 as G, with Group 2 as D,

• Group 2 as G, with Group 3 as D,
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• Group 3 as G, with Group 4 as D,

• · · · ,

• Group n− 1 as G, with Group n as D,

• Group n as G, with Group 1 as D.

We again make three observations:

• E[LT ] = E[Cτ (i)] for i = 1, . . . , n.

• E[Cτ (i)] = E[Rτ (i)] for i = 1, . . . , n.

• Rτ (i), where i = 1, . . . , n, depends solely on the last |ti| coin-flips.

From the last observation, we can express these expected revenues as the product of
MT and pT : E[Rτ (1)]

...
E[Rτ (n)]

 = MT pT .

From the first two observations, we have

E[LT ] = E[Rτ (1)] = E[Rτ (2)] = E[Rτ (3)] = · · · = E[Rτ (n)] .

Thus, our matrix equation becomes

MT pT = E[LT ]1n =⇒ pT = E[LT ]M
−1
T 1n,

where 1n is the vector consisting of n 1’s. Since the probabilities must sum to 1, we must
have 1TnpT = 1. Thus,

1 = E[LT ]1
T
nM

−1
T 1n =⇒ E[LT ] =

1

1TnM
−1
T 1n

.

We also get an expression for the probability vector for free:

pT =
1

1TnM
−1
T 1n

M−1
T 1n.

This result is the generalized ABRACADABRA Theorem.

Theorem 26 (Generalized ABRACADABRA Theorem). Let T = {t1, . . . , tn}. Then

E[LT ] =
1

1TnM
−1
T 1n

and pT =
1

1TnM
−1
T 1n

M−1
T 1n.

Remark. E[LT ] is the sum of the all entries of M−1
T .

With this theorem, we can easily calculate E[LT ] and the probabilities pT using software.
Let us now look at some examples of this theorem in action.
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Example 27. Let T = {THT,HTT}. Our correlation matrix is given by

T H T H T T

THT 23 21 21

HTT 22 23

The inverse of MT is

M−1
T =

1

36

(
4 −1
−2 5

)
.

Using the generalized ABRACADABRA theorem, we have

E[LT ] =
1

1
36(4− 1− 2 + 5)

= 6.

As mentioned before, the terminators need not be of the same length:

Example 28. Let T = {TT, THT}. Our correlation matrix is given by

T T T H T

TT 22 21 21

THT 21 23 21

One can calculate the inverse of MT to be

M−1
T =

1

28

(
5 −1
−1 3

)
.

Thus, by the generalized ABRACADABRA theorem,

E[LT ] =
1

1
28 (5− 1− 1 + 3)

=
14

3
.

5 Further Questions

In this workshop, we managed to derive closed forms for E[LT ] and P[WT ∈ [t]]. There
are, however, many more questions we can ask about this game:

• Is there a closed form for E[LT | WT ∈ [t]]?

• If WT ∈ [t], what is the distribution of LT ? How many words in [t] have length n?
Equivalently, given that LT = n, what is the probability that WT ∈ [t]?

• Given n terminators, each at most length k, what is the minimum and maximum
value of E[LT ]?

• What is the significance of M−1
T ? What does it mean to “invert” a correlation

matrix?

Slightly modifying our original coin-flip problem also opens up a whole can of worms:

• What if we stopped flipping the coin once we see all terminators?

• What if we allowed up to k appearances of a single terminator?

• If we flip a fair coin n times, what is the probability that a terminator t appears?
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