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Probability Crash Course



Sample Space and Probability

The sample space, denoted S, is the set of all possible outcomes that can occur.

An event is a subset of S.

The probability that an event E occurs is denoted P[E].

Suppose I roll a six-sided dice. There are 6 possible outcomes: I roll a 1, I roll a 2, etc. This
is my sample space. For convenience, write

S = {1, 2, 3, 4, 5, 6} .

Let E denote the event “I roll a 1 or a 2”. This corresponds to the subset {1, 2}.

The probability of E happening is P[E] = 2
6 .

2



Sample Space and Probability

The sample space, denoted S, is the set of all possible outcomes that can occur.

An event is a subset of S.

The probability that an event E occurs is denoted P[E].

Suppose I roll a six-sided dice. There are 6 possible outcomes: I roll a 1, I roll a 2, etc. This
is my sample space. For convenience, write

S = {1, 2, 3, 4, 5, 6} .

Let E denote the event “I roll a 1 or a 2”. This corresponds to the subset {1, 2}.

The probability of E happening is P[E] = 2
6 .

2



Random Variables

A random variable is a quantity that depends on random events. It is denoted with
capital letters, typically X or Y.

The outcome of my dice roll is a random variable.

The outcome of a coin flip is a random variable.
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Probability Distribution

A probability distribution describes all possible values of the random variable and their
corresponding probabilities.

It assigns a probability value to each possible outcome in the sample space.

When writing probability distributions, we write particular values of a random variable
using lower-case letters.

The probability distribution of a dice roll is

x 1 2 3 4 5 6
P[X = x] 1

6
1
6

1
6

1
6

1
6

1
6

For example, P[X = 1] = 1
6 , P[X = 1 or 2] = 2

6 .
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Expectation of a Random Variable

We typically want to know the “average value” of a random variable X.

We call this the expectation of X, denoted E[X].

We define E[X] as
E[X] =

∑
x∈S

xP[X = x] .

Let the possible values of a random variable Y be 1 and −1, each occurring with
probability 1

2 . What is the “average” value of Y, i.e. E[Y]?

E[Y] = (1)
(
1
2

)
+ (−1)

(
1
2

)
= 0.
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Exercise

Let X be the outcome of a dice roll. What is E[X]?

E[X] = (1)
(
1
6

)
+ (2)

(
1
6

)
+ (3)

(
1
6

)
+ (4)

(
1
6

)
+ (5)

(
1
6

)
+ (6)

(
1
6

)
= 3.5.

Suppose the dice is now biased, so X has probability distribution

x 1 2 3 4 5 6
P[X = x] 0.2 0.3 0 0 0.3 0.2

What is E[X]?

E[X] = 1(0.2) + 2(0.3) + 3(0) + 4(0) + 5(0.3) + 6(0.2) = 3.6.
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Conditional Probability

Sometimes we already know some information about the situation, so we can rule out
some outcomes. E.g. we know that we did not roll a 1 or a 2.

Given this information, the probability of an event changes. For instance, the probability
that we roll a 3 is now much higher.

We write this as
P[X = 3 | X ̸= 1, X ̸= 2︸ ︷︷ ︸

given information

].
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Conditional Expectation

Similarly, given some information about the situation, the expectation of X also changes.
The notation is identical:

E[X | X ̸= 1, X ̸= 2︸ ︷︷ ︸
given information

].

We can calculate a conditional expectation using

E[X | A] =
∑
x∈S

xP[X = x | A] .

This is almost identical to what we saw previously:

E[X] =
∑
x∈S

xP[X = x] .
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Law of Total Expectation

The law of total expectation states that

E[X] =
n∑
i=1

E[X | Ai]P[Ai] ,

where A1,A2, . . . , An partitions the sample space.

Suppose you are picking a banknote from two bags, say Bag A and Bag B. Bag A has a $2
note, a $5 note and a $10 note. Bag B has a $50 note and a $100 note. You have an 80%
chance of taking a note from Bag A. What is your expected profit?

9



Law of Total Expectation

The law of total expectation states that

E[X] =
n∑
i=1

E[X | Ai]P[Ai] ,

where A1,A2, . . . , An partitions the sample space.

Suppose you are picking a banknote from two bags, say Bag A and Bag B. Bag A has a $2
note, a $5 note and a $10 note. Bag B has a $50 note and a $100 note. You have an 80%
chance of taking a note from Bag A. What is your expected profit?

9



Law of Total Expectation

Suppose you are picking a banknote from two bags, say Bag A and Bag B. Bag A has a $2
note, a $5 note and a $10 note. Bag B has a $50 note and a $100 note. You have an 80%
chance of taking a note from Bag A. What is your expected profit?

Let X be my profit. By the law of total expectation,

E[X] = E[X | Bag A]P[Bag A] + E[X | Bag B]P[Bag B]

=
2+ 5+ 10

3 (0.8) + 50+ 100
2 (0.2)

= 19.53.

Hence, I expect to win $19.53.
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A Coin-Flip Problem



Our Problem

A fair coin is flipped repeatedly until a given sequence of Heads and Tails appears.

On average, how many times is the coin flipped?

Let’s look at a simple example.

Suppose we flip a fair coin until we get Tails. On average, how many times is the coin
flipped?

Ans: 2

Definition 2.
The terminator T is the sequence that terminates the coin-flipping.
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Our Problem (Rephrased)

Let WT be a word constructed by randomly concatenating the letters H and T until we
reach a terminator T . Let LT = |WT | be the length of the resulting word.

What is E[LT ]?
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A Coin-Flip Problem

A Naive Approach



A Naive Approach

Suppose T = T.

P[T] = 1
2 .

E[LT] =
1

P[T] =
1
1/2 = 2.
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A Naive Approach

Suppose T = TH.

P[TH] = 1
4 .

E[LTH] =
1
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A Naive Approach

Suppose T = THT.

P[THT] = 1
8 .

E[LTHT] =
1

P[THT] =
1
1/8 = 8?
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A Naive Approach
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E[LTHT]
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Martingales and the Optional
Stopping Theorem



Martingales and the Optional
Stopping Theorem

Martingales



Informal Definition

A martingale is a random process which models a gambler’s fortune in a fair game.

Is typically represented by a sequence of random variables X0, X1, X2, . . . .

Some motivating questions:

• What is a fair game?
• What properties do fair games possess?
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A Prototypical Example

Flip a fair coin.

• If it comes up H, we win $1.
• If it comes up T, we lose $1.

Repeat this process forever.

18



A Prototypical Example

Let Xn be our wealth after the nth coin-flip.

Let Yn represent the outcome of the nth coin-flip.

• The coin is fair.
P[Yn = H] = P[Yn = T] = 1

2 .

• The coin-flips are independent: The outcomes of past coin-flips do not influence the
outcomes of future flips.

P[Yn+1 | Y1, . . . , Yn] = P[Yn+1] .

19
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A Prototypical Example

E[Xn+1 | Y1, Y2, . . . Yn]

= (Xn + 1)P[Yn+1 = H | Y1, . . . , Yn] + (Xn − 1)P[Yn+1 = T | Y1, . . . , Yn]
= (Xn + 1)P[Yn+1 = H] + (Xn − 1)P[Yn+1 = T]

=
1
2 (Xn + 1) + 1

2 (Xn − 1)

= Xn.

Our expected wealth after the next flip, given that we know all previous outcomes, is
exactly our current wealth.

This is the defining property of a martingale.
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Formal Definition

Definition 7.
A sequence of random variables X1, X2, . . . is a martingale with respect to the sequence
Y1, Y2, . . . if

E[Xn+1 | Y1, . . . , Yn] = Xn.

21



The Stock Market

Proposition 8.
Let Xn represent the price of a stock on day n. Then {Xn} is a martingale with respect to
itself.

Proof.

22



The Stock Market

Proposition 8.
Let Xn represent the price of a stock on day n. Then {Xn} is a martingale with respect to
itself.

Proof.
Suppose E[Xn+1 | X1, . . . , Xn] > Xn.

• Buying the stock today and selling tomorrow yields a profit (in expectation).
• Those that own the stock today will not sell today, since its value is expected to
increase tomorrow.

Demand increases, supply decrease =⇒ today’s stock price increases.
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The Stock Market

Proposition 8.
Let Xn represent the price of a stock on day n. Then {Xn} is a martingale with respect to
itself.

Proof.
Suppose instead E[Xn+1 | X1, . . . , Xn] < Xn.

• Those who want to buy the stock would rather buy it tomorrow, since it will be
cheaper.

• Those that own the stock today will want to sell today, since its value is expected to
decrease tomorrow.

Demand decreases, supply increases =⇒ today’s stock price decreases.
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The Stock Market

Proposition 8.
Let Xn represent the price of a stock on day n. Then {Xn} is a martingale with respect to
itself.

Proof.
Today’s stock price will eventually reach an equilibrium, where

E[Xn+1 | X1, . . . , Xn] = Xn.

This is exactly the condition for {Xn} to be a martingale!
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The Stock Market (In Real Life)

Efficient Market Hypothesis (EMH): Share prices reflect all available information and
cannot consistently be beat.

The EMH is generally true. The market is not perfectly efficient

See: alpha generation in quantitative finance.

23



The Stock Market (In Real Life)

Efficient Market Hypothesis (EMH): Share prices reflect all available information and
cannot consistently be beat.

The EMH is generally true. The market is not perfectly efficient

See: alpha generation in quantitative finance.

23



Exercise

Let Xn = 10 for all n ≥ 1. Is X1, X2, . . . a martingale?

Yes.
E[Xn+1 | Y1, . . . , Yn] = E[10 | Y1, . . . , Yn] = 10 = Xn.

24
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Exercise

Let Y1, Y2, Y3, . . . be a sequence of independent random variables, each equal to −1 with
probability 1/2 and 1 with probability 1/2. Let Xn = Y1 + Y2 + · · ·+ Yn for n > 0. Is Xn a
martingale with respect to Yn?

Yes.

Observe that Xn+1 = Xn + Yn+1. So

E[Xn+1 | Y1, . . . , Yn] = E[Xn + Yn+1 | Y1, . . . , Yn]
= E[Xn | Y1, . . . , Yn] + E[Yn+1 | Y1, . . . , Yn]
= E[Xn] + E[Yn+1]

= Xn +
[(

1
2

)
(1) +

(
1
2

)
(−1)

]
= Xn.

26
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Martingales and the Optional
Stopping Theorem

Stopping Times and Strategies



Informal Definition

Previously, we required a fair game to be played over infinitely many rounds.

This is not very realistic, so we introduce the idea of a stopping time.

A stopping time τ is the round where a gambler quits playing a game.

He cannot see into the future (view the outcome of future rounds) to decide when to stop
playing.
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Formal Definition

Definition 9.
A stopping time τ with respect to a sequence {Yn} is a random variable taking values in
N ∪ {∞} such that for all n ∈ N, the event {τ = n} depends solely on Y1, . . . , Yn. This
event is called the gambler’s stopping strategy.
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An Example

Example 10.
Stopping strategy: quit after 10 games.

Stopping time: τ = 10.

Stopping strategy: quit after 3 losses in a row.

Stopping time: {τ = n} is Yn−2 = −1, Yn−1 = −1, Yn = −1︸ ︷︷ ︸
3 losses in a row

 .
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Exercise

Suppose a gambler plays a fair game with a $1 stake per round. Determine if the
following events are stopping strategies.

i. The third time the gambler loses in a row.

(Yes)
ii. Two rounds before the gambler profits $50. (No)
iii. The first time the gambler profits $50 or goes bankrupt. (Yes)
iv. The first time the gambler starts a sequence of 10 losses in a row. (No)
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Martingales and the Optional
Stopping Theorem

The Optional Stopping Theorem



Motivating Question

Q: Is there a stopping strategy that returns a profit (on average)?

A: Generally, no.
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The OST

Theorem 11 (Doob’s Optional Stopping Theorem).
Let {Xn} be a martingale and let τ be a stopping time, both with respect to {Yn}. Then
E[Xτ ] = X0 if at least one of the following holds:

1. |Xn| is bounded.
2. τ is bounded.
3. E[τ ] is finite, and all increments of X are bounded, i.e. there exists a constant C such
that for all n,

|Xn+1 − Xn| ≤ C.

As long as our stopping strategy is reasonable enough, our expected payout must be
equal to the amount we started with.
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Breaking the OST

Suppose our strategy is profitable. Then it either

• breaks the validity of our stopping time, or
• breaks all three conditions of the OST.

Invalid stopping time: We have to look into the future (impossible)

OST does not apply:

• |Xn| unbounded: We either gain or lose an infinite amount of money (unrealistic).
• τ = ∞: We play the game forever (impossible).
• Same problems arise if E[τ ] = ∞ and |Xn+1 − Xn| is unbounded.

Hence, practically all strategies obey the OST.
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The Gambler’s Ruin Problem

We start with $K.

Each round, we flip a fair coin.

• If it lands H, we gain $1.
• If it lands T, we lose $1.

We keep playing until we go bankrupt, or have a total of $N.

What is the probability of going bankrupt?
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The Gambler’s Ruin Problem

Let Yn be the outcome of the nth flip.

Let Xn be our wealth after the nth flip.

Stopping time τ = min{n : Xn = 0 or Xn = N}.

We wish to find P[Xτ = 0].
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The Gambler’s Ruin Problem

We previously proved that {Xn} is a martingale with respect to {Yn}.

Xn is bounded: 0 ≤ Xn ≤ N.

By OST (scenario 1), E[Xτ ] = X0 = K.

We can also write E[Xτ ] = NP[Xτ = N] + 0P[Xτ = 0].

So P[Xτ = N] = K
N and P[Xτ = 0] = 1− K

N .

The greedier we are, the higher the probability of us going bankrupt.
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The ABRACADABRA Theorem



The ABRACADABRA Theorem

The Fair Casino



Setting up the Scene

Imagine you work as a dealer at D’Casino.

There is only one game available for play at D’Casino.
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The Game

Each round, you flip a fair-coin.

Gamblers go all-in, betting on the outcome of this coin-flip.

• If they win, they double their money, and they play again.
• If they lose, they lose everything and go home.

This repeats until a terminator (say THT) appears, at which point the casino closes.
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Setting up the Scene

Let Yn be the outcome of the nth coin flip.

Let τ be the stopping time.

Note that {τ = n} is the event that Yn−2Yn−1Yn is THT.
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Setting up the Scene

A group of gamblers, obsessed with the sequence THT, frequents D’Casino.

Every flip, a new gambler from this group arrives with $1 and plays the game, hoping that
the subsequent flips appear T, H, T in that order.
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A Simple Example

Y1 = T

Gambler #1

• Bets $1 that Y1 = T.
• Wins $2 and plays
again.
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A Simple Example

Y2 = H

Gambler #1

• Bets $2 that Y2 = H.
• Wins $4 and plays
again.

Gambler #2

• Bets $1 that Y2 = T.
• Loses $1 and stops
playing.
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A Simple Example

Y3 = T

Gambler #1

• Bets $4 that Y3 = T.
• Wins $8.

Gambler #2 Gambler #3

• Bets $1 that Y3 = T.
• Wins $2.

Since terminator THT appears, the game stops.

43



A Simple Example

Coin Flip #1 Coin Flip #2 Coin Flip #3
Total won $2 $4 $8 + $2
Total lost $1 $2 + $1 $4 + $1

What if we tabulate by gambler instead of by coin-flips?

Gambler #1 Gambler #2 Gambler #3
Total won $2 + $4 + $8 - $2
Total lost $1 + $2 + $4 $1 $1
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Notation

Key Idea: We want to track the total money earned by the first n gamblers.

Let Rn and Cn be the total revenue earned and total cost incurred by the first n gamblers,
respectively.

Let Xn = Rn − Cn be the combined profit earned by the first n gamblers.
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Walkthrough: Gambler #1

Coin-flips: HTTHT

Gambler #1 bets $1 that Y1 = T. He loses.

We record this as a loss of $1.

R1 = 0, C1 = 1.
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Walkthrough: Gambler #2

Coin-flips: HTTHT

Gambler #2 bets $1 that Y2 = T. He wins. He now has $2.

He bets $2 that the Y3 = H. He loses.

We record this as a loss of $1.

R2 = 0, C2 = 2.
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Walkthrough: Gambler #3

Coin-flips: HTTHT

Gambler #3 bets $1 that Y3 = T. He wins. He now has $2.

He bets $2 that Y4 = H. He wins. He now has $4.

He bets $4 that Y5 = T. He wins. He now has $8.

We record this as a gain of $8 and a loss of $1.

R3 = 8, C3 = 3.
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Walkthrough: Gambler #4

Coin-flips: HTTHT

Gambler #4 bets $1 that Y4 = T. He loses.

We record this as a loss of $1.

R4 = 8, C4 = 4.
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Walkthrough: Gambler #4

Coin-flips: HTTHT

Gambler #5 bets $1 that Y5 = T. He wins. He now has $2.

After the fifth coin-flip, the casino closes. Hence, he cannot continue betting.

We record this as a gain of $2 and a loss of $1.

R5 = 10, C5 = 5.
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Walkthrough

Total revenue: Rτ = $10.

Total cost: Cτ = $5.

Total profit: Xτ = Rτ − Cτ = $5.
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Observation #1

Proposition 12.
E[LTHT] = E[Cτ ].

Proof.
The number of coin-flips, is equal to the number of gamblers.

Because of the way we recorded losses, each gambler incurs a loss of exactly $1.

Hence, the number of coin-flips made, LTHT, is equal to the total cost incurred, Cτ .

Taking expectations, E[LTHT] = E[Cτ ] .
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Observation #2

Proposition 13.
E[Cτ ] = E[Rτ ].

Because the coin flips are fair, Xn is a martingale. We can show that the stopping time τ is
finite, so by the Optional Stopping Theorem,

E[Xτ ] = X0 = 0,

but Xτ = Rτ − Cτ , so
E[Rτ ] = E[Cτ ] .

(For a more rigorous proof, see the next section)
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Observation #3

Proposition 14.
E[Rτ ] = Rτ = 10.

Proof.
By the rules of the game, only the last three gamblers can earn money. (why?)

So Rτ depends solely on the last three coin-flips.

But the last three coin-flips are always THT.

Hence, Rτ is a constant, thus E[Rτ ] = Rτ = 10.
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Observations

We observed that
E[LTHT] = E[Cτ ]

E[Cτ ] = E[Rτ ]

E[Rτ ] = Rτ = 10.

Therefore,
E[LTHT] = E[C] = E[R] = R = 10.
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The ABRACADABRA Theorem

Proof of Proposition 13



Outline of Proof

Proposition 13.
E[Cτ ] = E[Rτ ].

Outline:

• {Xn} is a martingale.
• {Xn} and τ obeys the OST.
• Invoke OST.
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Proof of Proposition 13

Lemma 15.
{Xn} is a martingale with respect to {Yn}.

Proof.
It suffices to show that (1) E[Xn] is finite, and (2) E[Xn+1 | Y1, . . . , Yn] = Xn.
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Proof of Proposition 13

Lemma 15.
{Xn} is a martingale with respect to {Yn}.

Proof.
(1) E[Xn] is finite.

Xn attains a maximum when all n gamblers win.

Xn attains a minimum when all n gamblers lose.

Hence, |Xn| ≤ n · 2n, so E[Xn] must also be bounded and thus finite.
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Proof of Proposition 13

Lemma 15.
{Xn} is a martingale with respect to {Yn}.

Proof.
(2) E[Xn+1 | Y1, . . . , Yn] = Xn.

Let An be the total wealth of gamblers that have lost before the nth flip.

Since An is constant, we have

E[An+1 | Y1, . . . , Yn] = An+1 = An.
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Proof of Proposition 13

Lemma 15.
{Xn} is a martingale with respect to {Yn}.

Proof.
Let Bn be the total wealth of gamblers that are still betting at the nth flip.

Since the coin is fair and independent, and the gamblers bet double-or-nothing, we
have

E[Bn+1 | Y1, . . . , Yn] =
1
2 (2Bn) +

1
2 (0) = Bn.
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Proof of Proposition 13

Lemma 15.
{Xn} is a martingale with respect to {Yn}.

Proof.
Because Xn = An + Bn,

E[Xn+1 | Y1, . . . , Yn] = E[An+1 | Y1, . . . , Yn] + E[Bn+1 | Y1, . . . , Yn]
= An + Bn
= Xn.

Hence, {Xn} is a martingale with respect to {Yn}.
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Proof of Proposition 13

Proof of Proposition 13.
We show that scenario 3 of OST is satisfied: (1) E[τ ] is finite and (2) increments of Xn are
bounded.

We will prove (2) first.
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Proof of Proposition 13

Proof of Proposition 13.
(2) Increments of Xn are bounded.

Maximum increase in Xn occurs when last three gamblers bet on Yτ and win:
Xn+1 − Xn ≤ 3 · 23.

Maximum decrease in Xn occurs when last three gamblers bet on Yτ and lose:
Xn+1 − Xn ≥ −3.

Hence, |Xn+1 − Xn| is bounded.
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Proof of Proposition 13

Proof of Proposition 13.
(1) E[τ ] is finite.

Consider the following modified game:
Suppose the terminator has length n. Each round, n coins are flipped. If these
n coins matches the terminator (i.e. come up THT), we stop flipping. If not, we
continue on with another round.

Let the stopping time for this game be τ ′.

Clearly, this game takes longer to finish: E[τ ] ≤ E[τ ′].
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Proof of Proposition 13

Proof of Proposition 13.
Let M be the number of rounds played under this game.

Each round, coin-flips have a 1/8 chance of matching the terminator.

So M follows a geometric distribution with probability of success p = 1/8. Hence,
E[M] = 1/p = 8.

Since a total of 3M coin-flips are made in this game, 0 < E[τ ] ≤ E[τ ′] = 3 · 8.

Thus, E[τ ] is bounded and thus finite.
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Proof of Proposition 13

Proof of Proposition 13.
Thus, {Xn} and τ satisfy scenario 2 of the OST.

Invoking OST, E[Xτ ] = X0 = 0.

But Xτ = Rτ − Cτ , so E[Cτ ] = E[Rτ ] as desired.
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The ABRACADABRA Theorem

Correlations and the ABRACADABRA
Theorem



Motivating Example

Since Rτ depends solely on the last few gamblers, we have an easy way of calculating
E[LT ].

Example 16.
Imagine the terminator THT has already been flipped. Working backwards,

• The third-last gambler wins $23, since he sees THT.
• The second-last gambler wins $0, since he sees H and loses.
• The last gambler wins $21, since he sees T before the casino closes.

Hence, E[LTHT] = Rτ = 23 + 21 = 10.
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Correlations

We can abstract this process of calculating Rτ using the correlation of two strings.

Definition 17.
Let X and Y be two words. The correlation polynomial of X and Y, denoted ρz(X, Y), is a
polynomial in z of maximum degree |X|.

The coefficients of ρz(X, Y) are determined as follows: place Y under X so that its
leftmost character is under the ith character of X (from the right). Then, if all pairs of
characters in the overlapping segment are identical, the coefficient of zi is 1, else it is 0.
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Correlations

Example 18.
Let X = HTHTTH and Y = HTTHT. Then ρz(X, Y) = z4 + z1.

X: H T H T T H
Y: H T T H T 0

H T T H T 0
H T T H T z4

H T T H T 0
H T T H T 0

H T T H T z1

61



Correlation and Rτ

We see that Rτ = ρ2(T , T )!

Example 19.
Suppose T = THT. Then Rτ = ρ2(THT, THT) = 23 + 21 = 10.

X: T H T
Y: T H T 23

T H T 0
T H T 21

We can write this more concisely:

T H T
THT 23 21
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Correlation and Rτ

Example 20.
Let T = THHTHHTHH.

T H H T H H T H H
THHTHHTHH 29 26 23

So E[LT ] = 29 + 26 + 23 = 584.

Suppose we change the final character to a T: T = THHTHHTHT.

T H H T H H T H T
THHTHHTHT 29 21

So E[LT ] = 29 + 21 = 514.
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Correlation and Rτ

The “self-repetition” of a terminator determines how big E[LT ] is.

THHTHHTHH self-repeats many times (at the sixth-last and third-last characters), while
THHTHHTHT only repeats itself at the last character.
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The ABRACADABRA Problem

Example 21.
A monkey types one random character on a typewriter every second. On average,
how long would it take the monkey to type the word “ABRACADABRA”?

We now have 26 letters to construct our sequence from: {A,B, C, . . . , X, Y, Z}. We hence
evaluate the correlation polynomial at z = 26 instead.

A B R A C A D A B R A
ABRACADABRA 2611 264 261

Hence, the expected time taken is 2611 + 264 + 26 seconds, or 116.4 million years.
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The ABRACADABRA Theorem

Theorem 22 (ABRACADABRA Theorem).
Suppose we have n possible letters. Then

E[LT ] = ρn(T , T ).

66



Exercise

How long would it take the monkey to type “ENTANGLEMENT”?

E N T A N G L E M E N T
ENTANGLEMENT 2612 263

So the expected time taken is 2612 + 263 seconds, or 3.026 billion years.
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Further Questions



Further Questions

What if we have more than one terminator, say T = {THT,HTT}?

• Can we find E[LT ]?
• What is the probability that LT ends with THT?
• What is the expected length of LT , given that LT ends with THT?
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Any questions?
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